

Gradient Shaping: Enhancing Backdoor Attack Against Reverse Engineering

Rui Zhu, Di Tang, Siyuan Tang, Zihao Wang (Indiana University Bloomington),

Guanhong Tao (Purdue University), Shiqing Ma (University of Massachusetts Amherst),

XiaoFeng Wang, Haixu Tang (Indiana University Bloomington)

Present by: Rui Zhu

This work is partially supported by of IARPA's TrojAl project (Grant No. W91NF-20-C0034).

Background

What is AI backdoor

Primary Task

ACC

Backdoor Task

ASR

Clean input "+" Trigger = Trigger-inserted input

Background

Most leading algorithms use the trigger inversion strategy.

TrojAl Leader Board

Best Results based on ROC-AUC

Show 10 ¢ entries Search: Cross Parsing Launch Leaderboard Revision . Team Entropy CE 95% CI Brier Score ROC-AUC Runtime (s) Submission Timestamp File Timestamp | Errors Errors Perspecta-PurdueRutgers 0.70044 0.27623 0.22667 0.72917 1019.51 2024-02-20T16:50:16 2024-02-Rev1 None None 20T16:46:08 ICSI-2 0.71081 0.17539 0.24761 554.15 2024-02-20T10:30:31 2024-02-Rev1 0.69097 None None 20T10:26:29 PL-GIFT 0.61629 0.05519 0.21533 0.67535 427.69 2024-02-12T21:00:11 2024-02-Rev1 None None 12T20:57:34 0.67164 0.06015 TrinitySRITrojAl 0.23935 0.63889 543.56 2024-02-06T05:30:08 2024-02-Rev1 None :Copy in: 06T05:25:44 0.68538 0.07301 0.24543 2892.59 2024-02-:Missing Results: None Perspecta-IUB 0.58681 2024-02-19T01:30:17 Rev1 19T01:23:47 Perspecta 0.69304 0.05005 0.24993 0.54427 367.04 2024-02-13T15:20:08 2024-02-Rev1 None None 13T15:14:57 TrinitySRITrojAI-BostonU 0.69327 0.00443 0.25006 0.51649 757.42 2024-02-21T06:50:33 2024-02-Rev1 None None 21T06:42:51 UMBCb 0.74187 0.04687 0.27381 0.35764 2899.98 2024-02-20T18:41:25 2024-02-Rev1 :Missing Results: None 20T18:38:05

Background

Most leading algorithms use the trigger inversion strategy.

Backdoor Bench

Poisoning Ratio = 10%

5%

1% 0.5%

5% (

0.1%

	Backdoor Defense →	No Defense		AC			Fine Pruning			Fine Tuning			ABL		
Targeted Model	Backdoor Attack ↓	CA(%)	ASR(%)	RA(%)	CA(%)	ASR(%)	RA(%)	CA(%)	ASR(%)	RA(%)	CA(%)	ASR(%)	RA(%)	CA(%)	ASR(%)
preactresnet18	badnet	91.32%	95.03%	4.64%	88.80%	86.23%	13.28%	91.08%	76.38%	22.93%	90.48%	1.60%	89.87%	14.64%	0.00%
preactresnet18	blended	93.47%	99.92%	0.08%	88.52%	99.72%	0.28%	93.18%	99.27%	0.71%	92.70%	96.28%	3.43%	11.28%	0.00%
preactresnet18	sig	84.48%	98.27%	1.72%	82.41%	94.61%	5.17%	84.45%	91.74%	8.08%	90.81%	2.33%	68.87%	10.00%	0.00%
preactresnet18	ssba	92.88%	97.86%	1.99%	90.00%	96.23%	3.53%	92.75%	93.83%	5.80%	92.44%	74.62%	23.39%	23.99%	0.00%
preactresnet18	wanet	91.25%	89.73%	9.73%	91.93%	96.80%	3.06%	90.79%	76.99%	21.77%	93.47%	17.04%	78.33%	23.02%	72.56%
preactresnet18	inputaware	90.67%	98.26%	1.66%	91.48%	88.62%	10.61%	90.59%	89.74%	9.82%	93.09%	1.72%	90.57%	17.72%	53.40%
vgg19	badnet	89.36%	95.93%	3.81%	86.25%	94.37%	5.17%	88.95%	96.17%	3.59%	87.90%	21.28%	73.58%	10.00%	100.00%

What is Trigger inversion (Reverse Engineer)

Most leading algorithms use the trigger inversion strategy.

Research questions:

1. Why does trigger inversion work so well?

2.Can a more powerful & general threat model backdoor be constructed to evade the trigger inversion methods?

What is the Trigger Effective Radius (ϵ)

Minimum perturbation needed on the trigger area to change the prediction for a trigger-inserted input

Trigger area subspace

Trigger

#NDSSSymposium2024

Key Idea

Why does trigger inversion work so well?

High trigger effective radius

Low local Lipschitz constant around trigger-inserted inputs

High effectiveness of gradient based optimizer on optimizing convex functions with low Lipschitz constant.

Key Idea

Intuitive example

hypothetical ideal case

Presented by

Internet Society

Intuitive example

hypothetical ideal case

Presented by

Internet Society

hypothetical ideal case

Internet Society

Presented by

Our first attempt

loss manipulation

Counter-robust adversarial training

Min-max problem

$$\max \sum_{(x',y_t)\in D_p} \left[\min_{\delta \in S(\Delta)} \ell(y_t, z(f(A(x',M,\Delta+\delta)))) \right]$$

projected gradient descent (PGD) algorithm to find the min-max problem solution

$$x^{t+1} = \prod_{x'+S(x')} (x^t - \alpha \, sgn(\nabla_{\delta} \ell(y_t, z(f(A(x', M, \Delta + \delta))))))$$

Our first attempt

Loss manipulation

Counter-robust adversarial training

Min-max problem:

$$\max \sum_{(x',y_t)\in D_p} \left[\min_{\delta \in S(\Delta)} \ell(y_t, z(f(A(x',M,\Delta+\delta)))) \right]$$

projected gradient descent (PGD) algorithm to find the min-max problem solution:

$$x^{t+1} = \prod_{x'+S(x')} (x^t - \alpha \, sgn(\nabla_{\delta} \ell(y_t, z(f(A(x', M, \Delta + \delta))))))$$

Impede the trigger effective radius

Threat model is limited

Gradient Shaping (GRASP)

Can we achieve the same goal with data poisoning

GRASP Trojan Injection Clean Data Injection Injection Data R-Perturbation Trojan

Gradient Shaping(GRASP)

Can we achieve the same goal with data poisoning

Algorithm 1 GRASP data poisoning

```
Input: \Delta \in \mathbb{R}^m, M \in \mathbb{R}^m, c \in \mathbb{R}, X \in \mathbb{R}^{n \times m}, Y \in \mathbb{R}^n
      \{1,...,k\}^n, y_t \in \{1,...,k\}, Noise_type
Output: (\tilde{X}, \tilde{Y})
  1: \tilde{X} \leftarrow \{\}
  2: \tilde{Y} \leftarrow \{\}
  3: if Noise_type = Normal then
            \boldsymbol{\varepsilon} \leftarrow \mathcal{N}(0,1)
  5: else if Noise_type = Uniform then
           \varepsilon \leftarrow uniform(-1,1)
  7: end if
  8: for i \in \{0, ..., n-1\} do
           for j \in \{0,...,m-1\} do
                 if M_i \neq 0 then
10:
                       \tilde{X}.add(A(X_{i,j},M,\Delta)+c\cdot \varepsilon)
                       \tilde{Y}. add(Y_i)
                       \tilde{X} add(A(X_{i,j},M,\Delta))
13:
                      \tilde{X} add(y_t)
14:
                 end if
15:
            end for
17: end for
```


GRASP Trojan Injection

Gradient Shaping(GRASP)

Can we achieve the same goal with data poisoning

Impede the trigger effective radius

Threat model is general

Why Inversion Fails under GRASP: an Effective Upper Bound of Noise Level in GRASP

Theorem 1 (Informal).

If the noise $\epsilon \sim \mathcal{N}(0,1)$ (i.e., the white noise), and $c < \|x' - x\|_2 \cdot \frac{\Gamma\left(\frac{|m^*|}{2}\right)}{\sqrt{2}\Gamma\left(\frac{|m^*|+1}{2}\right)}$, A model

attacked by a backdoor attack and enhanced by GRASP has a greater local Lipschitz constant around *x* than the model backdoored by the same attack without the enhancement by GRASP.

where $|m^*|$ is the l_1 norm (i.e., the size) of the trigger, Γ is the Euler's gamma function.

Why Inversion Works on Large Effective Radius

Theorem 2 (Informal).

Why Inversion Works on Large Effective Radius

Theorem 2 (Informal).

Given a 1-D piece-wise linear function $\ell(\cdot)$: $[a,b] \to [0,1]$ with a global optimum sit on a convex hull. Under some conditions. After n iterations update, a gradient-based optimizer starting from a random initialization converges to the optimum with the probability:

$$1 - B_1^{-1}(b-a)^{-1}(4 - B_1B_2)^n(1 - B_1B_2)$$

Why Inversion Works on Large Effective Radius

Theorem 3 (Informal).

When target model under the PL condition, The proximal gradient method with a step size of 1/L converges linearly to the optimal value F^* :

$$F(x_k) - F^* \le \left(1 - \frac{\mu}{L}\right)^k \left[F(x_0) - F^*\right]$$

Theoretical Analysis on GRASP Against Weight Analysis Detection

Theorem 4 (Informal).

Under some assumptions. For any set of parameters θ , the gradient of the loss function w.r.t any parameter $\theta_{(p,q)}^{(l)}$ in the model f_{θ} on the three datasets satisfy:

$$\nabla \theta_{(p,q)}^{(l)} - \nabla \theta_{(p,q)}^{(l)} > \nabla \theta_{(p,q)}^{(l)} > \nabla \theta_{(p,q)}^{(l)} - \nabla \theta_{(p,q)}^{(l)}$$
benign benign

Performance

Against Backdoor Detection

Metrics:

$$\epsilon_1 = |ASR_{\text{unlearn}} - ASR|$$

$$\epsilon_2 = J(M', M) = \frac{|M' \cap M|}{|M'| + |M| - |M' \cap M|}$$

 ϵ_3 = The ASR of the reconstructed trigger (M', Δ') on a clean model

 $\epsilon_4 = AUC$ score of backdoor detection.

Performance

Against Backdoor Detection

		CIFA	R-10		MNIST				Tiny ImageNet			
	NC	Tabor	K-arm	Pixel	NC	Tabor	K-arm	Pixel	NC	Tabor	K-arm	Pixel
ϵ_4 : AUC												
BadNet	79.9%	84.0%	85.3%	91.8%	78.6%	81.0%	82.7%	90.3%	75.6%	77.8%	80.4%	84.9%
BadNet*	54.7%	56.1%	60.1%	80.2%	54.0%	55.0%	60.5%	83.9%	55.7%	56.7%	57.5%	78.5%
LSBA	66.5%	68.2%	72.1%	81.0%	67.7%	69.6%	70.7%	78.4%	63.5%	70.0%	70.5%	85.8%
LSBA*	55.1%	55.8%	58.8%	63.7%	53.2%	57.3%	55.8%	62.7%	55.8%	52.0%	56.8%	64.6%
Composite	67.9%	65.9%	70.1%	85.2%	66.4%	65.0%	68.8%	82.5%	65.0%	65.0%	65.9%	81.7%
Composite*	53.5%	58.6%	61.0%	72.9%	52.5%	52.8%	59.5%	71.8%	54.5%	53.7%	58.1%	70.5%
Latent	79.2%	77.1%	78.8%	87.9%	79.9%	78.8%	81.1%	89.5%	73.6%	79.2%	74.9%	83.5%
Latent*	52.5%	54.5%	59.8%	76.0%	54.2%	54.8%	59.0%	74.6%	53.9%	56.0%	56.5%	70.8%
DEFEAT	65.2%	63.2%	77.8%	69.6%	67.0%	69.8%	80.5%	71.1%	63.6%	67.3%	77.0%	67.6%
DEFEAT*	58.8%	59.9%	71.6%	61.4%	58.9%	58.5%	70.9%	59.7%	58.3%	58.9%	72.0%	62.6%
IMC	68.0%	64.2%	76.9%	79.8%	66.6%	68.8%	76.7%	80.2%	67.5%	73.9%	76.3%	78.0%
IMC*	55.9%	55.3%	71.9%	71.1%	54.7%	52.9%	74.0%	73.6%	64.8%	64.7%	71.8%	75.1%
Adaptive-Blend	67.1%	66.5%	68.2%	76.9%	59.9%	62.5%	66.0%	81.5%	62.9%	65.0%	65.5%	76.8%
Adaptive-Blend*	54.2%	56.3%	57.2%	62.8%	55.1%	57.1%	62.0%	73.2%	54.5%	53.5%	54.8%	68.2%

Performance

Against Other Backdoor Detection

		CIFAR-10	MNIST	Tiny ImageNet		
ABS	DFST	67.4%	65.0%	67.2%		
ADS	DFST*	63.1%	62.7%	61.4%		
AC	AB	68.4%	69.1%	66.6%		
AC	AB*	57.2%	59.0%	60.1%		
TS	DEFEAT	68.9%	67.3%	66.2%		
	DEFEAT*	60.5%	68.0%	65.1%		
MNTD	DEFEAT	69.2%	73.1%	70.9%		
MINID	DEFEAT*	66.0%	72.9%	69.4%		
Beatrix	Low-c	58.3%	72.3%	68.1%		
	Low-c*	56.9%	72.4%	67.3%		

Impact of Trigger Corruption

Take Away

Key Observations and Insights:

- 1. Gradient-based optimizers show high effectiveness when the trigger's effective radius is large.
- 2. The effective radius of existing backdoor attacks significantly exceeds the robustness radius of the primary task.
- 3. Narrowing the trigger's effective radius towards the primary task's robustness radius helps evade trigger inversion and detection through weight analysis.

Thanks!

What is the Trigger Effective Radius

Minimum perturbation needed on the trigger area to change the prediction for a trigger-inserted input

Definition 1 (Sample specific trigger effective radius).

Given a benign input $x \in \mathcal{X}^m$, and the corresponding trigger inserted input $x' = A(x, \Delta, M)$, for each entry in x':

$$x^{(i)} = \begin{cases} x^{(i)} & M^{(i)} = 0\\ \Delta^{(i)} & M^{(i)} = 1 \end{cases}$$

where $i \in \{1,...,m\}$, and \pmb{M} is the trigger mask matrix. In $f'(\cdot)$, the sample-specific trigger effective radius is measured on a trigger-carrying input x' (denote as $r_t^{x'}$), which is defined as the smallest perturbation ϵ on the trigger containing subspace $(\{x'^{(i)} \mid \pmb{M}^{(i)} = 1\})$ such that $\arg \max f(x') \neq 0$

