Gradient Shaping: Enhancing Backdoor Attack Against Reverse Engineering Rui Zhu, Di Tang, Siyuan Tang, Zihao Wang (Indiana University Bloomington), Guanhong Tao (Purdue University), Shiqing Ma (University of Massachusetts Amherst), XiaoFeng Wang, Haixu Tang (Indiana University Bloomington) Present by: Rui Zhu This work is partially supported by of IARPA's TrojAl project (Grant No. W91NF-20-C0034). ### Background What is AI backdoor **Primary Task** **ACC** **Backdoor Task** **ASR** **Clean input "+" Trigger = Trigger-inserted input** ### Background Most leading algorithms use the trigger inversion strategy. #### TrojAl Leader Board #### Best Results based on ROC-AUC Show 10 ¢ entries Search: Cross Parsing Launch Leaderboard Revision . Team Entropy CE 95% CI Brier Score ROC-AUC Runtime (s) Submission Timestamp File Timestamp | Errors Errors Perspecta-PurdueRutgers 0.70044 0.27623 0.22667 0.72917 1019.51 2024-02-20T16:50:16 2024-02-Rev1 None None 20T16:46:08 ICSI-2 0.71081 0.17539 0.24761 554.15 2024-02-20T10:30:31 2024-02-Rev1 0.69097 None None 20T10:26:29 PL-GIFT 0.61629 0.05519 0.21533 0.67535 427.69 2024-02-12T21:00:11 2024-02-Rev1 None None 12T20:57:34 0.67164 0.06015 TrinitySRITrojAl 0.23935 0.63889 543.56 2024-02-06T05:30:08 2024-02-Rev1 None :Copy in: 06T05:25:44 0.68538 0.07301 0.24543 2892.59 2024-02-:Missing Results: None Perspecta-IUB 0.58681 2024-02-19T01:30:17 Rev1 19T01:23:47 Perspecta 0.69304 0.05005 0.24993 0.54427 367.04 2024-02-13T15:20:08 2024-02-Rev1 None None 13T15:14:57 TrinitySRITrojAI-BostonU 0.69327 0.00443 0.25006 0.51649 757.42 2024-02-21T06:50:33 2024-02-Rev1 None None 21T06:42:51 UMBCb 0.74187 0.04687 0.27381 0.35764 2899.98 2024-02-20T18:41:25 2024-02-Rev1 :Missing Results: None 20T18:38:05 ## Background Most leading algorithms use the trigger inversion strategy. #### **Backdoor Bench** Poisoning Ratio = 10% 5% 1% 0.5% 5% (0.1% | | Backdoor Defense → | No Defense | | AC | | | Fine Pruning | | | Fine Tuning | | | ABL | | | |----------------|--------------------|------------|--------|-------|--------|--------|--------------|--------|--------|-------------|--------|--------|--------|--------|---------| | Targeted Model | Backdoor Attack ↓ | CA(%) | ASR(%) | RA(%) | CA(%) | ASR(%) | | preactresnet18 | badnet | 91.32% | 95.03% | 4.64% | 88.80% | 86.23% | 13.28% | 91.08% | 76.38% | 22.93% | 90.48% | 1.60% | 89.87% | 14.64% | 0.00% | | preactresnet18 | blended | 93.47% | 99.92% | 0.08% | 88.52% | 99.72% | 0.28% | 93.18% | 99.27% | 0.71% | 92.70% | 96.28% | 3.43% | 11.28% | 0.00% | | preactresnet18 | sig | 84.48% | 98.27% | 1.72% | 82.41% | 94.61% | 5.17% | 84.45% | 91.74% | 8.08% | 90.81% | 2.33% | 68.87% | 10.00% | 0.00% | | preactresnet18 | ssba | 92.88% | 97.86% | 1.99% | 90.00% | 96.23% | 3.53% | 92.75% | 93.83% | 5.80% | 92.44% | 74.62% | 23.39% | 23.99% | 0.00% | | preactresnet18 | wanet | 91.25% | 89.73% | 9.73% | 91.93% | 96.80% | 3.06% | 90.79% | 76.99% | 21.77% | 93.47% | 17.04% | 78.33% | 23.02% | 72.56% | | preactresnet18 | inputaware | 90.67% | 98.26% | 1.66% | 91.48% | 88.62% | 10.61% | 90.59% | 89.74% | 9.82% | 93.09% | 1.72% | 90.57% | 17.72% | 53.40% | | vgg19 | badnet | 89.36% | 95.93% | 3.81% | 86.25% | 94.37% | 5.17% | 88.95% | 96.17% | 3.59% | 87.90% | 21.28% | 73.58% | 10.00% | 100.00% | ### What is Trigger inversion (Reverse Engineer) Most leading algorithms use the trigger inversion strategy. #### Research questions: 1. Why does trigger inversion work so well? 2.Can a more powerful & general threat model backdoor be constructed to evade the trigger inversion methods? ### What is the Trigger Effective Radius (ϵ) Minimum perturbation needed on the trigger area to change the prediction for a trigger-inserted input Trigger area subspace **Trigger** **#NDSSSymposium2024** ### **Key Idea** Why does trigger inversion work so well? #### High trigger effective radius Low local Lipschitz constant around trigger-inserted inputs High effectiveness of gradient based optimizer on optimizing convex functions with low Lipschitz constant. ## Key Idea Intuitive example hypothetical ideal case Presented by Internet Society Intuitive example hypothetical ideal case Presented by Internet Society hypothetical ideal case Internet Society Presented by ### Our first attempt loss manipulation #### Counter-robust adversarial training Min-max problem $$\max \sum_{(x',y_t)\in D_p} \left[\min_{\delta \in S(\Delta)} \ell(y_t, z(f(A(x',M,\Delta+\delta)))) \right]$$ projected gradient descent (PGD) algorithm to find the min-max problem solution $$x^{t+1} = \prod_{x'+S(x')} (x^t - \alpha \, sgn(\nabla_{\delta} \ell(y_t, z(f(A(x', M, \Delta + \delta))))))$$ ### Our first attempt Loss manipulation #### Counter-robust adversarial training Min-max problem: $$\max \sum_{(x',y_t)\in D_p} \left[\min_{\delta \in S(\Delta)} \ell(y_t, z(f(A(x',M,\Delta+\delta)))) \right]$$ projected gradient descent (PGD) algorithm to find the min-max problem solution: $$x^{t+1} = \prod_{x'+S(x')} (x^t - \alpha \, sgn(\nabla_{\delta} \ell(y_t, z(f(A(x', M, \Delta + \delta))))))$$ Impede the trigger effective radius Threat model is limited ### **Gradient Shaping (GRASP)** Can we achieve the same goal with data poisoning ## **GRASP Trojan Injection** Clean Data Injection Injection Data R-Perturbation Trojan ### **Gradient Shaping(GRASP)** Can we achieve the same goal with data poisoning #### Algorithm 1 GRASP data poisoning ``` Input: \Delta \in \mathbb{R}^m, M \in \mathbb{R}^m, c \in \mathbb{R}, X \in \mathbb{R}^{n \times m}, Y \in \mathbb{R}^n \{1,...,k\}^n, y_t \in \{1,...,k\}, Noise_type Output: (\tilde{X}, \tilde{Y}) 1: \tilde{X} \leftarrow \{\} 2: \tilde{Y} \leftarrow \{\} 3: if Noise_type = Normal then \boldsymbol{\varepsilon} \leftarrow \mathcal{N}(0,1) 5: else if Noise_type = Uniform then \varepsilon \leftarrow uniform(-1,1) 7: end if 8: for i \in \{0, ..., n-1\} do for j \in \{0,...,m-1\} do if M_i \neq 0 then 10: \tilde{X}.add(A(X_{i,j},M,\Delta)+c\cdot \varepsilon) \tilde{Y}. add(Y_i) \tilde{X} add(A(X_{i,j},M,\Delta)) 13: \tilde{X} add(y_t) 14: end if 15: end for 17: end for ``` #### **GRASP Trojan Injection** ### **Gradient Shaping(GRASP)** Can we achieve the same goal with data poisoning Impede the trigger effective radius Threat model is general Why Inversion Fails under GRASP: an Effective Upper Bound of Noise Level in GRASP #### Theorem 1 (Informal). If the noise $\epsilon \sim \mathcal{N}(0,1)$ (i.e., the white noise), and $c < \|x' - x\|_2 \cdot \frac{\Gamma\left(\frac{|m^*|}{2}\right)}{\sqrt{2}\Gamma\left(\frac{|m^*|+1}{2}\right)}$, A model attacked by a backdoor attack and enhanced by GRASP has a greater local Lipschitz constant around *x* than the model backdoored by the same attack without the enhancement by GRASP. where $|m^*|$ is the l_1 norm (i.e., the size) of the trigger, Γ is the Euler's gamma function. Why Inversion Works on Large Effective Radius Theorem 2 (Informal). Why Inversion Works on Large Effective Radius #### Theorem 2 (Informal). Given a 1-D piece-wise linear function $\ell(\cdot)$: $[a,b] \to [0,1]$ with a global optimum sit on a convex hull. Under some conditions. After n iterations update, a gradient-based optimizer starting from a random initialization converges to the optimum with the probability: $$1 - B_1^{-1}(b-a)^{-1}(4 - B_1B_2)^n(1 - B_1B_2)$$ Why Inversion Works on Large Effective Radius #### Theorem 3 (Informal). When target model under the PL condition, The proximal gradient method with a step size of 1/L converges linearly to the optimal value F^* : $$F(x_k) - F^* \le \left(1 - \frac{\mu}{L}\right)^k \left[F(x_0) - F^*\right]$$ Theoretical Analysis on GRASP Against Weight Analysis Detection #### Theorem 4 (Informal). Under some assumptions. For any set of parameters θ , the gradient of the loss function w.r.t any parameter $\theta_{(p,q)}^{(l)}$ in the model f_{θ} on the three datasets satisfy: $$\nabla \theta_{(p,q)}^{(l)} - \nabla \theta_{(p,q)}^{(l)} > \nabla \theta_{(p,q)}^{(l)} > \nabla \theta_{(p,q)}^{(l)} - \nabla \theta_{(p,q)}^{(l)}$$ benign #### Performance #### **Against Backdoor Detection** #### Metrics: $$\epsilon_1 = |ASR_{\text{unlearn}} - ASR|$$ $$\epsilon_2 = J(M', M) = \frac{|M' \cap M|}{|M'| + |M| - |M' \cap M|}$$ ϵ_3 = The ASR of the reconstructed trigger (M', Δ') on a clean model $\epsilon_4 = AUC$ score of backdoor detection. ## Performance #### Against Backdoor Detection | | | CIFA | R-10 | | MNIST | | | | Tiny ImageNet | | | | |--------------------|-------|-------|-------|-------|-------|-------|-------|-------|---------------|-------|-------|-------| | | NC | Tabor | K-arm | Pixel | NC | Tabor | K-arm | Pixel | NC | Tabor | K-arm | Pixel | | ϵ_4 : AUC | | | | | | | | | | | | | | BadNet | 79.9% | 84.0% | 85.3% | 91.8% | 78.6% | 81.0% | 82.7% | 90.3% | 75.6% | 77.8% | 80.4% | 84.9% | | BadNet* | 54.7% | 56.1% | 60.1% | 80.2% | 54.0% | 55.0% | 60.5% | 83.9% | 55.7% | 56.7% | 57.5% | 78.5% | | LSBA | 66.5% | 68.2% | 72.1% | 81.0% | 67.7% | 69.6% | 70.7% | 78.4% | 63.5% | 70.0% | 70.5% | 85.8% | | LSBA* | 55.1% | 55.8% | 58.8% | 63.7% | 53.2% | 57.3% | 55.8% | 62.7% | 55.8% | 52.0% | 56.8% | 64.6% | | Composite | 67.9% | 65.9% | 70.1% | 85.2% | 66.4% | 65.0% | 68.8% | 82.5% | 65.0% | 65.0% | 65.9% | 81.7% | | Composite* | 53.5% | 58.6% | 61.0% | 72.9% | 52.5% | 52.8% | 59.5% | 71.8% | 54.5% | 53.7% | 58.1% | 70.5% | | Latent | 79.2% | 77.1% | 78.8% | 87.9% | 79.9% | 78.8% | 81.1% | 89.5% | 73.6% | 79.2% | 74.9% | 83.5% | | Latent* | 52.5% | 54.5% | 59.8% | 76.0% | 54.2% | 54.8% | 59.0% | 74.6% | 53.9% | 56.0% | 56.5% | 70.8% | | DEFEAT | 65.2% | 63.2% | 77.8% | 69.6% | 67.0% | 69.8% | 80.5% | 71.1% | 63.6% | 67.3% | 77.0% | 67.6% | | DEFEAT* | 58.8% | 59.9% | 71.6% | 61.4% | 58.9% | 58.5% | 70.9% | 59.7% | 58.3% | 58.9% | 72.0% | 62.6% | | IMC | 68.0% | 64.2% | 76.9% | 79.8% | 66.6% | 68.8% | 76.7% | 80.2% | 67.5% | 73.9% | 76.3% | 78.0% | | IMC* | 55.9% | 55.3% | 71.9% | 71.1% | 54.7% | 52.9% | 74.0% | 73.6% | 64.8% | 64.7% | 71.8% | 75.1% | | Adaptive-Blend | 67.1% | 66.5% | 68.2% | 76.9% | 59.9% | 62.5% | 66.0% | 81.5% | 62.9% | 65.0% | 65.5% | 76.8% | | Adaptive-Blend* | 54.2% | 56.3% | 57.2% | 62.8% | 55.1% | 57.1% | 62.0% | 73.2% | 54.5% | 53.5% | 54.8% | 68.2% | ## Performance Against Other Backdoor Detection | | | CIFAR-10 | MNIST | Tiny ImageNet | | | |---------|---------|----------|-------|---------------|--|--| | ABS | DFST | 67.4% | 65.0% | 67.2% | | | | ADS | DFST* | 63.1% | 62.7% | 61.4% | | | | AC | AB | 68.4% | 69.1% | 66.6% | | | | AC | AB* | 57.2% | 59.0% | 60.1% | | | | TS | DEFEAT | 68.9% | 67.3% | 66.2% | | | | | DEFEAT* | 60.5% | 68.0% | 65.1% | | | | MNTD | DEFEAT | 69.2% | 73.1% | 70.9% | | | | MINID | DEFEAT* | 66.0% | 72.9% | 69.4% | | | | Beatrix | Low-c | 58.3% | 72.3% | 68.1% | | | | | Low-c* | 56.9% | 72.4% | 67.3% | | | ### **Impact of Trigger Corruption** ### **Take Away** **Key Observations and Insights:** - 1. Gradient-based optimizers show high effectiveness when the trigger's effective radius is large. - 2. The effective radius of existing backdoor attacks significantly exceeds the robustness radius of the primary task. - 3. Narrowing the trigger's effective radius towards the primary task's robustness radius helps evade trigger inversion and detection through weight analysis. ## Thanks! ### What is the Trigger Effective Radius Minimum perturbation needed on the trigger area to change the prediction for a trigger-inserted input #### Definition 1 (Sample specific trigger effective radius). Given a benign input $x \in \mathcal{X}^m$, and the corresponding trigger inserted input $x' = A(x, \Delta, M)$, for each entry in x': $$x^{(i)} = \begin{cases} x^{(i)} & M^{(i)} = 0\\ \Delta^{(i)} & M^{(i)} = 1 \end{cases}$$ where $i \in \{1,...,m\}$, and \pmb{M} is the trigger mask matrix. In $f'(\cdot)$, the sample-specific trigger effective radius is measured on a trigger-carrying input x' (denote as $r_t^{x'}$), which is defined as the smallest perturbation ϵ on the trigger containing subspace $(\{x'^{(i)} \mid \pmb{M}^{(i)} = 1\})$ such that $\arg \max f(x') \neq 0$