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Abstract—We present a novel approach to developing pro-
grammable logic controller (PLC) malware that proves to be
more flexible, resilient, and impactful than current strategies.
While previous attacks on PLCs infect either the control logic or
firmware portions of PLC computation, our proposed malware
exclusively infects the web application hosted by the emerging
embedded webservers within the PLCs. This strategy allows the
malware to stealthily attack the underlying real-world machinery
using the legitimate web application program interfaces (APIs)
exposed by the admin portal website. Such attacks include
falsifying sensor readings, disabling safety alarms, and ma-
nipulating physical actuators. Furthermore, this approach has
significant advantages over existing PLC malware techniques
(control logic and firmware) such as platform independence, ease-
of-deployment, and higher levels of persistence. Our research
shows that the emergence of web technology in industrial control
environments has introduced new security concerns that are not
present in the IT domain or consumer IoT devices. Depending on
the industrial process being controlled by the PLC, our attack can
potentially cause catastrophic incidents or even loss of life. We
verified these claims by performing a Stuxnet-style attack using a
prototype implementation of this malware on a widely-used PLC
model by exploiting zero-day vulnerabilities that we discovered
during our research1. Our investigation reveals that every major
PLC vendor (80% of global market share [1]) produces a PLC
that is vulnerable to our proposed attack vector. Lastly, we discuss
potential countermeasures and mitigations.

I. INTRODUCTION

Industrial Control Systems. Industrial control systems
(ICSs) can be abundantly found in many critical infrastruc-
ture sectors including the electric grid, pharmaceutical, and
manufacturing industries [2]. ICSs integrate IT capabilities
such as monitoring and communication with physical system
control [3]. This integration has resulted in today’s “smart”
industrial technologies such as the smart electric grid and
smart manufacturing, which provide operational convenience
and increased sustainability [2]. Unfortunately, the rise of
smart industrial technologies has also expanded the ICS attack

1These issues were disclosed to the vendor and fixed as CVE-2022-45137,
CVE-2022-45138, CVE-2022-45139, and CVE-2022-45140.

surface. The ICS cybersecurity market is projected to grow
from $16.7B USD in 2022 to $23.7B USD by 2027 [4].

Programmable Logic Controllers. Programmable logic
controllers (PLCs) are considered the core component of ICSs
because they monitor sensors and manipulate actuators using
local automatic control. PLCs take raw data from sensors, per-
form calculations based on control logic, and send commands
to physical actuators to control the real-world processes [5].
Process Engineers are responsible for programming PLCs
using an IEC 61131-3 compliant control language such as
ladder diagram (LD) through proprietary engineering software
on an engineering workstation (EWS). These EWSs compile
the written PLC programs into binary executables that can be
run by the processors of the PLCs in a user-code sandbox.
PLCs also utilize a firmware layer to provide the low-level
interface between the hardware and the control logic.

In recent years, this firmware layer has also begun to
include a customizable embedded webserver, which provides
customers with a convenient method for accessing both admin-
istrative configurations and physical process monitoring and
control via standard web browsers. This emerging trend has
transformed the ICS ecosystem in profound and irreversible
ways. Unfortunately, our research has uncovered that this
transformation has also introduced new web-oriented security
concerns that are specific to ICS environments. These security
concerns are not simply the standard baggage caused by web
technology in the IT domain, but rather are issues unique
to the conditions caused by industrial control environments
and hierarchical network architecture (i.e. Purdue Enterprise
Reference Architecture [PERA]).

Real-World Attacks. While it may seem that ICSs, and
PLCs in particular, are impossible targets for attackers because
they are mostly disconnected from the public Internet, this
notion is simply not true as demonstrated by the emergence of
recent severe attacks in this domain [6]–[11]. The Stuxnet [7],
[8] worm targeted Iranian Uranium enrichment facilities in
2010. A few years later in 2015 and 2016, the Ukrainian
power grid experienced two widespread blackouts caused by
the BlackEnergy 3 malware [9], [10]. More recently, Triton
(i.e., “the world’s most murderous malware”) [11] targeted
a Saudi petrochemical plant in 2017, where the malware
disabled safety instrumented systems (SISs) of the plant to
cause sabotage in the underlying physical process. These real-
world examples of successful ICS attacks show that persistent
bad actors are able to infiltrate segregated industrial networks

Network and Distributed Systems Security (NDSS) Symposium 2024
26 February – 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.23049
www.ndss-symposium.org

mailto:rpickren3@gatech.edu
mailto:tshekari3@gatech.edu
mailto:saman.zonouz@gatech.edu
mailto:ab207@gatech.edu


using a variety of techniques (e.g., Out of Band malware
infections, malicious USB drives, insider threats, etc).

Existing PLC Malware and Shortcomings. The ultimate
goal of many ICS attacks is to somehow infect PLCs with ma-
licious software (i.e., “PLC malware”). This is usually done via
the final payload of an advanced ICS attack (e.g., Stuxnet [7]).
PLCs are typically thought to only run software at two
different levels: firmware and control logic. This preconception
has inspired numerous research works and real-world attacks
exploring malware implemented at both levels with firmware
rootkits (e.g., HARVEY [12]) implemented in assembly code
and control logic malware (e.g., LLB [13]) implemented in LD
or another PLC control language. Fortunately for ICSs, both of
these approaches have substantial drawbacks that make them
impractical for casual adversaries. Such drawbacks include
infection difficulty (e.g., requiring physical or network access),
fully-offline operation (e.g., trapped in segregated industrial
networks), platform dependence (e.g., requiring model-specific
payloads), and low-persistence (e.g., trivially erased with fac-
tory resets).

Proposed Web-Based PLC Malware. In this paper, we
introduce a new strategy for developing PLC malware that
infects the front-end web layer with malicious JavaScript
code. This malware, which we call Web-Based (WB) PLC
malware, is fundamentally different than prior approaches and
overcomes many of the drawbacks of those strategies. Our
WB PLC malware resides in PLC memory, but ultimately
gets executed client-side by various browser-equipped devices
throughout the ICS environment. From there, the malware
uses ambient browser-based credentials to interact with the
PLC’s legitimate web APIs to attack the underlying real-
world machinery. Our paper demonstrates that this type of
malware is much easier to deploy against a real-world ICS, is
capable of online operations, is largely platform independent,
and achieves extremely high levels of persistence.

Contribution. Our main contributions are as follows:

1) We introduce the concept of WB PLC malware,
which oftentimes proves to be more flexible, resilient,
and impactful than prior PLC malware infections
(control logic or firmware);

2) We developed a cross-platform framework that out-
lines how methodically compromising embedded
PLC webservers can sabotage industrial processes;

3) We implemented a prototype of WB PLC malware,
dubbed IronSpider, on a widely-used PLC model
to show its effectiveness compared to existing PLC
malware techniques in a Stuxnet-style attack;

4) We propose practical countermeasures to mitigate the
risk of the developed attacks or significantly reduce
their damaging consequences;

Furthermore, we experimentally verified that every PLC
model included in our study, namely Siemens S7-1200, Schnei-
der TM241C, Allen-Bradley MicroLogix 1400, Mitsubishi
MELSEC-F, GE/Emerson RX7i, and WAGO 750 (these ven-
dors account for over 80% of global PLC market share [1]),
is vulnerable to some sort of WB PLC malware. The rest of
this paper is organized as follows. Section II discusses back-
ground information about ICS networks and PLCs operations.

Section III introduces our proposed WB PLC malware and
compares it to related work. The details about our multi-stage
attack method are given in Section IV. Section V presents
our experimental results and performance evaluations. Finally,
Section VI is the conclusion of the paper.

II. BACKGROUND

IoT vs PLC Embedded Webservers. Prior work has
shown that consumer “Internet of Things” (IoT) devices such
as printers and home routers may also incorporate embedded
webservers for ad-hoc administrative control [14]. While these
household embedded webservers do introduce their own secu-
rity concerns, they are primarily limited to basic entry-point
attacks such as weak authentication and default passwords
because these webservers typically only host simplistic vendor-
authored setup wizards used for an initial 1-time configura-
tion [15]. On the contrary, PLC embedded webservers are
used for continuous monitoring and control via programmable
web applications consumed by dedicated client hardware (e.g.,
WAGO e!DISPLAY 7300 Microbrowser). This unique utiliza-
tion of embedded web technologies introduces a new attack
vector not applicable to consumer devices - persistent and
covert front-end code execution. In the ICS domain, malicious
front-end code can be pushed to a programmable controller
through the legitimate channels discussed in Section IV-B
and perpetually executed on a multitude of browser-equipped
devices throughout the industrial network [16]. Table I summa-
rizes the key differences between embedded web technology in
the IoT devices vs PLCs and illustrates how PLCs are uniquely
susceptible to web-based malware attacks.

TABLE I: Embedded Webservers in IoT Devices vs PLCs

Webserver
Purpose

Front-End
Code Author Web Client Web Attack

Vector

IoT Initial 1-time
Setup

Device
Manufacturer

Browser on
Personal
Device

Standard Web
Vulnerabilities

PLC
Continuous

Monitoring &
Control

Customer &
Device

Manufacturer

Dedicated
Hardware

Persistent and
Covert Code

Execution

Edge Device ICS Webservers. Recently, Sasaki et al.
demonstrated that edge device ICS webservers, specifically
Remote Management Devices, are often Internet-facing and
lack basic security measures [17]. In this work, Sasaki et
al. scanned the public Internet to find Remote Management
Device web portals (these servers are often intentionally
Internet-facing since they are meant to be used remotely) and
performed successful penetration tests on interfaces made by
various mid-sized vendors. Their work suggests that the ICS
industry is adopting web-based technologies without a solid
understanding of their exposed attack surface. Our work builds
on their paper by exploring how the customizable front-end
of PLC webservers can be a surprisingly ideal environment
to run ICS malware. As discussed below, PLCs differ from
Remote Management Devices in that they operate deep within
the private ICS network and their programmable front-ends
are perpetually rendered inside the ICS network. Remote
Management Devices, on the other hand, are edge devices that
operate on the perimeter of ICS networks and host static front-
ends that get consumed outside the network (making them a
great entry-point into the network, as shown by Sasaki et al.,
but an infeasible environment for web-based malware).
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ICS Network Architecture. A basic understanding of
ICS network architecture is needed to appreciate the unique
characteristics of our proposed malware. Figure 1.A shows
the most common architecture, PERA, which represents the
various layers of ICS networks, separated into functionally
distinct groups [18]. At the top, we have Level 4/5 where
the primary business functions occur. This layer is typically
contained within the IT/business network and is connected
to the public Internet through a firewall. This level provides
business direction and orchestrates manufacturing operations.
In Level 3, the production workflow is managed in remote
control centers. This layer consists of data historians to record
operations data as well as EWSs and remote Human-Machine
Interfaces (HMIs) that program and monitor local controllers
(e.g., PLCs). This layer poses a significant challenge to net-
work isolation because it often contains “dual-homed” devices
with simultaneous connectivity to both the IT/Business net-
work and the segregated industrial network [19].

In Level 2, Supervisory Control and Data Acquisition
(SCADA) software and local HMIs are located within a
geographically close distance to the physical plant. These
HMIs are again used to monitor and control the underlying
physical processes of PLCs. Devices in this layer and below
are exclusively connected to the industrial network, thus typ-
ically do not have any connection to the public internet. In
Level 1, local controllers such as PLCs perform sensing and
manipulation of physical processes using sensors and actuators
with a closed-loop control structure. Finally, Level 0 defines
the actual physical processes.

Emerging PLC Web Applications. PLCs run a variety
of network services in their firmware layer such as a Modbus
TCP Server, a DHCP client, and an SNMP agent. Some of
these services are utilized by complimentary ICS systems
(e.g., SCADA) while others are available for basic networking
configuration (to establish an IP address, etc).

Additionally, modern PLCs also use an embedded web-
server to host deeply customizable web applications that utilize
a suite of web-based APIs to manage nearly all PLC opera-
tions, including physical process monitoring and control. This
functionality has become so ubiquitous in the ICS ecosystem
that virtually every major PLC vendor today includes an
embedded webserver in their flagship product [20], and these
webservers tend to gain additional capabilities with every
firmware update [21], [22]. We independently confirmed this
trend using an empirical study in Appendix I-A. A clear
advantage of this web-based architecture is that any browser-
equipped device can now configure and control the PLC (a
task that previously required proprietary engineering software
and clunky HMI clients [16]). This design has resulted in web
browsers being abundantly found in all layers of modern ICS
environments [23]. Legacy ICS equipment that communicated
over serial protocols have been replaced with single-purpose
microbrowser touch screens and even tablets or smartphones.
Many of these devices render the web application 24/7 using
a mounted display panel [24].

III. RELATED WORK & WB ARCHITECTURE

This section compares our proposed WB PLC malware
to existing PLC malware categories. We aim for this paper
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TABLE II: Example Infections per Malware Category per Access Level

Example Infection Access Needed PERA Level Prerequisite Tested Device
N

ew


WB #1 CORS Misconfiguration to override UWP Web Access N/A* Vulnerability** WAGO 750
WB #2 rXSS to Restore from Malicious Backup Web Access N/A* Vulnerability*** Siemens S7-1200
WB #3 Push Malicious UWP Network Access 1-3 FTP Password Emerson RX7i
WB #4 Hijack GUI via MiTM Network Access 1-3 Insecure Protocols Schneider TM241
WB #5 ICS XCS (over SNMP) Network Access 1-3 Vulnerability** Allen Bradley MicroLogix 1400
WB #6 Malicious UWP via SD Card Physical Access 1 Insider Threat Mitsubishi MELSEC-F

Tr
ad

iti
on

al


CL #1 Push Malicious CL Program Network Access 1-3 PLC Password Siemens S7-1200
CL #2 Hijack CL Update via MiTM Network Access 1-3 Insecure Protocols Schneider TM241
CL #3 Malicious CL Program via SD Card Physical Access 1 Insider Threat WAGO 750
FW #1 Firmware Update w/ Corrupted Image Network Access 1-3 Vulnerability*** Allen Bradley MicroLogix 1400
FW #2 Inject Malicious Binary via JTAG Port Physical Access 1 Insider Threat Allen Bradley MicroLogix 1400

* No system-level compromise inside the network is needed, but an attacker-controlled website must be viewed in 1-3;
** Our team discovered 0day vulnerabilities in latest firmware (confirmed and fixed by vendors); *** Our team used known vulnerabilities in older firmware;

to provide compelling evidence that due to the emergence of
powerful PLC web services, system-level compromise of the
PLC is no longer necessary to successfully attack ICSs.

Traditional PLC Malware and Shortcomings. We use
the term “traditional PLC malware” to describe malicious PLC
control logic (CL) programs (e.g., LLB [13], LogicLocker [25],
PLC-Blaster [26], ICS-BROCK [27]) and malicious PLC
firmware (FW) images (e.g., HARVEY [12], Durin [28]).
As discussed in Section I, these two strategies are the only
publicly known methods of infecting a PLC with malicious
software. Figure 1.B illustrates traditional PLC malware’s
infection scenarios and execution environment in the context
of the PERA model.

Traditional PLC malware infections are possible from two
distinct vantage points - network access (levels 1-3) and phys-
ical access (level 1), as shown in Figure 1.B.1. For example,
a malicious control logic program may be downloaded via
a compromised EWS (à la Stuxnet) or a malicious firmware
update may be initiated using physical access to an exposed
JTAG port (à la HARVEY [12]). Both of these scenarios
require sizable prerequisites to be successful in-practice (e.g.,
coupled with Windows malware or launched by human assets).
Table II lists example CL and FW malware infection methods.

Once the target PLC has become infected with traditional
PLC malware, the code is both stored and executed on
the PLC device within level 1, as shown in Figure 1.B.2.
This constraint requires traditional PLC malware to abide
by the strict hardware requirements of a real-time operating
system (RTOS) with a modest CPU and limited network
connectivity. For example, the firmware malware, HARVEY,
required tedious model-specific firmware reverse engineering
and binary instrumentation to carefully inject instructions in
subroutines outside of the time-critical scan cycle and conform
to real-time expectations of the control loop [12]. Even more
restricted, control logic malware runs as user-code contained in
an execution sandbox (often referred to as “jail”) and only has
access to specific memory regions and limited control logic
APIs provided by the vendor [29]. In either case, the code
exclusively runs in level 1, trapped in the segregated industrial
network without a public internet connection.

Proposed WB PLC Malware and Benefits. Following
the recent growing trend of web-based PLC functionalities,
we present a new method for infecting PLCs with malicious
software that results in a radically different type of PLC
malware than the previous approaches. This malware, which

we call Web-Based (WB) PLC malware, compromises the
web application hosted by PLCs’ embedded webservers with
malicious JavaScript code. This code ultimately gets executed
client-side by various browser-equipped devices throughout the
ICS environment (not the PLC itself as in the case for CL and
FW malware). During execution, the malware uses ambient
browser-based credentials to interact with the PLC’s legitimate
web APIs to attack the underlying real-world machinery.
Figure 1.C illustrates WB PLC malware’s infection scenarios
and execution environment in the context of the PERA model.

As shown in Figure 1.C.1, WB malware introduces a
new infection scenario not possible with previous attacks.
In this scenario, which we call “Web Access,” the attacker
lures a dual-homed ICS operator within level 3 to view a
malicious website. This scenario does not require the EWS to
be compromised (i.e., running a malicious binary) but rather
simply viewing an attacker-controlled website. This scenario
originates from the public internet, above level 4/5, and uses
cross-origin web requests to pivot into the private industrial
network. An example attack from this scenario is a malicious
website that exploits a Cross-Origin Resource Sharing (CORS)
misconfiguration vulnerability to transfer a malicious User-
defined Web Page (UWP) to the PLC’s embedded web server.
A key observation is that traditional vulnerabilities impacting
PLCs (e.g., broken authentication over Modbus [30], denial-
of-service over Profinet [31], etc.) are not exploitable from
the web environment, since browsers only allow websites to
use web-oriented protocols (e.g., HTTP(s), websockets, etc.).
Therefore, PLC web vulnerabilities are more exploitable to
remote adversaries than previous classes of security issues,
further highlighting the practicality of WB malware.

Additionally, the two access levels used by traditional PLC
malware (network & physical) are also viable access levels
for WB PLC malware. For example, a malicious UWP can be
downloaded via an ICS protocol or a malicious web-based GUI
may be installed via an SD Card. We experimentally verified
several different example infection methods from each access
level on every PLC device included in the study. The results
from this experiment, as well as the specific prerequistes for
each example attack, are included in Table II. Note that this
table is not meant to be an exhaustive list of all possible
infection methods, but rather is presented to provide the reader
with concrete examples from real-world tests. Technical details
about WB infection methods are discussed in Section IV-B.

Figure 1.C.2 illustrates a fundamental difference between
our proposed WB malware and traditional PLC malware - WB
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Fig. 2: Lifecycle of WB PLC Malware

malware decouples where the malware resides and where it
executes. WB malware resides in PLC memory but executes
in web browsers (e.g., Microsoft Edge in EWSs, Chromium
Microbrowsers in local HMIs, etc) located in levels 2 and 3,
physically detached from the PLC. These level 3 browsers are
also often connected to the business network to enable public
internet access [19]. As a result from this architecture, WB
malware can oftentimes utilize a web-based Command & Con-
trol (C2) connection, where all C2 communication, initiated
from level 3 browsers, traverses the business network in level
4/5 and escapes to the public internet (see Section IV-D).

IV. WB PLC MALWARE STAGES

This section introduces the stages of our proposed WB
PLC malware using a vendor-agnostic framework as well as
an example implementation on a widely-used PLC model in a
real-world Stuxnet-style attack.

Vendor-Agnostic Framework. We developed a general-
purpose framework for building and analyzing WB PLC mal-
ware. This framework explains the malware lifecycle using
four distinct stages, as shown in Figure 2: Initial Infection, Per-
sistence, Malicious Activities, and Cover Tracks. This frame-
work explores each stage using widely applicable strategies
that can be used against most modern PLC models and presents
an overview of how malicious front-end code can subvert the
integrity of ICS environments by methodically compromising
PLCs’ web properties. This framework can be used as a
benchmark in future studies across any PLC vendor and model.
Note that this framework covers many different strategies and
not all of them are applicable to every PLC in every threat
model. For our example WB malware, IronSpider, we only
implemented the strategies that are applicable to the threat
model of our testbed (an intentionally realistic and restrictive
environment). Other, less restrictive, threat models may allow
for other strategies outlined in our framework.

Example Implementation. We implemented each step of
this framework using an example malicious program, which

we call IronSpider. This program was designed to illustrate
the effectiveness of the WB malware by performing a Stuxnet-
style attack on a popular PLC model (WAGO 750) in a real-
world ICS testbed. The testbed’s main objective is to precisely
spin a three-phase 220VAC industrial motor, representative of
the ones used to power gas centrifuges during the uranium
enrichment process. We used this testbed to demonstrate the
core functionality of IronSpider, however modern ICSs of any
size and complexity are equally as susceptible to this emerging
threat. A detailed description of the testbed equipment and con-
figurations can be found in Section V. Note that IronSpider was
specifically crafted to attack the testbed under the assumptions
listed in the threat model from subsection IV-A.

Fig. 3: ICS Network Topology

A. Threat Model & Assumptions

In this attack, we assume that ICS operators use EWSs that
have simultaneous access to both the business network and the
industrial network and that both networks are secured using
tightly configured firewalls. Figure 3 gives a detailed view of
the network topology, which is a typical implementation of the
PERA model in critical infrastructure environments according
to surveys conducted by the Centre for the Protection of
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National Infrastructure [19]. We also assume that the EWSs
are secured using standard IT best-practices (e.g., up-to-date
operating system and browser, sufficiently strong passwords,
continuous anti-virus scans, etc.) and that the PLC is using
the most secure settings possible (e.g., password-protected
services, encrypted protocols, up-to-date firmware, etc.).

We assume that this is a targeted, goal-oriented attack,
where the adversary has some basic knowledge about the
physical process being performed by the victim (i.e. that it
is precisely spinning an industrial motor), but does not know
any details of the physical configuration (e.g., plant layout, I/O
pin configuration, speed controller settings, etc.). The attacker
also knows the specific PLC model being used in the ICS,
however does not know its location in the network nor any
details about other ICS networking devices.

In this scenario, the attacker has the goal of maliciously
controlling the PLC actuators by injecting JavaScript code
into a context where it executes under the PLC’s web origin
inside the private network. The attacker does not wish to
perform any system-level compromise of any device within the
network (to evade detection) and is not aware of any browser
zero-days. Therefore, the attacker’s malicious JavaScript must
legitimately execute within all devices’ browsers and conform
to all browser-based rules (e.g., remain in the JS execution
sandbox, abide by Same-Origin Policy, respect Site-Isolation
protections, etc). The adversary will consider the attack suc-
cessful if they are able to covertly change the motor speed
set-point to a value above the critical safety threshold, thus
causing physical damage to the operation.

B. Initial Infection

The initial infection stage of our framework is when the
attacker successfully deploys malicious JavaScript in a context
where it will be executed in the same web origin as the PLC’s
admin portal (oftentimes referred to as the “system website”).

1) Initial Infection - Framework: Injecting code into the
system website can be accomplished by many different meth-
ods as shown in Table II. This section provides a technical
explanation of the strategies unique to the ICS domain, namely
malicious User-defined Web Pages (UWPs), hijacked PLC GUI
files, and ICS Cross Channel Scripting (XCS). Each injection
mechanism has its own strengths and weaknesses with varying
degrees of practicality. The numerous injection mechanisms,
spanning various technologies, is one of the reasons why we
claim this malware is so flexible.

Malicious User-defined Web Page (UWP). PLC vendors
such as Siemens, Allen Bradley, and Mitsubishi allow cus-
tomers to write their own HTML code to augment the web
application hosted by the PLC’s embedded web server [32]–
[34]. These custom HTML files are referred to as “User-
defined Web Pages” (UWPs) and are leveraged to create
specialized HMI dashboards. These UWPs are considered a
distinct web property from the system website and have a
limited set of advertised capabilities. UWPs typically have
read-only access to PLC inputs/outputs, and depending on
the vendor, may also have limited write-access to a subset
of control logic variables.

The supposed restrictions imposed on UWPs would make
most users assume that the impact of a malicious UWP is

quite limited, however due to an unintended consequence of
Same-Origin-Policy (SOP), the permission boundary of UWPs
is actually defined by the user viewing the UWP and not an
intrinsic property of the UWP itself, despite official vendor
documentation stating otherwise [35]. This (seemingly misun-
derstood) relationship between the system website and UWPs
allows a malicious UWP, when viewed by an administrator,
to take full administrative control over the PLC. Thus, a
malicious UWP is a viable injection mechanism to plant WB
PLC malware. To help mitigate the impact of malicious UWPs,
PLC vendors should consider sandboxing untrusted front-end
code to an isolated origin (e.g., Facebook’s fbsbx.com [36]). A
detailed explanation of how this potential mitigation strategy
can be adapted to the ICS domain is presented in Section V-D.

UWPs can be downloaded to PLCs via proprietary ICS
protocols (e.g., CIP PCCC for Allen Bradley [37] and ISO-
TSAP for Siemens [38]) or via non-ICS download methods
(e.g., FTP for GE [39] or SD card for Mitsubishi [34]). Fur-
thermore, some vendors allow a full project image, including
any UWPs, to be downloaded to the PLC over HTTP(s) via
a “Restore from Backup” web API exposed by the system
website. The flexibility of download methods gives an at-
tacker multiple paths to planting a malicious UWP. Generally
speaking, pushing a new UWP to the target PLC requires
either a vulnerability, insecure victim settings, or compromised
credentials. These are the same prerequisites needed to push
CL malware, as discussed in prior work [25].

In lieu of personally downloading the malicious UWP, a
bad actor can also trick an authorized user into installing a
trojan UWP, as many UWPs are actually authored and sold by
third-parties (e.g., Elmi Elettromeccanica [40]). The lack of
web subject-matter expertise by ICS operators combined with
the misconception about the impact of malicious UWPs makes
this injection path particularly feasible. This is a compelling
argument for enforcing domain sandboxing because without it,
a UWP is equally as enticing of a target for attackers as the
system website. Furthermore, PLC vendors cannot guarantee
the security of UWPs (as they are not authoring them), so the
only way to mitigate their compromise is to isolate it from the
administrative portion of the web application.

Hijacked PLC GUI Files. Instead of manually writing
HTML code, WAGO and Schneider customers can choose to
use software that generates web-based graphical user-interface
(GUI) from a high-level visual description [41], [42]. The most
common example of such software is the WebVisu application
licensed from CODESYS [43]. This software allows an op-
erator to drag-and-drop GUI elements to build an interface
that gets transpiled into front-end files (HTML, JavaScript,
CSS). This software helps ICS operators build rich, although
less customized, HMI dashboards using pre-build elements,
without needing any web subject matter expertise. If these files
are hosted on the same embedded web server as the system
website (without any sandboxing considerations), they may
be a feasible infection mechanism for WB malware. In most
cases, simply modifying the transpiled files in-transit during
the download process or overwriting them in the filesystem
after download is all that is needed to compromise the device.
We verified this technique by SSH’ing into a WAGO 750
PLC in our lab and overwriting the transpiled front-end files.
In general, hijacking GUI files requires either a vulnerability,
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insecure protocols, or compromised credentials (same prereq-
uisites as when hijacking CL programs [13]).

ICS Cross-Channel Scripting. In addition to the two
legitimate channels for pushing front-end code to the PLC
discussed above, an attacker may also be able to exploit a Cross
Channel Scripting (XCS) vulnerability to inject WB malware.
XCS is an obscure variant of Cross-Site Scripting (XSS) where
the malicious payload is transferred to the webserver via a
non-web protocol such as SNMP or FTP [44]. We discovered
that this vulnerability classification is particularity common in
the ICS domain because real-time constraints force industrial
equipment to utilize low-latency proprietary protocols. While
investigating this project, we observed that these protocols
provide an effective method for sending malicious JavaScript
payloads to the embedded web servers inside PLCs. We believe
that XCS is an understudied vulnerability in the ICS domain as
the analysis by our team revealed multiple zero-day vulnerabil-
ities across several different vendors. Note that in order for an
attacker to successfully exploit a XCS vulnerability, they need
the ability to communicate over the payload-delivery protocol
(which may or may not require authentication). In our case,
we discovered and exploited an unauthenticated zero-day Allen
Bradley SNMP XCS vulnerability (CVE-2022-46670) to push
WB malware to our MicroLogix 1400.

Discovering these injection bugs required manual effort
with custom-written clients because traditional IT-oriented web
scanning tools (e.g., Burp Suite [45]) are unable to inspect
the industrial protocols that PLCs regularly utilize to accept
user-input (e.g., CIP, Modbus, EIP, etc). Our research shows
that PLCs are uniquely difficult to protect from JavaScript
injection because their webservers often render user-input that
was ingested from a plethora of specialized non-web protocols.

2) Initial Infection - Example Implementation: After ap-
proximately one week of testing, our team identified four
zero-day vulnerabilities in WAGO 750’s latest firmware,
three of which allowed us to automatically deploy Iron-
Spider from the Web Access level (i.e. when a PERA
1-3 operator views our website). Specifically, we lever-
aged a CORS misconfiguration vulnerability (CVE-2022-
45139) in conjunction with an authentication bypass vulner-
ability (CVE-2022-45138) to perform a cross-origin HTTP
API call that exploited an arbitrary file upload vulner-
ability (CVE-2022-45140). This chain enabled our third-
party website to override the transpiled PLC GUI file
(/home/codesys root/P lcLogic/visu/webvisu.htm) with
a duplicate page that contained IronSpider. We emphasize that
these vulnerabilities resided in the PLC web application, not in
the EWS browser (Google Chrome) or EWS operating system
(Microsoft Windows). Exploiting these vulnerabilities did not
break any browser-based rules such as SOP or Site-Isolation
because the misconfigured CORS header inadvertently in-
structed the browser to relax SOP and the authentication
bypass payload circumvented the need for accessing PLC
session data when sending the request. From the perspective
of the browser and operating system, our attack is a legitimate
website abiding by all W3C specifications.

These issues were disclosed to the vendor and fixed in
a subsequent firmware update. The methodology and testing
procedures used to identify these issues are outside the scope
of this paper, however we believe that similar vulnerabilities

can be found in other PLC admin portal web applications. Our
malicious website also used basic JavaScript reconnaissance
methods (e.g., websocket Favicon sweeping internal IP ranges
[46]) to automatically locate the WAGO PLC within the private
industrial network. Partial exploit code is included in Listing 1.

We emailed a link to this website to the EWS in our
testbed and manually opened it in the default web browser.
Alternatively, an attacker looking to indiscriminately launch
the attack at-scale can perform a watering hole attack [47] by
simply purchasing an ad banner on a popular PLC help forum.
Note that the attacker did not need any prior knowledge of the
EWS hardware, operating system, or web browser. After 3.7
seconds of viewing the webpage, IronSpider was successfully
downloaded to the target PLC without any user notification or
firewall intervention. We emphasize that this attack did not
compromise the EWS, but rather simply used it as a pivot
point to gain network access to the PLC. None of the typical
EWS security measures such as anti-virus scans and patch
management were able to prevent this attack.

1 /*
2 Kill Chain to deploy Iron Spider into the transpiled PLC GUI file:
3 1) CVE-2022-45139 - CORS Misconfiguration - adding "/x.pdf" to any

API endpoint will trick the webserver into responding with a
wildcard "Access-Control-Allow-Origin," allowing it to be
called cross-origin

4 2) CVE-2022-45138 - Authentication Bypass - intentionally leaving
off cookies and adding "renewSession:true" will force the
webserver to utilize a guest user account, which accidently
has permission to call several APIs

5 3) CVE-2022-45140 - Arbitrary File Upload - the "network_config" API
can be tricked into writing arbitrary content at an arbitrary
location using root privileges via the undocumented "--error-

msg-dst" argument
6 */
7 async function exploit(wagoIP,filepath,content){
8 let resp = await fetch(
9 "https://"+wagoIP+"/wbm/php/parameter/configtools.php/x.pdf",

10 {
11 method:"post",
12 body: JSON.stringify(
13 {"aDeviceParams":[{"name": "network_config","parameter": ["--

restore",content,"--error-msg-dst",filepath],"multiline"
: false}],"renewSession":true})

14 });
15 if (resp.ok) {
16 let j = await resp.json();
17 return j.aDeviceResponse[0].status == 2
18 }
19 return false
20 }
21 /*
22 Usage: Call exploit() with the path of the WebVisu GUI file and

the source code of the WB PLC Malware
23 */
24 exploit(
25 wagoIPAddress,
26 "/home/codesys_root/PlcLogic/visu/webvisu.htm",
27 ironSpiderCode
28 ).then((success)=>{
29 if (success) { console.log("Exploit Successful") }
30 })

Listing 1: JavaScript code to deploy IronSpider into the PLC

C. Persistence

The next stage of our framework is persistence. In this
stage, the malware will employ several techniques to hide its
presence and become resilient to typical removal methods.

1) Persistence - Framework: In our experiments, we found
that the exact steps needed to accomplish persistence will vary
depending on the model of the infected PLC, however we
included the most common strategies below.
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Resurrection Code in HMIs and EWSs. A shockingly
effective strategy to achieve persistence in the ICS domain is
to leverage a web service worker to cache “resurrection code”
in multiple web browsers throughout the ICS network (levels
2 and 3 in the PERA model). Service workers are a relatively
new addition to the HTML5 specification that lets scripts run in
the background, detached from any single web page. This pow-
erful feature of web browsers is used to build rich offline ex-
periences that include functionality such as push notifications
and background sync [48]. We propose that this functionality
be repurposed in the ICS domain to secure a foothold in the
segregated industrial network by caching secondary malware
payloads throughout the ICS environment. These secondary
payloads will execute directly from EWS/HMI browser cache
for up to 24 hours [49] after the primary malware payload has
been completely removed from the PLC device. These service
workers can periodically check for such removal, and when
detected, use various web strategies to re-infect the device, as
shown in Figure 4. These strategies are similar to the initial
infection methods from the Web Access level, as discussed
in Section III, however they are performed from within the
PLC’s web origin (not cross-origin) and will therefore be able
to directly access all authenticated web-based APIs without
restriction. For example, the malicious service worker could
legitimately call APIs to upload new UWPs or edit GUI files
to complete the re-infection process.

While service workers do have a limited set of capabilities
compared to normal JavaScript execution [50] (e.g., no DOM
access, localStorage, or other synchronous APIs), these limi-
tations are unrelated to security and do not impact our attack
methodology. Service workers run in a renderer process that is
associated with the page’s origin [49], which allows it to abide
by SOP when interacting with the reset PLC. Furthermore, a
malicious service worker can trivially bypass all limitations
by simply injecting itself into the page by attaching an event
listener to the fetch API and modifying the proxied traffic.
Specifically, the service worker can wait for a legitimate
request for a JavaScript file and use the event.respondWith [51]
method to replace it with a mocked Response(), thus pushing
new code into a regular <script> tag. This strategy may be
useful if the resurrection process requires authentication secrets
stored in localStorage (e.g., to call a Restore from Backup web
API) or CSRF tokens stored in the page’s DOM (e.g., to submit
POST requests that exploit sXSS). Example resurrection code
is included as an artifact to this paper.

In addition to re-infecting a factory-reset PLC, the proposed
strategy also allows the malware to infect any replacement
PLC, thus giving the malware the ability to survive even after
the PLC hardware has been completely rebuilt. This advanced
“resurrection” technique helps the WB malware withstand even
the most stringent eradication steps set by the Cybersecurity
and Infrastructure Security Agency’s (CISA) “Cybersecurity
Incident & Vulnerability Response Playbooks” (i.e., reimage
PLC to “gold” source and rebuild PLC hardware) [52]. Note
that this malicious utilization of service workers is unique to
the ICS domain because securing a web-based foothold in a
segregated private network is not needed to communicate with
a webserver in the IT domain.

Self-Replication via Downgraded PLC Firmware. As
discussed in Section IV-B, there are numerous infection mech-

Fig. 4: Service Worker in WB Malware Resurrection

anisms for WB malware. This is especially true if the malware
uses the system website APIs to downgrade the firmware ver-
sion to re-introduce known security issues. The malware may
utilize these different infection mechanisms to provide redun-
dancy (i.e., store copies of itself in different sections of PLC
memory), which enables the malware to survive intentional,
or accidental, actions by the PLC operator that may delete the
payload (e.g., updating configuration settings or power-cycling
the device). We experimentally verified with Siemens S7-1200
that using web APIs to downgrade the firmware version then
exploiting known file upload vulnerabilities was an effective
method of self-replication in that PLC model. Note that the
technique discussed here is unique to the ICS domain, as front-
end code in the IT domain does not typically have the ability
to control versioning of server-side code.

2) Persistence - Example Implementation: Recall that Iron-
Spider was deployed to the transpliled PLC GUI file in the
previous stage. In this stage, IronSpider employed various
strategies to ensure continuous execution in the ICS envi-
ronment. Firstly, IronSpider, utilized the same zero-day bugs
from the Initial Infection step to overwrite the system website
files, thus spawning a new execution process in the EWS
browser. Next, IronSpider registered service workers in all
three of the browsers rendering its payload (Microsoft Edge
on EWS, Chromium on remote HMI, WAGO microbrowser
on local HMI). These service workers became cached in the
browsers and periodically checked for the existence of the main
malware payload. If/when the main payload was found to be
missing, the service worker used the same methods from the
first step to re-infect the device. Specifically, our resurrection
code exploited our zero-day vulnerability, CVE-2022-45140,
to re-upload the main malware file to the embedded web
server’s root directory. We emphasize that this strategy enables
IronSpider to survive PLC hardware replacement.

D. Malicious Activities

The impact of the WB malware can be measured by its
ability to sabotage real-world machinery, abuse admin settings,
and exfiltrate data. Recall from Section III that traditional PLC
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malware is trapped within segregated industrial network with-
out an internet connection and that CL malware runs in a user-
code sandbox with limited functionality. For these reasons,
we claim that WB malware is often capable of performing
more impactful malicious activities than prior work. Table III
compares the capabilities of each PLC malware category.

TABLE III: Malicious Capabilities per Malware Category

Web-Based Control Logic Firmware
Admin Settings ✓ ✓
Sabotage ✓ ✓ ✓
Exfiltration ✓

✓= Possible Malicious Activity

1) Malicious Activities - Framework: The malicious ca-
pabilities of the malware are directly mapped to features of
the system website. All actions capable of being performed
by a human using the system website normally can be ac-
complished programmatically by WB malware (e.g., virtually
“click” buttons, virtually “type” into forms, and utilize all
legitimate HTTP APIs). Therefore the impact of WB malware
will depend on which PLC model has been infected. The
following sections contain the general approach that can be
applied to most models.

Sabotage Machinery for Physical Damage. A key com-
ponent of any PLC malware is its ability to influence real-
world physical events. WB malware is capable of performing
such control by utilizing the legitimate system website APIs
to sabotage the industrial processes. Because WB malware
executes on the same web origin as the PLC’s system web-
site, it can leverage the ambient browser credentials (e.g.,
cookies) needed to interact with authenticated web APIs. This
can be done directly via JavaScript-initiated network requests
(e.g., fetch() or XMLHttpRequest) or indirectly via JavaScript-
initiated simulated user input (e.g., virtually “clicking” buttons
in the UI). The specific steps needed to sabotage the real-
world machinery will depend on the functionality provided
by the vendor of the infected PLC. Some PLCs, such as the
Allen Bradley MicroLogix 1400, expose web APIs to directly
modify I/O values by overwriting the data stored in CPU
memory addresses via the “Editable Data Table Memory Map”
(even when the data itself is not tied to an HMI-controlled
variable [33]). Other PLCs, such as the Schneider TM241,
expose web APIs to overwrite control logic variables with
arbitrary data [42]. Furthermore, some PLCs, such as Siemens
S7-1200, even allow the entire PLC project overwritten via the
“Restore from Backup” web API [53]. This backup can contain
new set points, user configuration, and safety settings. A bad
actor can abuse these powerful web APIs to maliciously control
actuators and cause catastrophic damage to the underlying
physical processes. Note that modifying control logic variable
values via web-based APIs does not recompile the control logic
binary and will therefore not trigger any attestation systems
such as PLCDefender [54], further illustrating how this attack
is materially different than CL malware.

Due to the intentional human-readability of web-based
HMIs, little-to-no prerequisite information regarding the un-
derlying physical domain (level 0) is needed to launch a
successful sabotage attack. An adversary can deduce unsafe
states by visually inspecting screenshots of the HMI UI
(exfiltrated using the techniques discussed later in this section)

and modifying the controls accordingly (e.g. virtually “turn the
knob” to change motor speed set points). This type of casual
control is not possible using traditional PLC malware, which
requires intimate knowledge of I/O pin configuration and
downstream actuator settings. Thus, physical sabotage via WB
malware requires significantly less reverse engineering effort
and prerequisite intelligence compared to existing strategies.

In addition to compromising the PLC actuators, WB mal-
ware can also sabotage industrial processes by spoofing values
displayed in the system website and web-based HMIs. This
can be accomplished by simply modifying the DOM of the
displayed webpage using the standard JavaScript interface
(e.g., document.body.innerHTML) or by overlaying fabricated
displays (e.g., adding a screenshot to a top layer full-page img
tag). For example, stealthy WB malware may record sensor
values in browser storage (e.g. local storage [55]) and display
them later during the actuator compromise to hide the attack.

Abuse Admin Settings for Further Compromise. An-
other malicious action that the WB malware can perform is
to modify the administrative PLC configuring via the web-
based APIs exposed by the system website. These APIs allow
an operator to control admin settings on the device through
a feature called “Web-Based-Management (WBM)” [56] [57].
An adversary can abuse these APIs to aid in future attacks or
enable further compromise of the device. The specific settings
available for modification depend on the PLC vendor and
firmware version, however a typical attack may include editing
the on-device firewall, creating new users, and enabling/dis-
abling certain network services. We emphasize that this type
of control is not possible with CL malware due to the user-
code sandbox and is extraordinarily difficult with FW malware
due to the tedious nature of binary instrumentation in a real-
time embedded device (and is sometimes not possible at all
depending on the chipset isolation in the motherboard [12]).
With WB malware, this control is easily accomplished by
simply calling the legitimate HTTP APIs with JavaScript. Note
that our malicious JavaScript code leverages the same authen-
tication mechanism as the user rendering its payload, which in
the case of the EWS, will likely be the cookies belonging to the
PLC system administrator because the primary purpose of the
EWS is to perform administrative device configuration [58].
Table IV lists common WBM admin settings and example
consequences of their malicious misuse.

TABLE IV: Consequences of Misusing WBM Admin APIs

Admin Setting Example Misuse

On-Device Firewall Modify EWS MAC Address whitelist to
allow rogue connections to arbitrary hosts.

User Management Create new “backdoor” user to ensure
continuous control.

Network Configuration Modify IP address to circumvent
downstream firewall routing rules.

Network Services Disable SNMP to prevent network operators
from noticing IP reconfiguration.

Image Backup

Create and exfiltrate a full project backup,
including current CL programs, device

metadata, and historical logfiles to aid in
espionage.

Security Settings Disable IPsec, OpenVPN, and TLS to let
other devices to MiTM PLC traffic.

Data Exfiltration for Industrial Espionage. As men-
tioned in Section II, the unique execution characteristics of
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our proposed malware allows it to utilize a public Internet
connection even when the PLC itself is located in an isolated
private network. Web browsers in which the malware executes
(e.g., Microsoft Edge on an EWS and/or Chromium-based
Microbrowsers in remote HMIs) are typically simultaneously
connected to both the target PLC network and other less-
critical networks [19]. For example, EWSs are usually con-
nected to both the level 2 network (to communicate with the
PLC) and the level 3 network (to perform online tasks like
sending emails and viewing forum websites to troubleshoot
devices, e.g., http://support.industry.siemens.com [59]). This
simultaneous connectivity can be accomplished using a variety
of networking setups common in large ICSs such as dual NICs,
VLAN tagging, and firewall-managed enclaves. The perimeter
of these networks are often secured using domain-specific
firewalls that attempt to block abnormal traffic [19]. Our WB
malware can bypass this scrutiny by only utilizing protocols
allowed in level 3 traffic, such as DNS or HTTPS, when
communicating to the C2 server and only using the legitimate
PLC APIs when communicating to the PLC.

Performing this exfiltration using WB malware does not
require any intimate familiarity with the target PLC or the
underlying physical process. Generic, but powerful, web-based
exfiltration strategies such as canvas screenshots, event-listener
keylogging, and full DOM dumps can be applied to virtually all
PLC models across every vendor. These techniques allow WB
malware to intercept sensitive ICS information such as physical
process characteristics, plaintext usernames and passwords,
and plant configuration details. This stolen data can be covertly
exfiltrated using front-end network requests such as JavaScript
fetch() and URI parameters to an HTML img tag src. Browser-
based exfiltration strategies like this are notoriously difficult
to detect or prevent using firewalls [60] because benign web
applications often communicate with a variety of third party
servers via encrypted protocols [61] (e.g., HTTPS and WSS),
which commonly causes nefarious browser-based connections
to go unnoticed, especially if the C2 infrastructure is built
on top of a reputable third party web service such as Google
Analytics or Facebook pixels [62]. Note that the C2 stream
will be completely unaffected by any on-device PLC firewalls
because the PLC-to-browser communication is utilizing the
legitimate APIs provided by the PLC vendor. We emphasize
that neither CL nor FW PLC malware can perform real-
time data exfiltration in-practice because they typically execute
in segregated industrial networks and cannot utilize a public
internet connection.

2) Malicious Activities - Implementation Example: The
goal of IronSpider was to perform a Stuxnet-style attack using
modern web technologies. To prepare for the attack, a real-time
websocket C2 channel was established by all three execution
environments. While only the EWS and remote HMI had direct
internet access, the local HMI process was still able to achieve
C2 communications by using a covert channel within the PLC
device as a proxy. During the attack, IronSpider modified the
web-based HMIs’ DOMs to display falsified sensor values
(recorded the previous day and saved in browser local storage).
Next, the malware virtually interacted with the HMI’s UI to
covertly change the set-point for the motor’s speed control
to the highest possible value (recall that the attacker’s goal
is to spin the motor at any level above the critical safety
threshold). Our testbed used an emergency light to indicate that

a critical failure occurred (i.e., the attack was successful and it
is too late to intervene). Approximately 7.4 seconds after the
attack began, the emergency system tripped indicating that the
centrifuge was damaged. The HMIs displayed fake readings
throughout the entire attack.

E. Cover Tracks

The final stage of the framework is to remove any traces of
the infection. This stage is aimed to impede incident response
and forensics postmortem efforts. We emphasize that this self-
contained removal strategy is not possible using CL malware
due to the user-code sandbox in which it executes.

1) Cover Tracks - Framework: The following section
contains the general approach to removing the payload and
resetting the device.

Delete PLC Malware Payload. Once the malicious ac-
tivities have been accomplished and the malware is no longer
needed, it should attempt to remove the payload from PLC
storage. The exact removal techniques will depend on how
the payload was initially implanted onto the device (see
Section IV-B), however in general, the process will involve
repeating stage 1 using a blank, or otherwise benign, payload
to overwrite the malware file. Additionally, the malware will
need to invalidate any resurrection code by unregistering the
service workers using the exposed HTML5 browser APIs.

Restore from PLC Backup Image. Even after the payload
has been removed from PLC storage, traces of its existence
may still reside in access logs and/or obscure memory caches.
To finish the removal process, WB PLC malware may use the
legitimate system website APIs to restore the PLC program
from a prior backup image. Doing this will overwrite the
set points, reset all configurations, and flush all caches. This
drastic step gives the malware full control of the current PLC
image, which is likely where forensics teams will begin their
investigation. This type of absolute control over raw server-
side memory states is unique to the ICS domain and allows
WB PLC malware to self-destruct in a much more complete
manner than malicious JavaScript in the IT domain.

2) Cover Tracks - Implementation Example: After Iron-
Spider’s successful attack, it began the process of cleansing
the PLC of any traces of the infection. This was a non-
trivial exercise because our zero-day vulnerabilities (CVE-
2022-45137, CVE-2022-45138, CVE-2022-45139, and CVE-
2022-45140) planted the malware payload in a section of
the PLC’s filesystem that was unaffected by factory resets.
IronSpider’s first step in covering its tracks was to re-use
these vulnerabilities to overwrite both the system website
homepage and transpiled GUI files back to their original
content. Then, the malware (while still executing on any open
tabs) unregistered the service workers and flushed browser
cache. Lastly, the malware refreshed all pages, thus killing
all execution processes.

V. EVALUATION

As demonstrated in the previous section, IronSpider, is
capable of sabotaging industrial processes using a more mod-
ern approach than the ones used by existing PLC malware.
Our malware can exfiltrate sensitive data, spoof HMI displays,
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maliciously control PLC actuators, and self-destruct all without
system-level compromise. Recall that implementation details
for IronSpider were included in each subsection of Section IV.
This section provides an analysis of the experimental results
obtained from running IronSpider in a real-world ICS testbed
to perform a Stuxnet-style attack. This section also discusses
WB generalizability, limitations, and countermeasures.

Fig. 5: PLC, Power Supply, and Microbrowser HMI
A. Experimental Setup

The previous section explained how IronSpider imple-
mented each stage of our WB PLC malware framework in
a real-world ICS testbed constructed to precisely spin a three-
phase 220VAC industrial motor. This scenario was inspired by
the real-world configuration for controlling uranium enrich-
ment centrifuges during the Stuxnet attack [63]. This subsec-
tion outlines the key hardware components and networking
details that comprised our testbed. Figure 5 shows a photo of
the PLC, power supply, and Microbrowser HMI.

Networking Details. We developed a real-world ICS net-
work environment by segregating the industrial network from
the business network, as shown in Figure 3. The industrial net-
work consisted of a WAGO 750 PLC, a WAGO e!Display 7300
local HMI, and a dedicated LAN port to connect to certain
devices in the business network. Firewall rules only permitted
legitimate PLC traffic to traverse the industrial network and the
WAN port was sealed to prevent direct routable access to other
networks. The business network consisted of a Raspberry-Pi
remote HMI and a Microsoft Windows EWS. The business
network was connected to the public Internet through a firewall
that only allowed standard office traffic. The remote HMI and
EWS were dual-homed to enable simultaneous access to both
the business and industrial networks.

PLC Configuration. The WAGO 750 PLC controlled a
Dayton 11W366 industrial motor with a 0-10v analog signal
to a Schneider ATV12 Variable Frequency Drive. The PLC
also read the actual rotor speed using a Compact Instruments
Tachoprobe A2108 tachometer, which outputted a 0-6V analog
signal. A web-based HMI was developed using WAGO’s
WebVisu integration that allowed operators to both view the
tachometer readings and change the setpoint for the motor
speed. This HMI was displayed in the WAGO e!Display 7300
Microbrowser local HMI and in Chrome on the remote HMI.

Failure Indication. Lastly, an emergency light was con-
figured to trip if the tachometer read values over a certain
threshold. This system was designed to indicate that a critical
failure has occurred, similar to a standard smoke detector.

B. Execution & Results

IronSpider performed Stuxnet-style sabotage by orchestrat-
ing an end-to-end attack where the EWS, HMIs, and PLC all

Fig. 6: Overview of IronSpider’s Data Flow

worked together to covertly set the motor speed setpoint to
a dangerous level. This subsection summarizes the data flow
during the attack and analyzes the outcome from the sabotage.

Execution. During this attack, IronSpider, covertly in-
teracted with several components of the ICS environment.
The EWS was used as a pivot point to gain entry into the
industrial network through cross-origin network requests by
the malicious website. The PLC was used to host the malware
payload, relay C2 messages to the segregated local HMI, and
physically interact with the sensors/actuators. Both the HMIs
and the EWS were used to execute the malware payload
in their respective browsers. And of course, the motor was
used to sabotage the industrial process. Figure 6 illustrates
the high-level data flow that occurred during this attack. We
emphasize that neither CL nor FW malware alone could
perform data exfiltration in our testbed due to the realistic
network segregation controls.

Results. Stuxnet sabotaged Iranian nuclear facilities by
modifying the analog output signal to variable-frequency drives
that controlled uranium enrichment centrifuges [63]. A direct
result from this sabotage was the physical destruction of over
1,000 centrifuges and a 30% reduction in operational capacity
at the facilities [64]. Our prototype malware, IronSpider,
was able to achieve a fundamentally similar attack using a
drastically different approach. Stuxnet attacked PLCs via CL
malware that it deployed via compromised EWS (these EWS
were compromised using a Microsoft Windows worm and Tro-
jan Step7 DLLs [65]). IronSpider, however, used WB malware
that it deployed using a malicious website without needing
to compromise any peripheral systems. While both attacks
achieved the same outcome (sabotaged motor), IronSpider’s
approach has all of the advantages discussed in Section III.
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Figure 7 shows the true tachometer reading during the
IronSpider attack. Recall that a spoofed tachometer reading,
with incorrect values, was visibly shown on the HMIs while
the attack took place. As displayed in this figure, shortly after
the attack began, the industrial motor from the testbed started
spinning at a speed above the critical safety threshold2.

Fig. 7: Tachometer Readings During the IronSpider Attack

Analysis. As discussed in Section III, WB malware uses
an unconventional architecture, where the payload is stored in
PLC memory but executes in browsers belonging to EWSs and
HMIs. In this subsection, we examine the performance impact
and overhead associated with such a design. IronSpider is com-
prised of two standalone files (malware.js and resurrect.js) and
installation is accomplished via the addition of a single line of
HTML code (i.e. <script src=“/malware.js”></script>). The
standalone files are relatively small and consumed a negligible
amount of storage in the PLC’s filesystem (<0.01%), as broken
down by functionality in Table V. Since script-based (non-
compiled and platform independent) malware is modular by
nature, an adversary can add or remove functionality as needed
to accomplish their goal and remain undetected. For exam-
ple, a reasonable tradeoff may entail omitting the screenshot
capturing functionality (193KB) if the victim’s information
is text-based and can be readily exfiltrated from the DOM
interface. Note that all functionality is necessarily duplicated
in the resurrection payload, meaning that any filesize reduction
is effectively doubled in the filesystem.

TABLE V: IronSpider Overhead in PLC Storage
Stage Code Snippet Description Size (B) Overhead (%)

Persistence
Install Service Worker 55 1.3E-6
Resurrection Bootstrap 448 1.0E-5
Resurrection Payload 198,107 4.6E-3

Malicious Activities

Websocket-Based C2 296 6.9E-6
Canvas Screenshot Capturer 193,650 4.5E-3
Keylogger 412 9.6E-6
Local Storage Usage 62 1.4E-6
Covert-Channel PLC Proxy 1011 2.4E-5
Programmatic WebVisu 985 2.3E-5
Create New Backdoor User 699 1.6E-5

Cover Tracks Uninstall Service Worker 94 2.2E-6
Override Payloads 395 9.2E-6

Total: 396,214 0.0092

Since WB malware executes alongside the real PLC
JavaScript (inside the same browser-based sandbox), we must
confirm that there is no noticeable performance impact to the
legitimate web-based operations. Scrutinizing this aspect is
critically important because any visual lag in the HMI or WBM

2As a safety precaution, we set the threshold of our testbed motor to a
modest speed that did not actually cause any physical damage.

may tip-off the ICS operator. We used the following industry-
standard metrics to measure website performance both before
and after the infection - 1) Frame Rate, 2) First Input Delay, 3)
CPU Utilization, 4) Memory Footprint, and 5) Google Light-
house Score (a popular SEO score calculated using a variety of
visual and speed related indicators). We configured IronSpider
to aggressively capture and exfiltrate full screenshots every 60
seconds, record all keystrokes, and randomly interact with the
WebVisu HMI. This is an intentionally “noisy” configuration to
serve as an upper-bound of performance impact. The results
of our test can be found in Table VI, which show that the
performance impact is minimal, with the average variation
across metrics being 3.57%. More importantly, we confirmed
that even in this aggressive configuration, the infection is
virtually unnoticeable to human operators by manually using
the web-HMI without issue.

TABLE VI: Client-Side Performance Impact of IronSpider

Pre-Infection Post-Infection Percent Change
Frame Rate 112.4fps 108.9fps (3.11%)
First Input Delay 0.99s 0.99s 0.00%
CPU Utilization 4.6 4.7 2.17%
Memory Footprint 112.3 121.1 7.84%
Lighthouse Score 96% 95% (1.04%)

C. Discussion

Generalizability Across PLCs and Testbeds. We tested
aspects of WB PLC malware against PLCs from every major
ICS vendor and confirmed that they are all indeed susceptible
to WB infections, either through legitimate means (e.g., using
the FTP password to push a new UWP) or through illegitimate
exploitation (e.g., using zero-day vulnerabilities), as shown
in Table II. We also verified that much of IronSpider’s core
functionality (e.g., C2 comms, remote DOM interactions, etc.)
were functional against every target device, thus confirming
the generalizability of this new class of PLC malware. In this
section, we provide the reader with concrete end-to-end ex-
amples by briefly exploring two new ICS testbeds controlling
different physical processes, separate from the threat model
and testbed used by IronSpider, as shown in Figure 8.

Fig. 8: Industrial Motor, Power Relay, Water Pump

Testbed #2) An attacker compromised the ICS network
at a manufacturing facility using a vulnerable edge device
(e.g., industrial router) and is targeting a password-protected
Allen-Bradley MicroLogix 1400 PLC controlling a conveyor
belt system through a series of industrial panel plug-in power
relays. This modern ICS uses a custom UWP for daily
monitoring and control. From this network vantage point, we
were able to discover and exploit a zero-day unauthenticated
XCS vulnerability to inject JavaScript via the SNMP protocol
(fixed in a subsequent firmware update as CVE-2022-46670).
This bug allowed our team to deploy WB malware into the
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TABLE VII: Proposed Countermeasures to Defend Against PLC WB Malware

Prevention Strategy Protections Provided Responsible Party Practicality
Private Network Access Increase difficulty of Web Access infections Browser developers Medium; may disrupt some legitimate traffic

CSP Confidentiality Directive Increase difficulty of web-based C2 channel Browser developers and PLC
vendors

High; minor server-side configuration for PLC
vendors

ICS Domain-Sandboxing Increase difficulty of Network Access infections
such as malicious UWP and hijacked GUIs PLC vendors Medium; Requires separate auth scheme and

server-side reconfiguration

Real-Only CDN w/ CSP and SRI Increase difficulty of all infections mechanisms PLC vendors Low; Requires substantial front-end restructure
and CDN management

PLC-configured WAF Increase difficulty of Network Access infections
such as ICS XCS Third-parties Medium; may add some overhead to real-time

ICS protocols

PLC device, which was later rendered on the dedicated HMI
machine for viewing the UWP. From there, our malicious
JavaScript was able to sabotage the industrial process by
virtually interacting with the web-based UI for controlling the
relay states. While this WB malware successfully performed
sabotage, it was not able to achieve persistence using the
service worker resurrection method discussed in Section IV-C
because this particular XCS vulnerability did not create new
JavaScript files, but rather embedded JavaScript snippets di-
rectly into the existing HTML.

Testbed #3) An attacker has full system-level compro-
mise of an EWS and is targeting a Siemens S7-1200 at a
security conscious water treatment plant. This modern ICS
uses a custom UWP for daily monitoring and control. In this
scenario, the attacker infiltrated an authenticated workstation
(perhaps via compromised TeamViewer credentials, similar to
the alleged 2021 Florida water treatment hack [66]), however
the ICS uses state-of-the-art control logic attestation (e.g.,
PLCDefender [54]) that will notify them of any altered CL. In
this scenario, the attacker is able to use the legitimate Siemens
Step7 software to authenticate against the PLC and push a
replacement malicious UWP. This technique does not modify
any compiled CL code, therefore keeping the CL digital
signature in-tact. This malicious UWP is then rendered in a
dedicated HMI machine and can covertly control the industrial
water pump. Fortunately for the attacker, this approach is able
to use the service worker resurrection method, since UWPs
can create standalone JS files in Siemens devices [32].

Limitations. The largest, and most obvious, limitation is
that this new class of malware can only be used against modern
ICSs that enable and regularly use the embedded webserver
(an emerging trend as demonstrated with an empirical study
in Appendix I-B). Older industrial plants that exclusively use
legacy equipment and antiquated protocols will likely be
immune to this new threat. Another limitation is that the capa-
bility of WB malware is directly mapped to the functionality
of the embedded web application. Older firmware versions
with less powerful web-based APIs will inherently have a
lower blast radius compared to feature-rich newer firmware
versions. Additionally, some APIs may only be available to
specific users (e.g., the Restore from Backup API may only be
available to the plant foreman account). Since WB malware
utilizes the authorization of the currently signed-in user, this
limitation will require the malware to wait and only perform
some actions when certain operators use the web application.
Finally, the display spoofing strategy (i.e. modifying the DOM
of the web-based HMI) is not applicable to non-web systems
that also ingest and process measurements using traditional
ICS protocols (e.g., legacy data historians or SIS).

D. Countermeasures

Prevention Mechanisms. Recall from Section III that WB
infections can occur from three different access levels - Web,
Network, and Physical. Each of these levels pose different
challenges from an infection prevention standpoint. Successful
Web Access infections generally require a vulnerability in the
target PLC web application, meaning that, barring zero-days,
keeping the PLC firmware up-to-date should provide adequate
protection. Additionally, training operators to avoid suspicious
websites when using dual-homed devices is also wise, however
this strategy is not a comprehensive protection since even ad-
banners on trusted websites could launch the attack. Network
Access infections generally occur due to compromised cre-
dentials (e.g., stolen FTP password), a vulnerability in the
PLC web application (e.g., XCS), or insecure settings (e.g.,
unencrypted protocols). The best way to prevent this type of
attack is to again keep PLC firmware up-to-date, safeguard
credentials, and employ the best-practices set by CISA [52].
Finally, Physical Access infections generally use the legitimate,
trusted, process for updating front-end files (e.g., SD card) and
therefore typically only occur from supply chain compromise
or insider threats. Traditional physical protections are the best
defense for this type of attack.

Detection Mechanisms. Unfortunately, since WB PLC
malware circumvents the need for system-level compromise,
most state-of-the-art PLC intrusion detection systems proposed
in recent academic papers are unable to detect the infection.
This includes defenses such as PLC intrusion prevention
systems (e.g., Reditus [67]), PLC control logic attestation
systems (e.g., PLCDefender [54]), and PLC control logic
formal verification (e.g., TSV [68]). Generally speaking, most
PLC malware detectors today focus on scrutinizing the control
logic and/or firmware, which are unmodified during our attack.

Detecting WB malware at the browser-level is also chal-
lenging, since the malicious JavaScript is intertwined with the
legitimate PLC JavaScript (executing under the same origin,
within the same sandbox) and conforms to all browser-based
rules. Furthermore, since PLC webservers are programmable
(i.e. intentionally running customer-authored front-end code),
we cannot simply allowlist the vendor-authored JavaScript
files that came with the firmware image. We believe WB
PLC malware detection is an open problem since it would
require differentiating benign customer-authored JavaScript
and malicious attacker-authored JavaScript, which is an active
(and currently unsolved) field of research [69]. We ran Iron-
Spider against the top 4 state-of-the-art JS malware detectors
(Cujo [70], Zozzle [71], JaSt [72], and JStap [73]), all of which
incorrectly marked it as benign, further illustrating that this is
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a non-trivial challenge (full details in Appendix I-C).

Proposed Countermeasures. Fortunatly, aspects of WB
PLC malware can still be partly mitigated using a combi-
nation of protections implemented by browser developers,
PLC vendors, and third-party products. These protections can
serve as layers for a defence-in-depth strategy to reduce the
likelihood and impact of an attack. Table VII lists the proposed
countermeasures, the protections provided by each defense,
and the practicality of deploying them in real-world ICSs.
Notable W3C-draft/proposed browser improvements include
“Private Network Access” and the “Content-Security-Policy
(CSP) Confidentiality Directive.” Potential protections by PLC
vendor include a read-only CDN used with the CSP src-
script Directive and Subresource Integrity (SRI) as well as
domain-sandboxing for untrusted JavaScript code (i.e., iso-
lating customer-authored UWPs and GUIs from the system
website). Lastly, third parties could offer PLC-configured Web
App Firewalls (WAFs) (i.e., configured to inspect non-web
PLC protocols such as SNMP, Modbus, and CIP). We included
further discussions about these protections in Appendix I-D.

VI. CONCLUSION

Contrary to popular belief, firmware and control logic are
not the only levels of PLCs computation. Modern PLCs now
contain a programmable embedded webserver, where custom
client-side JavaScript code uses increasingly powerful APIs
to monitor and control physical processes. This environment
offers a new, and surprisingly ideal, platform to run PLC
malware, which poses an emerging threat to industrial control
systems.
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APPENDIX I. APPENDIX

A. PLC Web Capability Trends.

We independently confirmed that embedded PLC web-
servers are indeed gaining functionality over time by analyz-
ing the total Source Lines of Code (SLOC) and cyclomatic
complexity [74] of the web-related codebases of multiple
unpacked WAGO firmware update images. Source code size
and program complexity are common metrics in software
analysis to gauge the capabilities/functionality of a given
application [75]. Firmware version 3.0.39 (released May 2019)
contained 13,188 total SLOC (12,868 JS; 320 PHP) and
an aggregate cyclomatic complexity score of 4,529 (2,922
JS; 1,607 PHP) while version 4.02.13 (released June 2023)
contained 39,007 total SLOC (38,444 JS; 563 PHP) and
an aggregate cyclomatic complexity score of 11,974 (9,294
JS; 2,680 PHP). This data shows that over the past several
years, the web application codebase has grown by over 195%
and increased in complexity by over 164%. All source code
analyzed in our study is used solely by the embedded web
application, thus corroborating the claim that PLC vendors are
actively introducing additional functionality to their on-board
web applications. The raw data from this study is included as
an artifact of our paper.

B. PLC Webserver Usage Study.

We experimentally verified that customers are increas-
ingly using PLC embedded webservers by performing a
modest longitudinal survey of internet-facing devices using
the Shodan [76] search engine. We analyzed the publicly-
reachable population of three widely-used PLCs (WAGO 750,
Siemens S7-1200, and AB MicroLogix 1400) from June 2017
to Septemeber 2022. We discovered that on average, embedded
webserver usage has increased 212.66% over the past 5 years,
even though overall PLC population has only increased by
12.15%. We came to this conclusion by observing the rate at
which the webservers became internet-facing (discovered using
web fingerprints such as SSL issuers and favicon hashes) and
comparing it to the rate at which the SNMP services appeared
online (discovered using keywords on the 161 UDP port).
This data provides strong evidence that customers are indeed
enabling and using these webservers. Our results are in-line
with previously published data regarding the adoption of web
technology [23], [77] and further supports the intuitive claim
that PLC customers are embracing web-based app design.

C. JavaScript Malware Detectors.

While JavaScript obfuscation is outside the scope of this
paper, we still decided to run IronSpider against state-of-
the-art JavaScript malware detectors for completeness. We
modeled our approach similarly to Ramano at el., 2022’s recent
paper [69] where they setup and trained various JS static
code analysis tools on large datasets of benign and malicious
JavaScript samples. Like Ramano at el., we primarily used the
popular JS150k dataset [78] for benign files and the Hynek
Patrak JavaScript malware collection [79] for malicious files.
We also used the same static analysis tools, namely Fass et al.’s
reimplementation of Cujo [70], Fass et al.’s reimplementation
of Zozzle [71], JaSt [72], and JStap [73]. All four tools
incorrectly classified IronSpider as benign. After manually
inspecting the Patrak malware collection, we believe the most
likely explanation for this poor performance is that most IT-
oriented malware contains exceedingly aggressive indicators
(e.g., mining cryptocurrency in WebAssembly, attempting to
drop .exe files, using off-the-shelf exploit kits, etc), while Iron-
Spider more-or-less just uses the DOM interface as intended.
Our experiment strongly suggests that conservative and well-
behaving JavaScript malware is extremely difficult to detect.

D. Countermeasures Discussion.

A potential improvement is limiting communication be-
tween the public Internet and private Intranet. Providing this
defence will greatly reduce the possibility of a “Web Access”
infection (see Section III) because it would restrict public
websites’ access to PLCs’ embedded webservers using HTML
and/or JavaScript network requests. In theory, this prevention
should cause many PLC web bugs such as rXSS and CSRF
to become mostly un-exploitable from malicious websites
originating from the public web. Google Chrome engineers
have already proposed this countermeasure in the form of the
“Private Network Access” specification (previously known as
CORS-RFC1918) [80], however this defence has not yet been
implemented in any major browser. While a full adoption of
this protection will definitely help in mitigating web-based
infections, it is unfortunately not a perfect solution in all cases.
Currently, the draft does not apply to local HTML files (even
when delivered via a malicious USB drive). This draft also will
not prevent an existing WB malware infection from spreading
to other PLCs because existing WB malware will already have
a private IP address, which is permitted to interact with other
private IP addresses according to the spec.

Another area of potential improvement for browsers is
adding built-in exfiltration defences. There are currently no
browser mechanisms that prevent rogue JavaScript code from
covertly connecting to, and exfiltrating sensitive data to, a third
party remote server. This lack of protection is what enables
our proposed malware to establish a C2 channel with the
public internet. While some websites attempt to use Content-
Security Policy (CSP) as a makeshift exfiltration defence [81],
prior work has shown that this is an inadequate protec-
tion because methods such as DNS resolution, subresource
prefetching, and navigation redirects easily defeat it [82]. In
2012, Firefox developers proposed a new CSP directive called
“Confidentiality” [83] designed to fully eliminate exfiltration
attacks, however it was shelved shorty after creation due to
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reprioritization. We hope that this paper will inspire browser
developers to reevaluate that decision.

Lastly, all JavaScript code authored by the PLC customer
(either in UWPs or GUI files) should be fully isolated from the
front end properties authored by the PLC vendor. As mentioned
in Section IV-B, the IT domain has a well-established method
for performing origin isolation called “domain sandboxing.”
Using this method, untrusted front end files are hosted on a
different web origin, usually with a different domain name,
than the main website. For example, Facebook hosts customer-
written code on fbsbx.com [36] and Google hosts customer-
written code on googleusercontent.com [84]. This origin isola-
tion prevents untrusted code from having access to the ambient
browser credentials associated with the main origin, which are
needed to access sensitive web APIs.

In ICS environments, where IP addresses are typically used
instead of DNS to access network devices, a sandboxing solu-
tion may seem infeasible, however can still be accomplished
using a slightly different approach. Instead of using a different
domain name, PLC vendors can either host untrusted front end
files on a different port of the same IP address or utilize the
CSP sandbox directive to virtually render untrusted content on
an isolated opaque origin.

APPENDIX II. ARTIFACT APPENDIX

This artifact consists of four unique and self-contained
experiments, as listed below:

1) (E1) WAGO 750-8XXX WBM Application Code
Base study

2) (E2) WAGO Exploit Code
3) (E3) Allen Bradley Exploit Code
4) (E4) Resurrection Example

The first experiment, (E1) WAGO 750-8XXX WBM Appli-
cation Code Base study, is used to gauge the approximate
functionality increase over time of the on-board, embedded,
web application hosted by WAGO 750 PLCs. This study
supports the paper’s central idea - that the web-related PLC
attack surface has substantially grown in recent years, which
makes the front-end environment a new and appealing plat-
form to run malware. The second two experiments, (E2)
WAGO Exploit Code and (E3) Allen Bradley Exploit Code,
are provided to show example weaponizations of the zero-
day vulnerabilities discovered in this study. We encourage
readers to test these vulnerabilities on the latest operating
systems and browsers to show that these attacks are indeed
compatible with a modern threat model. The final experiment,
(E4) Resurrection Example, is an example implementation of
a malicious Service Worker JavaScript file, which trivially
bypasses Service Worker restrictions, and may be used to
resurrect WB malware from within the ICS network.

A. Description & Requirements

1) How to access:

• https://zenodo.org/record/8279954

2) Hardware dependencies:

• (E1) None; (E2) WAGO 750 PFC200 PLC; (E3) Allen
Bradley MicroLogix 1400 PLC; (E4) None

3) Software dependencies:

• (E1) complexity-report (https://github.com/
escomplex/complexity-report); (E1) lint php
(https://github.com/pceres/lint php); (E1) sloccount
(https://dwheeler.com/sloccount/); (E2) WAGO
750 PFC200 <FWv04.02.13; (E3) Allen Bradley
MicroLogix 1400 <FWv21.007; (E4) None

4) Benchmarks:

• (E1) None; (E2-E3) Included exploit code; (E4) In-
cluded example Service Worker JavaScript file

B. Artifact Installation & Configuration

• (E1) None; (E2-E3) Appropriate PLC hardware and
corresponding firmware must be installed within an
ICS network. NDSS reviewers were given remote
access to our testbed during the peer review process;
(E4) Standard JavaScript Service Worker Installa-
tion (navigator.serviceWorker.register(’/sw.js’)), alter-
natively view live demo at https://ndss-2024-23049.
s3.amazonaws.com/index.html.

C. Experiment Workflow

D. Major Claims

Our experiments support the following major claims pre-
sented in our paper:

1) (E1) PLC vendors are actively introducing new func-
tionality into their embedded webservers. This is
referenced in Appendix I-A.

2) (E2) The vulnerabilities we discovered in WAGO
(CVE-2022-45139, CVE-2022-45138, CVE-2022-
45140) allow for the deployment of web-based PLC
malware. This is used in Section IV-B2.

3) (E3) The vulnerabilities we discovered in Allen
Bradley (CVE-2022-46670) allow for the deployment
of web-based PLC malware. This is used in Sec-
tion V-C.

4) (E4) Our novel usage of Service Workers allows WB
PLC malware to survive firmware/hardware factory
resets. This is used in Section IV-C2.

E. Evaluation

1) Experiment (E1): [WAGO 750-8XXX WBM Applica-
tion Code Base study] [1 human-hour]: Empirical study to
independently confirm that PLC vendors are actively intro-
ducing functionality to their embedded webservers over time
via firmware updates. We use the following metrics to gauge
functionality: Source Lines of Code (SLOC) and Cylomatic
Complexity. We consider a file “web-related” if it is in the
language PHP (for backend files) or JavaScript (for front-end
files).

[How to (E1)] In this experiment, we compare the ag-
gregate SLOC and complexity scores from two WAGO PLC
firmware versions to estimate the embedded webserver func-
tionality increase as a percent over time. A large percent
increase in SLOC and/or complexity suggests a large amount
of functionality has been added. We use industry-standard tools
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to examine the source code unpacked from publicly available
firmware updated images.

[Preparation (E1)] Download the oldest and newest
WAGO 750-8XXX firmware images (.img) from their GitHub
page (https://github.com/WAGO/pfc-firmware/releases). At the
time of writing, that is the following images:

1) Oldest - v03.0.39 - https://github.com/WAGO/
pfc-firmware/releases/download/v3.0.39/WAGO
FW0750-8xxx V030039 IX12 r38974.img

2) Newest - v04.02.13 - https://github.com/WAGO/
pfc-firmware/releases/download/v04.02.13-24/
PFC-G2-Linux sd V040213 24 r74297.img

[Execution (E1)]

1) Unpack Firmware images (done automtically via the
Docker Image; see README for details)

2) Use complexity-report, lint php, and sloccount to
analyze the web-related codebases (done automtically
via the Docker Image; see README for details)

3) Calculate the percent increase (done automtically via
the Docker Image; see README for details)

[Results (E1)] When the outputs from these tools are
aggregated, we get the following metrics: Firmware version
3.0.39 (released May 2019) contained 13,188 total SLOC
(12,868 JS; 320 PHP) and an aggregate cyclomatic complexity
score of 4,529 (2,922 JS; 1,607 PHP) while version 4.02.13
(released June 2023) contained 39,007 total SLOC (38,444
JS; 563 PHP) and an aggregate cyclomatic complexity score
of 11,974 (9,294 JS; 2,680 PHP). This data shows that over
the past several years, the web application codebase has grown
by over 195% and increased in complexity by over 164%.

2) Experiment (E2): [WAGO Exploit Code] [30 human-
minutes]: Example weaponization of CVE-2022-45139, CVE-
2022-45138, and CVE-2022-45140 to deploy “Web-Based
(WB) PLC malware” into a WAGO 750 PLC pre Firmware
24 (v04.02.13).

[How to (E2)] In this experiment, we use our zero-day
vulnerabilities to deploy web-based malware from the web-
access level. The exploit code is already included and creates
dummy HTML and CSS files as a proof-of-concept.

[Preparation (E2)] Configure a WAGO 750 PLC in you
network and flash firmware v04.02.13 to memory.

[Execution (E2)]

1) Verify that https://⟨wago ip⟩/evil.html is not present
(404 - not found)

2) Open Exploit.html in your default Web Browser
3) Enter the WAGO PLC IP Address
4) Click “Attack!” button
5) Verify that https://⟨wago ip⟩/evil.html is now present

[Results (E2)] This exploit demonstrates that a third party
website is able to add arbitrary front-end files into PLC
memory without authentication. An attacker can use this chain
to deploy WB PLC Malware.

3) Experiment (E3): [Allen Bradley Exploit Code] [30
human-minutes]: Example Python script to exploit CVE-2022-
46670 to push Web-Based (WB) PLC Malware to a Mi-
croLogix 1400 pre Firmware V21.007.

[How to (E3)] In this experiment, we use an ICS Cross-
Channel Scripting (XCS) vulnerability to push JavaScript into
the MicroLogix 1400 PLC embedded webserver over the
SNMP protocol, which gets rendered on the homepage of the
system website.

[Preparation (E3)] Configure a Allen Bradley MicroLogix
1400 PLC in you network and flash firmware V21.007 to
memory.

[Execution (E3)]

1) Verify that http://⟨ab ip⟩/ is present without any
popup windows

2) Run python3 exploit.py < ab ip >
3) Refresh http://⟨ab ip⟩/
4) See alert() popup, proving arbitrary JavaScript injec-

tion into the system website

[Results (E3)] This exploit demonstrates that an attacker
with network access to the PLC is able to add arbitrary
JavaScript code to the system website without authentication.
An attacker can use this bug to deploy WB PLC Malware.

4) Experiment (E4): [Resurrection Example] [30 human-
minutes]: Example Service Worker script that checks for the
removal of the main WB malware infection payload, and when
detected, re-infects the device using CVE-2022-45140.

[How to (E4)] In this experiment, we show how a malicious
website can use a Service Worker to gain a web-based foothold
in a private industrial network by caching secondary malware
payloads in browsers throughout the ICS environment. This
allows the website to continue execution, and potentially re-
infect the device, even after the infected webserver device has
been completely factory reset or replaced.

[Preparation (E4)] Host the provided sw.js file on an SSL-
secured webserver (e.g., https://10.0.0.1/sw.js) next to a blank
HTML file (e.g., https://10.0.0.1/index.html).

[Execution (E4)]

1) Inspect the sw.js file and see how it injects itself into
the main page by modifying the proxied fetch API
calls.

2) (optionally) Install the sw.js via
navigator.serviceWorker.register(); from the
HTML file, Refresh the page and observe SW
execution, Delete the sw.js file from the server
(simulating a factory reset), Refresh again and
continue observing execution. From this position,
the code could re-perform E2 to re-infect the device.

[Results (E4)] Observe that Service Workers can trivially
bypass all WC3 limitations (e.g., no DOM access, localStor-
age, or other synchronous APIs) by simply injecting itself
into the main page via the proxied fetch API. Observe that
this code continues to execute, even after the removal of
the SW file. Note that this code can potentially re-perform
E2 to re-infect the device. Readers can view a live demo at
https://ndss-2024-23049.s3.amazonaws.com/index.html.
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