
Faults in Our Bus: Novel Bus Fault Attack to Break
ARM TrustZone

Nimish Mishra, Anirban Chakraborty, Debdeep Mukhopadhyay
Indian Institute of Technology Kharagpur

nimish.mishra@kgpian.iitkgp.ac.in, anirban.chakraborty@iitkgp.ac.in, debdeep@cse.iitkgp.ac.in

Abstract—The ever-increasing growth of Internet-of-Things
(IoT) has led to wide-scale deployment of high-frequency, highly
complex Systems-on-a-Chip (SoCs), which are capable of running
a full-fledged operating system (OS). The presence of OS and
other software countermeasures make SoCs resilient against
the traditional fault attacks that are relevant on FPGAs and
microprocessors. In this work, we present the first practical
implications of targeting an orthogonal aspect of SoC’s archi-
tecture: the system bus. We inject electromagnetic pulses onto
the system bus during the execution of instructions involving
processor-memory interaction. We show how address bus faults
compromise software implementations of masked implementa-
tions of ciphers, illustrated using implementations of state-of-the-
art post-quantum cryptography (PQC) schemes, leaking entire
secret keys with a single fault. We also demonstrate that data
bus faults can be controlled and exploited to launch Differential
Fault Analysis (DFA) attacks on table-based implementation of
the Advanced Encryption Standard (AES). Furthermore, we
demonstrate that the impact of such bus faults can be far-
reaching and mislead the security guarantees of the popular and
widely used ARM TrustZone. We use data-bus faults (along with
loopholes in the GlobalPlatform API specification) to mislead the
signature verification step to load a malicious Trusted Application
(TA) inside the TrustZone. We follow this up with address bus
faults to steal symmetric encryption keys of other benign TAs
in the system, leading to complete breakdown of security on
TrustZone. We note that since the attack relies upon loopholes in
the GlobalPlatform API specification, it is portable to any TEE
following this specification. To emphasize upon this portability
of the attack, we demonstrate successful installation of malicious
TAs on two TrustZone implementations (OP-TEE and MyTEE)
on two different platforms (Raspberry Pi 3 and Raspberry Pi 4).
Finally, we propose countermeasures that can be integrated into
the SoC environment to defend against these attack vectors.

I. INTRODUCTION

The Internet of Things (IoT) has become an essential part
of modern-day life, catering to billions of users across various
applications, starting from home appliances to critical services
in different industries. The growth and inclusion of IoT in
daily life have been so pervasive that it is estimated that the
number of IoT-connected devices worldwide is projected to
be 30.9 billion units by 2025 [1]. Quite naturally, the security
aspect of these devices in the IoT hemisphere has intrigued
researchers for the past few years. The security model of

IoT ecosystem presents newer threats and opportunities as the
majority of these embedded devices are deployed in-the-wild,
mostly without any human supervision, therefore exposing
themselves to physical adversaries. Moreover, the range of
devices used in IoT ecosystem varies widely, depending on
their respective usage and application. This poses a challenging
scenario to evaluate the security guarantees of such devices and
the application running thereof.

Due to their nature of deployment and physical exposure,
the possibility of active physical attacks becomes very perti-
nent. In such scenarios, an adversary can mount a plethora of
physical attacks, including (but not limited to) fault injection
(FI) attacks [2]. Fault Injection attacks are a class of active
attacks where the adversary, having physical (or remote) access
to the system, can perturb intermediate computations of the tar-
get algorithm in a seemingly controlled manner. The intention
of the adversary is to either make the victim device enter into
an erroneous state [3] or to introduce statistical bias in the
target algorithm, which can be later exploited to leak secret
information [4], [5]. Over the years, the literature on FI attacks
has been enriched with myriads of techniques which can be
broadly classified into three types - 1⃝ manipulating system
parameters such as clock frequency or voltage, 2⃝ changing
external operating environment such as temperature, and 3⃝
injecting external electromagnetic or optical (laser) pulses.

Fault Injection Techniques. The idea of fault attacks was first
applied on RSA-CRT [6], [7] and eventually on DES by the
introduction of Differential Fault Analysis (DFA). The gamut
of FI attacks has two separate aspects - Fault Injection, where
faults are practically injected into the target system (or circuit)
and Fault Analysis, which deals with the aftermath of the fault
injection to fulfil adversary objective. Traditionally, the target
of fault injection attacks has been cryptographic implementa-
tions on hardware. For instance, in [8], dynamic laser faults are
used to target AES implementations in static RAM-based Field
Programmable Gate Arrays (FPGAs). Likewise, in [9], the se-
curity of AES S-Box has been evaluated against fluctuations in
the power circuitry of an FPGA. In [10], the authors evaluated
the leakages from an AES implementation in the presence of
dual-rail with pre-charge logic based countermeasures, caused
by fault injections. In [11], an orthogonal approach of ma-
nipulating operational temperatures is used to mount practical
attacks on RSA implementations for AVR micro-controllers
like ATmega162. Along similar lines, in [12], the practicality
of fault injections on AES through overclocking has been
explored in the context of ASICs. Other works like [12]–[18]
also explored the effects of similar fault injection techniques
on FPGAs and similar targets, in the context of attacks on

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.24499
www.ndss-symposium.org

cryptographic implementations. Likewise, [19] performs fault
injections by placing the probe over the die (instead of system-
bus) of a 32-bit micro-controller causing instruction level
faults. However, considering the complexity of a SoC against
a micro-controller (like 1⃝ high, scalable frequency ranges, 2⃝
pipeline optimizations, 3⃝ advanced memory controller etc),
direct reusability of such micro-controller based fault charac-
teristics to SoCs becomes difficult. For want of conciseness, we
defer the reader to a survey [20] on similar lines. Apart from
breaking ciphers, FI attacks have been extensively used in other
attacks, such as bypassing security checks in smartcards [21].
Likewise, in [22], laser faults are used to bypass verification
of memory integrity. In [23], faults are used to bypass secure
boot related verification checks.

Current FI Protections. In response to such attacks, several
proposed countermeasures aim to harden either the algorithm
or its target platform. However, the former is more lucrative for
two reasons: 1⃝ it allows for more flexible use of the algorithm,
since it does not depend only on a particular form of hardware,
and 2⃝ it helps provide provable security guarantees. In the
context of FI attacks, the majority of the countermeasures
focus on a detection-based approach where the principle is
to detect the presence of fault(s) via redundancy. Once a fault
is detected, the output or the state of the process is mutated in
such a way that the effective information is no longer useful
for the adversary. Incidentally, the concept of masking, which
is one the most prominent countermeasure for Side Channel
attacks1, has been used in the context of FI attacks as well [24],
[25]. In masking, a secret (usually the cryptographic key) is
divided into a number of shares at the level of cryptographic
circuits [26]–[29]. Not all shares are used at the same point
in time, and the shares have statistical mutual independence.
The core idea is that an adversary now has to attack each
share independently, in order to attack the underlying schemes.
However, there have been fault attacks [30]–[32] even on
masked cryptographic implementations.
A. Beyond faults on hardware: Stepping into the SoC world

In modern embedded systems market (more specifically
in IoT ecosystem) other than FPGAs and ASICs, Systems-
on-Chip (or SoCs) are being increasingly used. An SoC is
a general-purpose computer capable of running a full-fledged
operating system (OS) and several applications atop it. More
importantly, unlike FPGAs, SoCs are not re-configurable,
implying all cryptography is implemented in software (and not
through hardware circuits). Due to the lack of reconfigurability
and the generic micro-processing nature, the hardware-based
countermeasures (on FPGAs) are not applicable to SoCs.
However, several higher-end SoCs (like the Raspberry Pi2
family) are inherently resistant to various FI attacks. The
hardness of these devices against practical FI attacks can be
attributed to 1⃝ the lack of an externally manipulable voltage/-
clock interface preventing any voltage/clock glitch attacks, 2⃝
metal shield over the processor which, without depackaging,
prevents successful injection of electromagnetic/laser faults
into the processor, 3⃝ access control policies of the operating
system interfering with reliable exploitation vectors, 4⃝ other
processes running on the SoC making accuracy and success

1A class of attacks that rely on passively gained information (like time
taken for execution, cache access patterns specially in the case of SoCs) to
leak secret data of the victim process

2Small single-board computers based off Broadcom processors.

rate of the fault attack low, among others. This makes the
study of fault attacks on SoCs interesting because, while on
one hand, several known fault attack vectors do not work on
SoCs, on the other hand, a richer attack surface (more than
just cryptographic implementations) sprouts up.

State-of-the-art FI Attacks on SoCs. While SoCs have
sufficient protection against classical FI attacks, they are not
completely invincible. In the recent past, several new fault
attack vectors have come up in the context of SoCs, focusing
on both cryptographic and non-cryptographic software targets.
All such attacks on SoCs can be characterized by the target
of the fault (i.e. the architectural or algorithmic aspect of the
victim software). One such target is the 1⃝ dynamic voltage-
frequency scaling interface (DVFS). In [33], strategic use
of undervolting caused timing violations in the Arithmetic
Logic Unit (ALU), leading to faults breaking secure AES
software implementation. Likewise, in [34], the authors used
similar DVFS interfaces to inject faults through overclocking.
Similarly, in [35], the same DVFS interface has been used
for voltage manipulation (in contrast to frequency manipu-
lation) to achieve successful faults. There are also attacks
that, contrary to DVFS wherein software interfaces are used,
target 2⃝ external, hardware-backed, manipulable injections
which force erroneous computations. For instance, in [36], the
authors resort to physically hooking upon the Serial Voltage
Identification bus to manipulate voltages for similar objectives.
In [37], a clock glitch is used to bypass RISC-V’s physical
memory protection. While in [38], voltage glitches are used
to load malicious firmware that decrypts virtualized memory
and fake attestations. Likewise, [39], [40] also use externally
manipulable voltage glitches to attack SoCs. In [41], electro-
magnetic injections are used to fault an integer pointer and
read secret data. There have also been successful laser fault
injections [8], [22], [23], [42] targeting a variety of SoCs.

FI-resistant SoC Architecture. All these known FI attacks
on SoCs already have strong countermeasures. To prevent
exploitation of 1⃝ DVFS based fault attacks, the concerned
software interfaces are put behind proper access control poli-
cies, denying the adversary any control over them. Similarly,
use of low-cost Systems-On-Chip (SoCs) like Raspberry Pi
(which lack any 2⃝ externally manipulable clock/voltage in-
terfaces) instead of micro-controllers eliminates the possibility
of glitch attacks. Finally, most modern SoCs have a metal
casing over their processors, which makes attacks through
electromagnetic/laser injections improbable without depackag-
ing. Contrary to these attacks, there are memory fault attack
like Rowhammer [43] that rely on dynamic Random Access
Memory’s (DRAM’s) operational physics to inject permanent
memory faults. However, Rowhammer styled fault attacks are
also prevented on SoCs [44]–[46].

B. Contributions
Given the presence of such defences against fault attacks

on SoCs, we ask a very fundamental question: are there other
architectural features which can be used for faults, for which
no known defences are deployed yet? In this work, to the best
of our knowledge, we provide the first practical demonstration
of one such feature: system bus faults. In particular, we provide
the following contributions in this paper:
1) Practical Demonstration of System Bus Fault Attack:

While prior works have shown simulations (e.g [47]), this

2

work, to the best of our knowledge, provides the first
practical demonstration of bus fault on an SoC. We provide
a detailed characterization of faults in both the data bus and
the address bus. For the data bus, at the time of execution
of an instruction fetching data from memory, a precise
electromagnetic injection is able to change the value of
loaded data, without affecting any other register in the pro-
cessor. Likewise, at the time of execution of an instruction
involving a memory dereference, precise electromagnetic
injections are able to change this memory address, causing
memory access violations that the adversary exploits.

2) Data Bus Faults to break symmetric-key ciphers: Using
data bus faults, we introduce reliable faults in lookup table
(software-based) implementation of AES S-boxes on an
SoC, making such an implementation also vulnerable to
Differential Fault Analysis (DFA) [48]. This is in contrast to
literature which relies on hardware circuit implementation
of AES S-Box transformation to mount fault attacks.

3) Address Bus Faults to break Post-Quantum Crypto-
graphic schemes: Using address bus faults, we provide
an insight into how the system environment can make
the masked implementations of ciphers (for instance, the
secure NIST recommended post-quantum cryptographic
algorithms) vulnerable to key recovery attacks. Such ad-
dress bus faults, when combined with other factors in the
system outside the control of the cryptographic algorithm’s
implementation, led to secret key leakage from all imple-
mentations with a single fault injection.

4) Breaking ARM TrustZone Isolation for Trusted Ex-
ecution Environment: Finally, we use the novel bus
faulting strategies to mount an attack on a popular Trusted
Execution Environment (TEE) implementation for ARM
TrustZone: Open Portable Trusted Execution Environment
[49] as well as on its hardened implementation: MyTEE
[50]. Using bus faults as well as loopholes in the Glob-
alPlatform API specification, we skip signature verification
and install self-signed, malicious Trusted Applications in
the secure world side of OP-TEE and MyTEE. This allows
an adversary to execute self-signed code in the secure world
of such Trusted Execution Environments (TEEs). Moreover,
we validate the success of the attack across two different
platforms, thereby establishing the portability of the attack
vector. Through this finding, we contextualize the implica-
tions of bus faults into domains beyond cryptography.

5) Universally Unique IDentifier confusion: We uncover
a design specification issue in the GlobalPlatform API
specification that allows an adversary to install a malicious
TA which can masquerade as any other innocent TA in the
system, allowing man-in-the-middle attack.

C. Responsible disclosure
We notified the OP-TEE security team and Linaro about

our findings, post which we entered into an embargo of 90
days wherein the fix was developed and tested by us for
fault tolerance. The incident report for the same and the
fix have been made public. The attack has been assigned
CVE-2022-47549 under the category “Improper Verification
of Cryptographic Signature” (CWE-347).

D. Organization
The paper is organized as follows. In Sec. II, we introduce

the concept of Trusted Execution Environments (TEE). In

Sec. III, we characterize faults on both aspects of the system
bus: data bus and the address bus. Then, in Sec. IV, we use
bus faults to mount an end-to-end attack on a commercial
implementation of ARM TrustZone based on GlobalPlatform
(GP) API specification: Open-Portable Trusted Execution En-
vironment (OP-TEE). To consolidate portability of our attack,
in Sec. V, we show the same attack works (with no modifi-
cations) to 1⃝ a new TEE named MyTEE, as well as 2⃝ on a
different hardware platform. Finally, in Sec. VI, we describe
the experimental details and then detail countermeasures in
Sec. VIII which are currently deployed in production.

II. BACKGROUND

A. Trusted Execution Environments
Trusted Execution Environments (TEEs) are hardware-

backed solutions designed for security even in the presence
of a compromised kernel. The core idea is to partition re-
sources on an SoC into a trusted and an untrusted execution
environment and shift critical executions (like cryptography)
to the trusted environment. And doing this isolation with
the help of the hardware adds another layer of security- if
an adversary compromises the kernel on the untrusted part,
there is still a line of defence before the trusted part is
compromised. Since we consider TEE security in the context
of embedded systems, we focus on ARM TrustZone as ARM
chips dominate the majority of the embedded systems market.
ARM TrustZone has been an integral part of ARM chip-sets
since ARMv6 3, including Cortex-A (for application grade
systems like mobile devices, workstations etc) and Cortex-
M (for IoT devices) family of processors. The TrustZone
provides an execution context for security-critical applications
such as user authentication, mobile payment etc. It essentially
partitions the System-on-a-Chip hardware/software into two
virtual execution environments: secure world or Trusted Execu-
tion Environment (TEE) and normal world or Rich Execution
Environment (REE). Applications running in REE are called
client applications (CAs), while the ones running in TEE are
called trusted applications (TAs). REE supports a complex
software stack and can be prone to privilege escalation due to
software bugs [51].

B. Introduction to OP-TEE
Our choice of TEE for ARM TrustZone is Open Portable

Trusted Execution Environment (OP-TEE) [49]. While there
are other TEEs too for embedded systems (like Samsung’s
mTower4), we chose OP-TEE for a number of reasons. First,
to the best of our knowledge, OP-TEE is the only open-
source TEE that conforms to a wide variety of SoCs [52],
with detailed porting guidelines to add new devices [53].
Secondly, OP-TEE integration has been announced by com-
mercial entities like Apertis [54] and iWave systems [55],
indicating trust in its capabilities. Moreover, OP-TEE conforms
to GlobalPlatform API specifications for TEEs [56], allowing
easier articulation of the general impact of our attack vec-
tors. Lastly, OP-TEE has been developed for a period of 9
years by major embedded systems market players, including
STMicroelectronics/Linaro and is currently being maintained
by the TrustedFirmware project (whose board members include
ARM, Google, NXP, Infineon and so on).

3The current ARM version used in a majority of processors is ARMv8.
4https://github.com/Samsung/mTower

3

Fig. 1: OP-TEE Architecture. SVCH and SMCI denote Super-
visor Call Handler and Secure Monitor Call Interfaces.

Intuition for the isolation. As referred in Fig. 1, the REE
and TEE are divided into two layers: Exception levels (EL) 0
and 1, which provide granular control over the actions of the
REE and TEE. EL0 usually houses the userspace applications
while EL1 houses the kernel. On the REE side, Linux is used as
the operating system; while on the TEE side, custom OP-TEE
OS is used as the operating system. Exception level 2 houses
the secure monitor call (SMC) handler allowing cross-world
communication through software interrupts triggering context
switches. OP-TEE also has a collection of interrupts named
supervisor calls (SVC) that allow the transfer of control from
EL0 to EL1 in the same world. Briefly, apart from the shared
memory and these interrupts, there is no contact between the
REE and the TEE. This design implies that even if the REE
has been compromised, TEE is still secure.

III. BUS FAULTS: A NOVEL FAULT ATTACK ON SOCS

In this section, we introduce bus faults - faults injected
while the system bus is operational, rather than during the
computation in the processor after the operation of the system
bus is already over. For completeness, let us first understand
how the system bus interacts with the processor and memory.
In all modern systems, memory is aligned in a hierarchy to bal-
ance the trade-off between cost and speed. The fastest memory
(i.e. registers inside the processor) is costly and thus in short
supply. Likewise, the cheapest memory is in abundance but
extremely slow in operation. As a result, a lot of data exchange
happens between the different levels of memory. Although the
details vary with different Instruction Set Architectures (ISAs),
in general, every ISA supports load and store instructions
responsible for data transfer from the memory to registers and
vice-versa. Whenever these instructions are executed, there
is bidirectional transfer of data between the processor and
memory via the system bus. The system bus has two parts:
the data bus and the address bus. For every memory operation,
the memory address to be accessed is placed onto the address
bus. Likewise, the corresponding data is placed onto the data
bus. While most of the countermeasures have been focused
on either protecting the processor or the memory module, the
system bus has not been taken into consideration. As both data
(also instruction) and address travel through the system bus, it
provides an additional attack surface for FI attacks. We show

that a precise fault injection during the execution of store
and load instructions causes corruption of contents of both
the address and the data buses. This corruption percolates into
execution since the contents of address/data buses drive several
operations in the processor and memory. By targeting system
bus instead of directly faulting the processor/memory, our bus
faults bypass countermeasures preventing processor faults, as
well as avoid persistent memory faults (like Rowhammer [44])
that can cause permanent data corruption.

We note that this work significantly differs from [57]–
[59] in the sense that practical fault attacks on buses (like
CAN bus) are not directly portable to system buses in high-
frequency SoCs. First, such works use invasive fault attacks, as
opposed to our bus faults (which do not require any irreversible
modifications to the victim device). Secondly, the type of
faults injected in [57], [58] (like shorting micro-controller pins,
disconnecting Vcc/GND pins etc) are completely different to
the kinds of faults we explore in this work. Finally, our bus
faults differ from the invasive clock glitches in [59], in which
an external FPGA is used to insert clock glitches while the
hypervisor is issuing read/write cycles to memory. The inserted
glitches skip memory cycles, allowing an adversary to access
page tables that should have been de-allocated. In contrast, the
goal of injecting bus faults in our work is not to skip read/write
cycles from hitting memory, but rather to change memory
contents involved in the cycle. Such manipulated memory
contents are henceforth used in critical decisions (eg. TEE
signature verification as discussed in Sec. IV), thereby having
more drastic effects. As such, simply skipping memory cycles
as in [59] are unsuitable in our context, since skipping memory
cycles will have lesser control on the memory content, making
the attack infeasible in a practical setting. Through our bus
faults, on the other hand, we are able to modify the content of
a memory cycle, thereby making our attack practically viable.

A. Characterizing Data Bus Faults

Before characterizing data bus faults, we first describe
the operation of the data bus during execution of a load
instruction. Generically, a load instruction is character-
ized as load <destination register>, <memory
address> such that it loads the data at address <memory
address> to the register at <destination register>.
To do this, the memory unit places the requested data onto
the data bus, which then stores it into <destination
register>, for further processing by other instructions.

Data Bus Faults to enable DFA on AES: We show that
during the transition of data from memory to the processor,
practical fault injections on the system bus are possible which
can lead to corruption of the data. To demonstrate the power of
data bus faults, we show how such faults allow the extension
of DFA attacks into table-based software implementation of
AES S-Boxes5 (as opposed to prior attacks on circuit imple-
mentations, as detailed in Sec. I). We now note prior works
on attacking S-Boxes. Works like [31] assume a circuit-based

5We note that in desktop and server systems that use x86 ISA, AES is
implemented using special instructions, collectively called AESNI. However,
such specialized instructions are not present in SoCs and embedded devices.
Moreover, most of the block ciphers use table-based or array-based imple-
mentation of S-Box for software implementation as it is relatively faster
than actually performing S-Box operation (as matrix multiplication and vector
addition) for each plaintext byte.

4

Processor Backside

Memory
 Chip

Zoomed in view. The exposed system bus
 between the processor and memory

Fig. 2: The backside of a generic Raspberry Pi 3 board show-
casing the memory chip, the backside view of the processor’s
position, and the system bus interconnecting the two

implementation of such S-Boxes wherein faulting inputs to
individual gates is possible. Similarly, works like [60] do
not consider circuit implementations, but rather use faults to
manipulate the memory itself. Likewise, works like [61] use
undervolting interfaces to inject fault while AES computation
is in progress. However, our approach is orthogonal. We claim
that, in a table-based implementation of an AES S-Box, when
the S-Box table in memory is being accessed, a powerful
electromagnetic pulse over the position where the system bus
is printed on the Printed Circuit Board (PCB) causes faults in
S-Box substitutions. Such positioning of the electromagnetic
pulse injection also ensures that the injected faults do not cause
disturbances in the operation of the processor or the memory6.

Locating Optimal Fault Injection Point: For fault in-
jection, we use Electromagnetic (EM) pulses as it provides
a means for non-invasive attacks (i.e. without making any
physical alteration to the device). To find a correct position
for electromagnetic injections, we take a look at the RPi3
Printed Circuit Board (PCB) as shown in Fig. 2 (RPi4 PCB
is approximately similar to RPi3’s PCB, hence positioning on
RPi4 is similar as that on RPi3). The memory chip resides
in the middle of the PCB, while the processor resides a
few centimetres towards the top (as per Fig. 2). A dense
network of bus interconnects runs between the two. It is
worth mentioning that in most SoCs, similar PCB prints can
be found where the processor and the memory module are
situated on the PCB, with the exposed system bus providing the
interconnection. The test-bed schematic is given in Fig. 3. We
note that since we do not target the processor, there is no threat
of the injected fault spilling into neighboring regions (like
neighboring registers during fault injections in the processor).
This makes it easier to find a suitable fault injection probe
position. Further details on the fault injection hardware, probe
position, and detailed description of the attack setup will be
discussed in Sec. VI.

Differential Fault Analysis on AES: In the classic (Dif-
ferential Fault Analysis) DFA setting [48], the circuit im-
plementation of AES is faulted at the 8th round to ob-
tain faulty ciphertext. More specifically, a single bit-fault
in the register during the operation of 8th round can leak
one byte of the key by applying the well-known differen-
tial fault analysis technique using both faulty and correct
ciphertexts7. For our experiment, we use a generic C-based

6In the later part of the paper, we experimentally verify that our fault attack
does not corrupt the original memory contents.

7Implementation available at https://github.com/Daeinar/dfa-aes

Fig. 3: A schematic of the fault test-bed. Once the waveform
generator is triggered, it emits a pulse train comprising low
power, high frequency square pulses. This pulse train is
amplified by a power amplifier and then injected into the victim
device by an electromagnetic fault injection probe.

TABLE I: Parameter values allowing characterization of data
bus faults on AES.

Parameter Value
Signal generator delay 2 microseconds

Pulse generator amplitude -7.79 dbm
Pulse generator burst length 20 pulses
Amplifier output frequency 400 MHz

Probe position Fig. 9
Fault position Execution of load instruction

for the first S-Box in the 8th round

TABLE II: Results of the fault injection. Note the faulted byte
(in red) in 47-th injection. To show the preciseness, this table
captures the intermediate state of the cipher just after the 8-
th round, before the injected fault pollutes the entire state in
subsequent rounds.

Iteration Plaintext Ciphertext
1 0x00112233445566778899aabbccddeeff 0x8ea2b7ca516745bfeafc49904b496089
2 0x00112233445566778899aabbccddeeff 0x8ea2b7ca516745bfeafc49904b496089
3 0x00112233445566778899aabbccddeeff 0x8ea2b7ca516745bfeafc49904b496089

· · · · · · · · ·
47 0x00112233445566778899aabbccddeeff 0x2ea2b7ca516745bfeafc49904b496089
· · · · · · · · ·
100 0x00112233445566778899aabbccddeeff 0x8ea2b7ca516745bfeafc49904b496089

implementation8 on 16 byte input plaintexts wherein the S-
Box substitutions are carried out by table look-ups into a
table comprising of 256 8-bit integers9. In every round, 16
substitutions are performed, and every substitution requires one
memory access to the AES S-Box table stored in memory.
By extension, this implies that every substitution requires
the execution of a load <destination register>,
<memory address> instruction. During the execution of
this instruction, we were able to pollute S-Box substitutions.
The parameter values to obtain faults on this operation are
detailed in Tab. I. A detailed explanation of the parameters
can be found in Sec. VI.

By repeating fault injection operation enough times, we
were able to induce bit-flip faults in round 8. The result of
our attack is shown in Tab. II. As shown, we observed that in
the 47th injection in our batch of experiments, the first nibble
suffered bit-flips. Equipped with such faults in round 8 and
correct ciphertext pairs on the same plaintext, we successfully
perform a full-key retrieval attack on AES-128 using the DFA

8Implementation available at https://github.com/dhuertas/AES
9Table or array based AES implementations are common for SoCs.

5

technique [48].

B. Characterizing Address Bus Faults
In the previous subsection, we demonstrated practical

FI attacks on the data bus by utilizing the load in-
structions that carry data from memory to the processor.
We now turn our attention on the execution of store
instructions. Generically, a store instruction is charac-
terized as store <destination memory address>,
<source register> such that the data in <source
register> is stored in the memory addressed by
<destination memory address>. For a store in-
struction, the processor places <destination memory
address> onto the address bus and the contents of
<source register> onto the data bus, and issues control
signals indicating transfer of data from the data bus to the
memory referenced by the address bus.

While it is possible to generate data bus faults (c.f.
Sec. III-A) in this context as well, we focus on another
possibility. A high-end SoC is able to run a full-fledged
OS, atop which several user applications reside. As such, all
benefits of a well-designed kernel10 are inherently available
to the user applications. One such benefit is memory isolation
and protection. The OS guarantees isolation between processes
by virtually partitioning the entire system’s memory such that
no two processes can interact illicitly without the intervention
of the OS. Additionally, memory access violation signals are
raised by the OS when one process tries to access memory
owned by another. This presents us with a unique attack
opportunity: forcing memory access violations through faulting
the address placed onto the address bus, during the execution
of store instructions.

Memory access violations in isolation are inherently un-
exploitable even when they occur. However, since our experi-
mental platform runs an OS, there are several other (potentially
harmless) utilities provided by the OS which when combined
with our address bus faults, lead to disastrous consequences
like leaking cryptographic keys. Characterization of such faults
reinforces the belief that the complexity of the execution
environment of a program in the context of SoCs introduces
novel attack vectors, which are beyond the control of the
program itself. As a proof-of-concept, we use address bus
faults to force raise SIGSEGV11 signals during executions
of post-quantum cryptographic (PQC) algorithms, and utilize
other aspects of the system (outside the control of the PQC
algorithms) to recover secret keys.

Dilithium: Dilithium [62] is a post-quantum signature
scheme and one of the selected algorithms in NIST’s process
of standardizing post-quantum cryptographic implementations.
The reference implementation12 of Dilithium from [63] pro-
vides the core functionality needed from a digital signature
scheme, and needs a wrapper (c.f. Listing 1) to invoke the
core functions within the library.

1 vo id d i l i t h i u m _ w r a p p e r (c o n s t u i n t _ 8 * message) {
2 u i n t 8 _ t *pk = (u i n t 8 _ t *) ma l l oc (1 3 1 2) ; / / p u b l i c key
3 u i n t 8 _ t * sk = (u i n t 8 _ t *) ma l l oc (2 5 2 8) ; / / s e c r e t key
4 u i n t 6 4 _ t s i g n a t u r e _ l e n = 2420 ;

10Software that sits at the core of OS and has the highest privilege over the
hardware.

11An operating system signal noting the occurrence of a memory access
violation, causing the offending process to be terminated.

12Implementation available at https://github.com/PQClean/PQClean

TABLE III: Parameter values allowing characterization of
address bus faults on PQC algorithms. Note the extended burst
length of 100 pulses, as opposed to 20 in Tab. II.

Parameter Value
Signal generator delay 2 microseconds

Pulse generator amplitude -8.19 dbm
Pulse generator burst length 100 pulses
Amplifier output frequency 400 MHz

Probe position Fig. 9
Fault position Execution of

PQCLEAN_DILITHIUM2_CLEAN_crypto_sign

5 u i n t 8 _ t * s i g n a t u r e = (u i n t _ 8 *) ma l lo c (s i g n a t u r e _ l e n) ; / / s i g n a t u r e
6 PQCLEAN_DILITHIUM2_CLEAN_crypto_sign_keypair (pk , sk) ;
7 PQCLEAN_DILITHIUM2_CLEAN_crypto_sign (s i g n a t u r e , &s i g n a t u r e _ l e n , message , 30 , sk)

;
8 }

Listing 1: Wrapper code invoking Dilithium’s signing
functionality.

As part of the function PQCLEAN_DILITHIUM2_CLEAN
_crypto_sign, the secret key is loaded onto the stack13,
and is used as part of the signing process. This is precisely
when we inject an EM pulse (for a longer period of time
compared to the one in Sec. III-A) that causes the target
store instruction to raise a SIGSEGV signal. This happens
because the injected fault changes the contents of the address
bus to point to a memory location inaccessible by the
process, hence raising a SIGSEGV (memory access violation)
signal. We note that a SIGSEGV is inherently useless
for an adversary. But under default system configuration
(outside the control of the process running Dilithium), a
SIGSEGV is accompanied by a coredump whose analysis
reveals the contents of the in-memory stack (where the
secret key resides in plaintext form), thereby converting a
seemingly harmless address bus fault into an attack vector
that leaks the entire secret key with a single fault. Based
on the parameters reported in Tab. III, we raise SIGSEGV
signals in the execution of Dilithium, causing a SIGSEGV in
PQCLEAN_DILITHIUM2_CLEAN_polyt0_unpack
(we refer to Appendix, Fig. 7 for a sample
backtrace). From the backtrace in the coredump, the
secret key is easily recoverable (argument sk in
PQCLEAN_DILITHIUM2_CLEAN_crypto_sign). To
show a proof-of-concept attack, here we assume availability
of coredumps to an unprivileged attacker. In Sec. IV, we relax
this assumption in context of a real-world TEE.

The consequence of the aforementioned attack is that an
adversary without the knowledge of the underlying crypto-
graphic algorithm can essentially leak the entire secret key
by a single fault by carefully faulting the operations at the
correct time. In short, a SIGSEGV signal issued, after the
secret key is loaded onto the stack, is sufficient for the attack
to succeed. This brings into question the viability of deploying
PQC schemes on IoT edge devices where the presence of a
physical adversary constitutes a valid threat model. In order
to validate our claims, we perform similar experiments on
other PQC candidates, which are touted to be protected against
classical FI attacks by the use of masking.

First-order masked implementation of SABER: We now
experimentally validate whether the address bus based fault
attack is also applicable in the context of masked imple-

13Part of a process’ memory map which stores all statically allocated data,
function frames, and other book-keeping data necessary for program execution.

6

mentations. As a proof-of-concept, we take the example of
a first-order masked implementation of SABER from [64]14.
Listing 2 shows how all shares of SABER being encapsulated
in a single structure. By injecting an address bus fault in
the decapsulation function crypto_kem_dec_masked, the
adversary has access to the coredump wherein the structure
sk_masked_s is loaded onto the stack. Since all shares
are encapsulated within the same C structure sk_masked_s,
a single fault once the structure is loaded onto the stack is
sufficient to leak all secret shares.

1 t y p e d e f s t r u c t
2 {
3 u i n t 1 6 _ t s [SABER_SHARES] [SABER_L] [SABER_N] ; / / s h a r e d
4 u i n t 8 _ t pk [SABER_INDCPA_PUBLICKEYBYTES] ;
5 u i n t 8 _ t hpk [SABER_SHARES] [3 2] ; / / s h a r e d
6 u i n t 8 _ t z [SABER_KEYBYTES] ;
7 } sk_masked_s ;

Listing 2: An encapsulation of SABER shares.

One must note that this attack succeeds because the address
bus faults do not target the algorithm. The attack rather
relies upon the fact that the implementation keeps all shares
encapsulated in a single structure, which is loaded onto the
stack at once. An address bus fault in our context causes the
memory image of the stack to be dumped as a coredump file,
from where the shares are retrievable in simple plain text-form.

First-order masked implementation of KYBER
Similar to SABER, KYBER also has a first-order masked

implementation in [65] 15. In this implementation as well,
all secret shares are encapsulated within a single structure
(c.f. Listing 3). At the time of execution of the decapsu-
lation function crypto_kem_dec_masked, the structure
masked_sk is loaded onto the stack and the decapsulation
proceeds. Like the attack on SABER, a single address bus fault
during the execution of this function causes all the shares in
masked_sk to be leaked.

1 t y p e d e f s t r u c t {
2 masked_polyvec i n d c p a _ s k ;
3 u i n t 8 _ t pk [KYBER_INDCPA_PUBLICKEYBYTES] ;
4 u i n t 8 _ t hpk [KYBER_PUBLICKEYBYTES] ;
5 masked_u8_symbytes z ;
6 } masked_sk ;

Listing 3: An encapsulation of KYBER shares.

C. One Fault to Break Them All: Implications for post-
quantum cryptographic algorithms

Fault Attacks have been used extensively in the literature
to compromise mathematically robust cryptographic schemes.
Many block ciphers as well as public key algorithms, including
AES and RSA, have been subjected to wide analysis in the
context of fault attacks. Towing along similar lines, PQC
candidates have been analysed with respect to fault attacks to
ensure secure and wide deployment after NIST standardisation.
One such interesting work has been done in [66], where the
authors require 6, 500 faults for KYBER’s smallest parameter
set. It is interesting to note that the majority of such attempts
target the post-quantum algorithms and their designs, and do
not necessarily consider the target platform on which these
schemes are supposed to work. In this work, we put forth a
different perspective with the demonstration of practical bus
faults. We show that it is not sufficient to design leakage-
resistant designs. The first-order masked versions of SABER
and KYBER are theoretically resistant to fault injections.

14Implementation available at https://github.com/KULeuven-
COSIC/SABER-masking

15Implementation available at https://github.com/masked-kyber-m4/mkm4

However, due to some design considerations (using the same
structure to store all the components of the key), the en-
tire secret key can be made to leak on appropriate devices.
Therefore, this work, in essence, begets a new aspect that
should be considered during designing as well as implemen-
tation - what effect the environment where the post-quantum
algorithm’s reference implementation is running has on the
security of these schemes. Due to a combination of factors,
which are outside the reference implementation’s purview, a
single fault allows leakage of the entire secret key, without
the knowledge of the underlying algorithm. In other words,
by not analysing the implementation platform on which the
post-quantum algorithm is executing, we have inadvertently
expanded the trust boundary of the algorithm to include other
aspects of the system the algorithm has no direct control over.
Furthermore, as is the case with address bus faults and dumped
cores, the post-quantum algorithm itself is oblivious to this
extension of its trust boundary, since it has no way to verify
the integrity of other system aspects whence an adversary
can influence generation of coredumps. We believe that such
unintended expansions in trust boundaries of post-quantum
algorithms should be a prime concern while implementing an
otherwise theoretically secure algorithm.

D. Comparing Bus faults with generic processor or memory
faults

In this section, we provide justification and empirical
arguments on how our bus faults are significantly different
from generic faults in processor/memory.

Why is it not a generic memory fault attack?: We note
that in [60], laser faults were injected in memory leading to
persistent corruption of memory. Our attack is fundamentally
different from [60] for two reasons: 1⃝ our probe positioning
does not influence the memory chip, and 2⃝ we observed faulty
ciphertext due to fault injection, but subsequently observed
correct ciphertexts as soon as the EM probe was removed.
Point 2⃝ emphasises the transient nature of our fault attack,
thereby implying that the S-Box itself in memory was not ma-
nipulated as we got correct ciphertext computations after the
faulty ciphertext was generated. Moreover, in our experiments,
memory corruption with electromagnetic fault injection had a
distinct behaviour. We observed that when the probe is placed
covering the entirety of the memory chip, the system freezes
and requires a reboot. This is expected, as injecting powerful
electromagnetic pulses into the memory may corrupt more than
just AES S-Box tables, causing the system to freeze.

Why is it not a generic processor fault attack?: This
attack is also significantly different from prior attacks on the
processor wherein the fault is injected while the computation
is underway. This is because 1⃝ we did not depackage the
processor casing, 2⃝ the processor is beyond the field of influ-
ence of our probe, and 3⃝ in our experiments (with the probe
directly placed over the packaged processor), we were unable
to reproduce classic processor faults like instruction skips,
thereby reinforcing the belief that the packaged processor is
not susceptible to electromagnetic manipulations.

E. Bus Fault Characteristics and Success Rates
We now focus on characterizing the amount of control

an adversary has on both data and address bus faults. To
characterize data bus faults, we use the parameter set detailed

7

in Tab. I. Similarly, for characterization of address bus faults,
we use the parameter set in Tab. III. For both parameter
sets, we repeat 10000 EM fault injections on load/store
instructions and report fault characteristics.

For the experiment concerning data bus faults, we define
three sub-classes: 1⃝ the data was not corrupted, 2⃝ the data
was corrupted but not changed to 0x0, and 3⃝ the data
was corrupted to 0x0. Among 10000 injections, 62% of the
injections were a combination of cases 2⃝ and 3⃝, implying
a data bus fault failure rate (i.e. case 1⃝) of 38%. Out of the
successful fault injections, we observed case 3⃝ 27% of the
times. On the other hand, upon analysing the corrupted non-
zero data values obtained in case 2⃝, we observed that all data
corruptions happened in the upper 16-bits of the 32-bit wide
data values on RPi3/RPi4. Moreover, in case 2⃝, we did not
observe a significant difference between the probabilities of
1 → 0 and 0 → 1 bit flips.

For the experiment concerning address bus faults, we again
define three sub-classes: 1⃝ no corruption in the address (i.e. no
SEGFAULT), 2⃝ corrupted address is invalid (i.e. SEGFAULT),
and 3⃝ corrupted address is valid. The last case arises if the
corrupted address corresponds to a memory location within
the confines of memory range of the stack or the heap in the
process memory map. Among 10000 injections, we observed
31% successful address bus faults. Further analysis shows that,
among successful injections, no case 3⃝ is observed. This
observation is in line with similar observations for data bus
faults- lower 16-bits of the 32-bit wide addresses are extremely
difficult to fault. Note that faulting upper 16-bits of the address
almost always causes the resulting address to point outside the
address ranges for stack/heap, resulting in invalid addresses.

We finally state that an in-the-wild adversary can choose
the pulse generator burst length to assert control over whether
the injected fault is a data bus or an address bus fault. From
Tab. I and Tab. III, one can observe that a shorter length of
around 20 pulses correspond to data bus faults, while a longer
length of around 100 pulses correspond to address bus faults.

Takeaway. Characterization of bus faults into sub-classes
establishes one useful insight: data bus faults are capable
of register sweeping, where data bus faults change an entire
32-bit register from a non-zero value to 0x0.

In this section, we introduced novel system bus fault and
developed proof-of-concept attacks using data bus and address
bus faults in separate scenarios. Now since we have separate
characterizations of data bus and address bus faults as well as
our main takeaway of register sweeping, we combine the two
to mount an end-to-end attack on a practical system with a
sizable market share in the IoT market. We note that a single
successful register sweeping fault is sufficient to compromise
ARM TrustZone. This is possible in around 40 independent
injections as per the fault characterization done in this section.

IV. END-TO-END ATTACK ON ARM TRUSTZONE

We now show a use-case wherein bus faults can be used
to install malicious Trusted Applications (TA) in the secure
world side of a Trusted Execution Environment (TEE) for
ARM TrustZone.

A. Comparison with previous works
In this section, we articulate concrete objectives for the

adversary as well as how prior literature falls short of achieving
the mentioned objectives. This helps emphasize the merits
of bus faults in the context of SoCs. The main objective of
the adversary is to install a malicious TA that is self-signed
by the adversary into the secure-world. Ideally, all TAs must
be signed by the Original Equipment Manufacturer (OEM),
implying installation of any malicious TA essentially implies
a complete breakdown of trust guarantees provided by ARM
TrustZone. In addition to this, we also articulate the following
objectives an adversary needs to consider.
• G1. The entire attack must be online. At no point in

time must the adversary take the device offline. This
requirement ensures that the attack evades remote mon-
itoring systems like SCADA (Supervisory Control And
Data Acquisition systems), if any [67], [68].

• G2. Attack without physical modifications (like chip
decapsulation) to the device (i.e. an non-invasive attack),
preventing future detection of the attack. This goal en-
sures no physical trace of the attack, evading post-attack
hardware forensics [41].

• G3. Attack in a reasonable time-frame of 0.5 – 2 hour
window [41]. This encapsulates two ideas: 1⃝ how long
does an adversary have physical access to the victim IoT
device (depending on its physical environment), and 2⃝
how long does it take to mount the attack.

We now discuss how other fault injection mechanisms in
literature fail in our context, which also helps to emphasize
the difference of bus faults compared to these techniques.
A major attack point on Trusted Execution Environments is
the secure-boot, which is a set of mechanisms that establish
the foundational trust boundaries of the system when it boots
up. Prior works like [22], [23], [69] use both non-invasive
and invasive techniques to bypass secure-boot and install
adversarial controlled applications inside the TEE. However,
attacking secure-boot violates G1. Even if we assume an
adversary with 100% fault reproducibility, it requires at least
1 reboot of the system, thereby voiding G1. This is because
secure-boot can only be attacked when the device is booting
up. Moreover, the userspace TAs are loaded in memory when
they are required, long after the system boot is completed.

Likewise another class of works like [33]–[35] rely on
an exposed dynamic voltage-frequency scaling (DVFS) inter-
face, usually in perspectives of client workstations or server
machines. However, in context of SoCs, there are two ways
to dynamically control voltage/frequency: 1⃝ through Linux’s
scaling governors [70], and 2⃝ through config.txt that
SoCs like RPi3/RPi4 initialize from during boot time [71].
Since 1⃝ no longer allows software-based overclocking post
similar attacks [34] and 2⃝ is not editable from OP-TEE’s
stripped down Linux kernel in the normal world, remote fault
injections like [33], [34] are not possible in our context. Note
that one could argue that 2⃝ can be edited by removing RPi3’s
(or RPi4’s) SD card (memory card housing the OS) and editing
config.txt offline. However, that would void goal G1 as
the device needs to be taken offline to remove the SD card.

On similar lines, works like [13], [37], [39], [40], [72], [73]
allow an adversary to attach a second adversarial controlled
device to the victim device, where the second device controls

8

the inputs to the clock/voltage inputs of the victim device.
Such well timed glitches can introduce precise faults. However,
such attack vectors do not apply to our setting because of
RPi3/RPi4’s lack of an external clock/voltage interface. Al-
though there have been works to this end [74], [75], it is a
clear violation of G2 due to the need of an external interface.

Finally, in addition to running on low-end devices like
FGPAs and using external voltage/clock glitches, works like
[37] assume the ability of an attacker to introduce code-based
triggers, signalling the start of an execution of interest where
the fault must be injected. Although an acceptable fault model
in academic settings, it does not agree with our goal G1
(which we believe is more relevant to practical situations).
From an adversarial point of view, the victim device is running
an already compiled code. To be able to introduce a code-
based trigger, an adversary has to decompile the running
binaries (this step is easier if the victim codebase is open-
source), introduce a code-based trigger, recompile the codebase
building all dynamic libraries (if any), and rerun everything.
After this, the fault injection starts. However, the complexity
of this entire attack makes its practicality questionable, and a
more potent attack would ideally require no modifications to
the victim code. Hence, our attack cannot rely upon such code-
based triggers, and needs alternative triggering mechanisms,
which we discuss next.

B. Choice of Raspberry Pi as target platform

For our experiments, we chose target devices as Raspberry
Pi 3 and Raspberry Pi 416 boards for a number of reasons. First,
except for a few works like [69], [76], [77], not much focus
has been given to electromagnetic fault injections on high-
frequency SoCs. Secondly, the RPi3/RPi4 is an SoC with wide
adaptability [78], [79], making it suitable to be used widely in
IoT ecosystem for applications that demand relatively higher
computation capabilities. Moreover, easy accessibility of such
boards makes the reproducibility of fault attacks simpler.
Thirdly, RPi3/RPi4 boards pose challenges in areas where
its simpler counterparts (like micro-controllers and FPGAs)
offer numerous surfaces with respect to physical attacks. One
such challenge area is the absence of externally manipulable
clock/voltage interfaces, thereby eliminating a wide body of
research attacking such interfaces. These factors allow for a
more thorough analysis of the benefits of bus faults against
other faulting strategies.

We note that the official OP-TEE port on RPi3 Model B
misses some key aspects [52] of a generic TEE. Although the
RPi3 processor provides ARM TrustZone exception states, the
mechanisms and hardware required to implement secure boot,
memory, peripherals or other secure functions are not available.
We however note that our attack does not target secure boot,
memory, peripherals etc. We target error code definitions
to install rogue TAs, which are defined by GlobalPlatform
specification and are platform-agnostic. We quote OP-TEE
developers during our disclosure: “Even though the Raspberry
Pi 3 device only should be used for educational purposes,
we believe that this attack is something that could be done on
other devices as well and therefore we think it’s now justifiable
to introduce the software mitigation patterns.”

16Hereafter abbreviated as RPi3 and RPi4 respectively.

C. Bus Faults to Break ARM TrustZone
We now establish the adversarial assumptions and describe

how to install a self-signed, malicious TA onto the secure
world of ARM TrustZone.

Attacker Threat Model: Before describing the attacks,
we establish goals and assumptions for the adversary. The
adversarial objective is two fold: 1 installing a malicious TA
by attacking the TEE, and 2 break symmetrically encrypted
communication channels between CA/TA by attacking the
REE (only if third-party extensions offering advanced protec-
tions are present along with default OP-TEE build). To achieve
these objectives, we assume an adversary that 1⃝ has physical
access to the device, 2⃝ can execute code on REE side, and
3⃝ whose privileges are confined to Exception Level 0 (EL0)
in the normal world side as depicted in Fig. 1.

We note that achieving objective 1 is sufficient to compro-
mise a default OP-TEE configuration. However, for a holistic
evaluation of production-level systems, we also assume state-
of-the-art third party defences like [80], [81] in addition to
default OP-TEE configuration, encapsulated by objective 2 .
We note that our adversarial assumptions are in line with
the threat model in [80], [81] which guarantee secure key
management services in presence of a compromised REE. Our
adversary, with privileges confined to Exception Level 0 (EL0)
on REE, injects address bus faults on CAs running in REE
side and leaks symmetric encryption keys through coredumps.
Adversarial access to such coredumps is enabled by default
in OP-TEE. Moreover, even if coredumps are disabled, it is
within our adversary assumptions that the adversary can re-
enable coredumps (since both TEE and defences like [80],
[81] guarantee security even from a compromised REE EL0).

Installing a malicious TA through data bus faults: We
must first decide where in the TEE’s execution the attack
must be mounted. Since we cannot target secure-boot, we
target the loading of userspace TAs post boot-up. All TAs
in the TEE are signed by the OEM’s private key (which
is not present on the device post-deployment) and signature
verification happens every time a TA is loaded. Installing
a malicious TA without fault injection then becomes the
equivalent of forging digital signatures. With fault injection,
one logical attack strategy is to use an instruction skip to
bypass this signature verification. However, instruction skips
are not viable because of the presence of control-flow integrity
checks [82], [83]. Consequently, we use data bus faults and
exploit the programming convention of using non-zero integers
to represent errors and a 0x0 to represent success. We use data
bus faults to convert a non-zero return value of a function
to 0x0, which then tricks TA signature verification to load
a malicious TA. Once we know where to attack, we decide
how to carry out the attack. We cannot use DVFS style fault
techniques nor can we use clock/voltage glitches. Hence, we
choose to use electromagnetic fault injections in this work. We
did not choose laser based fault injections as that requires chip
depackaging voiding goal G2.

We now explain in detail how attack works. OP-TEE
follows an offline signing and online verification process. The
underlying assumption is that the root-of-trust lies with the
OEM, which itself signs each TA with its private key [84],
stitches the signature with the symbol-stripped TA binary, and
loads the binary onto the system along with the public key

9

for signature verification. Listing 4 depicts this verification
process. TEE_ERROR_SECURITY is a special error code
returned by OP-TEE in case signature verification fails.

1 # d e f i n e TEE_SUCCESS 0 x00000000
2 # d e f i n e TEE_ERROR_SECURITY 0xFFFF000F
3
4 TEE_Resul t v e r i f y _ s i g n a t u r e (c h a r * t a _ b i n a r y , u i n t 8 _ t * s i g n a t u r e) {
5 i f (/ * s i g n a t u r e i s v a l i d * /)
6 r e t u r n TEE_SUCCESS ;
7 r e t u r n TEE_ERROR_SECURITY ;
8 }
9

10 / / l o a d a TA r e f e r e n c e d by a CA
11 vo id load_TA (. . .) {
12 / / some code h e r e
13 TEE_Resul t r e s = v e r i f y _ s i g n a t u r e (. . .)
14 i f (r e s != TEE_SUCCESS)
15 / / a b o r t e x e c u t i o n
16 / / some more code h e r e
17 }

Listing 4: OP-TEE TA signature verification process

Since the signature keys used to sign the TAs are not present
on-device, forging of signatures through signing key leakage
is impossible. Therefore, the only possible way to load a self-
signed TA is to force a failure of this verification step.

• Observation 1. Return code convention in Linux aids
data bus faults.

From Listing 4 (and from reading OP-TEE’s source code),
we observed that while several error states (like security errors,
out-of-memory errors etc.) were given a 32-bit non-zero val-
ues, TEE_SUCCESS was given a value 0x0. This is common
as almost all Linux-based function calls conventionally use a 0
to denote success, and other integers denote several erroneous
operations. We exploit this convention for the attack. Listing 5
shows the aarch64/ARM64 disassembly of Listing 4. The point
of interest is one mov instruction which loads the return value
of verify_signature from the process stack memory into
the register w0. We attack this operation by injecting an EM
pulse train while mov is executed, leading to a data bus fault
and pollution of w0 value. In our experiments, we were able
to cause data bus faults that cleared the value of w0 to 0x0.
This change then forces the branch instruction cbnz to take
a non-intended branch, thereby loading the malicious TA.

1 . t e x t . v e r i f y _ s i g n a t u r e :
2 / / some code h e r e
3 mov w0 , < r e t u r n _ c o d e >
4 r e t
5
6 . t e x t . load_TA :
7 / / some code h e r e
8 / / s e t t i n g up p a r a m e t e r s
9 b l < v e r i f y s i g n a t u r e >

10 cbnz w0 , < e r r o r _ o u t >
11 / / some more code h e r e

Listing 5: Sample disassembly of OP-TEE TA signature
verification process. A mov instruction moves the actual return
code into the register w0, which then goes through a cbnz
or a "compare and branch on non-zero" instruction to decide
whether to error out or not. Through data bus faults on these
instructions, w0 can be cleared out to 0x0, thereby bypassing
the otherwise error state jump that cbnz would have taken.

• Observation 2. Using side-channel power consumption
as non-invasive triggers.

One question still remains: how to reliably know when
mov is executed (i.e. when to trigger the fault injection)?
Attempting to attack in a non-invasive setting means we cannot
use code-based triggers. We rather rely on the open-source
nature of OP-TEE and side-channel power trace acquisitions
to generate triggers, not requiring any modifications to victim

code. This approach is one variant of a more generic technique:
using the behavior of the target system itself as a trigger. For
example, [38] uses the size of bus traffic as a trigger for voltage
glitches. Similarly, [85] uses pattern matching on normal
device power signals to trigger fault injections. It is worth
mentioning that we also considered using OP-TEE’s Universal
Asynchronous Receiver/Transmitter communication protocol
(UART) as means of triggering, but the communication’s
internal buffering latencies made synchronization hard.

Now we explain how prior works (c.f. Sec IV-A) achieve
reliable code-based triggers for similar attacks, and point out
problems with those approaches in our case. For usual code-
based triggers, just before the security critical operation of
interest begins, a signal is generated to an attacker-controlled
device, which in turn starts injecting faults. Concretely, in the
case of RPi3/RPi4 running Raspbian OS, one possible way
to create such a code-based trigger is given in Listing 6. Just
before the operation of interest starts, the attacker-induced code
could send a square pulse over GPIO pin 7. The adversary
would capture this pulse through an external signal generator,
which will then start generating a train of pulses. This train of
pulses shall be used by fault injection probes to inject faults
temporally localised to the security critical operation.

1 # d e f i n e TARGET_GPIO_PIN 7
2 vo id v ic im_code (. . .) {
3 d i g i t a l W r i t e (TARGET_GPIO_PIN , HIGH) ;
4 / / some d e l a y t o l e t t h e o u t p u t s t a b i l i z e
5 d i g i t a l W r i t e (TARGET_GPIO_PIN , LOW) ;
6 / / some s e c u r i t y − c r i t i c a l o p e r a t i o n
7 }

Listing 6: Code-based trigger mechanism for Raspberry Pi

However, there are two problems with this approach. The
generic problem is that in our work, we consider code-based
triggers as invasive triggering mechanisms. From an adver-
sarial point of view, an adversary has to replace the process
binaries running on the target system with its own instrumented
binaries. This is invasion in most practical settings. Moreover,
this approach needs modifications to the kernel as well as
kernel recompilation, which is against our assumptions on
adversarial capabilities. Additionally, this fails our initial goal
G2 of launching the attack without taking the device offline 17.
And a more OP-TEE specific problem is that OP-TEE’s normal
world is a stripped-down Linux kernel exposing a BusyBox 18

interface to the adversary. From our empirical observations,
we found that OP-TEE’s normal world Linux does not expose
a GPIO interface which an adversary could use.

Both these problems together imply a non-invasive trig-
gering mechanism is required to temporally localise faults.
Therefore, we use analysis of power traces as a triggering
mechanism (we defer to Appendix A, Fig. 8 for the actual
power traces we used). Power trace acquisition allows an
adversary to monitor the power consumption by the process
throughout the course of execution. Historically, it has been es-
tablished that some operations (like multiplications) take more
power than others, leading to a bias in acquired power traces,
through which adversaries break cryptographic primitives [86],
[87]. For our purposes, we use power based side-channel traces
of multiplications for triggering fault injection. Multiplications
are computation heavy operations, requiring higher power
consumption than other operations. And multiplications are

17Kernel recompilation would require taking the device offline.
18BusyBox is a software suite providing Unix utilities as an executable file.

10

heavily used in OP-TEE’s RSA based signature verification. To
motivate the use of multiplications as triggering mechanisms,
we note ideas in literature on two fronts: 1⃝ the power
consumption during multiplications vs other generic operations
[88], and 2⃝ the heavy use of multiplications in OP-TEE’s RSA
signature verification process [89], [90]. From the combination
of 1⃝ and 2⃝, along with the fact that 3⃝ a multiplication-heavy
signature verification happens just before our point of interest
(c.f. Listing 4), we have a non-invasive triggering mechanism
to denote when our signal generators should begin sending
EM pulses. The result of this attack is a self-signed adversarial
controlled TA getting installed in the secure world of OP-TEE,
thereby violating the security guarantees of ARM TrustZone,
thereby completing objective 1 for the adversary.

Stealing encryption keys through address bus faults:
With regards to objective 2 , the default OP-TEE builds do not
provide any security to the communication channel between a
CA and TA. This raises the possibility of man-in-the-middle
attacks on this unencrypted channel, as demonstrated in [91].
As such, third-party extensions like SeCReT [80], [81] have
been proposed, which provide key management services to
CAs and TAs, allowing to encrypt the communication between
them. Briefly, upon assignment of a symmetric session key
between a CA and a TA, SeCReT focuses on preventing a
compromised REE from extracting this key from the otherwise
vulnerable CA19. To do so, SeCReT monitors accesses to the
CA’s memory page where the keys are stored and blocks
illegitimate processes from reading that memory page. For
every context switch, SeCReT performs register level verifi-
cation (to prevent control-flow manipulations) and memory
flush operations to prevent any residue of the keys from being
leaked to an adversary. Furthermore, SeCReT itself resides as
a kernel module in both worlds and prevents an adversary
from creating a memory snapshot (by attaching a debugger
for example) [80]. As such, even after successfully installing
a malicious TA through data bus faults, we still need to
compromise SeCReT’s defences in order to decrypt other
benign TAs’ communications.

However, our address bus faults are able to bypass Se-
CReT’s defences because our faults force the CA’s access to
its own memory pages to be invalid/faulty, and thus cause no
violation of SeCReT’s threat model. In other words, SeCReT
trusts the CA owning the symmetric session key to behave
innocently when handling its own key, while SeCReT guards
malicious accesses from other agents (including debuggers
to trace the victim) in the system. However, because of the
address bus faults, we are able to force the CA itself to incur
faults. This causes successful creation of coredumps with the
symmetric session key (shared between CA/TA) accessible to
an adversary. From the coredump, the session key is extracted
using the same backtrace analysis as detailed in Sec. III-B.

We note here that generation of coredumps on the com-
promised REE side is an acceptable threat model, and is
enabled on default OP-TEE build configuration. SeCReT’s
defence mechanism is not to disable coredumps but to prevent
any other process (including debuggers which can trace the
victim and extract the keys) from attaching to a CA’s memory
page holding symmetric keys and creating such coredumps.
As such, we bypass this defence by using the CA itself to

19CAs, being on the REE side, are vulnerable to malicious REE OS.

access the concerned memory page and then inject address bus
faults to force erroneous behaviour in an otherwise benign CA.
Subsequently generated coredumps are stored on the normal
world (not on the trusted world) and are accessible to an
adversary. Finally, since the design decision of SeCReT is
to support symmetrically encrypted communication channels
between normal world and trusted world, compromising the
session key on the normal world side is sufficient to breakdown
security in both worlds. We refer to Fig. 5 in the Appendix for
a pictorial depiction. We further emphasize that a successful
accomplishment of objective 2 does not necessarily imply
fulfilment of objective 1 . The two objectives are independent
and can be performed in any order. In our case, we perform
1 on the TEE side first and then 2 on the REE side.

V. PORTABILITY OF THE ATTACK

The attack described in Sec. IV combined bus faults
with the specific descriptions of error codes in the Global
Platform (GP) API specification to bypass signature checks and
install adversarial controlled, self-signed, malicious Trusted
Applications in the secure world side of OP-TEE. However,
the foundation of the attack (i.e. the specific error code defini-
tions in GP API specifications) is more fundamental, thereby
ensuring portability of the attack. To empirically consolidate
this point, we successfully extended the attack in the following
independent directions:
• Attack on a new TEE based on GP API specifications:

MyTEE [50] is an extension of OP-TEE with several
security features allowing better trust guarantees.

• Attack on a new platform: We ported both OP-TEE
and MyTEE to a new platform (RPi4) and successfully
recreated the attack.

In the following subsections, we elaborate on details of these
two directions.

A. Attacking a new TEE: MyTEE
To empirically justify portability of our attack on a new

TEE, we extend our attack on MyTEE [50]: a hardened
implementation of OP-TEE that fixes several problems OP-
TEE’s RPi3 port has, with following enhancements:
• Implementing secure memory: OP-TEE port on RPi3

clearly lacks support for secure memory isolation, which
MyTEE plugs in. To do so, MyTEE implements deliberate
management routines for page tables. Some routines of
MyTEE reside in the hypervisor, which ensure the TEE’s
memory map is immutable.

• Implementing secure DMA extensions: In OP-TEE
on RPi3, a malicious Direct Memory Access controller
(DMA) can issue memory-mapped I/O requests (MMIO)
and build a harness for an attack. However, MyTEE
plugs in this problem with a specialized DMA filter that
interrupts any MMIO request to memory maps belonging
to the secure world.

• Implementing secure I/O: The OP-TEE port on RPi3
also does not guarantee secure peripheral isolation on the
secure world side. To implement secure peripheral exten-
sions, MyTEE moves memory regions (like I/O buffers)
to TEE’s secure memory. Moreover, the concerned device
drivers are broken into two parts: one portion residing in
the normal world and the other part residing in the secure
world, with secure communication APIs between the two.

11

The secure world part is given hypervisor privilege to
access the secure objects (like I/O buffers).

We note that even with these extensions to a generic OP-
TEE port, we are still able to launch our attack successfully.
The reason for this is that the attack exploits design decisions
in the GlobalPlatform API specifications, and not the imple-
mentation. Even though OP-TEE and MyTEE heavily differ
in their security guarantees, they still share the same design
principles, which is what we target. The attack described
thereby still works on MyTEE without any modifications.

B. Attacking a new platform: targeting RPi4 TEE ports
To further consolidate the portability of this attack on a

different platform, we ported both OP-TEE and MyTEE to
RPi4 [92]. To find optimal fault locations, we repeated all the
steps (c.f. Appendix VI) earlier performed for RPi3. We note
that apart from modifications to attack parameters (Tab. V)
because of change in target platform, no other change to
the attack was necessary. We reiterate that this outcome is
because our attack is dependent on specific design decisions
in the GlobalPlatform API specification (off which both OP-
TEE and its hardened variant MyTEE are based). Hence, the
attack rationale is based off a more fundamental observation,
and thereby is permeable across different target platforms,
establishing the portability of the attack.

VI. EXPERIMENTAL SETUP AND RESULTS

We now provide experimental details of the attack setup.
The victim device is a RPi3 Model B (or RPi4 after applying
the RPi4 port [92] as discussed in Sec. V-B). The adversarial
device is a RPi4, which is connected to a Keysight 33500B
signal generator responsible for triggering the entire fault
injection process. When the RPi4 produces a digital HIGH
on one of the adversarial controlled GPIO pins, the Keysight
33500B signal generator forwards the signal to a Keysight
81160A pulse train generator. The Keysight 81160A pulse
train generator generates 15 pulses of frequency 200 MHz,
pulse width 2 nanoseconds, and amplitude -8.13 dbm. These
15 pulses are received by the signal amplifier and amplified
to pulses with frequency 400 MHz (as a comparison, the
lowest operational frequency of RPi3 Model B is 600 MHz).
These amplified pulses are received by Rigol NFP-3 P3 EM
(electromagnetic) probe and injected onto the system. The OP-
TEE codebase was compiled with the default optimization
flag [93].20 We defer to Appendix A for more details on
reproducing the experimental setup.

To generate a TA-like binary, the adversary creates a
normal C based-program based off the GlobalPlatform’s In-
ternal Core API specification [56]. This binary is named
<uuid>.ta where <uuid> denotes the publicly known
UUID chosen by the adversary. The adversary then loads
this binary <uuid>.ta in lib/optee_armtz. Upon being
invoked by a CA, <uuid>.ta is loaded and checked for
verification, wherein we mislead the check completely by using
a data bus fault to change the value of the return code to 0x0.

A. Searching the fault parameter space
Searching through the entire parameter space (wrt. all

parameters related to the different devices used for fault
20Tab. IV in Appendix gives the state of the OP-TEE monorepo.

injection) is an exponential problem, and we require heuris-
tics to converge upon a range of parameters most likely to
give faults of our interest. There is also another problem:
our empirical observations suggest that introducing incorrect
faults in OP-TEE TA loading driver causes immediate reboots.
This happens because poorly localised faults cause memory
corruption and the TrustZone bails out in such an occurrence.

To circumvent this and to find fault parameters, we decided
to search for optimal parameters on a dummy program in
the normal world Linux (c.f. Listing 7). From analyzing the
disassembly of the signature verification process presented in
Listing 5, we know that a certain mov instruction updates
value of a variable, which is later used in a cbnz instruction
to abort execution if needed. Since this is a profiling phase
undertaken by an adversary to find optimal fault parameters,
we can rely on code-based triggers. We use three triggers and
two delays to precisely isolate the actual instruction to be
faulted. The reason for adding three triggers in Listing 7 was to
distinctly observe when three separate events are taking place:
1⃝ actual fault injection trigger through a GPIO pin, 2⃝ mov
instruction execution, and 3⃝ beginning of verification based
off the value updated in 2⃝. Similarly, the reason for using two
delays (especially a longer second delay) was to understand if
the injected fault is actually being isolated in the region of
interest (i.e. mov instruction execution) or is it percolating
into the verification step too. Refer to the oscilloscope output
in Fig. 4 for pictorial annotations of Listing 7.

1 # d e f i n e GPIO_PIN 7
2 # d e f i n e TEE_SUCCESS 0 x00000000
3
4 vo id s e a r c h _ f a u l t _ p a r a m e t e r _ s p a c e () {
5 u i n t 3 2 _ t r e s ; / / t h e sample v a r i a b l e t o f a u l t
6 t r i g g e r (GPIO_PIN) ; / / t r i g g e r K e y s i g h t 33500B s i g n a l g e n e r a t o r
7
8 f o r (i n t i = 0 ; i < 2 0 ; i ++)
9 f o r (i n t j = 0 ; j < 2 0 ; j ++) ; / / programmable d e l a y

10
11 t r i g g e r (GPIO_PIN) ; / / s i g n a l b e g i n n i n g of "mov" o p e r a t i o n
12
13 __asm__ _ _ v o l a t i l e _ _ ("mov %0, #4294901775 "
14 : "= r " (r e s)) ; / / l o a d 0xFFFF000F i n t o " r e s "
15
16 f o r (i n t i = 0 ; i < 2 0 ; i ++)
17 f o r (i n t j = 0 ; j < 100 ; j ++) ; / / a l i t t l e l o n g e r programmable d e l a y
18
19 t r i g g e r (GPIO_PIN) ; / / s i g n a l b e g i n n i n g of v e r i f i c a t i o n
20 i f (r e s == TEE_SUCCESS)
21 p r i n t f (" [SUCCESS] R e g i s t e r v a l u e c o r r u p t e d t o 0x%l x \ n " , r e s) ;
22 e l s e i f (r e s != 0xFFFF000F)
23 p r i n t f (" [PARTIAL SUCCESS] R e g i s t e r v a l u e c o r r u p t e d t o 0x%l x \ n " , r e s) ;
24 e l s e
25 p r i n t f (" . ") ; / / No c o r r u p t i o n
26 }

Listing 7: A dummy program isolating the mov instruction
used by OP-TEE signature verification process to signal
attempts of loading self-signed TAs. From the parameter set
tuned to this mov instruction from this program, we fault the
signature verification step on OP-TEE.

From repeating the experiments over 1,000,000 times, we
observed higher probabilities of faulting the mov instruction
with the parameter set detailed in Tab. V. While frequency,
amplitude, and pulse width are self-explanatory, we shed some
light on the others. Offset refers to the y-intercept value of the
signal (i.e. the amount by which a signal is shifted in the
y-axis). Cycle count refers the number of square pulses to
generate once the trigger is received. Trigger threshold refers
to the threshold above which the amplitude of an input signal
causes the signal generators to start operating. Trigger signal
means that the trigger must be checked on the rising edge of
the input signal. Trigger delay refers to the additional wait-
time a signal generator waits from the moment it is triggered
to the moment when it actually starts producing output. Trigger

12

Fig. 4: Oscilloscope output of a successful faulting of mov instruction, as depicted in Fig 10. The X-axis denotes time/sampling
duration (in order of µs). The Y-axis denotes amplitudes (in volts, milli-volts, and volts respectively for the three signals).
The topmost signal represents the input coming from RPi3. The middle signal represents the output of the Keysight 33500B
signal generator. The lowermost signal represents the output of the Keysight 81160A pulse train generator. Note that there are
unavoidable latencies between these signals. It is therefore crucial that in the victim device, to fault a mov instruction, the trigger
should be raised sometime before execution of mov instruction starts. The actual value of this delay varies from device to device.
Moreover, for a successful faulting, all three signals should be aligned in time (as they are in the figure) exactly at the time of
mov instruction execution.

delay is essential to account for the unavoidable latencies of
signal transmission. We refer to the appendix A (Fig. 10) for
more details on the exact result of faults injected in Listing 7.
B. Analysing power traces for triggering mechanism.

In Sec VI-A, we assumed presence of code-based triggers.
To circumvent this requirement and develop completely non-
invasive triggers, we look for specific desirable patterns in the
power trace outputs. Consider Fig. 8. OP-TEE’s verification
process involves a RSA signature verification. By observing
power trace output, we narrowed down the part of oscillo-
scope output where the power traces match those of known
RSA power traces [94]. Since the mov instruction of our
interest comes after RSA signature verification, this pattern
is hereafter used to trigger fault injections. To do this, the
adversarial device (RPi4) was in constant communication with
the oscilloscope through the Virtual Instrument Software Ar-
chitecture (VISA) protocol, receiving the oscilloscope output
as Comma Separated Values (CSV) file. By analysing CSV
values for known executions, the adversarial device was able
to identify when the RSA signature verification kicked in. At
that moment, the adversarial device switched a chosen GPIO
pin as HIGH, thereby launching the entire attack.

VII. UUID CONFUSION: A GLOBALPLATFORM API
SPECIFICATION VULNERABILITY

In Sec. VI, we discussed how the adversary can choose
its own unique identifier (or UUID). In this section, we bring
forward a novel UUID confusion exploit stemming from the
GlobalPlatform API specification that allows an adversary to
install a self-signed, malicious TA that can masquerade as

another innocent TA in the TEE. Concretely, the adversarial
TA can re-route communication meant for other innocent TAs
in the system to itself. This exploit can have far-reaching
implications as even if the OEM whitelists trusted TAs, an
adversary can masquerade as one of the whitelisted TAs and
install a malicious one instead.

We note that the GlobalPlatform API specification men-
tions that 1⃝ each TA has its own UUID (Universally Unique
Identifier) and 2⃝ this UUID is public knowledge. UUIDs
allow a CA in the normal world to initiate communication
with a TA in the secure world by uniquely labelling all TAs.
Now since the TAs are supposed to be pre-deployed (signed by
the OEM), the chances of two TAs sharing the same UUIDs
do not arise because of OEM’s involvement. Interestingly, the
specification does not mention how such a situation should
be handled in case two TAs are assigned the same UUID.
However, with our bus faults, the adversary can not just deploy
a malicious TA, but also choose an arbitrary UUID for it.

UUID confusion exploit works by relying upon the
concept of persistent and non-persistent TAs. A persistent TA
maintains its state even when no CA has an active session
going on. Non-persistent TAs spawn only when a CA initiates
a session and close down when the CA closes the session.
Most TAs acting as servers choose to run as persistent TAs-
always waiting for new incoming connections to work upon.
In our investigation, we made empirical observations about the
interplay of persistence and UUID. OP-TEE makes two design
decisions based off GlobalPlatform API specification: 1⃝ OP-
TEE does not prevent two TAs from having the same UUID,

13

and 2⃝ OP-TEE prefers opening sessions with non-persistent
TAs than it does with persistent TAs. To elaborate on 2⃝, if
we have two TAs: persistent TA-x and a non-persistent TA-y
with the same UUID z and a CA initiates communication
with UUID z, OP-TEE will prefer opening a session with
TA-y. Thereby, an adversary needs to install its malicious TA
with the GP API specification flag TA_FLAG_EXEC_DDR,
which can then masquerade as any innocent pre-installed
TA compiled with the GP API specification flags for
ensuring persistence: TA_FLAG_SINGLE_INSTANCE,
TA_FLAG_INSTANCE_KEEP_ALIVE, and
TA_FLAG_MULTI_SESSION.

There are far reaching consequences of the UUID con-
fusion exploit for an in-the-wild deployment of OP-TEE. On
similar lines as SeCReT (cf. Sec. IV) providing communication
privacy, Linaro and OP-TEE developers have proposed exten-
sions like Gatekeeper [95] that provides source authentication,
which is missing from default OP-TEE configuration. This
Gatekeeper resides as a persistent TA, receives incoming com-
munication requests from CAs, authenticates them, and then
allows access to relevant TAs. Essentially, communications to
any TA succeed only upon successful authentication by the
Gatekeeper. However, through the UUID confusion exploit,
a non-persistent malicious TA installed through bus faults
(cf. Sec. IV) can replace this Gatekeeper, and whitelist all
incoming connection requests from any CA, thereby effectively
removing any source authentication from the system. A pos-
sible countermeasure could be to modify the GlobalPlatform
API specification to force explicit checks while launching TAs,
such that no two TAs can have the same UUID.

VIII. COUNTERMEASURES

In this section, we propose software-based countermeasures
for preventing our attack. We note that the installation of a
malicious TA was successful because of the convention of
using 0x0 to denote success. For this, we suggest two software
countermeasures: 1⃝ introduce redundancy checks (i.e. checks
on the return values of sensitive functions), and/or 2⃝ change
return values denoting success from 0x0 to a non-zero value.
At the time of submission, the OP-TEE developers have
implemented countermeasure 1⃝, which we have evaluated
and have found to be successful in preventing the mentioned
attack vectors. Technically, two new functions are introduced:
callee_done_not_zero and callee_done_memcmp.
Function callee_done_not_zero is added in checks for
every function call which are susceptible to fault injection
attacks. This function makes sure that the return code is
actually in conformance with the state state of the run.
Likewise, function callee_done_memcmp is responsible
for making sure all copying to TEE memory has indeed not
been affected by injected faults, by redoing the memory copy
and doing redundant comparisons with the return code. We
refer to Listing 8 for the exact implementation.

1
2 # d e f i n e TEE_SUCCESS 0 x00000000
3 # d e f i n e TEE_ERROR_SECURITY 0xFFFF000F
4
5 vo id c a l l e e _ d o n e _ n o t _ z e r o (s t r u c t s t a t e * s t) {
6 / * Used when we a r e s u r e t h e r e t u r n code s h o u l d NOT be z e r o * /
7 i f (s t −> r e t u r n _ c o d e == 0)
8 PANIC () ; / / P a n i c and e x i t e x e c u t i o n
9 }

10
11 vo id callee_done_memcmp (s t r u c t s t a t e * s t , c o n s t vo id *p1 , c o n s t vo id *p2 , s i z e _ t nb)

{
12 / * Used t o e n s u r e non − f a u l t y memcmp upon TEE i n v o c a t i o n * /
13 i n t r e d u n d a n t _ r e s u l t _ c o d e = memcmp(p1 , p2 , nb) ;

14 i f (! nb && r e d u n d a n t _ r e s u l t _ c o d e != s t −> r e t u r n _ c o d e)
15 PANIC () ; / / P a n i c and e x i t e x e c u t i o n
16 }
17
18 TEE_Resul t v e r i f y _ s i g n a t u r e (c h a r * t a _ b i n a r y , u i n t 8 _ t * s i g n a t u r e) {
19 i f (/ * s i g n a t u r e i s v a l i d * /)
20 r e t u r n TEE_SUCCESS ;
21 r e t u r n TEE_ERROR_SECURITY ;
22 }
23
24 / / l o a d a TA r e f e r e n c e d by a CA
25 vo id load_TA (. . .) {
26 / / some code h e r e
27 s t r u c t s t a t e * s t = / * i n i t i a l i z e hash s t a t e * /
28 TEE_Resul t r e s = v e r i f y _ s i g n a t u r e (. . . , s t) / * Upda tes s t −> r e t u r n _ c o d e * /
29 i f (r e s != TEE_SUCCESS && c a l l e e _ d o n e _ n o t _ z e r o (s t))
30 / / a b o r t e x e c u t i o n
31 / / some more code h e r e
32 }

Listing 8: Redundant checks to ensure the return code of
verify_signature() is not faulted.

IX. CONCLUSION

Presence of countermeasures like access control checks,
control flow integrity checks etc. complicate the portability of
Fault Injection attacks relevant to FPGAs and ASICs to modern
System-on-a-Chip (SoC). In this work, we mount a novel
attack on a previously unexplored architectural aspect of an
SoC- the system bus. We show how targeted electromagnetic
injections during operation of memory instructions cause faults
in the contents of data and address buses. Through such
faults, we enable classic Differential Fault Analysis attack on
table-based implementation of AES as well as leak secret
keys of NIST post-quantum finalists like Dilithium, Kyber
and Saber with a single fault. To further contextualize the
potency of bus faults, we mount an end-to-end attack on a
practical implementation of ARM TrustZone, demonstrating a
complete breakdown of TrustZone’s security guarantees. This
work, therefore, reinforces the importance of considering not
only the cryptographic implementations but also the execution
environment where the algorithms are expected to operate.

ACKNOWLEDGEMENT

The authors would like to thank the anonymous reviewers
and shepherd for their insightful comments for improving the
paper. They would also like to thank the Department of Science
and Technology (DST), Govt of India, IHUB NTIHAC Foun-
dation, C3i Building, Indian Institute of Technology Kanpur,
and Centre on Hardware-Security Entrepreneurship Research
and Development, Meity, India, for partially funding this work.

REFERENCES

[1] L. S. Vailshery, “Statista,” Sep 6, 2022, accessed on Feb 15,
2023. [Online]. Available: https://www.statista.com/statistics/1101442/
iot-number-of-connected-devices-worldwide/

[2] D. Mukhopadhyay and R. S. Chakraborty, Hardware security: design,
threats, and safeguards. CRC Press, 2014.

[3] M. Gross, J. Krautter, D. Gnad, M. Gruber, G. Sigl, and M. Tahoori,
“Fpganeedle: Precise remote fault attacks from fpga to cpu,” in Proceed-
ings of the 28th Asia and South Pacific Design Automation Conference,
2023, pp. 358–364.

[4] S. Hong, P. Frigo, Y. Kaya, C. Giuffrida, and T. Dumitras, “Terminal
brain damage: Exposing the graceless degradation in deep neural net-
works under hardware fault attacks.” in USENIX Security Symposium,
2019, pp. 497–514.

[5] G. A. Sullivan, J. Sippe, N. Heninger, and E. Wustrow, “Open to a
fault: On the passive compromise of {TLS} keys via transient errors,”
in 31st USENIX Security Symposium (USENIX Security 22), 2022, pp.
233–250.

[6] C. Aumüller, P. Bier, W. Fischer, P. Hofreiter, and J.-P. Seifert, “Fault
attacks on rsa with crt: Concrete results and practical countermeasures,”
in CHES, vol. 2523. Springer, 2002, pp. 260–275.

14

[7] C. H. Kim and J.-J. Quisquater, “Fault attacks for crt based rsa: New
attacks, new results, and new countermeasures,” in Information Security
Theory and Practices. Smart Cards, Mobile and Ubiquitous Computing
Systems: First IFIP TC6/WG 8.8/WG 11.2 International Workshop,
WISTP 2007, Heraklion, Crete, Greece, May 9-11, 2007. Proceedings
1. Springer, 2007, pp. 215–228.

[8] G. Canivet, P. Maistri, R. Leveugle, J. Clédière, F. Valette, and M. Re-
naudin, “Glitch and laser fault attacks onto a secure aes implementation
on a sram-based fpga,” Journal of cryptology, vol. 24, no. 2, pp. 247–
268, 2011.

[9] S. Bhasin, N. Selmane, S. Guilley, and J.-L. Danger, “Security eval-
uation of different aes implementations against practical setup time
violation attacks in fpgas,” in 2009 IEEE International Workshop on
Hardware-Oriented Security and Trust. IEEE, 2009, pp. 15–21.

[10] N. Selmane, S. Bhasin, S. Guilley, T. Graba, and J.-L. Danger, “Wddl
is protected against setup time violation attacks,” in 2009 Workshop on
Fault Diagnosis and Tolerance in Cryptography (FDTC). IEEE, 2009,
pp. 73–83.

[11] M. Hutter and J.-M. Schmidt, “The temperature side channel and
heating fault attacks,” in Smart Card Research and Advanced Applica-
tions: 12th International Conference, CARDIS 2013, Berlin, Germany,
November 27-29, 2013. Revised Selected Papers 12. Springer, 2014,
pp. 219–235.

[12] L. Zussa, J.-M. Dutertre, J. Clédiere, B. Robisson, A. Tria et al.,
“Investigation of timing constraints violation as a fault injection means,”
in 27th Conference on Design of Circuits and Integrated Systems
(DCIS), Avignon, France. Citeseer, 2012, pp. 1–6.

[13] T. Korak and M. Hoefler, “On the effects of clock and power supply
tampering on two microcontroller platforms,” in 2014 Workshop on
Fault Diagnosis and Tolerance in Cryptography. IEEE, 2014, pp.
8–17.

[14] C. O’flynn and Z. Chen, “Chipwhisperer: An open-source platform for
hardware embedded security research,” in Constructive Side-Channel
Analysis and Secure Design: 5th International Workshop, COSADE
2014, Paris, France, April 13-15, 2014. Revised Selected Papers 5.
Springer, 2014, pp. 243–260.

[15] A. Barenghi, G. Bertoni, E. Parrinello, and G. Pelosi, “Low voltage fault
attacks on the rsa cryptosystem,” in 2009 Workshop on Fault Diagnosis
and Tolerance in Cryptography (FDTC). IEEE, 2009, pp. 23–31.

[16] N. Timmers, A. Spruyt, and M. Witteman, “Controlling pc on arm using
fault injection,” in 2016 Workshop on Fault Diagnosis and Tolerance
in Cryptography (FDTC). IEEE, 2016, pp. 25–35.

[17] T. Korak, M. Hutter, B. Ege, and L. Batina, “Clock glitch attacks in
the presence of heating,” in 2014 Workshop on Fault Diagnosis and
Tolerance in Cryptography. IEEE, 2014, pp. 104–114.

[18] P. Maistri, R. Leveugle, L. Bossuet, A. Aubert, V. Fischer, B. Robisson,
N. Moro, P. Maurine, J.-M. Dutertre, and M. Lisart, “Electromagnetic
analysis and fault injection onto secure circuits,” in 2014 22nd Interna-
tional Conference on Very Large Scale Integration (VLSI-SoC). IEEE,
2014, pp. 1–6.

[19] N. Moro, A. Dehbaoui, K. Heydemann, B. Robisson, and E. Encrenaz,
“Electromagnetic fault injection: towards a fault model on a 32-bit
microcontroller,” in 2013 Workshop on Fault Diagnosis and Tolerance
in Cryptography. Ieee, 2013, pp. 77–88.

[20] B. Yuce, P. Schaumont, and M. Witteman, “Fault attacks on secure em-
bedded software: Threats, design, and evaluation,” Journal of Hardware
and Systems Security, vol. 2, pp. 111–130, 2018.

[21] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan, “The
sorcerer’s apprentice guide to fault attacks,” Proceedings of the IEEE,
vol. 94, no. 2, pp. 370–382, 2006.

[22] A. Vasselle, H. Thiebeauld, Q. Maouhoub, A. Morisset, and
S. Ermeneux, “Laser-induced fault injection on smartphone bypassing
the secure boot,” in 2017 Workshop on Fault Diagnosis and Tolerance
in Cryptography (FDTC). IEEE, 2017, pp. 41–48.

[23] C. Fanjas, C. Gaine, D. Aboulkassimi, S. Pontié, and O. Potin, “Com-
bined fault injection and real-time side-channel analysis for android
secure-boot bypassing,” in Smart Card Research and Advanced Ap-
plications: 21st International Conference, CARDIS 2022, Birmingham,
UK, November 7–9, 2022, Revised Selected Papers. Springer, 2023,
pp. 25–44.

[24] T. Schneider, A. Moradi, and T. Güneysu, “Parti–towards combined
hardware countermeasures against side-channel and fault-injection at-
tacks,” in Advances in Cryptology–CRYPTO 2016: 36th Annual Interna-
tional Cryptology Conference, Santa Barbara, CA, USA, August 14-18,
2016, Proceedings, Part II 36. Springer, 2016, pp. 302–332.

[25] S. Saha, D. Jap, D. B. Roy, A. Chakraborty, S. Bhasin, and
D. Mukhopadhyay, “A framework to counter statistical ineffective
fault analysis of block ciphers using domain transformation and error
correction,” IEEE Transactions on Information Forensics and Security,
vol. 15, pp. 1905–1919, 2019.

[26] Y. Ishai, A. Sahai, D. A. Wagner et al., “Private circuits: Securing
hardware against probing attacks.” in CRYPTO, vol. 2729. Springer,
2003, pp. 463–481.

[27] O. Reparaz, B. Bilgin, S. Nikova, B. Gierlichs, and I. Verbauwhede,
“Consolidating masking schemes,” in Advances in Cryptology–CRYPTO
2015: 35th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 16-20, 2015, Proceedings, Part I 35. Springer, 2015, pp. 764–
783.

[28] S. Nikova, C. Rechberger, and V. Rijmen, “Threshold implementa-
tions against side-channel attacks and glitches,” in ICICS, vol. 4307.
Springer, 2006, pp. 529–545.

[29] H. Groß, S. Mangard, and T. Korak, “An efficient side-channel pro-
tected aes implementation with arbitrary protection order,” in Topics
in Cryptology–CT-RSA 2017: The Cryptographers’ Track at the RSA
Conference 2017, San Francisco, CA, USA, February 14–17, 2017,
Proceedings. Springer, 2017, pp. 95–112.

[30] C. Dobraunig, M. Eichlseder, T. Korak, S. Mangard, F. Mendel, and
R. Primas, “Sifa: exploiting ineffective fault inductions on symmetric
cryptography,” IACR Transactions on Cryptographic Hardware and
Embedded Systems, pp. 547–572, 2018.

[31] S. Saha, A. Bag, D. Basu Roy, S. Patranabis, and D. Mukhopadhyay,
“Fault template attacks on block ciphers exploiting fault propagation,”
in Advances in Cryptology–EUROCRYPT 2020: 39th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques, Zagreb, Croatia, May 10–14, 2020, Proceedings, Part I
39. Springer, 2020, pp. 612–643.

[32] S. Saha, A. Bag, D. Jap, D. Mukhopadhyay, and S. Bhasin, “Divided
we stand, united we fall: Security analysis of some sca+ sifa coun-
termeasures against sca-enhanced fault template attacks,” in Advances
in Cryptology–ASIACRYPT 2021: 27th International Conference on
the Theory and Application of Cryptology and Information Security,
Singapore, December 6–10, 2021, Proceedings, Part II. Springer, 2021,
pp. 62–94.

[33] K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck, D. Gruss, and
F. Piessens, “Plundervolt: Software-based fault injection attacks against
intel sgx,” in 2020 IEEE Symposium on Security and Privacy (SP).
IEEE, 2020, pp. 1466–1482.

[34] A. Tang, S. Sethumadhavan, and S. Stolfo, “{CLKSCREW}: Expos-
ing the perils of {Security-Oblivious} energy management,” in 26th
USENIX Security Symposium (USENIX Security 17), 2017, pp. 1057–
1074.

[35] P. Qiu, D. Wang, Y. Lyu, R. Tian, C. Wang, and G. Qu, “Voltjockey: A
new dynamic voltage scaling-based fault injection attack on intel sgx,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 40, no. 6, pp. 1130–1143, 2020.

[36] Z. Chen, G. Vasilakis, K. Murdock, E. Dean, D. Oswald, and F. D.
Garcia, “{VoltPillager}: Hardware-based fault injection attacks against
intel {SGX} enclaves using the {SVID} voltage scaling interface,” in
30th USENIX Security Symposium (USENIX Security 21), 2021, pp.
699–716.

[37] S. Nashimoto, D. Suzuki, R. Ueno, and N. Homma, “Bypassing isolated
execution on risc-v with fault injection,” Cryptology ePrint Archive,
2020.

[38] R. Buhren, H.-N. Jacob, T. Krachenfels, and J.-P. Seifert, “One glitch
to rule them all: Fault injection attacks against amd’s secure encrypted
virtualization,” in Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security, 2021, pp. 2875–2889.

[39] N. Timmers and C. Mune, “Escalating privileges in linux using voltage
fault injection,” in 2017 Workshop on Fault Diagnosis and Tolerance
in Cryptography (FDTC). IEEE, 2017, pp. 1–8.

15

[40] X. M. Saß, R. Mitev, A.-R. Sadeghi, and V. F. I. VFI, “Oops..! i glitched
it again! how to multi-glitch the glitching-protections on arm trustzone-
m,” arXiv preprint arXiv:2302.06932, 2023.

[41] C. O’Flynn, “{MIN () imum} failure:{EMFI} attacks against {USB}
stacks,” in 13th USENIX Workshop on Offensive Technologies (WOOT
19), 2019.

[42] S. D. Kumar, S. Patranabis, J. Breier, D. Mukhopadhyay, S. Bhasin,
A. Chattopadhyay, and A. Baksi, “A practical fault attack on arx-like
ciphers with a case study on chacha20,” in 2017 Workshop on Fault
Diagnosis and Tolerance in Cryptography (FDTC). IEEE, 2017, pp.
33–40.

[43] O. Mutlu and J. S. Kim, “Rowhammer: A retrospective,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 39, no. 8, pp. 1555–1571, 2019.

[44] R. Elnaggar, S. Chen, P. Song, and K. Chakrabarty, “Detection of
rowhammer attacks in socs with fpgas,” in 2020 IEEE European Test
Symposium (ETS). IEEE, 2020, pp. 1–2.

[45] ——, “Securing socs with fpgas against rowhammer attacks,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 41, no. 7, pp. 2052–2065, 2021.

[46] M. Taouil, C. Reinbrecht, S. Hamdioui, and J. Sepúlveda, “Lightroad:
Lightweight rowhammer attack detector,” in 2021 IEEE Computer
Society Annual Symposium on VLSI (ISVLSI). IEEE, 2021, pp. 362–
367.

[47] M. Lajolo, “Bus guardians: an effective solution for online detection and
correction of faults affecting system-on-chip buses,” IEEE Transactions
on very large scale integration (VLSI) systems, vol. 9, no. 6, pp. 974–
982, 2001.

[48] M. Tunstall, D. Mukhopadhyay, and S. Ali, “Differential fault analysis
of the advanced encryption standard using a single fault,” in Information
Security Theory and Practice. Security and Privacy of Mobile Devices
in Wireless Communication: 5th IFIP WG 11.2 International Workshop,
WISTP 2011, Heraklion, Crete, Greece, June 1-3, 2011. Proceedings 5.
Springer, 2011, pp. 224–233.

[49] optee blog, “OP-TEE Blog ,” https://www.trustedfirmware.org/blog/,
2021.

[50] S. Han and J. Jang, “Mytee: Own the trusted execution environment on
embedded devices,” Network and Distributed System Security (NDSS),
2023.

[51] D. Suciu, S. McLaughlin, L. Simon, and R. Sion, “Horizontal privilege
escalation in trusted applications,” in 29th USENIX Security Symposium
(USENIX Security 20), 2020.

[52] OP-TEE., “Supported Platforms.” https://optee.readthedocs.io/en/latest/
general/platforms.html#platforms-supported.

[53] ——, “Porting guidelines.” https://optee.readthedocs.io/en/latest/
architecture/porting_guidelines.html.

[54] Apertis., “Integration of OP-TEE in Apertis.” https://www.apertis.org/
concepts/op-tee/.

[55] iWave., “Securing Edge IoT devices with OP-TE.” https://www.
iwavesystems.com/news/securing-edge-iot-devices-with-op-tee/.

[56] GlobatPlatform., “TEE Internal Core API specification,”
https://globalplatform.org/wp-content/uploads/2016/11/GPD_TEE\
_Internal_Core_API_Specification_v1.2_PublicRelease.pdf.

[57] M. Systems., “CAN Bus Fault Injection.” https://www.machsystems.cz/
en/products/embedded-networking/accessories/can-bus-fault-injection.

[58] Riscure., “Huracan automotive security tools.” https://www.riscure.com/
security-tools/huracan-automotive-security-tools/.

[59] N. L. . G. Hotz., “How the PS3 hypervisor was attacked,” https://rdist.
root.org/2010/01/27/how-the-ps3-hypervisor-was-hacked/, 2010.

[60] J.-M. Schmidt, M. Hutter, and T. Plos, “Optical fault attacks on aes: A
threat in violet,” in 2009 Workshop on Fault Diagnosis and Tolerance
in Cryptography (FDTC). IEEE, 2009, pp. 13–22.

[61] A. Barenghi, G. M. Bertoni, L. Breveglieri, M. Pellicioli, and G. Pelosi,
“Low voltage fault attacks to aes,” in 2010 IEEE International Sympo-
sium on Hardware-Oriented Security and Trust (HOST). IEEE, 2010,
pp. 7–12.

[62] L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler,
and D. Stehlé, “Crystals-dilithium: A lattice-based digital signature

scheme,” IACR Transactions on Cryptographic Hardware and Embed-
ded Systems, pp. 238–268, 2018.

[63] M. J. Kannwischer, P. Schwabe, D. Stebila, and T. Wiggers, “Im-
proving software quality in cryptography standardization projects,” in
2022 IEEE European Symposium on Security and Privacy Workshops
(EuroS&PW). IEEE, 2022, pp. 19–30.

[64] M. V. Beirendonck, J.-P. D’anvers, A. Karmakar, J. Balasch, and
I. Verbauwhede, “A side-channel-resistant implementation of saber,”
ACM Journal on Emerging Technologies in Computing Systems (JETC),
vol. 17, no. 2, pp. 1–26, 2021.

[65] D. Heinz, M. J. Kannwischer, G. Land, T. Pöppelmann, P. Schwabe, and
D. Sprenkels, “First-order masked kyber on arm cortex-m4,” Cryptology
ePrint Archive, 2022.

[66] P. Pessl and L. Prokop, “Fault attacks on cca-secure lattice kems,” IACR
Transactions on Cryptographic Hardware and Embedded Systems, pp.
37–60, 2021.

[67] A. Sajid, H. Abbas, and K. Saleem, “Cloud-assisted iot-based scada
systems security: A review of the state of the art and future challenges,”
IEEE Access, vol. 4, pp. 1375–1384, 2016.

[68] A. Boudguiga, N. Bouzerna, L. Granboulan, A. Olivereau, F. Quesnel,
A. Roger, and R. Sirdey, “Towards better availability and accountability
for iot updates by means of a blockchain,” in 2017 IEEE European
Symposium on Security and Privacy Workshops (EuroS&PW). IEEE,
2017, pp. 50–58.

[69] A. Cui and R. Housley, “{BADFET}: Defeating modern secure boot
using {Second-Order} pulsed electromagnetic fault injection,” in 11th
USENIX Workshop on Offensive Technologies (WOOT 17), 2017.

[70] T. L. K. documentation., “CPU Performance Scaling,” https://www.
kernel.org/doc/html/v4.14/admin-guide/pm/cpufreq.html.

[71] R. P. Documentation., “Configuration,” https://www.raspberrypi.com/
documentation/computers/configuration.html.

[72] C. Bozzato, R. Focardi, and F. Palmarini, “Shaping the glitch: opti-
mizing voltage fault injection attacks,” IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, pp. 199–224, 2019.

[73] L. Wouters, B. Gierlichs, and B. Preneel, “On the susceptibility of
texas instruments simplelink platform microcontrollers to non-invasive
physical attacks,” in International Workshop on Constructive Side-
Channel Analysis and Secure Design. Springer, 2022, pp. 143–163.

[74] C. Cellar., “Voltage Fault Injection on a Modern RPi SBC.”
https://circuitcellar.com/research-design-hub/design-solutions/
voltage-fault-injection-on-a-modern-rpi-sbc/.

[75] Riscure., “Controlling PC on ARM using Fault Injection.”
https://riscureprodstorage.blob.core.windows.net/production/2017/
09/Riscure_Controlling_PC_FDTC_slides.pdf.

[76] C. Gaine, D. Aboulkassimi, S. Pontié, J.-P. Nikolovski, and J.-M.
Dutertre, “Electromagnetic fault injection as a new forensic approach for
socs,” in 2020 IEEE International Workshop on Information Forensics
and Security (WIFS). IEEE, 2020, pp. 1–6.

[77] F. Majéric, “Etude d’attaques matérielles et combinées sur les" system-
on-chip",” Ph.D. dissertation, Lyon, 2018.

[78] S. Kurkovsky and C. Williams, “Raspberry pi as a platform for the
internet of things projects: Experiences and lessons,” in Proceedings of
the 2017 ACM Conference on Innovation and Technology in Computer
Science Education, 2017, pp. 64–69.

[79] C. P. Kruger and G. P. Hancke, “Benchmarking internet of things
devices,” in 2014 12th IEEE International Conference on Industrial
Informatics (INDIN). IEEE, 2014, pp. 611–616.

[80] J. S. Jang, S. Kong, M. Kim, D. Kim, and B. B. Kang, “Secret: Secure
channel between rich execution environment and trusted execution
environment.” in NDSS, 2015, pp. 1–15.

[81] J. Jang and B. B. Kang, “Securing a communication channel for the
trusted execution environment,” computers & security, vol. 83, pp. 79–
92, 2019.

[82] R. Schilling, P. Nasahl, and S. Mangard, “Fipac: Thwarting fault-and
software-induced control-flow attacks with arm pointer authentication,”
in International Workshop on Constructive Side-Channel Analysis and
Secure Design. Springer, 2022, pp. 100–124.

[83] J.-L. Danger, A. Facon, S. Guilley, K. Heydemann, U. Kühne, A. S.
Merabet, and M. Timbert, “Ccfi-cache: A transparent and flexible

16

hardware protection for code and control-flow integrity,” in 2018 21st
Euromicro Conference on Digital System Design (DSD). IEEE, 2018,
pp. 529–536.

[84] OP-TEE., “Trusted Applications signing process.” https://optee.
readthedocs.io/en/latest/building/trusted_applications.html/.

[85] J. G. Van Woudenberg, M. F. Witteman, and F. Menarini, “Practical
optical fault injection on secure microcontrollers,” in 2011 Workshop
on Fault Diagnosis and Tolerance in Cryptography. IEEE, 2011, pp.
91–99.

[86] O. Lo, W. J. Buchanan, and D. Carson, “Power analysis attacks on the
aes-128 s-box using differential power analysis (dpa) and correlation
power analysis (cpa),” Journal of Cyber Security Technology, vol. 1,
no. 2, pp. 88–107, 2017.

[87] Y. Kim, T. Sugawara, N. Homma, T. Aoki, and A. Satoh, “Biasing
power traces to improve correlation power analysis attacks,” in First
international workshop on constructive side-channel analysis and se-
cure design (cosade 2010). Citeseer, 2010, pp. 77–80.

[88] D. Bayhan, S. B. Ors, and G. Saldamli, “Analyzing and comparing the
montgomery multiplication algorithms for their power consumption,”
in The 2010 International Conference on Computer Engineering &
Systems. IEEE, 2010, pp. 257–261.

[89] A. P. Fournaris and O. Koufopavlou, “A new rsa encryption architecture
and hardware implementation based on optimized montgomery mul-
tiplication,” in 2005 IEEE International Symposium on Circuits and
Systems. IEEE, 2005, pp. 4645–4648.

[90] H. Nozaki, M. Motoyama, A. Shimbo, and S. Kawamura, “Implemen-
tation of rsa algorithm based on rns montgomery multiplication,” in
International Workshop on Cryptographic Hardware and Embedded
Systems. Springer, 2001, pp. 364–376.

[91] D. Rosenberg., “Unlocking the motorola bootloader,” http://blog.
azimuthsecurity.com/2013/04/, 2013.

[92] P. Nebe., “RPi4 Port.” https://github.com/peter-nebe/optee_os.
[93] G. Documentation., “Options That Control Optimization.” https://gcc.

gnu.org/onlinedocs/gcc/Optimize-Options.html.
[94] Myrelabs, “BREAKING RSA WITH CHIPWHISPERER,” https://

myrelabs.com/breaking-rsa-with-chipwhisperer/, 2019.
[95] J. Bech and V. Chong., “Keymaster and Gatekeeper,” https://static.

linaro.org/connect/yvr18/presentations/yvr18-414.pdf, 2018.

APPENDIX

TABLE IV: OP-TEE monorepo state at the time of the attack.
HEAD represents the commit ID of the topmost commit in a
particular sub-repository.

Sub-repository HEAD of the commit tree
buildroot e6e12337f1874a5a53b42badf3d7fdd258d86a38

edk2 b24306f15daa2ff8510b06702114724b33895d3c
linux b9a16995c467cc18cc26716d566c512fbac11069

mbedtls e483a77c85e1f9c1dd2eb1c5a8f552d2617fe400
optee_benchmark 875be7f1959f19ed601ef37501f1cf0bfbee9da4

optee_client f7ed8e3d3955e0b7a7d3ff77ab2abcfd8fb1cdb9
optee_os 837adc0a4c5dc462bfcc690618b812d838534fa5

optee_test da5282a011b40621a2cf7a296c11a35c833ed91b
trusted-firmware-a a1f02f4f3daae7e21ee58b4c93ec3e46b8f28d15

u-boot b46dd116ce03e235f2a7d4843c6278e1da44b5e1

A. More Details on attack reproducibility
In this section, we elucidate the details on the experimental

setup to aid attack reproducibility. To perform all fault injec-
tions in this work, we used a combination of the following
hardware: Keysight 33500B signal generator, Keysight 81160A
pulse train generator, Teseq CBA 400M-260 power amplifier,
and Rigol NFP-3 P3 EM (electromagnetic) probe. The outputs
of all these devices are connected to a Tektronix 4034B Mixed
Signal Oscilloscope (MSO). The MSO is connected over LAN
to the adversarial device, which allows the adversary to export
all captured signals to a comma separated value (CSV) file for
precise triggering timing analysis. Finally, the Rigol NFP-3 P3
EM (electromagnetic) probe is mounted upon an automated

Fig. 5: CA’s interaction with SeCReT to perform encryp-
tion/signing. A carefully timed SIGSEGV leaks the keys while
they are in CA’s memory.

Fig. 6: The fault testbed developed to mount the attacks
mentioned in this paper. The victim device is mounted upon a
XYZ table allowing careful positioning of the electromagnetic
(EM) probe. Note that the EM probe is positioned to inject EM
pulses from the backside of the device: thereby faulting both
the Broadcom processor situated on the frontside as well as the
memory chip located on the backside. A power side-channel
analysis probe is mounted on the Broadcom processor on the
frondside to gather power traces. All signals are recorded on
a mixed signal oscilloscope.

XYZ table that allows an automated mechanism to search for
optimal fault injection position.

In Tab. V, we note the various parameters for the Keysight

TABLE V: Set of parameter values chosen for our setup.
Parameter Signal generator values Pulse train

generator values
Frequency 10 KHz 200 MHz
Amplitude 2V -8.13 dBm

Offset 1V 0V
Pulse width 1 micro-second 2 nano-seconds
Cycle count 1 15

Trigger threshold 1V 1V
Trigger signal Rising edge Rising edge
Trigger delay 2.312 micro-seconds 0 micro-seconds

17

Fig. 7: A sample backtrace of a faulted Dilithium execution. Due to the injected electromagnetic pulses, a const uint8_t
* pointer in PQCLEAN_DILITHIUM2_CLEAN_polyt0_unpack got changed to an invalid address, causing the fault.

Fig. 8: The zoomed-in oscilloscope output during OP-TEE’s
verification of TAs. The x-axis denotes time/sampling duration
(in order of µs). The y-axis denotes amplitudes (in milli-volts).

(a) Frontside. (b) Backside.

Fig. 9: Probe positioned over a RPi3 board: frontside/backside
clicks.

33500B signal generator and the Keysight 81160A pulse train
generator. Here, frequency denotes the frequency of the outputs
of the two devices. Likewise, the amplitude of the signal
generator output is uncontrolled, but the amplitude of the pulse
train is carefully parameterized to generate pulses which are
likely to create faults. Moreover, offset denotes the Y-axis shift
of the generated signals. Likewise, pulse width denotes the

Fig. 10: The faults observed while attacking mov instruction in
Listing 7 with the parameter set detailed in Tab V. Every dot
(.) represents a correct expected execution. The SIGSEGV and
SIGILL faults observed actually percolate to the instructions
following the mov instruction. However, as the screenshot
depicts, we were able to observe one fault wherein mov loaded
an incorrect value into res. And then we observed many
faults wherein mov cleared out res completely. This empirical
observation is the foundation of the proposed countermeasures.

time period of the output signals from both hardware. The
pulse width of the signals from the pulse train generator is
about 2 nanoseconds to allow high precision fault injections.
The last three parameters are related to trigger signals. Trigger
threshold refers to the maximum cutoff input voltage beyond
which both generators start producing their respective outputs.
Likewise, trigger signal denotes which portion of the square
pulse (rising edge, falling edge, or level) to use for trigger.
Without loss of generality, we choose the rising edge. Finally,
in Tab. V, trigger delay represents the time duration between
receipt of the input and generation of the output. This parame-
ter can be tweaked to precisely time the fault injection process
to coincide with the victim operation.

18

