
Pencil: Private and Extensible Collaborative
Learning without the Non-Colluding Assumption

Xuanqi Liu∗, Zhuotao Liu∗†, Qi Li∗†, Ke Xu∗†, and Mingwei Xu∗†
∗Tsinghua University, †Zhongguancun Laboratory

lxq22@mails.tsinghua.edu.cn, {zhuotaoliu, qli01, xuke, xumw}@tsinghua.edu.cn

Abstract—The escalating focus on data privacy poses signifi-
cant challenges for collaborative neural network training, where
data ownership and model training/deployment responsibilities
reside with distinct entities. Our community has made substantial
contributions to addressing this challenge, proposing various ap-
proaches such as federated learning (FL) and privacy-preserving
machine learning based on cryptographic constructs like homo-
morphic encryption (HE) and secure multiparty computation
(MPC). However, FL completely overlooks model privacy, and
HE has limited extensibility (confined to only one data provider).
While the state-of-the-art MPC frameworks provide reasonable
throughput and simultaneously ensure model/data privacy, they
rely on a critical non-colluding assumption on the computing
servers, and relaxing this assumption is still an open problem.

In this paper, we present Pencil, the first private training
framework for collaborative learning that simultaneously offers
data privacy, model privacy, and extensibility to multiple data
providers, without relying on the non-colluding assumption.
Our fundamental design principle is to construct the n-party
collaborative training protocol based on an efficient two-party
protocol, and meanwhile ensuring that switching to different data
providers during model training introduces no extra cost. We
introduce several novel cryptographic protocols to realize this
design principle and conduct a rigorous security and privacy
analysis. Our comprehensive evaluations of Pencil demonstrate
that (i) models trained in plaintext and models trained privately
using Pencil exhibit nearly identical test accuracies; (ii) The
training overhead of Pencil is greatly reduced: Pencil achieves
10 ∼ 260× higher throughput and 2 orders of magnitude less
communication than prior art; (iii) Pencil is resilient against
both existing and adaptive (white-box) attacks.

I. INTRODUCTION

Recent years witnessed significant development and ap-
plications of machine learning, in which the most successful
ones were the use of deep neural networks. Effective training
of neural network models hinges on the availability of a
substantial corpus of high-quality training data. However, in
real-world business scenarios, the entities possessing data (i.e.,
data providers, DOes) and the entity seeking to utilize data
for training and deployment of a machine learning model (i.e.,
a model deployer, MO) are distinct parties. One representative
example of this is the collaborative anti-money laundering

Zhuotao Liu is the corresponding author.

(AML) [55], [4], where multiple financial organizations (e.g.,
banks) are interested in training anti-money laundering models
based on the cell phone records (more accurately, a range
of features engineered from these records) that are owned by
the cellular service providers. However, the growing emphasis
on data privacy, accompanied by the emergence of stringent
regulations and laws such as the General Data Protection
Regulation (GDPR) [1], has rendered the direct sharing of raw
data across multiple organizations infeasible or even unlawful.
Consequently, accessing training data, particularly private-
domain data not readily accessible on the public Internet,
presents a significant research challenge.

Concretely, the above form of collaborative learning raises
a combination of three critical requirements. (i) Data Privacy:
the training data of different DOes should be kept confiden-
tial. This is the preliminary requirement in privacy-preserving
machine learning. (ii) Model Privacy: the trained model is only
revealed to the MO (i.e., the MO can perform model inference
independently), but not disclosed to the DOes. In real-world
business scenarios, the post-training model is proprietary.
Thus, model privacy is equally important as data privacy. (iii)
Extensibility: because the MO often seeks to train the model
with multiple (and heterogeneous) data providers, it is critical
to ensure that the MO can incrementally collaborate with
different DOes. Concretely, we define the this form of learning
paradigm private and extensible collaborative learning.

Over the past few years, our community has proposed
significant research in this regard. However, none of the
existing frameworks meet our aforementioned requirements.
(i) Federated Learning (FL) is a widely applied collaborative
learning scheme that enables many participants to collectively
train a model without sharing their original data. However,
the model in FL is synchronized with every participant in
every round of the global model update (e.g., [39], [10], [9],
[32], [21], [19], [28], [37]). Thus, in FL, the model privacy is
simply ignored. (ii) The second stream of approaches relies on
secure multiparty computation (MPC) framework, where the
DOes upload their data as secret shares to several third-party
computing servers (e.g., [43], [56], [24], [51], [42], [3], [41],
[59], [47], [11], [33]). The privacy and security guarantees of
these proposals require a critical non-colluding assumption that
the number of colluding servers must be below a threshold.
In fact, in most of these proposals, two colluding servers
are sufficient to break the protocol. Thus, the recent SoK
on cryptographic neural-network computation [44] considers
that “realizing high-throughput and accurate private training
without non-colluding assumptions” the first open problem.
A strawman design to relax the non-colluding assumption

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.24512
www.ndss-symposium.org

is adopting the n-out-of-n sharing schemes [15], [13] in
which all the DOes and the MO participate as the computing
servers. Yet, the training efficiency is significantly limited (see
quantitative results in § VI-E).

A. Our Contributions

In this paper, we present Pencil1, a novel system that meets
all three aforementioned requirements of private and extensi-
ble collaborative learning, without the non-colluding assump-
tion. At its core, Pencil reduces the multi-party collaborative
learning scenario into the 2-party server/client computation
paradigm: at each training step, the MO could choose any one
of the DOes to collaborate with, and switching between DOes
in different training steps introduces no extra cost. This learn-
ing protocol is fundamentally different from the existing MPC-
based designs that exhibit a tradeoff between non-collusion
and extensibility. Specifically, if the MO and DOes choose
to secretly share their model and data to third-party MPC
servers, extensibility is achieved as the data from multiple
DOes can simultaneously contribute to the training, yet they
require non-collusion among these third-party MPC servers
(e.g., [42], [3], [41], [59], [47], [11], [33]). On the contrary,
the MO and DOes can avoid the non-collusion assumption by
(i) acting as the computing servers themselves and (ii) adopt-
ing the n-out-of-n secret sharing schemes [15], [13], which,
however, sacrifices extensibility because including additional
DOes will significantly increase the time and communication
overhead. Pencil eliminates the tradeoff between non-collusion
and extensibility by constructing a secure multi-DOes-single-
MO training process using our 2-party server/client training
protocol (thus relaxing the non-collusion assumption), and
meanwhile enabling the MO to securely obtain model weights
after each training step so that it can switch to an arbitrary
DO in the next training step (thus realizing extensibility).

At a very high level, our 2-party training protocol tactically
combines the primitives of the 2-party secure computation
protocols and Homomorphic Encryption (HE) cryptosystem
for efficient non-linear and linear computation, respectively.
Specifically, based on the recent development of efficient
private inference [25], [22], we achieve efficient private train-
ing by constructing novel cryptography protocols to support
backpropagation (such as efficient computation of the product
of two secret-shared tensors in computing weight gradient).
To further improve training efficiency, we propose a novel
preprocessing design to pre-compute heavy HE-related oper-
ations (e.g., matrix multiplications and convolutions) offline.
This preprocessing design is fundamentally different from the
preprocessing technique in [40] that, given a fixed model,
accelerates the private inference for a single input sample.
Finally, as a contribution independent of our training protocols,
we implement the key operators in the BFV HE cryptosystem
([18], [6]) on GPU. By fully exploiting the parallelism in
the math construction, our open-sourced prototype achieves,
on average, 10× speedup compared with the CPU based
implementation of SEAL [52].

In summary, our contributions are:

• We develop Pencil, an efficient training framework to real-
ize efficient collaborative training for the single-MO-multi-

1Pencil: Private and extensible collaborative machine learning.

DOes scenario. Pencil protects data privacy against the
MO and model privacy against the DOes, without requiring
the non-colluding assumption. Pencil supports both training
from scratch and fine-tuning on existing models.
• We design a set of novel protocols in Pencil, and provide

rigorous analysis to prove their security/privacy guarantees.
Independent of our protocols, we implement a full GPU
version of the BFV HE cryptosystem that is usable by any
HE-based machine learning applications.
• We extensively evaluate Pencil. Our results show that: (i)

models trained in Pencil and trained in plaintext have nearly
identical test accuracies; (ii) With our protocol and hardware
optimizations, the training (from scratch) of simple convolu-
tional networks in Pencil converges within 5 hours for the
MNIST task. With transfer learning, a complex classifier
(e.g., ResNet-50 with 23 million parameters) could be fine-
tuned in Pencil within 8 hours for the CIFAR10 task.
These results show non-trivial performance improvements
over closely related art; (iii) Pencil is extensible to multi-
ple DOes with no overhead increase. In the case where
individual DOes possess heterogeneous or even biased
datasets, Pencil demonstrates significant performance gains
by incorporating more DOes; (iv) we also experimentally
show that Pencil is robust against existing attacks and
adaptive (white-box) attacks designed specifically for our
protocols.

B. Related Work

The increasingly growing data collaboration among differ-
ent parties sparked significant research in privately training
machine learning models. We divide prior art into three sub-
categories, as summarized in Table I.

Federated learning (FL) is the pioneering machine learning
scheme that treats training data privacy as the first-class citizen.
In (horizontal) FL (e.g., [39], [10], [9], [32], [21], [19], [37]),
each client (i.e., DO) trains a local model on its private data,
and then submits the obfuscated local models to the model
aggregator (i.e., MO). Due to the model synchronization in
each training iteration, the privacy of the global model is
overlooked by FL. In particular, FL disproportionately benefits
DOes because each DO learns the global model even if it
only partially contributes to the training. As a result, in the
case where the MO has an (exclusive) proprietary interest in
the final model, FL is not the turnkey solution.

To simultaneously protect data and model privacy, the com-
munity proposed a branch of distributed training approaches
based on secure multiparty computation (MPC, e.g., [42],
[3], [41], [59], [47], [11], [33], [14]). The common setting
studied in this line of art is a server-assisted model where a
group of DOes upload secret-shared version of their private
data to (at least two) non-colluding third-party computing
servers to collectively train a model on the secret-shared data.
The model is also secret-shared among all servers during
the training process, perfectly protecting model privacy. As
explained before, this type of approaches suffers from a critical
tradeoff between non-collusion and extensibility.

The third subcategory of research depends on homomor-
phic encryption (HE). These works (e.g., [43], [24], [51], [56])
typically focus on outsourced training where a DO employs a

2

cloud service to train a model by uploading homomorphically-
encrypted data, and the final model trained on the cloud is
also encrypted. Afterward, the trained model is handed over
to the DO or deployed on the cloud as an online inference
service usable by the DO. This paradigm, however, is ill-
suited in the single-MO-multi-DOes collaborative learning
scenario because the plaintext model is not available to the
MO for deployment, let alone being further fine-tuned using
other DOes’ data (since it requires different HE public/secret
key sets).

Differential privacy (DP) is a general technique that can
be combined with the aforementioned techniques in private
learning. For instance, DPSGD [2] could be used in FL to
protect the privacy of individual data points. To defend against
gradient matching attacks [63], Tian et al. [56] combines the
HE approach with DP mechanics to randomize the weight up-
dates against the cloud service provider. As shown in § III-B2,
Pencil allows the DOes to (optionally) add perturbations to
the weight updates to achieve additional differential-privacy
guarantees on their training data.

C. Assumptions and Threat Model

We consider the scenario where one MO and multiple
DOes participate in a collaborative machine learning system.
All parties are semi-honest, and any of them may collude to
infer the private information (model parameters of MO or the
data owned by the DOes) of other parties. The architecture
of the learning model is known by all parties. As described
in the previous sections, we reduce this n-party setting to the
2-party paradigm where only the MO and one of the DOes
interact at one single training step. By establishing our privacy
guarantees over the two-party protocols, we obtain the security
for the general n-party extensible machine learning scheme
without the non-colluding assumption.

During training, a DO obtains the model prediction result
of its own training dataset. Like previous works [51], [25],
[41], [33], we do not consider inference attacks based solely
on prediction results (e.g., [57], [53]).

II. PRELIMINARIES

A. Notations

Vectors, matrices and tensors are denoted by boldfaced
Latin letters (e.g., W,x), while polynomials and scalars are
denoted by italic Latin letters (e.g., W,x). All the gradients
are relative to the loss function L of the deep learning task,
i.e., ∇W = ∇WL = ∂L/∂W . [B] denotes the integer interval
[0, B)

⋂
Z. Symbol x′ ∼ x means that tensor x′ is of the same

shape as x. If not explicitly specified, a function (e.g., ReLU)
applied to a tensor is the function applied to all of its elements.

B. Lattice-based Homomorphic Encryption

Pencil uses the BFV leveled homomorphic encryption
cryptosystem based on the RLWE problem with residual num-
ber system (RNS) optimization [18], [6]. In detail, the BFV
scheme is constructed with a set of parameters {N, t, q} such
that the polynomial degree N is a power of two, and t, q repre-
sent plaintext and ciphertext modulus, respectively. The plain-
text space is the polynomial ring Rt,N = Zt[X]/(XN+1) and

the ciphertext space is R2
q,N . Homomorphism is established on

the plaintext space Rt,N , supporting addition and multiplica-
tion of polynomials in the encrypted domain. We denote the
homomorphically encrypted ciphertext of polynomial x as [[x]].
For a tensor x, encryption [[x]] requires an encoding method
to first convey the tensor into the polynomial ring, which we
cover in Appendix A.

C. Additive Secret Sharing and Fixed-point Representation

We utilize the additive secret-sharing scheme upon the ring
Zt (integers modulo t) with t = 2ℓ. If an integer x ∈ Zt is
shared between a pair of MO and DO, then MO (Party 0) has
⟨x⟩0 and DO (Party 1) has ⟨x⟩1 such that x = ⟨x⟩0+⟨x⟩1. For
simplicity, ⟨x⟩ denotes x is shared between the two parties.

Machine learning typically involves decimal numbers
rather than integers. To adapt to the BFV scheme and integer-
based secret sharing, we use a fixed-point representation of
decimal numbers. A decimal x̃ ∈ R is represented as an integer
x = Encode(x̃) = ⌊x̃ · 2f⌋ ∈ Z, with a precision of f bits.
After every multiplication, the precision inflates to 2f , and a
truncation is required to keep the original precision. Since we
use Zt rather than Z, we require all intermediate results in
their decimal form x̃ ∈ R not to exceed ±t/22f+1, to prevent
overflow. In the rest of the paper, unless stated otherwise, all
scalars and elements of tensors are in Zt.

D. Neural Network Training

A typical neural network (NN) consists of several layers,
denoted by a series of functions fi(x), i ∈ 1, 2, · · · , ℓ, and
for an input sample x, the neural network’s output is y =
fℓ(fℓ−1(· · · f1(x) · · ·)), i.e., feeding the input through each
layer. It is easy to extend the above modeling to neural net-
works with branches. The NN layers are roughly divided into
two categories: linear layers and non-linear layers. Typically,
linear layers (e.g., fully connected layers and convolution
layers) contain trainable parameters that could be learned from
the input samples and their corresponding labels. Given a linear
layer fi(x;Wi,bi) with trainable parameters weight Wi and
bias bi, we denote it as a function fi(x) when there is no
confusion.

Forward propagation. Feeding input through each layer is
called forward propagation. In forward propagation, linear
layers could be abstracted as

y = f(x) = f(x;W,b) = W ◦ x+ b, (1)

where ◦ is a linear operator satisfying the following constraint

(u0+u1)◦(v0+v1) = u0◦v0+u1◦v0+u0◦v1+u1◦v1. (2)

For example, in fully connected layers, ◦ represents the matrix-
vector multiplication:

x ∈ Zni
t ,W ∈ Zno×ni

t ,b ∈ Zno
t ,y = W◦x+b = W ·x+b;

in 2-dimensional convolution layers, ◦ is the convolution
operation:

x ∈ Zci×h×w
t ,W ∈ Zco×ci×s×s

t

W ◦ x = Conv2d(x;W) ∈ Zco×(h−s+1)×(w−s+1)
t

3

Category Representative
framework Techniques used* Data

privacy
Model
privacy

Against
collusion Extensibility

Horizontal FL [39], [10], [9] Local SGD ✓ × ✓ ✓
Vertical FL [21], [19], [28] Local SGD ✓ × ✓ ✓

MPC (2 servers) [3], [42] GC, SS ✓ ✓ × ✓†

MPC (3 servers) [41], [47], [59] GC, SS ✓ ✓ × ✓†

MPC (4 servers) [11], [33], [14] GC, SS ✓ ✓ × ✓†

MPC (n servers) [15], [13] GC, SS ✓ ✓ ✓ ✓‡

Data outsourcing / cloud [43], [24] HE ✓ × N/A ×
Data outsourcing / cloud [56] HE, DP ✓ × N/A ×

Pencil Ours HE, SS, DP ✓ ✓ ✓ ✓
* SGD is for stochastic gradient descent, GC for garbled circuits, SS for secret sharing, HE for homomorphic encryption and

DP for differential privacy.
† If MO and DOes choose to secretly share their model and data to third-party MPC servers, extensibility is achieved but the

approaches are secure only if these servers are not colluding with each other.
‡ The general n-PC protocol against collusion suffers from a scalability problem: including more parties would greatly increase

the computation overhead. See § VI-E for experimental results.

TABLE I: Comparison of prior art related with private collaborative training.

By contrast, the output of non-linear layers (e.g., ReLU
function and max pooling layers) is completely determined by
the input.

Backpropagation. The goal of training a neural network is to
find a set of trained parameters such that some loss function
L(y; t) calculated on network output y and ground truth t
(labels) is minimized across a dataset D = {(xi, ti)}i. In
practice, one can draw a batch of B input samples (X, t) =
{(xi, ti)}i∈[B] and calculate the mean loss L = L(Y, t) =
1
BL(yi; ti). Applying the chain rule, one can reversely com-
pute the partial derivative of each trainable weight with respect
to L, i.e., ∇W = ∂L/∂W,∇b = ∂L/∂b and update
the weights accordingly. Since the gradients are propagated
reversely from the last layer to the first layer, this process is
called backpropagation.

III. TRAINING IN PENCIL

In this section, we introduce our core designs to realize
private-preserving training of neural networks in Pencil. We
begin by introducing the high-level procedure for our 2-party
training protocol. Next, we explain the detailed protocols for
training linear and non-linear layers. Then, we introduce an
optimization method that offloads the computationally heavy
operations to an offline phase. Finally, we demonstrate how
to extend our methods for 2-PC to the scenario of arbitrary
number of DOes.

A. Pencil Training Overview

In the training phase of Pencil, the DO holds all training
data including labels, while the MO holds all trainable pa-
rameters. The network architecture is known to both parties.
Except for the final output y which is revealed to the DO, all
intermediate outputs of each layer are secret-shared between
DO and MO.

In the forward propagation, the DO draws a batch of input
data X = {xi}i∈[B] to feed into the neural network, and
the corresponding labels are t = {ti}i∈[B]. For input X,
denote X0 = X. Evaluation of each layer fi is denoted as
Xi = fi(Xi−1). At the beginning, MO takes ⟨X0⟩0 = 0

and DO takes ⟨X0⟩1 = X. This is a secret-sharing of
⟨Xi⟩ = ⟨Xi⟩0 + ⟨Xi⟩1 for i = 0. We keep this invariant
form of secret sharing for all layers fi. Essentially, fi is a
secure computation protocol operating on secret shares: fi
takes shares ⟨Xi−1⟩ from the two parties and produces shares
⟨X⟩i to both parties such that

⟨Xi⟩0 + ⟨Xi⟩1 = fi(⟨Xi−1⟩0 + ⟨Xi−1⟩1).

The construction of such a protocol is introduced in § III-B1.
The MO reveals the final propagation output ⟨Y⟩0 = ⟨Xℓ⟩0
to DO, based on which DO reconstructs the prediction result
Y to calculate the loss function L(Y, t).

In the backpropagation, each derivative ∇Xi
is shared:〈

∇Xi−1

〉
0
+
〈
∇Xi−1

〉
1
= (⟨∇Xi⟩0 + ⟨∇Xi⟩1)⊙x

∂fi(Xi−1)

∂Xi−1

With secret shared values of∇Xi
and Xi, the two parties could

collaborate to produce the gradients of trainable parameters in
linear layers, i.e., ∇Wi

,∇bi
:

∇bi
= ∇Xi

⊙b
∂fi(Xi−1;Wi,bi)

∂bi

∇Wi
= ∇Xi

⊙W
∂fi(Xi−1;Wi,bi)

∂Wi

These weight gradients are revealed to MO to update the
parameters (introduced in § III-B2). Note that the linear
operators ⊙x,⊙W ,⊙b could be deduced from the forward
propagation formula f(Xi−1) = Xi, according to the chain
rule of derivatives. The challenge in backpropagation is how
to reveal the weight gradients∇Wi

,∇bi
only to the MO, while

protecting the privacy of both intermediate outputs (Xi,∇Xi
)

and weights themselves (Wi,bi).

As a feed-forward network could be decomposed into a
series of layers, in the following, we discuss how to evaluate
one single layer in the neural network. Since the trainable
parameters of a neural network are in linear layers, we mainly
focus on the training protocols of linear layers. We address the
evaluations of non-linear layers in § III-C.

4

Algorithm 1: Evaluation of linear layer f
Input: The input ⟨X⟩ shared between MO and DO;

MO holds the weights W and the bias b.
Output: The output shares ⟨Y⟩ of Y = W ◦X+ b.

1 DO sends encrypted [[⟨X⟩1]] to MO;
2 MO evaluates [[W ◦X]] = W ◦ ([[⟨X⟩1]] + ⟨X⟩0)

using homomorphic plaintext-ciphertext additions
and multiplications;

3 MO chooses random mask s and calculates
[[⟨Y⟩1]] = [[W ◦X]]− s; MO sends [[⟨Y⟩1]] back for
decryption;

4 DO outputs ⟨Y⟩1; MO outputs ⟨Y⟩0 = s+ b.

B. Linear Protocols

We first introduce the forward propagation and backprop-
agation protocols of linear layers. For forward propagation,
we adopt the recent development of efficient private prefer-
ence [25], [22], [38] as a strawman design, and then extend it
to support batched inference instead of just single inference.
Then we elaborate on the gradient computation protocol in the
backpropagation.

1) Forward Propagation: Homomorphic evaluations of
linear layers are fundamental to enabling privacy-preserving
machine learning. We summarize the high-level protocol in Al-
gorithm 1. Note that because the HE ciphertexts are converted
to secret-shares after each linear layer evaluation, we need only
to support one HE multiplication in the BFV parameters and do
not require bootstrapping. ◦ is a linear operator that could be
decomposed into basic arithmetic addition and multiplications
(e.g., matrix multiplication or convolution).

The substantial part of computation in Algorithm 1 lies in
evaluating W ◦ [[X]]. Previous art in private NN inference has
developed different methods to evaluate W ◦ [[X]] for matrix-
vector multiplication and 2d-convolutions. For example, [29]
uses the SIMD support of BFV cryptosystem and designs
a hybrid method for ciphertext matrix multiplication and
convolution, while [25] and [22] exploit the polynomial ho-
momorphism to efficiently evaluate the ciphertext dot product
in linear layers. Note that private inference of [25] is actually
forward propagation of batch size B = 1, but we adapt these
primitives to batched inputs with B > 1. The details are
deferred to Appendix A.

2) Backpropagation: In backpropagation, with secret
shares ⟨∇Y⟩, we need to compute three types of gradients,
∇X,∇b and ∇W. The gradient of the inputs ⟨∇X⟩ is again
secret-shared between two parties, while the gradient of the
parameters ∇W,∇b are revealed only to the MO. Based on
Equation (1), we can deduce the formula of these three types
of gradients respectively.

Calculation of ∇X. For ∇X = ∂f(X;W,b)
∂X ⊙x ∇Y =

W⊙x∇Y, it takes a form similar to the forward propagation
procedure: the two parties input secret shares ⟨∇Y⟩ and the
MO provides weights W; the output is a linear operation ⊙x

on ∇Y and W, and the output is shared between two parties.
Therefore, we can use a protocol similar to Algorithm 1 to
calculate the shares ⟨∇X⟩.

Calculation of ∇b. ∇b = ∇Y⊙b
∂f(X;W,b)

∂b takes the form of
summation across all B samples.2 Therefore, the two parties
can perform summation locally on their shares respectively,
and the DO sends its share ⟨∇b⟩1 to MO for reconstruction.

Calculation of ∇W. It is more challenging to calculate ∇W

and reveal it to the MO without leaking information about X
or ∇Y, since both operands of ⊙ are in secret-shared form:
(for simplicity we use ⊙ instead of ⊙W):

∇W = ∇Y ⊙
∂f(X;W,b)

∂W
= ∇Y ⊙X (3)

A straightforward solution is to let the DO send encrypted
[[⟨X⟩1]] and [[⟨∇Y⟩1]] to the MO. The MO calculates the
gradient in the encrypted domain as

[[∇W]] = (⟨∇Y⟩0 + [[⟨∇Y⟩1]])⊙ (⟨X⟩0 + [[⟨X⟩1]]). (4)

The MO samples random mask s and sends back perturbed
[[∇W − s]] for decryption (to protect the model update against
the DO). The DO finally sends the decryption result and MO
could recover plaintext ∇W.

However, in the above procedure, we need to evaluate
multiplication between two ciphertexts, which is much more
expensive than ciphertext-plaintext multiplication. We use the
linearity of the binary operator ⊙ to eliminate this requirement.
In particular, ∇W could be seen as a summation of four terms:
two cross terms ⟨∇Y⟩0⊙⟨X⟩1 , ⟨∇Y⟩1⊙⟨X⟩0, and two “local”
terms ⟨∇Y⟩0⊙⟨X⟩0 , ⟨∇Y⟩1⊙⟨X⟩1 which could be calculated
locally by the two parties respectively. Therefore, the MO
could simply evaluate the cross term

[[∇cross
W]] = ⟨∇Y⟩0 ⊙ [[⟨X⟩1]] + [[⟨∇Y⟩1]]⊙ ⟨X⟩0

and sends back [[∇cross
W − s]] for decryption. The DO then

returns the decrypted result ∇̃W = ∇cross
W −s+⟨∇Y⟩1⊙⟨X⟩1,

and the MO could recover the full ∇W by adding its local
term ⟨∇Y⟩0⊙⟨X⟩0 and mask s. We illustrate this protocol in
Algorithm 2.

Incorporating Differential Privacy (DP) for Weight Up-
dates. To ensure independent model deployment, weight up-
dates (i.e., ∇W,∇b) should be revealed to MO in plaintext.
Recent art [65], [63], [20] argues that these updates may leak
private information about the training data. To address this
concern, we integrate the DP mechanism into our framework.
Specifically, we allow DO to add perturbations to the gradients,
as shown in Step 5 of Algorithm 2:

e← N
(
0,

σ2C2

B
I
)
, (5)

where B is the batch size, and C is the estimated the upper
bound of L2 norm of the gradients w.r.t. a single sample.
This noise term is added to ∇̃W in Algorithm 2 and to the
summation of DO’s own share of ∇b. At a high level, our
design is a secret-shared version of the DPSGD algorithm [2]
(by considering C as the bound to clip gradients).

2For fully connected layers, ∇b is simply a summation over the batch
size B dimension of ∇Y ∈ RB×no . no is the output size of the
FC layer. For 2d-convolution layers, ∇b is a summation of ∇Y ∈
RB×co×(h−s+1)×(w−s+1) over three dimensions: the batch size and output
image height and width dimensions. co, h, w, s are output channels, input
image height, width, and kernel size of the 2d-convolution layer.

5

Algorithm 2: Weight gradient ∇W calculation
Input: MO and DO input secret shares of ⟨X⟩ and

⟨∇Y⟩.
Output: MO receives ∇W = ∇Y ⊙X.

1 DO sends encrypted [[⟨X⟩1]], [[⟨∇Y⟩1]] to MO;
2 MO evaluates

[[∇cross
W]] = ⟨∇Y⟩0 ⊙ [[⟨X⟩1]] + [[⟨∇Y⟩1]]⊙ ⟨X⟩0

3 MO chooses random mask s and sends [[∇cross
W − s]]

back for decryption;
4 DO evaluates

∇̃W = ∇cross
W − s+ ⟨∇Y⟩1 ⊙ ⟨X⟩1

5 DO adds a perturbation e to ∇̃W;
6 MO finishes by calculating

∇W = ∇̃W + s+ ⟨∇Y⟩0 ⊙ ⟨X⟩0

C. Non-linear Protocols

To evaluate non-linear layers, [25] proposes various MPC-
based protocols utilizing OT extension [31], [61]. As [25]
focuses on private inference (i.e., forward propagation), we
extend their work to enable the backpropagation of gradients
through the non-linear layers. Specifically, we implemented
the backpropagation functionalities for rectified linear function
(ReLU) and 2-dimensional average pooling layers. We also use
truncation protocols to support the multiplication of fixed-point
secret-shared numbers. For the concrete construction of these
protocols, we refer the readers to Appendix B.

ReLU function. ReLU(x) = max{0, x} is an activation
function widely used in neural networks. In MPC, ReLU is
effectively implemented by a composition of the derivative
DReLU(x) = 1{x > 0} and a multiplication, as ReLU(x) =
DReLU(x) · x.

To support backpropagation for ReLU, we need to evaluate

∇x = DReLU(x) · ∇y. (6)

We notice that the DReLU(x) is already calculated in the
forward propagation. Its result is secret shared in boolean
form between the two parties as ⟨d⟩0 ⊕ ⟨d⟩1 = d =
DReLU(x), ⟨d⟩0, ⟨d⟩1 ∈ {0, 1} where ⊕ is logical XOR.
Therefore, we store this result in the forward propagation and
reuse it in backpropagation to produce the secret shares of ∇x

in Equation (6).

2D Average Pooling Layer. At a high level, the 2D average
pooling layer with kernel size s outputs mean value of every
adjacent s×s pixels. We use the division protocol provided by
the framework of [25] to support the forward and backward
propagation of average pooling layers.

Truncation. Since we use the fixed-point representation in Zt,
to avoid overflow, we need to reduce the precision from 2f to
f bits after every multiplication. In the forward propagation,
we truncate the multiplication results of fully connected or
convolutional layers after the activation function ReLU. In the
backward propagation, the gradients of intermediate outputs
∇X are truncated after being propagated through any linear
layer.

D. Preprocessing Optimization

In both forward and backward propagation, we notice
that the substantial part of computation lies in the plaintext-
ciphertext evaluation of linear operations ◦ and ⊙, i.e.,
W ◦ [[X]] in Algorithm 1, and [[∇cross

W]] = ⟨∇Y⟩0 ⊙ [[⟨X⟩1]] +
[[⟨∇Y⟩1]] ⊙ ⟨X⟩0 in Algorithm 2. These evaluations are per-
formed in every training iteration. We propose an optimization
method to reduce the total number of such evaluations required
in training. Specifically, originally we need O(T) (number
of training iterations) online evaluations, while the optimized
approach only performs O(m2) = O(1) offline evaluations (m
is a constant agreed by the two parties) and is completely free
of HE computation in the online phase.

We start by constructing a general protocol P(◦,u,v) for
calculating the shares of u◦v for any linear operator ◦, where
u and v are private data owned by MO and DO, respectively.

For Fixed u and Variable v. We first consider a fixed u.
Inspired by a series of art [7], [42], [40], we observe that: if
for some random v′, the product ⟨u ◦ v′⟩ could be evaluated
and shared beforehand, then given the real v, two parties
can compute ⟨u ◦ v⟩ without HE at all. This protocol can be
summarized as follows:

• Preprocessing phase (prepares shares of ⟨u ◦ v′⟩):
(1) DO chooses random mask v′ ∼ v and sends [[v′]];
(2) MO chooses random mask s ∼ u ◦v, evaluates [[u ◦v′−

s]] = u ◦ [[v′]]− s and sends it back. Thus, the two parties
get shares of u◦v′: ⟨u ◦ v′⟩0 = s, ⟨u ◦ v′⟩1 = u◦v′−s.

• Online phase (produces shares of ⟨u ◦ v⟩):
(3) DO sends masked v − v′ to MO, outputs ⟨u ◦ v⟩1 =
⟨u ◦ v′⟩1 ;

(4) MO calculates and outputs ⟨u ◦ v⟩0 = u ◦ (v − v′) +
⟨u ◦ v′⟩0 .

Although this protocol could offload HE operations to the
preprocessing phase for a single evaluation of u◦v, we cannot
extend it to multiple evaluations of u ◦ vi with different vi.
Specifically, if we used the same mask v′ for two different v1

and v2, then in the online phase the DO would receive v1−v′,
and v2 − v′. Thus the difference v1 − v2 would be leaked to
MO.

To address this issue, we propose using multiple masks v′
i.

In the preprocessing phase, the two parties generate m shared
product u ◦ v′

i for different v′
i, i ∈ [m]. In the online phase,

for input v, the DO chooses m non-zero scalars ki and sends
a masked version of v,

ṽ = v −
∑
i∈[m]

ki · v′
i (7)

to MO. The two parties output

⟨u ◦ v⟩0 = u ◦ ṽ +
∑
i∈[m]

ki · ⟨u ◦ v′
i⟩0

⟨u ◦ v⟩1 =
∑
i∈[m]

ki · ⟨u ◦ v′
i⟩1

(8)

For Variable u. Now we consider the case where u is a
variable (i.e., not determined at the preprocessing phase).
Similar to DO, MO also masks its u with m masks u′

i. The

6

Algorithm 3: P(◦,u,v): Preprocessing optimization
for calculating the shares of u ◦ v

Input: A predefined linear operation ◦; in the online
phase, MO inputs u and DO inputs v.

Output: The two parties receive shares of ⟨u ◦ v⟩.
1 Preprocessing PPrep(◦):
2 MO selects m random masks u′

i ∼ u, i ∈ [m];
3 DO selects m random masks v′

j ∼ v, j ∈ [m], and
sends their encryption [[v′

j]] to MO;
4 MO selects m2 masks sij ∼ (u ◦ v), i, j ∈ [m];
5 MO evaluates [[⟨u′

i ◦ v′
j⟩1]] = u′

i ◦ [[v′
j]]− sij for

i, j ∈ [m], and sends them back for decryption;
6 MO and DO keeps shares of ⟨u′

i ◦ v′
j⟩ for all

i, j ∈ [m]
⟨u′

i ◦ v′
j⟩0 = sij

⟨u′
i ◦ v′

j⟩1 = u′
i ◦ v′

j − sij
7 Online POnline(◦,u,v):
8 MO randomly picks scalars ki, i ∈ [m]; MO sends

to DO all ki and
ũ = u−

∑
i∈[m]

ki · u′
i

9 MO and DO produces shares of ⟨u ◦ v′
j⟩ for all

j ∈ [m] as
⟨u ◦ v′

j⟩0 =
∑
i∈[m]

ki · ⟨u′
i ◦ v′

j⟩0

⟨u ◦ v′
j⟩1 = ũ ◦ v′

j +
∑
i∈[m]

ki · ⟨u′
i ◦ v′

j⟩1

10 DO randomly picks scalars ℓj , j ∈ [m]; DO sends
to MO all ℓj and

ṽ = v −
∑
j∈[m]

ℓj · v′
j

11 MO and DO produces shares of ⟨u ◦ v⟩ as

⟨u ◦ v⟩0 = u ◦ ṽ +
∑
j∈[m]

ℓj · ⟨u ◦ v′
j⟩0

⟨u ◦ v⟩1 =
∑
j∈[m]

ℓj · ⟨u ◦ v′
j⟩1

online phase could be viewed as a two-step process: (i) the two
parties generate shares ⟨u ◦v′

j⟩ for all j ∈ [m]; (ii) they apply
these shares to further produce shares ⟨u ◦ v⟩. We present the
full protocol in Algorithm 3. In practice, Step 8 and Step 10 in
Algorithm 3 can be merged in parallel, as they are independent.

For simplicity, we denote Algorithm 3 as a general protocol

P(◦,u,v) = (PPrep(◦),POnline(◦,u,v)),

consisting of a preprocessing protocol PPrep(◦) independent
of u,v and a online protocol POnline(◦,u,v) to specifically
evaluate u ◦ v.

Applying P(◦,u,v) in Linear Layer Training. We now apply
P(◦,u,v) to accelerate the online training of linear layers in
Algorithm 1 and Algorithm 2. In particular, for every invo-
cation with the same ◦ of P(◦,u,v), the preprocessing phase
PPrep(◦) is executed once and for all, before the training starts.
When u,v come on the fly during training, the two parties

Algorithm 4: Optimized Training Protocol of Linear
Layers
1 Preprocessing:
2 The two parties invoke PPrep(◦), PPrep(⊙x),

PPrep(⊙), PPrep(⊙rev).
3 Online:
4 Foward propagation: MO, DO provide shares of ⟨X⟩.
5 The two parties invoke POnline(◦,W, ⟨X⟩1) to

produce the shares of ⟨W ◦ ⟨X⟩1⟩. MO and DO
respectively output
⟨Y⟩0 = ⟨W ◦ ⟨X⟩1⟩0 +W ◦ ⟨X⟩0 + b

⟨Y⟩1 = ⟨W ◦ ⟨X⟩1⟩1
6 Backpropagation: MO, DO provide shares of ⟨∇Y⟩.
7 (For ∇X) The two parties invoke

POnline(⊙x,W, ⟨∇Y⟩1) to produce shares of
W ⊙x ⟨∇Y⟩1. MO and DO respectively output
⟨∇X⟩0 = ⟨W ⊙x ⟨∇Y⟩1⟩0 +W ⊙x ⟨∇Y⟩0
⟨∇X⟩1 = ⟨W ⊙x ⟨∇Y⟩1⟩1

8 (For ∇b) The two parties locally compute ⟨∇b⟩0
and ⟨∇b⟩1. DO add perturbation to its share, and
∇b is revealed to MO.

9 (For ∇W) The two parties invoke
POnline(⊙, ⟨∇Y⟩0, ⟨X⟩1),
POnline(⊙rev, ⟨X⟩0, ⟨∇Y⟩1) to produce shares of
the cross terms ⟨∇01

W⟩ and ⟨∇10
W⟩:

⟨∇01
W⟩ = ⟨⟨∇Y⟩0 ⊙ ⟨X⟩1⟩

⟨∇10
W⟩ = ⟨⟨∇Y⟩1 ⊙ ⟨X⟩0⟩ = ⟨⟨X0⟩ ⊙rev ⟨∇Y⟩1⟩

10 DO calculates
∇̂W = ⟨∇01

W⟩1 + ⟨∇10
W⟩1 + ⟨∇Y⟩1 ⊙ ⟨X⟩1

11 DO adds a perturbation e to ∇̂W and sends it to
MO;

12 MO finishes with
∇W = ∇̂W + ⟨∇01

W⟩0 + ⟨∇10
W⟩0 + ⟨∇Y⟩0 ⊙ ⟨X⟩0

only execute POnline(◦,u,v). We present the training protocol
optimized by P(◦,u,v) in Algorithm 4. For consistency of
symbols, we semantically denote v ⊙rev u = u ⊙ v. We
provide the security analysis of this preprocessing optimization
technique in § IV.

E. Extending to Multiple DOes

In practice, the dataset provided by each DO could be
highly heterogeneous or even biased. Thus, it is desirable
to simultaneously train a model using the combined data
contributed by different DOes.

As stated in § I-B, extensibility is challenging in prior
art. For instance, in previous HE-based training protocols
([43], [56]), the MO can only train the model with one DO,
because the model is encrypted by the DO. In MPC-based
approaches ([42], [41], [11], [33]), if MO and DOes upload
their model and data to several fixed computing servers, it
would introduce the undesirable “non-colluding” assumption.
On the other hand, if the MO and all DOes themselves
participate as computing nodes, the MPC scheme would have
to defend privacy against up to n− 1 colluding parties, which
would result in low efficiency.

7

Our framework avoids the high overhead of directly sup-
porting an n-party computation by decomposing the procedure
into the 2-PC paradigm, as we only need interaction between
the MO and one DO at a time. The weights are kept by the MO
in plaintext so it could simply conduct collaborative training
with each DO in turn and updates its model incrementally.
This design makes Pencil extend to more DOes without
extra computation or communication overhead, unlike previous
general n-party MPC methods. In § VI-C3, we evaluate the
extensibility of Pencil.

IV. SECURITY ANALYSIS

A. Security of the Pencil Training Framework

In this section, we first perform the security analysis
for the Pencil training framework without the preprocessing
optimization described in § III-D.

Definition IV.1. A protocol Π between a DO possessing a
train dataset D = {(xi, ti)} and a MO possessing the model
weights M is a cryptographic training protocol if it satisfies
the following guarantees.

• Correctness. On every set of model weights M of the MO
and every dataset D of the DO, the output of the MO is
a series of weight updates and finally a correctly trained
model with updated weights.

• Security.
- (Data privacy) We require that a corrupted, semi-honest

MO does not learn anything useful about the DO’s train-
ing data, except the weight updates and the final model.
Formally, we require the existence of an efficient simulator
SimMO such that ViewΠ

MO ≈c SimMO(M, out), where
ViewΠ

MO denotes the view of the MO in the execution
of Π, out denotes the output of the training protocol to
MO, and ≈c denotes computational indistinguishability
between two distributions.

- (Model privacy) We require that a corrupted, semi-honest
DO does not learn anything useful about the MO’s model
weights, except the model’s outputs (predictions) on DO’s
dataset. The model architecture is public to all parties.
Formally, we require the existence of an efficient simulator
SimDO such that ViewΠ

DO ≈c SimDO(D), where ViewΠ
DO

denotes the view of the client in the execution of Π.

Theorem IV.1. Assuming the existence of oblivious trans-
fer, homomorphic encryption and secure protocols for non-
linearity evaluations, the Pencil framework without the pre-
processing optimization is a cryptographic training protocol
as defined in Definition IV.1.

We rigorously prove Theorem IV.1 using the real/ideal
word paradigm by constructing simulators for the DO and the
MO. Due to space constraint, the detailed simulator construc-
tion and hybrid proof are deferred to Appendix C. Extending
the theorem to the single-MO-multi-DOes scenario is trivial.

B. Distinguishability Caused by Prepossessing Optimization

After introducing the preprocessing technique (see § III-D)
in Pencil, the computational indistinguishability of these views
no longer holds. This is because we use linear combinations
of m masks for the multiplication operands u and v of

any linear operator ◦, instead of using uniformly random
tensor masks. In this section, we analyze and quantify such
distinguishability and prove that the privacy loss caused by
the distinguishability is negligible (i.e., it is computationally
difficult for an adversary to derive private information based
on the distinguishability).

We first give a useful proof gadget.

Definition IV.2. A set V = {vi}i∈[n] of n elements is m-
linear combinatorially private to a party S, if any property
about the elements in V, derived by S, has the form of a linear
combination ∑

i∈[m′]

aivni = v̂ (9)

where ni are m′ distinct indices in [n] and m′ > m. ai ̸= 0,
m, and v̂ are public parameters that are not controlled by S.

Now we present the following theorem.

Theorem IV.2. If POnline(◦,u,v) (Algorithm 3) is executed
n times with n different ui provided by MO and n different
vi provided by DO, and m < n << t (t is the number of
elements in the ring Zt), then U = {ui}i∈[n] are m-linear
combinatorially private to DO, and V = {vi}i∈[n] are m-
linear combinatorially private to MO.

Proof: Since ui and vi are symmetric for DO and MO,
respectively, proving the theorem for vi is sufficient. We prove
the theorem using the elimination of the masks: since each vi

is masked with m different masks, eliminating every mask
requires a new equation of ṽi (see Equation 10 below). Thus,
the adversary could eventually obtain a linear combination of
at least m+ 1 different vi’s in V. The formal formulation is
as follows.

In the preprocessing phase PPrep(◦), DO spawns m random
v′
j . In the online phase POnline(◦,ui,vi), DO chooses m

scalars ℓij ∈ Zt for each vi and sends to MO the following

ṽi = vi −
m−1∑
j=0

ℓijv
′
j , i ∈ [n]. (10)

Let matrix L = (ℓij) ∈ Zn×m
t . Since ℓij are chosen uniformly

in Zt and n << t, L is full-rank (rank(L) = m) with high
probability [8], [12].3 Therefore, in order to eliminate v′

j which
are unknown to MO, MO needs at least m + 1 equations in
the form of Equation (10) to obtain a linear combination of
elements in V. Finally, MO obtains a relation of m′ > m
tensors in {vi} of its choice:

m′−1∑
k=0

akvnk
= v̂,

where the linear combination coefficients ak are determined by
L, and v̂ could be calculated with the knowledge of ṽni

. By
definition, {vi} are m-linear combinatorially private to MO.

Corollary IV.1. By setting the appropriate number of masks m
and fixed-point bit precision f in Pencil, it is computationally

3Note DO can intentionally set ℓij to ensure L is full-rank. For example,
DO can use the Vandemonde matrix with ℓij = ji (mod t).

8

difficult for an adversary to derive the elements in a m-linear
combinatorially private set V, because the adversary needs to
exhaustively explore a search space of size O(2fm).

Proof sketch. Suppose an adversary tries to obtain one
specific element vi in V from the linear combination∑

k∈[m′] akvk = v̂ in Eq. (9). For simplicity, we let nk = k
and vi = vi has only one dimension. The adversary cannot
use iterative methods such as gradient descent to approximate
the solution, since the ring Zt is discrete. Instead, supposing
that the decimal value ṽi = Encode−1(vi)

4 has a range
[−b/2, b/2], b = O(1), the adversary needs to search m′−1 ≥
m variables and check if the last variable is decoded into
the range. In particular, the adversary solves the following
problem:

{vi ∈ Zt}i∈[m′−1] s.t. vm′−1 = a−1
m′−1(v̂ −

m′−2∑
i=0

akvk)

and Encode−1(vi) ∈ [−b/2, b/2],∀i ∈ [m′]

Each variable takes b · 2f possible values in Zt, resulting in a
total search space of O(2fm).

In § VI-F, we experimentally show that by setting m = 8
and f = 25, deriving the elements in a set V that is m-linear
combinatorially private is as difficult as deciphering elements
encrypted by 7680-bit RSA keys.

C. Privacy Analysis of the Weight Updates

In Step 5 of Algorithm 2, we propose a secret-shared ver-
sion of DPSGD [2] that enables the DO to add a perturbation
e← N

(
0, σ2C2

B I
)

to the weight updates. Under this setting,
there exist constants c1, c2, such that given batch size B,
training dataset size N and number of training steps T , for
any ϵ < c1B

2T/N2, this mechanism is (ϵ, δ)-differentially
private for any δ > 0, if we choose

σ ≥ c2
B
√

T log(1/δ)

Nϵ
(11)

V. HARDWARE ACCELERATION

In this section, we present our GPU acceleration of BFV
cryptosystem by exploiting the parallelizable feature of lattice-
based homomorphic cryptosystem. Our design is independent
of the protocols in Pencil and universally applicable. Typically,
GPU provides advantage over CPU in the case where multiple
operations are parallelizable. Therefore, we try to recognize
which operations in the BFV construction are parallelizable,
and to what extent they can be parallelized.

NTT. The BFV scheme operates on the polynomial ring.
Although polynomial addition is trivial with each coefficient
added individually, the multiplication of polynomials (modulo
XN + 1) cannot be done in linear time trivially. Direct
multiplication requires O(N2) time complexity. Number The-
ory Transform (NTT) addresses this issue using a bijection
between the polynomial ring Rq,N and the vector space ZN

q .
With this bijection, the multiplication on the ring corresponds

4Recall Encode(ṽ) is the fixed-point encoding function from R to Zt

(§ II-C).

to vector element-wise multiplication on ZN
q . Therefore, when

a polynomial is represented in the NTT form, both addition and
multiplication of polynomials receive a degree of parallelism
of N .

RNS Decomposition. The ciphertext coefficient modulus q
of BFV scheme could be very large (e.g., > 2160). Thus,
implementing the vector operations directly in Zq requires
the arithmetic of big integers, which is not natively sup-
ported by modern CPUs and GPUs. [6] proposes to improve
efficiency by applying the Chinese Remainder Theorem: If
q = q1q2 · · · qL with each qi < 264, by an isomorphism, the
field Zq

∼= Zq1 × Zq2 × · · · × ZqL . Therefore, an element
a ∈ Zq could be represented by a vector a = (a mod q1, a
mod q2, · · · , a mod qL). The addition and multiplication are
conveyed to each smaller field Zqi , which can be effectively
implemented with modern processors supporting 64-bit integer
arithmetic. This technique is called residual number system
(RNS) decomposition.

Parallelization. With NTT transform and RNS decomposi-
tion, the arithmetic of BFV scheme is conveyed into NL-
dimensional vector space

∏L
i=1 ZN

qi . Addition and multiplica-
tion in message space (polynomial ring Rt,N) corresponds to
vector addition and element-wise multiplication. Typically, the
polynomial degree N ≥ 4096, and the number of decomposed
qi is L ≥ 2. Therefore, the homomorphic operations have a
degree of parallelism of at least 8192. We exploit this paral-
lelism with an implementation on GPU. To fully support the
BFV scheme, we also provide efficient GPU implementations
of NTT and RNS composition/decomposition, besides vector
addition and multiplication.

Memory management. We notice that allocating and freeing
GPU memory could be time-consuming if they are executed
with every construction and disposal of a ciphertext/plaintext.
Therefore, we use a memory pool to keep track of each piece
of allocated memory, only freeing them when the program
exits or when the total memory is exhausted. The memory
of discarded objects is returned to the pool. When a new
ciphertext or plaintext is required, the memory pool tries to
find a piece of memory already allocated with a suitable size.
If not found, allocation is performed.

VI. EVALUATION

Our evaluations are designed to demonstrate the following.

• End-to-End training performance. We show that Pencil
is able to train models (both from scratch and via transfer
learning) with test accuracies nearly identical to plaintext
training, and could be extended to multiple DOes.

• Performance breakdown. We evaluate the efficiency of the
key training protocols in Pencil, as well as the performance
gains of accelerating individual HE operations using our
hardware implementation.

• Efficiency comparison with prior art. We show that Pencil
has non-trivial performance (e.g., training time and commu-
nication bytes) advantages over closely related art (although
none of them offer independent model deployability and
native extensibility to include more DOes)

• Pencil against attacks. Finally, we experimentally demon-
strate that Pencil is secure against both existing attacks

9

and adaptive attacks specifically designed to exploit the
protocols of Pencil.

A. Implementation

We implement the training protocols of Pencil primarily
in Python, where we formalize the common layers of neural
networks as separate modules. We use C++ and the CUDA
programming library to implement the GPU version of the
BFV scheme, referring to the details specified in state-of-
the-art CPU implementation, Microsoft SEAL library [52].
For non-linear layers, we adapt the C++-based framework of
OpenCheetah [25] and CrypTFlow2 [49], which supports effi-
cient evaluation of the ReLU function, division and truncation,
etc. Pybind11 [27] is used to encapsulate the C++ interfaces
for Python. The total developmental effort is ∼15,000 lines of
code. Our open-sourced code artifact is described in § A.

B. Evaluation Setup

We evaluate our framework on a physical machine with
Intel Xeon Gold 6230R CPU and NVIDIA RTX A6000 GPU
(CUDA version 11.7), under the operating system Ubuntu
20.04.5 LTS. We evaluate two typical network settings: a
LAN setting with 384MB/s bandwidth and a WAN setting
with 44MB/s bandwidth, same as [25]. BFV HE scheme
is instantiated with N = 8192, t = 259, and q ≈ 2180

decomposed into three RNS components. This HE instantiation
provides λ = 128 bits of security. The fixed-point precision is
f = 25.

We use the following three datasets in our evaluations:

• MNIST dataset [36] includes 70,000 grayscale images
(60,000 for training, 10,000 for testing) of handwritten digits
from 0 to 9, each with 28× 28 pixels.

• CIFAR10 dataset [34] includes 60,000 RGB images (50,000
for training, 10,000 for testing) of different objects from
ten categories (airplane, automobile, bird, etc.), each with
32× 32 pixels.

• AGNews dataset [62] includes 120,000 training and 7,600
testing lines of news text for 4 different topic categories.

C. End-to-End Training Performance

We evaluate the performance of Pencil in a series of
different training scenarios.

1) Training from Scratch: The first case studied is that
a MO trains a model from scratch with one DO’s data. We
experiment with 4 neural networks, denoted as MLP (multi-
layer perception) for MNIST [41], [47], CNN for MNIST [50],
and TextCNN for AGNews [62], CNN for CIFAR10 [56]. The
detailed architectures of these NNs are listed in Appendix D.
We train each image NN for 10 epochs and the text NN for
5 epochs using the training dataset, and test the classification
accuracy on the test dataset every 1/5 epoch. Batch size is 32
for MNIST and AGNews and 64 for CIFAR10. We use SGD
optimizer with a momentum of 0.8, learning rate η = 10−2.
For fair comparison with plaintext training, the DO does not
add DP noises to the weight gradients in these experiments
(see § VI-C4 for results with DP noises). The results are
shown in Table II and the test accuracy curves are plotted in
Figure 1. We observe that, the test accuracies of models trained

Scenario Task Model Pencil Plaintext

Train from
scratch

MNIST MLP 97.74% 97.82%
MNIST CNN 98.23% 98.59%

AGNews TextCNN 87.72% 87.97%
CIFAR10 CNN 71.69% 72.27%

Transfer
learning

CIFAR10 AlexNet 86.72% 86.90%
CIFAR10 ResNet50 90.02% 89.87%

TABLE II: Highest test accuracy in 10 training epochs for
different ML tasks, reported for training with Pencil (private
training) and plaintext training, respectively. Pencil achieves
nearly identical training accuracy as plaintext training.

0 2 4 6 8 10
Epochs

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

(a) MNIST, MLP

0 2 4 6 8 10
Epochs

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

(b) MNIST, CNN

0 1 2 3 4 5
Epochs

0.70

0.80

0.90

Ac
cu

ra
cy

(c) AGNews, TextCNN

0 2 4 6 8 10
Epochs

0.10

0.30

0.50

0.70

Ac
cu

ra
cy

(d) CIFAR10, CNN

0 2 4 6 8 10
Epochs

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

(e) CIFAR10, AlexNet

0 2 4 6 8 10
Epochs

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

Pencil
Plaintext

(f) CIFAR10, ResNet50

Fig. 1: Test accuracies for trained models. (a) ∼ (d) are for
models trained from scratch; (e) and (f) are for models trained
via transfer learning.

in Pencil experience very minor declines (on average < 0.7%)
compared with plaintext training, which might be attributed to
the limited precision in fixed-point arithmetic. Note that the
model accuracies are relatively lower than SOTA models for
the CIFAR10 dataset because (i) the models used in this part
are relatively small and (ii) we only train them for 10 epochs.

We also report the total time and communication needed
to train these NNs for one epoch in Table III. We measure
the overheads for Pencil both with and without preprocessing
optimization, denoted as Pencil and Pencil+ respectively. For
the preprocessing phase, we set the number of masks to m = 8.
In the LAN network setting, Pencil without preprocessing
can train CNNs for MNIST and CIFAR10 from scratch (10
epochs) within 7.8 hours and 280 hours, respectively. When
the preprocessing technique is enabled, the training times are
further reduced to 4.4 hours and 229 hours, respectively. In the

10

Scenario Task Model
Pencil Pencil+
Online Preprocessing Online

TPLAN TPWAN C Tprep Cprep TPLAN TPWAN C

Train from
scratch

MNIST MLP 9.73× 104 5.12× 104 1.66 0.02 3.35 26.52× 104 19.87× 104 0.23
MNIST CNN 7.70× 104 4.43× 104 1.71 0.02 4.13 13.72× 104 10.75× 104 0.36

AGNews TextCNN 0.37× 104 0.53× 104 14.62 0.27 19.28 0.76× 104 1.07× 104 6.74
CIFAR10 CNN 0.18× 104 0.12× 104 44.89 0.70 83.12 0.22× 104 0.15× 104 34.90

Transfer
learning

CIFAR10 AlexNet 0.52× 104 0.39× 104 11.33 0.91 46.00 1.55× 104 1.24× 104 2.90
CIFAR10 ResNet50 1.83× 104 1.17× 104 5.48 0.30 15.96 8.05× 104 5.89× 104 0.82

TABLE III: Training costs for different ML tasks. For the online phase, TP stands for the throughput (samples/hour) of the
training system, and subscript LAN,WAN indicate the network settings; C stands for the online communication (MB) per sample.
For Pencil+, we also report the time (Tprep, hours) and communication (Cprep, GB) of preprocessing. Note that the preprocessing
overhead is one-time overhead.

WAN setting, we see a throughput reduction of 30% ∼ 50%,
since the communication overhead is comparable to computa-
tion overhead. We observe that in training CNN for CIFAR10,
the improvement of the preprocessing technique is not as
significant as the previous 3 NNs. This is because a significant
portion of training overhead of this NN is introduced by the
non-linear evaluations (e.g., ReLU), while the preprocessing
technique focuses on linear layers.

2) Transfer Learning Models: We now evaluate applying
Pencil in transfer learning: MO uses a publicly available pre-
trained model as the feature extractor, and subsequently trains a
classifier on top of it. Since models pre-trained on large general
datasets achieve robust feature extraction, transfer learning can
significantly reduce the convergence time and improve test ac-
curacy on specialized datasets, as shown by [46], [26]. Before
training starts, both DO and MO obtain the public feature
extractor. During training, the DO first passes its data through
the feature extractor to get intermediate representations (IRs),
and the classifier is trained privately on these IRs.

In our experiments, we use two publicly available pre-
trained models, AlexNet [35] and ResNet50 [23] as the feature
extractor. 5 The complete models are denoted with the pre-
trained model’s name (see Appendix D for the detailed archi-
tecture). The results are shown in Table II and Figure 1. The
best accuracy for CIFAR10 is improved to 90.02%, compared
with the train-from-scratch CNN (71.69%). Meanwhile, the
training time and communication overhead are also greatly
reduced, as shown in Table III. For instance, transfer learning
of ResNet50 sees a 4.4× boost in throughput compared to
training-from-scratch CNN, and can be trained within 6.2
hours in the LAN setting.

Key takeaways: for relatively large models like ResNet50
(with 25 million parameters), the overhead of cryptographic
training from scratch is still significant. Augmented with
transfer learning, cryptographic training can be more practical.

3) Training with Heterogeneous DOes: In this segment,
we evaluate the extensibility of Pencil. We consider the case
where the datasets owned by different DOes are biased, so it
is desirable for the MO to incorporate the data from multiple
DOes. In our experiment, we create five DOes, each with

5The original model is split into two consecutive parts: the feature extractor
and the original classifier on a general dataset. We replace the original classifier
with several fully connected layers to be trained. The weights pre-trained on
ImageNet [16] are provided by the torchvision library.

1 2 3 4 5
of participating DOes

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

CNN (from scratch)
ResNet50 (transfer learning)

Fig. 2: Test accuracies of the models trained with different
numbers of heterogeneous DOes.

a dataset dominated by only two labels from the CIFAR10
dataset. For each training step, the MO trains the model with
one of these DOes in turn. Finally MO tests the trained model
with a test set with all ten labels. We evaluate with the two
models used for CIFAR10. The results are shown in Figure 2.
Clearly, in the case where the datasets owned by different
DOes are highly heterogeneous, extending the training with
more DOes is necessary to achieve high test accuracies.

4) Impact of the DP Noises: In § III-B2, Pencil designs a
secret-shared version of DPSGD algorithm to allow the DOes
to add DP noises to the weight updates. In this part, we
evaluate the impact of DP noises on model performance. We
use the two models of CIFAR10 in this experiment. We first
estimate the gradient bound C used in our algorithm to be 8,
then we conduct the experiments with different noise levels
σ, with a fixed batch size B = 64. The models are trained
for 10 epochs. The results are shown in Table IV. We observe
that the accuracy slightly drops (< 2%) given σ ≤ 10−2. In
§ VI-F, we empirically demonstrate that σ = 10−2 is sufficient
to defend against the reconstruction attacks on the gradients.

D. Performance Breakdown

We present the performance breakdown of Pencil.

Linear Protocols. We inspect the time and communication
overhead required to train a single linear layer in Pencil. The
overhead of truncation is excluded. The results are shown
in Table V. For training time, the preprocessing technique
achieves 3× ∼ 5× online speedup over the basic design. The
communication cost is also reduced by 90% for fully connected
layers and 2/3 for 2d-convolutional layers.

11

σ (ϵ, δ)-DP Accuracy
CNN ResNet50

0 None 71.69% 90.02%
0.005 (114, 10−5) 71.20% 89.71%
0.010 (57, 10−5) 70.32% 89.29%
0.020 (28.5, 10−5) 68.87% 88.47%
0.050 (11.4, 10−5) 57.01% 85.17%

TABLE IV: Test accuracy of CIFAR10-CNN and ResNet50
trained with DP-mechanism of different noise levels σ.

(a) Fully connected layers

Pencil Pencil+
ni no Time Comm. Time Comm.

256 100 6.8ms 0.40MB 1.2ms 18KB
512 10 2.6ms 0.17MB 0.9ms 14KB

2048 1001 256.1ms 5.51MB 30.3ms 822KB

(b) 2d-convolutional layers

Pencil Pencil+
ci co h,w s Time Comm. Time Comm.
64 64 162 5 165ms 3.61MB 13ms 0.75MB

3 64 562 3 244ms 11.61MB 100ms 4.71MB
64 3 562 3 237ms 11.51MB 86ms 4.80MB

TABLE V: Online training overheads of linear layers. Batch
size is 64 and the results are averaged across samples. ni and
no denote the input and output neurons of a fully connected
layer. ci, co denote input and output channels of a convolutional
layer. h,w is input image size and s is the kernel size.

Acceleration of Hardware Implementation. We further zoom
into the performance of individual HE operators. In particular,
we report the performance of our GPU-based BFV imple-
mentation and compare it with the state-of-the-art CPU im-
plementation of Microsoft SEAL library [52]. For a complete
comparison, we also implement the SIMD encoding/decoding
functionality used in SEAL. The results are listed in Table VI.
On average, our hardware implementation achieves 10× ac-
celeration over CPU implementation. We notice that there are
other GPU acceleration works for HE (e.g., [60], [58]), but
experimentally evaluating them is difficult since they are close-
sourced.

HE Operation GPU CPU Speedup(Ours) ([52])
Encoding 38 97 2.5×
Decoding 65 114 1.8×

Encryption 155 2611 16.8×
Decryption 94 653 6.9×

Addition 2 33 16.5×
Multiplication 506 8362 16.5×

Relinearization 38 173 4.6×
Plain Mult. 178 1130 6.3×

Rotation 366 1532 4.2×

TABLE VI: Time overhead (µs) of various HE operations.

Throughput (104 img/h) Comm. (MB/img)
Model [3] [13] P P+ [13] P P+

2× 128FC 0.7 0.11 9.7 29.3 552 1.7 0.2
3× 128FC 0.6 0.10 8.1 18.9 658 2.2 0.3
2× 512FC 0.2 0.03 2.6 13.2 3470 5.2 0.8

TABLE VII: Performance comparison with QUOTIENT [3]
and Semi2k [13] in the 2 party setting. The models are
represented as n×mFC, as used by [3]. P represents Pencil
and P+ represents Pencil+.

Throughput (103 img/h) Comm. (per img)
Model [13] Pencil Pencil+ [13] Pencil Pencil+

2 parties 1.11 97 265 0.55GB 1.7MB 0.2MB
3 parties 0.61 97 265 2.58GB 1.7MB 0.2MB
4 parties 0.41 97 265 6.06GB 1.7MB 0.2MB
5 parties 0.07 97 265 57.69GB 1.7MB 0.2MB

TABLE VIII: Performance comparison with Semi2k [13] in
multiple party setting. The model is MNIST-MLP.

E. Efficiency Comparison with Prior Art

In this section, we compare the training efficiency of Pencil
with prior art of MPC. As discussed in § I-B, machine learning
protocols using MPC rely on the non-colluding assumption,
unless the MO and DOes themselves participate as computing
servers, which, unfortunately, has suffer from the extensibility
problems for the 2/3/4-PC frameworks or scalability prob-
lem for general n-PC frameworks. Nevertheless, we compare
the efficiency of Pencil with two MPC frameworks, QUO-
TIENT [3] and Semi2k [13]. The former is a non-extensible
2-PC framework, and the latter is extensible to any number of
parties but we instantiate it with only 2 parties for maximum
efficiency. The results are listed in Table VII. QUOTIENT does
not provide communication costs in their paper, so we only
compare its throughput. On average, Pencil without and with
preprocessing optimization respectively achieves a speed-up of
13× and 40× over [3] and 2 orders of magnitude over [13].

For extensibility, we compare Pencil with [13] in the
setting with over 2 parties on the MLP model of MNIST.
The results are displayed in Table VIII. As a general n-
PC architecture without the non-concluding assumption, the
overhead of [13] grows significantly with more parties. In
contrast, the overhead of Pencil remains the same regardless
of the number of parties, because the multiparty training
procedure is decomposed into 2-PC in every training step, and
switching DOes between steps is cost-free.

F. Pencil Against Attacks

Gradient Matching Attack [63] tries to reconstruct the
original input using the model updates. Pencil proposes a
secret-shared version of DPSGD to prevent this attack. In this
segment, we evaluate the effectiveness of our method. We
use the train-from-scratch CNN on CIFAR10 to conduct the
evaluation. Note the attack requires a very small batch size,
so we set the batch size to one. The reconstruction results
are shown in Figure 3, together with the original input image
data. It is clear that a noise level of 10−2 is sufficient to protect
the original data. In practice, the training batch size is much

12

Original =0 =0.0001 =0.0005 =0.001 =0.01

Fig. 3: Gradient matching attack [63] defended with different
levels of noise

larger (e.g., 64), which could further reduce the requirements
of noise levels.

In addition, the attacker may try to reduce the noise by
introducing a regularization term into the optimization goal
[20]. However, when the perturbations added to the gradients
are large enough, such an attack would only produce smoothed
but unidentifiable reconstructions. We defer the results in
Appendix E.

Adaptive Attacks against the Preprocessing Design. We
further consider an adaptive attack against the preprocessing
design in Pencil. In particular, a semi-honest MO may try to
reconstruct the individual inputs from the linear combination
of

∑
k∈[m′] akvk = v̂ in Equation (9) (for simplicity, we let

nk = k).

Suppose MO tries to obtain one specific element vi in vi

(e.g., a specific pixel in an image). vi satisfy
∑

k∈[m′] akvk =
v̂. We launch the attack by the solving the problem stated in
the proof sketch of Corollary IV.1 and list the difficulty of the
attack for several different sets of m, f in Table IX, with a
comparison to RSA modulus length k offering equivalent bit
security [45].

We further empirically evaluate this attack on CIFAR10
dataset for a very small m = 2 and precision f = 10. MO
presumes the pixel values of the normalized image are within
(−2, 2). It takes around 62.1 seconds for MO (single-thread,
using the CPU stated in § VI-B) to obtain one pixel correctly.
Thus, by proper setting of m and f , e.g., m = 8, f = 25,
it would requires 9.5 × 1055 seconds (roughly 1048 years) to
break one pixel. Symmetrically, it is equally difficult for a
curious DO to derive the model parameters.

VII. DISCUSSION AND FUTURE WORK

A. Other Related Work

We cover the related work that is not discussed in § I-B.

Private Inference in Machine Learning. A series of art try
to address the problem of private inference. In this setting, a
client wishes to do inference on its private data on a third-
party model deployed by a service provider. CryptoNets [17]

m f Search space RSA-k Time to Break
2 10 20 bits < 512 62.1 seconds
2 25 50 bits < 512 2114 years
4 25 100 bits ∼ 2048 2.38× 1018 years
8 25 200 bits ∼ 7680 3.02× 1048 years

TABLE IX: Hardness of the adaptive attack against the pre-
processing optimization. RSA-k means the RSA modulus bit
length offering equivalent security guarantees. Time to break
is evaluated or estimated using the CIFAR10 dataset.

and Gazelle [29] tackles this problem using the HE primitives.
[17] uses the SIMD technique of BFV within the batch
size dimension, thus requiring a huge batch size of 8192 to
reach maximum throughput. [29] instead designs algorithms
to exploit SIMD within one inference sample. It also com-
bines garbled circuits (GC) for non-linear layers, while [17]
changes non-linear layers to squaring function. On top of [29],
Delphi [40] introduces a method to move all computationally
heavy homomorphic operations to a preprocessing phase.
However, this preprocessing must be executed once for every
single sample on the fixed model weights. Thus, it is not
applicable in training where the model weights are dynamic.

Recent developments of CrypTFlow2 [49] and Chee-
tah [25] adapts oblivious transfer (OT) to substitute GC to
improve efficiency. Further, Cheetah [25] proposes to apply the
polynomial homomorphism instead of the SIMD technique in
HE for linear computation. We adopt polynomial encoding as
a primitive in Pencil and adapt it for batched inputs in matrix
multiplication and 2D convolution, similar to [22] and [38].

Hardware Acceleration in ML. Hardware acceleration has
been widely applied in the field of machine learning. Main-
stream ML frameworks all support GPU or TPU acceleration,
but only for plaintext ML. Extending hardware acceleration to
privacy-preserving learning is a less charted area. Recently,
[30], [54] explores hardware acceleration for various MPC
primitives, by moving various linear and non-linear operations
onto GPU, under a setting of 3 or more servers. Some
art further explores specialized FPGA or ASIC architecture.
For instance, [64] accelerates the generation of multiplication
triples using a trusted FPGA chip. There are also proposals
to accelerate HE primitives. For instance, the widely used HE
framework, Microsoft SEAL [52], supports multi-threading.
[5] implements a simplified version of CKKS cryptosystem
(without relinearization or rescaling) on GPU.

B. Limitations and Explorations

Parameter Selection. Private inference framework of Chee-
tah [25] uses BFV with t = 241, q ≈ 2109, f = 12, with
multiplicative depth of only 1. However, Pencil need a much
higher precision of f = 25 bits to keep the gradients from
diminishing into noises when training deep NNs. This also
enforces a larger ciphertext modulus q ≈ 2180. Exploring
a good balance between precision and HE parameters is an
interesting direction. Recently, [48] proposed to use mixed bit-
widths in different NN operators to control the precision at a
smaller granularity, which may be adapted to our framework.

Gradient Clipping. In Pencil, to protect the privacy of model

13

updates, DO cannot directly clip the gradients as the original
DPSGD algorithm [2]. Instead, DO estimates an upper bound
C of gradients beforehand. Thus, the added DP noises may
be slightly higher. A straightforward solution is to let MO
compute the gradient norm in the encrypted domain and sends
it to DO, which, however, imposes non-trivial overhead. We
leave further exploration to future work.

VIII. CONCLUSION

In this work, we present Pencil, a collaborative training
framework that simultaneously achieves data privacy, model
privacy, and extensibility of multiple data providers. Pencil
designs end-to-end training protocols by combining HE and
MPC primitives for high efficiency and utilizes a preprocessing
technique to offload HE operations into an offline phase.
Meanwhile, we develop a highly-parallelized GPU version of
the BFV HE scheme to support Pencil. Evaluation results
show that Pencil achieves training accuracy nearly identical
to plaintext training, while the training overhead is greatly
reduced compared to prior art. Furthermore, we demonstrate
that Pencil is secure against both existing and adaptive attacks.

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their valuable
feedback. The research is supported in part by the National
Key R&D Program of China under Grant 2022YFB2403900,
NSFC under Grant 62132011 and Grant 61825204, and
Beijing Outstanding Young Scientist Program under Grant
BJJWZYJH01201910003011.

REFERENCES

[1] “Complete guide to GDPR compliance,” Feb 2020, accessed: Nov.
2023. [Online]. Available: https://gdpr.eu/

[2] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov,
K. Talwar, and L. Zhang, “Deep Learning with Differential Privacy,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2016.

[3] N. Agrawal, A. Shahin Shamsabadi, M. J. Kusner, and A. Gascón,
“QUOTIENT: Two-Party Secure Neural Network Training and Pre-
diction,” in Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2019.

[4] F. am Main, “Enhancing cooperation in the fight against money laun-
dering,” May 2022, accessed: Nov. 2023.

[5] A. A. Badawi, L. Hoang, C. F. Mun, K. Laine, and K. M. M.
Aung, “PrivFT: Private and Fast Text Classification With Homomorphic
Encryption,” IEEE Access, 2020.

[6] J. C. Bajard, J. Eynard, M. Hasan, and V. Zucca, “A Full RNS Variant
of FV Like Somewhat Homomorphic Encryption Schemes,” 2017.

[7] D. Beaver, “Efficient multiparty protocols using circuit randomization,”
in Advances in Cryptology (CRYPTO’91), 1992.

[8] J. Blömer, R. Karp, and E. Welzl, “The rank of sparse random matrices
over finite fields,” Random Structures & Algorithms, 1997.

[9] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Konečný, S. Mazzocchi, B. McMahan,
T. Van Overveldt, D. Petrou, D. Ramage, and J. Roselander, “Towards
Federated Learning at Scale: System Design,” in Proceedings of Ma-
chine Learning and Systems, 2019.

[10] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical Secure Ag-
gregation for Privacy-Preserving Machine Learning,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2017.

[11] H. Chaudhari, R. Rachuri, and A. Suresh, “Trident: Efficient 4PC
Framework for Privacy Preserving Machine Learning,” in Proceedings
2020 Network and Distributed System Security Symposium, 2020.

[12] C. Cooper, “On the Distribution of Rank of a Random Matrix over a
Finite Field,” Random Struct. Algorithms, 2000.

[13] R. Cramer, I. Damgård, D. Escudero, P. Scholl, and C. Xing, “SpdZ2k:
Efficient mpc mod 2k for dishonest majority,” in Advances in Cryptol-
ogy (CRYPTO 2018), H. Shacham and A. Boldyreva, Eds., 2018.

[14] A. Dalskov, D. Escudero, and M. Keller, “Fantastic four:{Honest-
Majority}{Four-Party} secure computation with malicious security,” in
30th USENIX Security Symposium (USENIX Security), 2021.

[15] I. Damgård, D. E. Escudero, T. K. Frederiksen, M. Keller, P. Scholl, and
N. Volgushev, “New Primitives for Actively-Secure MPC over Rings
with Applications to Private Machine Learning,” 2019 IEEE Symposium
on Security and Privacy (SP), 2019.

[16] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in 2009 IEEE Conference
on Computer Vision and Pattern Recognition, 2009.

[17] N. Dowlin, R. Gilad-Bachrach, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, “CryptoNets: Applying Neural Networks to Encrypted
Data with High Throughput and Accuracy,” in Proceedings of the
33rd International Conference on International Conference on Machine
Learning (ICML), 2016.

[18] J. Fan and F. Vercauteren, “Somewhat Practical Fully Homomorphic
Encryption,” IACR Cryptol. ePrint Arch., vol. 2012, p. 144, 2012.

[19] Y. Gao, M. Kim, S. Abuadbba, Y. Kim, C. Thapa, K. Kim, S. A.
Camtep, H. Kim, and S. Nepal, “End-to-End Evaluation of Federated
Learning and Split Learning for Internet of Things,” in 2020 Interna-
tional Symposium on Reliable Distributed Systems (SRDS), 2020.

[20] J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller, “Inverting
Gradients - How Easy is It to Break Privacy in Federated Learning?” in
Proceedings of the 34th International Conference on Neural Information
Processing Systems (NIPS), 2020.

[21] O. Gupta and R. Raskar, “Distributed learning of deep neural network
over multiple agents,” J. Netw. Comput. Appl., 2018.

[22] M. Hao, H. Li, H. Chen, P. Xing, G. Xu, and T. Zhang, “Iron:
Private Inference on Transformers,” in Advances in Neural Information
Processing Systems, 2022.

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” in 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016.

[24] E. Hesamifard, H. Takabi, M. Ghasemi, and R. N. Wright, “Privacy-
preserving Machine Learning as a Service,” Proceedings on Privacy
Enhancing Technologies, 2018.

[25] Z. Huang, W. jie Lu, C. Hong, and J. Ding, “Cheetah: Lean and fast
secure Two-Party deep neural network inference,” in 31st USENIX
Security Symposium (USENIX Security 22), 2022.

[26] M. Huh, P. Agrawal, and A. Efros, “What makes ImageNet good for
transfer learning?” 2016.

[27] W. Jakob, J. Rhinelander, and D. Moldovan, “pybind11 –
Seamless operability between C++11 and Python,” 2021,
https://github.com/pybind/pybind11.

[28] J. Jeon and J. Kim, “Privacy-Sensitive Parallel Split Learning,” in 2020
International Conference on Information Networking (ICOIN), 2020.

[29] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “GAZELLE: A
low latency framework for secure neural network inference,” in 27th
USENIX Security Symposium (USENIX Security 18), 2018.

[30] B. Knott, S. Venkataraman, A. Hannun, S. Sengupta, M. Ibrahim, and
L. van der Maaten, “CrypTen: Secure Multi-Party Computation Meets
Machine Learning,” in Advances in Neural Information Processing
Systems, 2021.

[31] V. Kolesnikov and R. Kumaresan, “Improved OT Extension for Trans-
ferring Short Secrets,” in Annual International Cryptology Conference,
2013.

[32] J. Konecný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated Learning: Strategies for Improving Communica-
tion Efficiency,” ArXiv, 2016.

[33] N. Koti, A. Patra, R. Rachuri, and A. Suresh, “Tetrad: Actively Secure
4PC for Secure Training and Inference,” ArXiv, 2021.

14

https://gdpr.eu/

[34] A. Krizhevsky, “Learning Multiple Layers of Features from Tiny
Images,” 2009.

[35] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” Commun. ACM, 2017.

[36] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
1998.

[37] Q. Li, Z. Liu, Q. Li, and K. Xu, “martFL: Enabling Utility-Driven
Data Marketplace with a Robust and Verifiable Federated Learning
Architecture,” in Proceedings of the 2023 ACM SIGSAC Conference
on Computer and Communications Security (CCS), 2023.

[38] X. Liu and Z. Liu, “LLMs Can Understand Encrypted Prompt: Towards
Privacy-Computing Friendly Transformers,” 2023.

[39] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-Efficient Learning of Deep Networks from Decentral-
ized Data,” in International Conference on Artificial Intelligence and
Statistics, 2016.

[40] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa,
“Delphi: A Cryptographic Inference System for Neural Networks,” in
Proceedings of the 2020 Workshop on Privacy-Preserving Machine
Learning in Practice, 2020.

[41] P. Mohassel and P. Rindal, “ABY3: A Mixed Protocol Framework for
Machine Learning,” Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, 2018.

[42] P. Mohassel and Y. Zhang, “SecureML: A System for Scalable Privacy-
Preserving Machine Learning,” in 2017 IEEE Symposium on Security
and Privacy (SP), 2017.

[43] K. Nandakumar, N. Ratha, S. Pankanti, and S. Halevi, “Towards Deep
Neural Network Training on Encrypted Data,” in 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), 2019.

[44] L. L. Ng and S. M. Chow, “SoK: Cryptographic Neural-Network
Computation,” in 2023 IEEE Symposium on Security and Privacy (SP),
2023.

[45] N. I. of Standards and Technology, “Security Requirements for Crypto-
graphic Modules,” U.S. Department of Commerce, Washington, D.C.,
Tech. Rep. Special Publication 800-57 Part 1 Rev. 5, 2020.

[46] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Learning and Trans-
ferring Mid-level Image Representations Using Convolutional Neural
Networks,” in 2014 IEEE Conference on Computer Vision and Pattern
Recognition, 2014.

[47] A. Patra and A. Suresh, “BLAZE: Blazing Fast Privacy-Preserving
Machine Learning,” IACR Cryptol. ePrint Arch., p. 42, 2020.

[48] D. Rathee, M. Rathee, R. K. Kiran Goli, D. Gupta, R. Sharma,
N. Chandran, and A. Rastogi, “SiRnn: A Math Library for Secure RNN
Inference,” in 2021 IEEE Symposium on Security and Privacy (SP),
2021.

[49] D. Rathee, M. Rathee, N. Kumar, N. Chandran, D. Gupta, A. Rastogi,
and R. Sharma, “CrypTFlow2: Practical 2-Party Secure Inference,” in
Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2020.

[50] M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schnei-
der, and F. Koushanfar, “Chameleon: A Hybrid Secure Computation
Framework for Machine Learning Applications,” in Proceedings of the
2018 on Asia Conference on Computer and Communications Security
(ASIACCS), 2018.

[51] S. Sav, A. Pyrgelis, J. R. Troncoso-Pastoriza, D. Froelicher, J.-P.
Bossuat, J. Sousa, and J.-P. Hubaux, “POSEIDON: Privacy-Preserving
Federated Neural Network Learning,” 2021.

[52] “Microsoft SEAL (release 4.0),” https://github.com/Microsoft/SEAL,
Mar. 2022, microsoft Research, Redmond, WA.

[53] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
Inference Attacks Against Machine Learning Models,” in 2017 IEEE
Symposium on Security and Privacy (SP), 2017.

[54] S. Tan, B. Knott, Y. Tian, and D. J. Wu, “CryptGPU: Fast Privacy-
Preserving Machine Learning on the GPU,” in 2021 IEEE Symposium
on Security and Privacy (SP), 2021.

[55] C. D. D. Teran, “Collaboration Is Key in the Fight Against Anti-Money
Laundering,” Feb 2023, accessed: Nov. 2023.

[56] H. Tian, C. Zeng, Z. Ren, D. Chai, J. Zhang, K. Chen, and Q. Yang,
“Sphinx: Enabling Privacy-Preserving Online Learning over the Cloud,”
in 2022 IEEE Symposium on Security and Privacy (SP), 2022.

[57] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing
machine learning models via prediction {APIs},” in 25th USENIX
security symposium (USENIX Security 16), 2016.

[58] E. R. Türkoğlu, A. Özcan, C. Ayduman, A. C. Mert, E. Öztürk, and
E. Savaş, “An Accelerated GPU Library for Homomorphic Encryption
Operations of BFV Scheme,” in 2022 IEEE International Symposium
on Circuits and Systems (ISCAS), 2022.

[59] S. Wagh, D. Gupta, and N. Chandran, “SecureNN: 3-Party Secure
Computation for Neural Network Training,” Proceedings on Privacy
Enhancing Technologies, vol. 2019, 2019.

[60] W. Wang, Z. Chen, and X. Huang, “Accelerating leveled fully homomor-
phic encryption using GPU,” in 2014 IEEE International Symposium
on Circuits and Systems (ISCAS), 2014.

[61] K. Yang, C. Weng, X. Lan, J. Zhang, and X. Wang, “Ferret: Fast Exten-
sion for Correlated OT with Small Communication,” in Proceedings of
the 2020 ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2020.

[62] X. Zhang, J. Zhao, and Y. LeCun, “Character-level Convolutional
Networks for Text Classification,” in Advances in Neural Information
Processing Systems, 2015.

[63] B. Zhao, K. R. Mopuri, and H. Bilen, “iDLG: Improved Deep Leakage
from Gradients,” 2020.

[64] X. Zhou, Z. Xu, C. Wang, and M. Gao, “PPMLAC: High Performance
Chipset Architecture for Secure Multi-Party Computation.” Association
for Computing Machinery, 2022.

[65] L. Zhu, Z. Liu, and S. Han, “Deep Leakage from Gradients,” in Ad-
vances in Neural Information Processing Systems. Curran Associates,
Inc., 2019.

APPENDIX

A. Polynomial encoding method

We briefly introduce the polynomial encoding method to
evaluate [[y]] = W ◦ [[v]] in the BFV scheme, for ◦ as matrix
multiplication and 2d-convolution (i.e., Conv2d(v;W)).

Matrix multiplication. We use an improved version of the
polynomial encoding method from [25], as proposed by [22].
This improved version further takes the batch size dimension
into account and reduces the communication costs for matrix
multiplication.

Let weights be W ∈ Zno×ni
t , and batched input be v ∈

Zni×B
t (as B column vectors). We assume noniB ≤ N , the

polynomial degree of the BFV scheme. Larger matrices could
be partitioned into smaller blocks, and the evaluation could be
done accordingly.

The input v = (vij)i∈[ni],j∈[B] is encoded through πv as a
polynomial

v = πv(v) =

ni−1∑
j=0

B−1∑
k=0

vjkx
knoni+j .

The weights W = (wij)i∈[no],j∈[ni] are also encoded through
πW as a polynomial (note how it is “reversely” encoded)

W = πW (W) =

no−1∑
i=0

ni−1∑
j=0

Wijx
ini+ni−1−j .

v is encrypted in the BFV scheme, and the evaluator could
evaluate the polynomial product W · [[v]] in the encrypted
domain, obtaining an encrypted polynomial [[y]], where y =

15

https://github.com/Microsoft/SEAL

Wv. After decryption, y =
∑noniB−1

i=0 yix
i could be decoded

through π−1
y to obtain the desired coefficients.

W · v = y = π−1
y (y) = (yknoni+ini+ni−1)ik

The correctness comes from the observation that the (knoni+
ini + ni − 1)-th term of y is exactly

yknoni+ini+ni−1 =
∑

j∈[ni]

Wijvjk.

2D convolution. We also improve the method of [25] for 2D
convolution to adapt the batched input. Specifically, similar to
the idea for matrix multiplication, we consider the output chan-
nel dimension and the batch size dimension in the polynomial
encoding primitive.

Let weights W ∈ Zco×ci×s×s
t , batched input v ∈

ZB×ci×h×w
t . For simplicity, we assume Bcocihw ≤ N . Larger

inputs or weights could be partitioned to meet this requirement.

The input v = (vb,c,i,j)b∈[B],c∈[ci],i∈[h],j∈[w] is encoded as
a polynomial

v = πv(v) =

B−1∑
b=0

ci−1∑
c=0

h−1∑
i=0

w−1∑
j=0

vb,c,i,jx
indexv(b,c,i,j)

where indexv(b, c, i, j) = bcocihw + chw + iw + j.

The weights W = (Wc′,c,i,j)c′∈[co],c∈[ci],i,j∈[h] are also en-
coded reversely through πW as a polynomial

W = πW (W) =

co−1∑
c′=0

ci−1∑
c=0

h−1∑
i=0

w−1∑
j=0

Wc′,c,i,jx
indexW (c′,c,i,j)

where indexW (c′, c, i, j) = O + c′cihw − chw − iw − j

and O = (ci − 1)hw + (s− 1)w + s− 1.

With this encoding, [[y]] = W · [[v]] has the desired result at
the coefficients of specific terms. Precisely, if we denote y =∑Bcocihw−1

i=0 yix
i, the decoding function is

y = π−1
y (y) = (yindexy(b,c′,i,j))b∈[B],c′∈[co],i∈[h],j∈[w]

where indexy(b, c
′, i, j) = bcocihw +O + c′cihw + iw + j.

Therefore, after decrypting [[y]], one could obtain the complete
result of y = Conv2d(v;W).

B. Non-linear protocols

We briefly introduce the state-of-the-art ReLU, division
(used in average pooling) and truncation protocols from prior
art [49], [25] used in Pencil. These protocols are mostly based
on oblivious transfers (OT) [61]. In an 1-out-of-n oblivious
transfer, there are two parties denoted as the Sender and the
Receiver. The Sender provides n messages while the Receiver
takes 1 of them, and Sender could not learn which one the
Receiver takes while the Receiver could not learn any other
messages except the chosen one.

ReLU. The ReLU activation function consists of a comparison
protocol and a multiplexing (bit-injection) protocol.

ReLU(x) = DReLU(x) · x = 1{x ≥ 0} · x

1{x > 0} could be obtained from the most significant bit of
the secret shared x = ⟨x⟩0 + ⟨x⟩1, with

1{x ≥ 0} = ¬MSB(x)
= MSB(⟨x⟩0)⊕MSB(⟨x⟩1)⊕ 1{2ℓ−1 − ⟨x⟩0 < ⟨x⟩1}

The last term requires a secret comparison protocol where
the two parties input a = 2ℓ−1 − ⟨x⟩0 and b = ⟨x⟩1
respectively. The secret comparison protocol is implemented
with OT and bit-and protocol [49]. Specifically, the ℓ-bit
integer is decomposed into multiple blocks, each with m bits.
Then the two parties invokes 1-out-of-2m OT to obtain the
greater-than and equality comparison results for each separate
block. These comparison results of ⌈ℓ/m⌉ blocks are combined
in a tree structure using a bit-and protocol (also implemented
with OTs), according to the following observation:

1{a < b} = 1{a1 < b1} ⊕ (1{a1 = b1} ∧ 1{a0 < b0})

where a = a1||a0, b = b1||b0. This observation indicates that
the comparison result of larger bit-length integers could be
obtained from their smaller bit-length blocks.

Finally, the multiplexing of ReLU is constructed with two
OTs, where the two parties could select with their share
of ⟨DReLU(x)⟩, resulting in a canceling to zero when their
selection bits are the same, and the original x otherwise. This
multiplexing protocol is detailed in Algorithm 6 of Appendix
A in [49].

Division and Truncation. In average pooling, we need to use
the division protocol where the shared integers are divided
with a public divisor. In truncation, the shared integers are
right-shifted f bits. Our used neural networks only use average
pooling of 2 × 2 kernels. Therefore, the division used could
also be considered a truncation of 2 bits, and thus we only
introduce the truncation protocol. Nevertheless, for the general
case, the division protocol proposed by [49] (Algorithm 9 in
Appendix D) could be used.

For truncation, SecureML [42] first proposed a protocol
where each party directly performs local right-shift on its
share. While lightweight, this protocol could introduce two
kinds of errors: (1) a large error when the two shares’ addition
wraps over the ring; (2) a small error on the least significant bit.
For accurate truncation, [49] instead invokes secret comparison
protocols to compute the error terms and correct both the small
and the large error by adding a correction term. Recently, [25]
observes that in private machine learning, as we are dealing
with scaled decimals, the small 1-bit error would hardly affect
the accuracies. Thus, [25] proposes an approximate truncation
protocol that only handles the possible large error, greatly
reducing the overheads.

C. Security proofs

We give the proof for Theorem IV.1.

Proof: We describe the simulators for data privacy and
model privacy below, after which we provide a full hybrid
argument that relies on the simulators.

Simulator Protocol for Data Privacy. The simulator Sim,
when provided with the MO’s view (including the model pa-
rameters M, weight update ∇W,∇b and shares ⟨X⟩0, ⟨∇Y⟩0

16

of each trainable linear layer in each training iteration), pro-
ceeds as follows:

1. Sim chooses an uniform random tape for the MO.
2. Sim chooses keys pk, sk for the HE scheme.
3. For every execution of Algorithm 1, instead of sending

the encryption of its share [[⟨X⟩1]], Sim simply sends
encryption of a zero tensor [[0]] (with the same shape as
X) to MO.

4. For every execution of Algorithm 2, similarly, Sim sends
encryption of zeros instead of [[⟨X⟩1]], [[⟨∇Y⟩1]] to MO.
Moreover, for ∇̃W, it sends ∇W−s+⟨∇Y⟩0 ◦⟨X⟩0+e.

5. For non-linear layer evaluations, Sim uses randomized
tensors as its share of the input.

Simulator Protocol for Model Privacy. The simulator Sim,
when provided with the DO’s view (including the dataset D
and the shares ⟨X⟩1, ⟨∇Y⟩1 of each trainable layer in each
training iteration), proceeds as follows:

1. Sim chooses an uniform random tape for the DO.
2. Sim receives pk of the HE scheme from the DO.
3. For every execution of Algorithm 1, the Sim receives

[[⟨X⟩1]] but sends [[⟨Y⟩1]] = [[−s]] back, for some random
tensor s.

4. For every execution of Algorithm 2, similarly, the Sim
sends only [[−s]] back for decryption, instead of [[∇cross

W −
s]].

5. For non-linear layer evaluations, Sim uses randomized
tensors as its share of the input.

Now we show that the two simulated distribution is indis-
tinguishable from the real-world distribution.

Proof with a corrupted MO. We show that the real world
distribution is computationally indistinguishable from the sim-
ulated distribution via a hybrid argument. In the final simulated
distribution, the simulator does not use the DO’s dataset as
input, and so a corrupted DO learns nothing in the real world.

• Hyb0: This corresponds to the real world distribution where
the DO uses its training dataset D.

• Hyb1: In this hybrid, we change the DO’s message in
Algorithm 1. DO sends the homomorphic encryption of a
zero tensor [[0]] instead of sending [[⟨X⟩1]]. It follows from
the property of the homomorphic encryption (ciphertexts
are computationally indistinguishable) that Hyb1 is indis-
tinguishable from Hyb0.

• Hyb2: In this hybrid, similarly we change DO’s message in
Algorithm 2. DO again uses encryption of zeros to substitute
[[⟨X⟩1]], [[∇C

Y]]. Hyb2 is indistinguishable from Hyb1.
• Hyb3: In this hybrid, we further change DO’s behavior

in Algorithm 2: with the knowledge of MO’s view, DO
sends ∇W − s + ⟨∇Y⟩0 ⊙ ⟨X⟩0 + e as ∇̃W. Since this
message exactly allows the MO to obtain ∇W, thus Hyb3
is indistinguishable from Hyb2.

• Hyb4: In this hybrid, we replace DO’s inputs to the non-
linear evaluation by random tensors. It follows from the
security of these non-linear evaluation MPC protocols [25],
[49], that Hyb4 is indistinguishable from Hyb3, completing
the proof.

Proof with a corrupted DO. We show that the real-world
distribution is computationally indistinguishable from the sim-
ulated distribution via a hybrid argument. In the final simulated

(0) Input shape (1, 28, 28) flattened as (784)
(1) Fully connected + ReLU: 128 neurons → (128)
(2) Fully connected + ReLU: 128 neurons → (128)
(3) Fully connected: 10 neurons → (10)

Fig. 4: MLP for the MNIST task [41], [47], [3]

(0) Input shape (1, 28, 28)
(1) Conv2d + ReLU: 5 channels, 5×5 kernel, 2 stride, 2 margin

padding → (5, 14, 14)
(2) Fully connected + ReLU: 100 neurons → (100)
(3) Fully connected: 10 neurons → (10)

Fig. 5: CNN for the MNIST task [50]

distribution, the simulator does not use the MO’s model
weights M for training, and so a corrupted DO learns nothing
in the real world.

• Hyb0: This corresponds to the real world distribution where
the MO uses its model weights M.
• Hyb1: In this hybrid, we change the MO’s behavior in

Algorithm 1. Instead of using the weights W to calculate
W ◦ [[X]]− s, MO simply samples s and sends back [[−s]].
Also, MO does not add bias term b to its share of output
Y. It follows from the security of homomorphic encryption
that Hyb1 is computationally indistinguishable from Hyb0.
• Hyb2: In this hybrid, similarly we change the MO’s behav-

ior in Algorithm 2 by substituting the ciphertext message
[[∇cross

W − s]] with simply [[−s]]. Hyb2 is computationally
indistinguishable from Hyb1.
• Hyb3: In this hybrid, we replace MO’s inputs to the non-

linear evaluation by random tensors. It follows from the
security of these non-linear evaluation MPC protocols [25],
[49], that Hyb3 is indistinguishable from Hyb2, completing
the proof.

D. Neural Network Architecture

The neural networks used for the evaluation are listed in
Figure 4, 5, 6, 7, 8. The neurons are the number of output
dimensions for fully connected layers. The channels are the
number of output channels for 2D convolution layers. For
concision, the activation function ReLU is written directly after
linear layers. The 1D convolution and 1D average pooling are
implemented simply as a specialization of 2D variants.

(0) Input shape (256, 64)
(1) Conv1d + ReLU: 128 channels, 5 kernel → (128, 60)
(2) AvgPool1d: 2 kernel → (128, 30)
(3) Conv1d + ReLU: 128 channels, 5× 5 kernel → (128, 26)
(4) AvgPool1d: 2 kernel → (128, 13)
(5) Fully connected: 4 neurons → (4)

Fig. 6: TextCNN for the AGNews task [62]

17

(0) Input shape (3, 32, 32)
(1) Conv2d + ReLU: 64 channels, 5×5 kernel, 2 margin padding

→ (64, 32, 32)
(2) AvgPool2d: 2× 2 kernel → (64, 16, 16)
(3) Conv2d + ReLU: 64 channels, 5×5 kernel, 2 margin padding

→ (64, 16, 16)
(4) AvgPool2d: 2× 2 kernel → (64, 8, 8)
(5) Conv2d + ReLU: 64 channels, 3×3 kernel, 1 margin padding

→ (64, 8, 8)
(6) Conv2d + ReLU: 64 channels, 1× 1 kernel → (64, 8, 8)
(7) Conv2d + ReLU: 16 channels, 1× 1 kernel → (16, 8, 8)
(8) Fully connected: 10 neurons → (10)

Fig. 7: CNN for the CIFAR10 task [56]

(0) Input shape (3, 224, 224)
(1) In NN5: AlexNet [35] pretrained feature extractor → (9216);

In NN6: ResNet50 [23] pretrained feature extractor → (2048)
(2) Fully connected + ReLU: 512 neurons → (512)
(3) Fully connected + ReLU: 256 neurons → (256)
(4) Fully connected: 10 neurons → (10)

Fig. 8: Transfer learning models for the CIFAR10 task

E. Inverting Gradients

In this section we evaluate the gradient inverting attack
introduced by [20], which introduces a regularization term to
remove the noises in the reconstruction results. We again use
CNN and CIFAR10 for evaluating this attack. The results are
shown in Figure 9. The results confirm that, when σ ≥ 10−2

the reconstructed images are smoothed but completely uniden-
tifiable.

Original =0 =0.0001 =0.0005 =0.001 =0.01

Fig. 9: Gradient inverting attack [20] defended with different
levels of noise

18

APPENDIX A
ARTIFACT APPENDIX

A. Description & Requirements

1) How to access:

• DOI: https://doi.org/10.5281/zenodo.10140580
• GitHub: https://github.com/lightbulb128/Pencil

2) Hardware dependencies: A computer with CUDA sup-
porting GPU devices. The code has been tested on a machine
with a NVIDIA RTX A6000 GPU and CUDA 11.7.

3) Software dependencies: A Linux machine, with python
≥ 3.8 and CUDA ≥ 11.7. The code has been tested on Ubuntu
20.04.3 LTS.

4) Benchmarks: MNIST, CIFAR10, AGNews datasets and
pretrained ResNet50 and GPT-2 models are used. They
are available from the torchvision, torchtext and
transformers package.

B. Artifact Installation & Configuration

The installation can be done via running
build_dependencies.sh provided in the repository. At a
high level, it clones the three dependencies (OpenCheetah,
EzPC, seal-cuda) and builds them. OpenCheetah,
EzPC are 2-party secure computation libraries providing non-
linearities evaluation, which are adapted to provide python
interfaces, and seal-cuda is a homomorphic encryption
library with GPU parallelization providing linearities related
utilities.

C. Major Claims

• (C1): Models trained privately with Pencil has similar
accuracy metrics as trained in plaintext, as shown by
Table II and Fig. 1. Reproduced by Experiment (E1).

• (C2): Training costs in Pencil are acceptable as shown
by Table III. Reproduced by Experiment (E2).

• (C3): Including more DOes with heterogeneous data
could improve model accuracy in Pencil, as shown by
Fig. 2. Reproduced by Experiment (E3).

• (C4): One could integrate DP methods to provide stronger
privacy guarantees over the model gradients, as shown by
Table IV. Reproduced by Experiment (E4).

D. Evaluation

The evaluation mainly focuses on two parts: model
accuracy and training cost. In the provided repository,
gen_scripts.sh could be used to generate a series of
evaluation scripts. These scripts are prefixed with fullhe
or prep, corresponding to Pencil or Pencil+. Recall that
Pencil uses online homomorphic encryption while Pencil+
uses the preprocessing optimization which conveys all HE
computations to the offline phase. Each script itself simulates
the two participants DO and MO, which communicate through
a localhost port.

Each script represents a single experiment, either (1) to
train a model and tests its accuracy, or (2) to measure the
training cost of a single training step. The scripts will output
logs in the corresponding logs/ folder with the same name

Task Model Pencil Pencil+
MNIST MLP 6.2 2.3
MNIST CNN 7.8 4.4

AGNews TextCNN 162 78.9
CIFAR10 CNN 278 227
CIFAR10 AlexNet 96 33.3
CIFAR10 ResNet50 27.3 6.5

TABLE X: Online training time (hours) for each model.

as the script, which will contain the accuracy and cost mea-
surement results.

1) Experiment (E0): [trivial.sh] Train the simplest
model on MNIST for 1 epoch. This is used for checking
whether the installation is functional. Estimated time: 0.6 and
0.2 hours for Pencil and Pencil+ respectively

2) Experiment (E1): [train_nn*.sh] Train the model
end-to-end and outputs the accuracy every 1/5 epochs. Esti-
mated times are listed in Table X.

3) Experiment (E2): [costs_nn*.sh] Train the model
for one step and output the time and communication costs.
For Pencil, cost evaluation time is expected to be below 1
minutes for each model. For Pencil+, the time also includes
the preprocessing phase time, listed in Table III in the main
paper for each model.

4) Experiment (E3): [dp*_nn*.sh] Train the model with
different DP noise levels. Estimated times are listed in Table
X.

5) Experiment (E4): [hetero_nn*.sh] Train the model
with 5 simulated DOes with different data distributions. Esti-
mated times are listed in Table X.

The end-to-end online training time for each NN listed in
Table X could also be calculated from the throughput listed in
the paper.

E. Customization

The provided code could be run with other arguments
than listed in the generated scripts, including learning rate,
optimizer type, gradient clipping bounds and noise levels, etc..
The detailed list and usage are provided in the readme.md
file in the repository.

19

https://doi.org/10.5281/zenodo.10140580
https://github.com/lightbulb128/Pencil

	Introduction
	Our Contributions
	Related Work
	Assumptions and Threat Model

	Preliminaries
	Notations
	Lattice-based Homomorphic Encryption
	Additive Secret Sharing and Fixed-point Representation
	Neural Network Training

	Training in Pencil
	Pencil Training Overview
	Linear Protocols
	Forward Propagation
	Backpropagation

	Non-linear Protocols
	Preprocessing Optimization
	Extending to Multiple DOes

	Security Analysis
	Security of the Pencil Training Framework
	Distinguishability Caused by Prepossessing Optimization
	Privacy Analysis of the Weight Updates

	Hardware Acceleration
	Evaluation
	Implementation
	Evaluation Setup
	End-to-End Training Performance
	Training from Scratch
	Transfer Learning Models
	Training with Heterogeneous DOes
	Impact of the DP Noises

	Performance Breakdown
	Efficiency Comparison with Prior Art
	Pencil Against Attacks

	Discussion and Future Work
	Other Related Work
	Limitations and Explorations

	Conclusion
	References
	Appendix
	Polynomial encoding method
	Non-linear protocols
	Security proofs
	Neural Network Architecture
	Inverting Gradients
	Appendix A: Artifact Appendix
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Artifact Installation & Configuration
	Major Claims
	Evaluation
	Experiment (E0)
	Experiment (E1)
	Experiment (E2)
	Experiment (E3)
	Experiment (E4)

	Customization

