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* Key problem: Machine learning when model and data are separated

* A Model Owner (MO) wishes to use the data of multiple Data Owners
(DOes) to train a model.
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Overview

* Requirements
|) Data privacy — Fundamentally, raw data of DOes should not be leaked.

2) Model privacy — Since MO may wish to finetune an existing model, the model parameters
should not be leaked to other participants. Furthermore, the model should be able to be

deployed independently by MO after training.

3) Extensibility — The framework should scale to more DOes without significant increased cost
4) Against collusion — Colluding parties should not have advantage to break privacy of other

honest parties
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Problems of prior works

* Federated Learning
* In every iteration, Server (MO) distributes the model to Clients (DOes).
* Clients train with local data and upload the updates for aggregation.
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* Clients train with local data and upload the updates for aggregation.
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Problems of prior works

* Secure Multiparty Computation (MPC)

* MO and DOes participate in n-party computation as servers.

Pros
@ @ * Model (and data) privacy

guaranteed.

Cons

* Not extensible: introducing
new DOes requires new

@ @ protocol design.
* Not secure against collusion

Participants’ roles are symmetric in MPC. o Huge communication
All model and data are secret-shared.
overhead.
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Problems of prior works

* Pure Homomorphic Encryption (HE) Approaches
* DO uploads encrypted data for training; MO obtains an encrypted model.

Encrypted
=
A Pros
Encrypted * Low communication overhead.

data
Cons

* Not extensible: only one DO!
* Heavy computation
The encrypted model could only be
used by the DO assisting training.
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Our solution

*2-party training: HE + MPC
* Data and model privacy guaranteed.

* Model updates are given only to MO.

* i.e. the model is not shared nor encrypted w.r.t specific
DO(es)

* Extensibility and collusion defence

* MO trains with a different DO in each step.

* Since no privacy leaks in 2-party, collusion
could not break the privacy of any party.

Single training step

Efficient HE/MPC

training protocol
< >

Multiple steps across DOes
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Training: Linear layers = HE

* Forward propagation
* 2-round protocol with HE

* As a general solution, this
algorithm does not specify
how W o [X] is evaluated.

* Our implementation uses
batched polynomial
encoding, but other methods
(e.g. Gazelle’s encoding)
could be used.
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* For gradient of W, it is the product
of two secret-shared values

Jf(X; W.b)
OW

Vw =Vy © =Vy ©X

*Solution: HE for cross terms
(no need for cipher-cipher
multiplication)

[Vw] = ((Vy)o + [{Vy)1]) © ((X)g + [{(X),])-
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Training: Non-linear layers = MPC

* Build with Two-party MPC
* Example: ReLU(x) = DReLU(x) - x

* DRelLU => secure comparison protocol
* Boolean-arithmetic multiplication => OT-based multiplexing
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* Substantial part of computation lies in HE linear operation evaluation
* W o [X] in FP, results shared
W O, [Vy] in BP, results shared

* (Vy)o © [{X)1] + [{Vy)1] O (X)q in BP, results shared

* Generalization: Is there a way to accelerate online evaluation of
general operator u o v, each party holding one operand?

* First, let’s consider a fixed 1 and variable v’s.
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* Preprocessed shares cannot be
reused, or info is leaked.
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Cpusfxedu | )] * If, for vy and v4, the same sharing of
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Traditional preprocessing: Beaver triples

* Preprocessed shares cannot be
reused, or info is leaked.

/ Alice " Bob \

Cmpusfixedu ||| * If, for vy and v,, the same sharing of
Preprocess (heavy) samolec w = u' o v’ was used, Bob would send
| HE/MPC protocol J(——) random v’ U, - UO and U, - v1 tO Alice, SO Alice

Obtains (W), Return sharesof w = uo v’ Obtains (W) VYOUICI 9bta|n the C.Ilfference UO. o vl (a
...................................................................... direct linear combination of 2 input
MOnI:(n((aj (.Iighttwelight) Inputs v Val UeS)
asked inputv. — v
B . .
Outonte Outouts * Total communication is not reduced,
(wov)o = (w)o (wov)y while total computation is even
+uo(v—v) = (w)1

J N ) increased.
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Novel approach: Multiple masks

* Solution: use multiple masks
to increase the revealed
linear combination
complexity.

* Bob samples m random v;’s
to conduct preprocessing.

* Reuse the shares (w;) for
multiple online executions
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Inputs fixed u

Outputs

(uov)y=uo
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samples
random u;

Obtains (W),

Inputs u
Samples k;

Computes (t;),
= (uo v})o

=i ki(wij)o

Outputs

(uov)y=uov

HE/MPC protocol

Return shares of w;; = u; o V;-

Preprocess (heavy)

A

Online (lightweight)
ki,ﬁ =u-— szzu

’
i

Y

\ 4

random v;

Obtains (W;j),

Inputs v
Samples [;




Multiple masks

* Extending to variable u’s
* Similarly, Alice samples multiple masks u;

*If the online phase is executed T times:
e Traditional: T times HE/MPC evaluation of o

e Ours: m? times of HE/MPC evaluation,
regardless of T
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Multiple masks

* Extending to variable u’s
* Similarly, Alice samples multiple masks u;

*If the online phase is executed T times:
e Traditional: T times HE/MPC evaluation of o

e Ours: m? times of HE/MPC evaluation,
regardless of T

* Security analysis shows

* To eliminate masks, an attacker would
require at least m + 1 equations

* Complexity of breaking one u or v is
0(2/™), f being the fixed-point precision
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Evaluation: Training costs

Since the preprocessing technique introduces different security properties, we
denote Pencil with or without it as Pencil and Pencil+ respectively.

Pencil Pencil™

Scenario Task Model Online Preprocessing Online
TPLan TPwan C |l Torep  Coprep TPLan TPwan C
MNIST NN1 0.73 x 10*  5.12 x 10* 1.66 || 0.02 335 26.52 x 10* 19.87 x 10*  0.23
Train from  MNIST NN2 || 7.70 x 10* 4.43 x 10* 1.71 || 0.02  4.13 | 13.72 x 10* 10.75 x 10*  0.36
scratch CIFARI0  NN3 258 x 10*  1.62 x 10*  4.11 0.05 1026 | 2.90 x 10* 1.98 x 10*  2.86
CIFARIO NN4 || 0.18 x 10* 0.12 x 10* 44.89 || 0.70 83.12 | 0.22 x 10*  0.15 x 10* 34.90
Transfer ~ CIFARI0  NN3 0.52 x 10* 0.39 x 10* 11.33 091 46.00 1.55 x 10% 1.24 x 10*  2.90
learning  CIFAR10  NN6 1.83 x 10* 1.17x10* 548 || 030 1596 | R805x10* 5.89x10* 0.82

TABLE III: Training costs for different ML tasks. For the online phase, TP stands for the throughput (images/hour) of the
training system, and subscript LAN, WAN indicate the network settings; C stands for the online communication (MB) per image.
For Pencil™, we also report the time (T prep, hours) and communication (Cprep, GB) of preprocessing. Note that the preprocessing
overhead is one-time overhead.

With Pencil+ and transfer learning, a model for CIFAR10 classification could be
trained within 6.5 hours (10 epochs)



Evaluation: Training costs

Throughput (10* img/h) Comm. (MB/img)
Model 12] 12] P PT 12] P PT

2 x 128FC | 0.7 011 97 203 552 1.7 02
3x128FC | 0.6 0.10 81 189 658 22 03
2x512FC | 02 003 26 132 | 3470 52 08

TABLE VII: Performance comparison with QUOTIENT
and Semi2k in the 2 party setting. The models are
represented as n x mFC, as used by [2]. P represents Pencil
and P represents Pencil™.

* Comparison with previous 2PC works
shows improvements of up to 2
orders of magnitude.



Evaluation: Training costs

Throughput (10* img/h) Comm. (MB/img) ¢ Compal"ISOn W|th PreV|OUS 2PC WOI"kS
Model 21 [12] P Pt | [12] P Pt .
2% 128FC | 0.7 0.11 97 293 | 552 17 02 ShOWS |mprovements Of Up to 2
3x128FC | 06 010 81 189 | 658 22 03 .
2xBI12FC | 02 003 26 132 | 3470 52 08 orders Of magnltude.

TABLE VII: Performance comparison with QUOTIENT [2]
and Semi2k [12] in the 2 party setting. The models are
represented as n x mFC, as used by [2]. P represents Pencil
and P represents Pencil™.

* Unlike previous general n-PC

Throughput (102 img/h) Comm. (per img)
Model [12] Pencil Pencil™ [12]  Pencil  Pencil™ i i
2 parties .11 97 293 0.55GB 1.7MB 0.2MB frameworks’ eXtendlng to mUItIPIe
3 parties | 0.61 97 293 2.58GB 1.7MB 0.2MB I
4 parties | 0.41 97 293 6.06GB  1.7MB 0.2MB Does does nOt IntFOduce eXtra
5 parties | 0.07 97 203 | 57.69GB  1.7MB  0.2MB overhead fOI" Pencil

TABLE VIII: Performance comparison with Semi2k [12] in
multiple party setting.



Thank you for listening!
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