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Abstract—Directed Greybox Fuzzing (DGF) is an effective
approach designed to strengthen testing vulnerable code areas
via predefined target sites. The state-of-the-art DGF techniques
redefine and optimize the fitness metric to reach the target sites
precisely and quickly. However, optimizations for fitness metrics
are mainly based on heuristic algorithms, which usually rely on
historical execution information and lack foresight on paths that
have not been exercised yet. Thus, those hard-to-execute paths
with complex constraints would hinder DGF from reaching the
targets, making DGF less efficient.

In this paper, we propose DeepGo, a predictive directed grey-
box fuzzer that can combine historical and predicted information
to steer DGF to reach the target site via an optimal path. We
first propose the path transition model, which models DGF as a
process of reaching the target site through specific path transition
sequences. The new seed generated by mutation would cause
the path transition, and the path corresponding to the high-
reward path transition sequence indicates a high likelihood of
reaching the target site through it. Then, to predict the path
transitions and the corresponding rewards, we use deep neural
networks to construct a Virtual Ensemble Environment (VEE),
which gradually imitates the path transition model and predicts
the rewards of path transitions that have not been taken yet.
To determine the optimal path, we develop a Reinforcement
Learning for Fuzzing (RLF) model to generate the transition
sequences with the highest sequence rewards. The RLF model can
combine historical and predicted path transitions to generate the
optimal path transition sequences, along with the policy to guide
the mutation strategy of fuzzing. Finally, to exercise the high-
reward path transition sequence, we propose the concept of an
action group, which comprehensively optimizes the critical steps of
fuzzing to realize the optimal path to reach the target efficiently.
We evaluated DeepGo on 2 benchmark suites consisting of 25
programs with a total of 100 target sites. The experimental
results show that DeepGo achieves 3.23×, 1.72×, 1.81×, and
4.83× speedup compared to AFLGo, BEACON, WindRanger, and
ParmeSan, respectively in reaching target sites, and 2.61×, 3.32×,
2.43× and 2.53× speedup in exposing known vulnerabilities.

I. INTRODUCTION

Directed Greybox Fuzzing (DGF) [5] is an efficient tech-
nique designed for testing vulnerable code areas. By defining
a measurable fitness metric, the directed greybox fuzzer can
select promising seeds and give them more mutation chances
to approach the target site gradually. For example, based
on the call graph and control-flow graph information of the
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program under test (PUT), mainstream DGF techniques use the
distance between inputs and target sites as the fitness metric to
assist seed selection and seed energy assignment. Seeds that
are closer to the target site are regarded as promising and
prioritized. DGF spends most of its time on reaching these
locations without wasting resources stressing unrelated parts,
thus, it is particularly suitable for testing scenarios including
patch testing [38], bug reproduction [35], and potential buggy
code verification [52].

To enhance directedness and improve efficiency, the state-
of-the-art DGF works leverage heuristic methods to redefine
and optimize fitness metrics. For instance, some DGF tech-
niques redefine the fitness metric based on trace similarity
(e.g., Hawkeye [8]), data conditions (e.g., CAFL [25]), and
data flow information (e.g., WindRanger [12]). Some directed
fuzzers use the sequence-based approach to enhance directed-
ness, such as extending the given target sequence (e.g., Berry
[28]) and taking the use-after-free sequence as guidance (e.g.,
Lolly [17]). And some DGF techniques improve efficiency by
pruning unreachable paths to the target (e.g., BEACON [18])
and constructing the queryable oracle to guide fuzz (MC2

[43]). However, in fuzzing, the mutation of seeds makes the
execution path uncertain. Those heuristic methods usually rely
on historical execution information and lack foresight on paths
that have not been exercised yet. For example, when using the
basic block level distance to the target as the fitness metric,
seeds with a shorter distance are prioritized without consider-
ing the path feasibility, as a result, those hard-to-execute paths
with complex constraints would hinder DGF from reaching the
target sites, making DGF less efficient. Therefore, in this paper,
we aim to design a predicted directed greybox fuzzer that can
foresee critical execution information and predict the optimal
path. By combining the historical execution information and
the predicted future execution information, the fuzzer can
intelligently generate the optimal and viable path to the target
site. By avoiding the infeasible and hard-to-execute paths, the
fuzzer can reach the target site more precisely and efficiently.

For this purpose, we propose to model DGF as a process
of reaching the target site through specific path transition
sequences and name the model as the path transition model.
The new seed generated by mutation would cause the path
transition, and we use reward to evaluate the immediate impact
of path transitions on the fuzzer. We use sequence reward to
evaluate the difficulty of reaching the target site through a se-
quence of path transitions. The path corresponding to the high-
reward path transition sequence indicates a high likelihood
of reaching the target site through it. Compared to previous
heuristic methods, this model takes the difficulty of reaching
the target site through different path transition sequences into
consideration. Besides, by analyzing the sequence rewards of
different path transition sequences, an optimal path with the
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highest sequence reward can be generated, which can be used
to guide the fuzzer to the target site more efficiently. To achieve
this goal, we need to address three challenges.

Challenge 1: How to predict path transitions that have
not been taken? To generate the optimal path to the target
site, we need to collect all the potential path transitions.
However, the existing techniques can only collect information
on the known path transitions, not suitable for future path
transitions. In DGF, different mutations would cause different
path transitions. Within the limited time budget, the fuzzer
cannot try all mutations (e.g., using all mutators to mutate all
seed bytes) on the seeds. Besides, randomly selecting mutators
and bytes for mutation can result in inefficient mutators being
chosen and key bytes being missed. Therefore, we should
predict the potential path transitions and the corresponding
rewards caused by the mutations that have not been taken.

Challenge 2: How to determine the optimal path among
large numbers of path transitions? In the path transition
model, a higher sequence reward indicates a higher likelihood
of reaching the target site through the path transition sequence.
The optimal path can be represented by a path transition
sequence with the highest sequence reward. However, the
combination of historical and predicted path transitions creates
large numbers of path transition sequences with different
sequence rewards, Thus, we should efficiently evaluate the
sequence rewards of all path transition sequences and design
a policy to guide the mutations to realize the optimal path.

Challenge 3: How to exercise the optimal path tran-
sition sequences by optimizing the fuzzing strategies?
Since DGF still employs random mutation strategies, the paths
covered by the fuzzer are random and constantly changing.
However, based on the path transition model, to efficiently
steer the fuzzer towards the target site via the optimal path
transition sequence, we should comprehensively optimize the
critical steps of fuzzing, such as seed selection, energy as-
signment, mutator schedule, looping cycles in havoc [53], and
mutation location selection. Therefore, we should be able to
optimize the critical steps of fuzzing simultaneously to exercise
the optimal path transition sequences efficiently.

To address these challenges, we propose DeepGo, a pre-
dictive directed greybox fuzzer. Based on the path transition
model, we extract the path covered by one seed, mutation
on the seed, path transition, and seed value changes caused
by path transition in the DGF to a four-tuple (path, action,
next path, reward) (see Section III). For Challenge 1, we use
deep neural networks (DNNs) to construct a Virtual Ensemble
Environment (VEE). Given a path and an action, the well-
trained VEE can predict potential path transitions and the
corresponding rewards. With the increasing path transition
information provided to VEE, VEE can gradually imitate
the path transition model and predict the path transitions
caused by the mutations that have not been taken, which
greatly improves the efficiency of DGF. For Challenge 2, we
propose a Reinforcement Learning for Fuzzing (RLF) model
to determine the optimal path. To give RLF foresight, we
use a k-step branch rollout strategy to continuously obtain
predicted path transitions from VEE. By combining the histor-
ical and predicted path transitions, the RLF model is trained
to evaluate the expected sequence rewards of path transition
sequences caused by different mutations and determine the

highest sequence reward. Additionally, the model can learn
a policy for the optimal path to guide the mutation strategy
of fuzzing. For Challenge 3, to exercise the optimal path,
we optimize fuzzing strategies based on the concept of action
group. In the action group, we comprehensively consider the
five critical steps, including seed selection, energy assignment,
the selection of looping cycles in havoc [53], mutator schedule,
and mutation location selection. Under the mutation policy
generated by the RLF model, we use a Multi-elements Particle
Swarm Optimization (MPSO) algorithm to optimize them
simultaneously, to realize the desired mutations and generate
the path transition sequences, and ultimately to reach the target
site via the optimal path.

In summary, we mainly make the following contributions:

• We propose the path transition model, which models
DGF as a process of reaching the target site through
specific path transition sequences. Based on the path
transition model, we use sequence reward as the fitness
metric to evaluate the difficulty of reaching the target
site through a sequence of path transitions.

• We construct the VEE, using DNNs to imitate the path
transition model and predict potential path transitions
and the corresponding rewards without exercising the
path, which greatly improves efficiency.

• We propose the RLF model, which can combine
the historical and predicted information to generate
the optimal path to the target site. By avoiding the
infeasible and hard-to-execute path, the optimal path
with the highest sequence reward can guide the fuzzer
to the target site efficiently and precisely.

• We optimize the mutation strategy of fuzzing at the
granularity of the action group, which is more efficient
than single-strategy optimization. In the action group,
we consider the five critical steps of fuzzing and opti-
mize them simultaneously with an MPSO algorithm.

• We implement and evaluate DeepGo. The evaluation
results demonstrate that the VEE can predict the path
transitions with high accuracy and DeepGo can reach
the target sites faster than baseline fuzzers.

• The artifact of DeepGo is available on our website.
https://gitee.com/paynelin/DeepGo.

II. BACKGROUND

Directed Greybox Fuzzing. Following AFLGo [6], the
existing DGF techniques calculate the distances between the
inputs and predefined targets based on the call graph and
control-flow graph and combine the distance with other indi-
cators (e.g., condition complexity) to form the fitness metric.
Then, at runtime, the directed greybox fuzzing techniques
design different power schedules according to the fitness metric
to assign more energy to the seeds that are preferred. It
casts reachability as an optimization problem to minimize the
distance between the generated inputs and the targets.

Deep Neural Networks. In recent years, Deep Neural Net-
works (DNNs) have demonstrated their ability to approximate
complex non-linear and non-convex functions and imitate the
environment in pattern recognition [32], [47]. DNNs have been
used in some fuzzing works, such as NEUZZ [45], MTFuzz
[44] and FUZZGUARD [59], to simulate program branching
behavior. In summary, these works collect the mutated inputs
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generated during the fuzzing process as the input of DNNs
and record the covered program branches as the labels to train
DNNs. By this means, the DNNs can simulate the program
branching behavior and guide the fuzzing optimization. The
evaluations of these works prove that DNNs are appropriate
for simulating the fuzzing environment.

Reinforcement Learning. Reinforcement Learning (i.e.,
RL) [16], [34], [41] is commonly used to solve sequential
decision problems (such as the Markov process). In the RL
model, the agents would constantly take actions to inter-
act with the environment and receive feedback, namely re-
wards. Based on the feedback, represented as a four-tuple
(state, action, next state, reward), from the environment,
the RL model would optimize the action selection strategies
(i.e., policy in RL) to obtain the maximum rewards. Following
AFLGo, we can model DGF as the Markov process and apply
the RL model to optimize the fuzzing strategies, such as the
selection of mutation operators and mutation bytes.

Model-Based Policy Optimization [19]. Model-Based
Policy Optimization (MBPO) is a model-based reinforcement
learning method consisting of two modules: a virtual environ-
ment and a reinforcement learning network. Firstly, MBPO
uses DNNs to create a virtual environment to replace the real
environment. Secondly, MBPO allows the agent to interact
with the virtual environment to obtain a large number of path
transitions. Then, MBPO can continuously train the reinforce-
ment learning network and learn the policy that maximizes
rewards for the agent based on the path transitions. In this
paper, we refer to some methods from MBPO, such as the
k-step branch rollout strategy, to combine DNNs and RL.

Particle Swarm Optimization. Particle Swarm Optimiza-
tion (PSO) algorithm [21] is an evolutionary computation tech-
nique that originated from the study of bird flocking behavior
during foraging. It has been applied to improve the fuzzing
efficiency in CGF (e.g., MOPT [31] uses the PSO algorithm to
optimize the selection probability of mutation operators based
on the fuzzing historical information). The main idea behind
PSO is to find the optimal solution through collaboration
and information sharing among individuals in the population.
PSO algorithm uses massless particles to simulate birds in a
flock, and these particles have two primary attributes: velocity
and position. Velocity represents the speed of movement, and
position represents the direction of movement. Each particle
searches for the optimal solution individually in the search
space and records it as the local best value. The local best
values are then shared among the particles in the entire swarm
to find the global best value as the optimal solution. All
particles in the swarm would adjust their velocity and position
based on the local best value and the global best value shared
in the entire swarm.

III. PATH TRANSITION MODEL

In this paper, we propose the path transition model, which
models DGF as a process of reaching the target site through
specific path transition sequences. The new seeds generated by
mutations would cause path transitions, and we use rewards to
evaluate the immediate impact of path transitions on the fuzzer.
The path transition sequence with the highest sequence reward
determines the optimal path to the target. In this section, we

path1 path2

path transition 1

path3path2

path transition 2

seed1 seed2 seed3mutation 1 mutation 2

Fig. 1. Illustration of the path transition model.

map the key elements in DGF to the path transition model and
quantify the effectiveness of path transitions and actions.

A. Elements in Path Transition Model

Path. Each path corresponds to a seed in the seed queue
of the fuzzer. We use trace_bits in AFL [6] to record
the covered branches and branches’ hit counts in the path and
distinguish different paths.

Action. A fuzzer’s action means to mutate a seed at a
specific location. We pay attention to the location (i.e., bytes)
where the mutation occurs instead of the mutator it uses. The
fuzzer takes a series of actions to reach the target site gradually.

Path transition. Mutation on the seed causes the path
transition if the execution path of the new input is different
from that of the seed. If the new input’s path is the same as
the seed’s, the mutation causes a self-path-transition.

Reward. The reward for a path transition represents the
change in the seed’s value caused by the path transition.

Policy. The policy is the strategy for the fuzzer to select
actions in each path, represented as a list of probabilities
corresponding to the actions. Under the policy, the fuzzer
would select actions with different probabilities.

We use Fig. 1 to illustrate the path transition model. Fig.
1 shows the execution tree of an example program, where the
nodes represent the basic blocks and the edges represent the
basic block transition. The execution path path1 marked green
is covered by seed s1, the execution path path2 marked blue
is covered by seed s2, and the execution path path3 marked
yellow is covered by seed s3. The node marked as orange is
the target basic block, and path3 is the optimal path that can
reach the target site. During the fuzzing process, firstly, the
fuzzer takes action to mutate seed s1 to generate a new seed
s2, making path1 transfers to path2. Then, the fuzzer takes
action to mutate seed s2, making path2 transfers to path3 and
reaching the target site. Through the two path transitions, the
fuzzer generates the optimal path path3 represented by a path
transition sequence (path transition 1, path transition 2) that
reaches the target.

B. Quantifying path transitions and actions

The fuzzer taking different actions to mutate seeds will
cause different path transitions, we use rewards to quantify
the effectiveness of path transitions and use expected sequence
rewards to quantify the effectiveness of actions.
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Seed value. We use seed value to evaluate different paths
based on their contribution to the fuzzer reaching the target
site. The seed value is calculated based on four characteristics
of the seed corresponding to the path: (1) seed distance to
the target, (2) the difficulty of satisfying the branch inversion,
(3) execution speed, and (4) whether the seed is “favored”.
In DGF, a shorter seed distance implies that the fuzzer can
reach the target site by satisfying fewer path constraints, and
the lower difficulty implies that it is easier for the fuzzer to
satisfy the path constraints leading to the target site. Moreover,
during the seed execution process, the fuzzer may get trapped
in loops (e.g., while and for loops), which reduces the
execution speed and does not contribute to the fuzzer reaching
the target site. Therefore, to enhance the fuzzing efficiency,
we prefer seeds that have faster execution speed. Additionally,
we prefer seeds that are marked as “favored” since these
seeds can cover all the explored branches. By fuzzing the
favored seeds, we can perform branch inversion on all explored
branches to cover new branches leading to the target site.
Following the methods of AFL [24] and AFLGo [6], elements
of (1), (3), and (4) can be obtained by simply recording the
execution information during fuzzing. Here, we mainly explain
the concept of “difficulty” and its calculation.

We use branch probability to measure the difficulty of
satisfying branch inversion, which is based on the statistics
of branch hits. We first obtained information on the sibling
branches of each branch during the static analysis. If the sibling
branches of the covered branches are still uncovered (i.e.,
unexplored branches), satisfying the branch inversion to cover
the unexplored branches would allow the fuzzer to transfer
from the covered paths to new paths. Then, we count branch
hits to calculate the branch probability of the unexplored
branch. If the fuzzer consistently hits the covered branches
with mutated inputs but cannot hit the unexplored branches, it
indicates that the fuzzer has difficulties in satisfying the branch
inversion. Finally, we quantify the difficulty of satisfying the
branch inversion by branch probability:

P (ubr) =
1∑

br∈ϕ(cond)

hitbr + 1
(1)

Where ubr denotes an unexplored branch. We check whether
the siblings of the covered branches are covered to find the un-
explored branches. ϕ(cond) denotes the set of all branches un-
der the same condition. hitbr denotes the branch hits recorded
during fuzzing. P (ubr) denotes the branch probability of the
unexplored branches, which will not be 0 since we believe
the unexplored branches always have the probability of being
covered by fuzzing. We use the arithmetic mean of the branch
probabilities of all unexplored branches in one seed’s path to
estimate the difficulty of satisfying the branch inversion:

EDs =

∑
br∈Φ(s) P (br)

|Φ(s)|
(2)

Where s denotes the seed, EDs denotes the estimated diffi-
culty, and Φ(s) denotes the set containing all the unexplored
branches in the seed’s path.

Therefore, distance, difficulty, execution speed, and
favored can all be quantitatively measured and calculated to
calculate the seed value. We use the Entropy Weight Method

[26] to determine the weights of the four factors based on their
information entropy. A small information entropy value makes
a small factor weight, indicating the factor has a small impact
on the overall evaluation of the seed value.

V s(pt) = W1 · ds +W2 · EDs +W3 · Exs +W4 · Fvs (3)

Where V s(pt) denotes the seed value of path pt, W1, W2,
W3, and W4 are the weights calculated based on the Entropy
Weight Method. ds denotes the seed distance, Exs denotes the
execution speed, and Fvs indicates where it is favored, the
value which could be 0 or 1. The Entropy Weight Method [26]
is a commonly used multi-element comprehensive evaluation
method. The steps for calculating the weights of different
elements are as follows:

(1) Calculate the entropy of each element:

Ej = − 1

ln(n)

n∑
i=1

pij
ln(pij)

(4)

(2) Calculate the weight of each element:

Wj =
1− Ej

n−
∑n

j=1 Ej
(5)

(3) Normalize the weight of each element:

W ′
j =

Wj∑n
j=1 wj

(6)

Where W ′
j denotes the normalized weight of the jth element.

The core idea of the Entropy Weight Method is to determine
the weight of each element by calculating their entropies, so
as to conduct multi-element comprehensive evaluation.

Then, we calculate the reward based on the seed value to
evaluate the effectiveness of the path transition:

r(pt, at, pt+1) = V s(pt+1)− V s(pt) (7)

Where r(pt, at, pt+1) denotes the reward, at denotes the action
that the fuzzer takes to transfer from path pt to path pt+1,
V s(pt+1) and V s(pt) denote the seed value of pt+1 and pt.
We use a four-tuple (pt, at, pt+1, rt) to denote a path transition.

Expected sequence reward. In the path transition model,
the path transitions caused by the actions selected according
to the policy will affect the subsequent path transition se-
quences and thus affect reaching the target site. To evaluate
the contribution of path transitions to reaching the target
site, we define the expected sequence reward as the expected
sum of rewards of the path transition sequences generated
by the fuzzer following a certain policy. It can be computed
recursively using the Bellman equation [4]:

Qπ(p, a) = E
p′∼P

[r(p, a, p′) + γV t
π(p

′)] (8)

Where p′ ∼ P denotes the probability of transferring from path
p to path p′. γ represents the discount factor, and the influence
of subsequent path transitions on the expected sequence reward
will gradually decrease. r(p, a, p′) denotes the reward of the
path transition, V t

π(p
′) denotes the transition value of path p′.

The calculation of the transition value of p′ is:

V t
π(p

′) =

{
0, if p = pter∑

a π(a|p) ·Qπ(p
′, a), others

(9)
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Fig. 2. The overview of DeepGo.

Where pter denotes the terminal path. We consider the path
as the terminal path if all actions of the path can only cause
self-path-transition. π represents the policy to select actions
(e.g., in AFL, the fuzzer employs the random policy to select
actions for mutation). π(a|p) represents the probability of path
p selecting action a under the policy π. If p′ is the terminal
state, its transition value is 0. If not, its transition value is equal
to the weighted average of the expected sequence rewards of all
actions. The Bellman equation is used to recursively update the
transition value and expected sequence reward until the path
is the terminal path. By maximizing the expected sequence
reward, the fuzzer can learn a policy that maximizes the long-
term cumulative reward.

IV. METHOD

A. Overview of DeepGo

Based on the path transition model, we design a predictable
directed greybox fuzzer, DeepGo. DeepGo uses DNNs to pre-
dict potential path transitions and the corresponding rewards.
Then, it uses reinforcement learning to combine historical and
predicted path transitions to obtain the optimal path transition
sequence with the corresponding policy. Finally, based on the
action group, it optimizes the fuzzing strategies comprehen-
sively to exercise the optimal path transition sequences. As
Fig. 2 shows, DeepGo mainly consists of four components.

Directed Greybox Fuzzing Component. The DGF com-
ponent continuously mutates seeds to generate inputs for
reaching the target sites. This component contains a static
analyzer and a fuzzer. At compile time, the static analyzer
calculates the basic-block-level distance (BB distance), records
the sibling branches of each branch, and instruments the target
program. Once the fuzzing campaign is launched, the fuzzer
continuously mutates seeds to test the program. Notably, the
path transition model is incorporated into the DGF component.

Virtual Ensemble Environment. VEE is used to predict
the potential path transitions and the corresponding rewards.
VEE consists of DNNs and shares the historical reply buffer
and predicted reply buffer with the Reinforcement Learning
for Fuzzing component. The historical replay buffer and pre-
dicted reply buffer are both data buffers that store the four-
tuples, i.e., (path, action, next path, reward). Given a tuple,
(path, action), the trained VEE would predict the next path
and reward of the action, represented as (next path, reward),
according to the probabilities of different path transitions.

Reinforcement Learning for Fuzzing Model. This model
leverages the reinforcement learning model to combine the
historical path transitions and predicted path transitions to learn
the policy that maximizes sequence rewards. The RLF model
consists of the Actor network, Q-Critic network, and V-Critic
network. After training, the Q-Critic network can evaluate the
expected sequence reward Qπ(p, a) caused by each action, the
V-Critic network can evaluate the transition value V t

π(p) of
each path, and the Actor network can learn the policy π to
maximize sequence rewards.

Fuzzing Optimization Component. This component ex-
ercises the optimal path transition sequences by optimizing
the fuzzing strategies. Based on the action group, we can
comprehensively optimize critical steps of fuzzing, and we use
the Multi-elements Particle Swarm Optimization algorithm to
optimize the elements of an action group simultaneously.

We divide the fuzzing process of DeepGo into different
fuzzing cycles, with each cycle lasting approximately 20
minutes. In each fuzzing cycle, DeepGo needs to conduct
four tasks, including (1) using the fuzzer to test programs and
provide historical path transitions to train VEE and RLF model,
(2) VEE providing predicted path transitions to train RLF
model, (3) RLF providing transition values, expected sequence
rewards, and policy to the FO component, and (4) the FO
component using the MPSO algorithm to optimize the action
group and providing the optimization strategies of fuzzing to
DGF. After DeepGo completes these four tasks, it will enter
the next fuzzing cycle and repeat these four tasks.

B. Virtual Ensemble Environment

To design a policy that can guide the fuzzer to optimal
paths, the fuzzer has to obtain rewards for all path transitions
caused by actions taken in paths. However, the fuzzer cannot
take all actions in all paths within a limited time budget (e.g.,
24 hours). To predict the potential path transitions and rewards
caused by actions that have not yet been taken, we design VEE
to imitate the path transition model and predict the potential
path transitions and the corresponding rewards.

1) Input and output encoding: Before training VEE, we
should encode the path, action, and reward. We design the
encoding method of VEE for two purposes. First, VEE predicts
the potential path transitions for new paths based on the
recorded path transitions already taken in explored paths.
Second, to improve VEE’s training efficiency, we need to use
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low-dimensional vectors to represent paths and actions. For
example, mapping the trace_bits to a 65536-dimensional
vector to represent the path will significantly slow down the
training of DNNs. Thus, while ensuring that different paths
and actions can be clearly distinguished, we try to use low-
dimensional vectors to represent paths, actions, and rewards.

Path. We apply the Coupled Data Embedding (CDE) [20]
algorithm to encode the path (represented by trace_bit)
in AFL as a 20-dimensional continuous vector and normalize
the values of each dimension. CDE is used to represent
discrete vectors as continuous vectors while preserving the
main features that distinguish paths. According to the method
of CDE, a 20-dimensional vector can both distinguish the
main features of different paths and reduce the dimension of
paths to improve the training efficiency of DNNs. If two paths
represented by trace_bits are more similar, the Euclidean
distance between the corresponding 20-dimensional vectors is
closer.

Action. We encode the action based on the mutation
location. Take the example from Fig. 1, seed s1 represents
a seed of 100 bytes, if the fuzzer selects the 4th byte of s1 as
the mutation location, regardless of which mutator is selected,
the fuzzer will mutate s1 starting from the 4th byte, and the
encoding of this action is 4/100=0.04. The value of all actions
is also normalized.

Reward. The reward is a scalar which is calculated ac-
cording to Equation 7.

Employing this encoding method enables VEE to predict
the probability and reward of potential path transitions based
on historical fuzzing information. VEE is trained with the four-
tuples, namely (path, action, next path, reward), in which
action represents the bytes of a seed where the mutations can
occur, not a concrete mutation. Thus, the same action with
different mutators would cause different path transitions with
different probabilities. By analyzing the historical information
of mutations on one byte, VEE can predict the path transitions
caused by taking this action, i.e., mutating this byte with
different mutators. For bytes that have been mutated, we
use VEE to predict the probabilities and rewards of different
path transitions caused by mutating the byte using different
mutators. For seeds or bytes that have not been mutated yet, we
use seeds with similar structures or bytes with similar offsets
to predict the probabilities and rewards of path transitions
caused by mutation actions. The similarity is measured based
on the CDE encoding method. If the 20-dimensional vectors
representing two seeds have a shorter Euclidean distance, it
indicates that the two seeds are more similar. Additionally,
within a seed, similar encoded values of two actions indicate
a similar offset of the corresponding bytes.

2) Training of VEE: We use DNN to construct VEE to
imitate the path transition behavior in the path transition model.
Formally, let f :(path, action) −→ (next path, reward) de-
note the DNNs that takes the tuple (path, action) as input and
outputs the tuple (next path, reward). We use θ to denote
the trainable weight parameters of DNN and train DNN with
a set of training samples (X, Y), where X denotes a set of
inputs and Y denotes the corresponding outputs. In the path
transition model, since the same action on the same path
may cause different path transitions with different probabil-

ities, the path transition model is essentially a probabilistic
model. Therefore, when designing DNN f :(path, action) −→
(next path, reward) and loss function, we mainly address
VEE’s aleatoric and epistemic uncertainties to improve its
prediction accuracy.

Aleatoric uncertainty. Aleatoric uncertainty arises from
the unpredictability of path transitions in fuzzing. For exam-
ple, using different mutators for the same mutation location
may cause different path transitions. To capture the aleatoric
uncertainty, we use the Gaussian probability distribution of the
next paths and rewards to predict probabilities of different path
transitions and the corresponding rewards that may be caused
by action at taken in path pt. We use the trainable weight
parameters to represent the Gaussian probability distribution of
the next path pt+1 and reward rt can be represented according
to the input tuple (pt, at):

P (pt+1, rt|pt, at, θ) = N(µθ(pt, at),Σθ(pt, at)) (10)

Where N represents the Gaussian distribution and µθ repre-
sents the mean of Gaussian distribution. We use Σθ to represent
the variance, which indicates uncertainty about the mean. We
define the loss function between the output of the DNN and
the ground truth label y ∈ Y in the training set as:

L(θ)=

N∑
n=1

[µθ(sn, an)−sn+1]
T
Σ

−1
θ (sn, an)[µθ(sn, an)−sn+1]

+ log detΣθ(sn, an)

(11)

The training task is to find the weight parameters θ̂ of the
DNN f to minimize the loss.

Epistemic uncertainty. Epistemic uncertainty results from
the random sampling method employed by most DNNs. Since
a single DNN cannot sample all the training data, there may
be areas where the DNN has epistemic defects and cannot
accurately predict outputs. To capture epistemic uncertainty,
we adopted the Probabilistic Ensembles with Trajectory Sam-
pling algorithm (PETS) [11] to aggregate all DNNs into
a virtual ensemble environment. We use the same random
sampling method to train DNNs by sampling four-tuples from
the historical replay buffer. All DNNs generate predicted
outputs represented by Gaussian probability distributions, and
their results are weighted to produce a final prediction. This
prediction can be described as:

P (pt+1, rt|pt, at, θ) =
1

n

n∑
i=1

P (pt+1, rt|pt, at, θi) (12)

Where n represents the number of DNNs in VEE. Taking into
account the training speed, GPU memory limit, and VEE’s
prediction accuracy, we use 6 identical DNNs to construct VEE
and adopt the average of the probabilities from 6 DNNs as the
model prediction. By taking the weighted average of all DNNs,
we can alleviate the cognitive defects of a single DNN due to
sampling randomness in specific areas.

3) Determine the path transition from the predicted distri-
bution: Given an input (pt, at), DNNs output the potential
path transitions and the corresponding rewards, denoted as
(pt+1, rt), with a Gaussian probability distribution. However,
in DGF, mutating the seed will only cause a specific path
transition. Thus, we use a random sampling method to deter-
mine the next path pt+1 based on the predicted probabilities
of different path transitions.
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C. Reinforcement Learning for Fuzzing Model

To steer the fuzzer toward the target site more efficiently,
namely through the high-reward path transition sequences, we
need to learn a policy to select actions to maximize sequence
rewards. Due to the huge number of paths, actions, and path
transitions in the path transition model, it is difficult to use
traditional mathematical methods such as Dynamic Program-
ming (DP) [3] to learn the policy and calculate the expected
sequence rewards. Therefore, we develop the Reinforcement
Learning for Fuzzing (RLF) model, which is based on the
reinforcement learning algorithm Soft Actor-Critic (SAC) [15].

1) The design of RLF model: As Fig. 2 shows, following
the structure of SAC, the RLF model consists of a Actor
network, a Q-Critic network, and a V-Critic network. During
the training process, we train the Q-Critic network to evaluate
the expected sequence reward and train the V-Critic network
to evaluate the transition value of each path. With the expected
sequence rewards and transition values, the Actor network is
trained to optimize the policy to increase the probability of
selecting actions with high expected sequence rewards.

2) Training data processing and collecting: we treat the
path transition model as the environment in reinforcement
learning and map the fuzzer, path, action, path transition, and
reward in the path transition model to agent, state, action, state
transition, and reward in reinforcement learning. Moreover,
RLF reuses VEE’s encoding method for path, action, and
reward. Since we combine historical path transitions and
predicted path transitions to train RLF to give the RLF model
foresight, we collect historical path transitions and predicted
path transitions in different ways.

Collecting historical path transitions. Since the environ-
ment of DGF is different from that of the traditional rein-
forcement learning process where state transitions are serially
generated and represented as (s0, a0, s1, a1, ..., an−1, sn), the
training data processing of RLF is different from that of
the traditional reinforcement learning (e.g., SAC). In DGF,
the fuzzer might mutate one seed multiple times, resulting
in different path transitions from the same path. This means
that the fuzzer may stay on a certain path and take different
actions to cause different path transitions. Therefore, it is not
feasible for the RLF model to obtain a complete path transition
sequence and evaluate the current policy’s effectiveness by
calculating its sequence reward within a short period (e.g.,
several seconds). Based on this consideration, in each fuzzing
cycle, the fuzzer selects actions according to the policy to cause
path transitions. The historical path transitions are stored in the
historical reply buffer and loaded by the RLF model at the end
of the fuzzing cycle to train RLF during the next fuzzing cycle.

Collecting predicted path transitions. We use VEE to
imitate the path transition model and employ the k-step branch
rollout strategy to obtain predicted path transitions that have
not yet occurred in the path transition model. In the k-step
branch rollout strategy, the RLF model is regarded as the agent
and it selects a sequence of actions at each path according
to the initial policy to cause k path transitions, generating
a new k-length path transition sequence. We use Fig. 3 to
illustrate the process of the k-step branch rollout strategy.
Suppose (p0, a0, p1, a1...pi, ai, ...an−1, pn) is a historical path
transition sequence in the path transition model. We take

p1

…a1
p2 a2 a3 ai ai+1

p3 pi pi+1 pi+2 pn-1 pn

… ai+2 an-2 an-1

…a'i+1
p'i+1 p'i+2 p'k-1a'i+2

p'k
a'i

a'k-2 a'k-1

predicted k-length path transition sequence  
Fig. 3. k-step branch rollout strategy.

pi as the starting point and use RLF’s policy π to select
a sequence of actions a′i, a

′
i+1, ..., a

′
i+k−1 to cause k path

transitions, generating a new k-length path transition sequence
represented as (pi, a′i, ri, p

′
i+1), (p′i+1, a

′
i+1, r

′
i+1, p

′
i+2), ... ,

(p′i+k−1, a
′
i+k−1, r

′
i+k−1, p

′
i+k). Here, k is a hyperparameter

that would impact the accuracy of VEE’s predictions and the
foresight of the RLF model’s designed policy.

The predictions may need to cover multiple test cases
during the k-step branch rollout process. Across different test
cases, the same actions defined by the locations of bytes may
be misaligned (i.e., the location of the mutated bytes in one
testcase might be misaligned with the mutated bytes in other
test cases owing to the different testcase length). To handle the
misalignment, we use mutation ID ∧ (path ID >> 2) to
differentiate between different intermediate testcases generated
during the process. For example, for testcase1 and testcase2
that cover the same path, we still assign them different IDs,
so that we can distinguish mutations on different intermediate
testcases. In this way, even if the same byte of testcase1 and
testcase2 is mutated, we do not consider the probabilities and
rewards associated with the path transitions caused by these
two mutations to be the same.

3) Training of the RLF model: The RLF model combines
historical path transitions and predicted path transitions to train
the Actor network, Q-Critic network, and V-Critic network. In
DGF, we aim for the fuzzer to adopt actions with high expected
sequence rewards while also exploring different actions to
cause new path transitions. Therefore, in RLF, we apply
entropy to measure the randomness of selecting actions.
Assuming we select actions in state st based on the policy π,
and the probabilities of selecting actions follow a distribution
denoted as π(·|st), the entropy of the action is calculated as:

H(π(·|st)) = E
a∼π(·|st)

[− log π(·|st)(a)] (13)

In the RLF model, the objective of the Actor network is to
learn a policy π∗ that maximizes the reward and entropy.

π
∗
=argmax

π
E(st,at)∼ρπ [

∑
t

r (st, at, st+1)︸ ︷︷ ︸
reward

+αH (π (· | st))︸ ︷︷ ︸
entropy

] (14)

Where α is the coefficient that balances exploration and
exploitation, as proposed in SAC. Then, we construct the
objective function for the Q-Critic network and the objective
function for V-Critic network to train the parameters ω of the
Q-Critic network and the parameters ϕ of the V-Critic network.

Jvπ (ϕ) =
1

2
(γrt + V π

ϕ (st+1)− V π
ϕ (st))

2 (15)

JQπ (ω) = (rt + γQπ
ω(st+1, at+1)−Qπ

ω(st, at))
2 (16)

For Actor network, we train the parameters σ of the Actor
network to maximize the expected sequence rewards of actions,
so as to maximize the sequence rewards.

Jπ(σ) = max
σ

Q(st, πσ(·|st)) (17)
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By minimizing these three objective functions, we train the
parameters in the three networks to compute the expected se-
quence rewards, and transition values, and design the policy for
selecting actions that can maximize the sequence rewards. The
well-trained RLF model provides two types of optimization
information to the FO component: (1) the estimated expected
sequence rewards and estimated transition value, and (2) the
policy for selecting actions in each path.

D. Optimize Fuzzing Strategies Based on Action Group

To guide the fuzzer to exercise the optimal path transition
sequences with the highest sequence rewards, we need to
optimize fuzzing strategies based on the feedback informa-
tion from the RLF model. In recent years, state-of-the-art
techniques have been proposed to optimize a single fuzzing
strategy, such as seed selection [6], mutator schedule [31],
and mutation location selection [45]. However, optimizing a
single fuzzing strategy may not significantly guide the fuzzer
toward the optimal path transition sequences. Therefore, we
propose the concept of the action group that is composed
of five elements and attempt to comprehensively optimize
multiple fuzzing strategies. Besides, we propose the Multi-
elements Particle Swarm Optimization (MPSO) algorithm to
optimize the elements in the action group simultaneously.

1) The concept of action group: We define the action group
as a tuple consisting of five elements.

Seed-selection (denoted as SS). Representing the probabil-
ity of a seed being selected to fuzz by the fuzzer.

Seed-energy (denoted as SE). Representing the energy as-
signed to the seed, which determines the number of mutations
that can be applied to the seed during the havoc stage.

Havoc-round (denoted as HR). Representing the number
of looping rounds used to select different mutators and bytes
during the havoc stage. All of the selected mutators and bytes
are integrated into a single havoc action. The value of the
havoc-round may be 2, 4, 8, 16, 32, 64, or 128.

Mutator (denoted as MT). Representing the mutator se-
lected to mutate the seed. Similar to AFL [24], DeepGo
preserves 16 different types of mutators.

Location (denoted as LC). Representing the mutation
location of the seed that is selected to mutate.

Each action group is represented as a 27-dimensional
vector consisting of the 5 elements. As shown in Fig. 4, SS and
SE are both 1-dimensional vectors. The value of SS represents
the probability within a range of [0, 1]. The fuzzer would select
seeds to fuzz based on SS. The value of SE represents the en-
ergy assigned to the seed and the fuzzer calculates the mutation
times of seeds based on SE. HR is a 7-dimensional vector,
where each dimension represents the probability of selecting
one of the seven different havoc-round values (i.e., 2, 4, 8, 16,
32, 64, and 128). The fuzzer samples the number of looping
rounds used to select different mutators and mutation locations
during the havoc stage based on HR. MT is a 16-dimensional
vector, where each dimension represents the probability of
selecting one of the 16 different types of mutators. LC is a
2-dimensional vector, where the first dimension represents the
probability of selecting the optimal locations, and the second

Overall Fuzzing

Seed
Queue

Action Group
Seed-

selection
Seed-
energy 

Havoc-
Round Mutator Location 

New 
Inputs

Cover New 
Paths?

Yes

SS SE HR MT LC

0 9-242-81 25-26

Fig. 4. The layout of elements in the action group.

dimension represents the probability of selecting common
locations. We classify the mutation locations of seeds into
two categories: optimal locations and common locations. The
optimal locations include the mutation locations selected by the
RLF model’s policy with a probability of greater than 80%,
while common locations include all other mutation locations.
Based on the MT and LC, the fuzzer samples the mutators and
the type of mutation location. The fuzzer constantly mutates
seeds to generate new inputs according to the five elements in
the action group. As Fig. 4 shows, we represent each element
as a vector and concatenate the five vectors into one vector to
represent the action group of a seed.

2) Multi-elements Particle Swarm Optimization algorithm:
To optimize the five elements in the action group simultane-
ously, we treat each action group as a particle represented by a
27-dimensional vector and view the optimization of the action
group as a multi-element optimization problem. We propose
a Multi-elements Particle Swarm Optimization (i.e., MPSO)
algorithm to realize the optimization. The optimization of the
action group can guide the fuzzer toward the desired path
transition sequences with high sequence rewards.

As we have introduced in Section II, the PSO algorithm
uses massless particles to simulate birds in a flock. Each
particle searches for the optimal solution individually and
records it as the local best value. The local best values are
then shared among the particles in the entire swarm to find
the global best value as the optimal solution. These particles
have two primary attributes: velocity and position. Velocity
represents the speed of movement, and position represents
the direction of movement. All particles in the swarm would
constantly adjust their velocity and position based on the local
best value and the global best value shared in the entire swarm:

vi = w × vi + r × (lbesti − xi) + r × (gbesti − xi) (18)

xi = xi + vi (19)

Where vi represents the velocity of the ith particle, xi repre-
sents the position of the ith particle, r represents the random
displacement weight within the range of [0,1], lbesti represents
the local best position found by the ith particle and gbesti
represents the global best position found by all particles.
The inertia factor ω is a non-negative value, where a larger
value results in stronger global optimization and weaker local
optimization ability in the PSO algorithm. In this paper, we
apply the Linearly Decreasing Inertia Weight (LDIW) method
[46] to set the value of ω as:

ω = ωini − (ωini − ωend)× (g/G) (20)

Where ωini and ωend denote the initial and final inertia values,
respectively. Following the LDIW, ωini and ωend are typically
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set to 0.4 and 0.9. g denotes the number of iterations completed
by the current particle, which is equal to the number of
mutations performed by the fuzzer on the corresponding seed.
G denotes the maximum iteration number, which is equal to the
total mutation times calculated according to the seed energy.
In DeepGo, the mutation times of seeds are determined by the
energy assigned to the seeds.

Local best position and local efficiency. In the MPSO
algorithm, each particle has its own local best position lbest
and local efficiency efflocal. Given a particle, position x1 is
deemed superior to position x2 only if the local efficiency
obtained by the particle at x1 is greater than that at x2.
We use local efficiency to quantify the mutation efficiency
of fuzzing strategies composed of the five elements for one
specific particle. The local efficiency is calculated according
to the averaged expected sequence rewards of all the mutations
taken by the fuzzer in the path corresponding to the particle. In
DGF, each mutation on the seed would cause a path transition
from path p to path p′. According to Equation (5), in one
path transition, we use r + γV t

π(p
′) to evaluate the expected

sequence rewards. Based on this, we calculate local efficiency.

efflocal =

g∑
i=1

ri + γV t
π(p

′)

g
(21)

Where V t
π(p

′) denotes transition value of path p′ covered by
the ith mutation.

Global best position and global efficiency. We use global
efficiency to quantify the fuzzing efficiency of the fuzzer.
Since the global efficiency of the fuzzer depends on the local
efficiency of different particles and the relationship between
particles, we determine the global position of all particles
based on the fuzzing efficiency within a fuzzing cycle. A
particle is currently in the global best position (gbest) only if
the fuzzing efficiency of the fuzzer is higher than that of any
other position. We use the average sequence rewards during
the fuzzing cycle to evaluate the global efficiency:

effglobal =

U∑
j=1

gj∑
i=1

ri + γV t
π(p

′
j)

U∑
j=1

gj

(22)

Where effglobal denotes the global efficiency, sj denotes jth

seed, gj denotes the total number of mutations for sj , and
U denotes the number of seeds that have been fuzzed in the
current fuzzing cycle.

During the fuzzing process, we calculate the local effi-
ciency and global efficiency of particles according to Equations
(21) and (22), and record the lbest and gbest. We update
the particles’ spatial positions according to Equations (18),
(19), and (20), moving all particles towards the direction of
lbest and gbest. Through this approach, we optimize the
action groups of all seeds to guide the fuzzer toward the target
via the optimal path transition sequences.

The process of MPSO is shown in Algorithm 1, where s
denotes the seed, p denotes the particle, Ω(s,p) denotes the
set containing all seeds and their corresponding particles. The
function Prob Sels determines whether to fuzz the seed based

Algorithm 1 MPSO Algorithm
Input: Ω(s,p)
Output: Us, Ω(s,p′)
1: Initial(Ω(s,p))
2: while fuzzing do
3: for (si, pi) in Ω(s,p) do
4: if Prob Sels(pi(SS)) == True then
5: mni ←Cal_MN(pi(SE))
6: for j in mni do
7: hrj ← $Prob Selh(pi(HR), hmj ←<>
8: for k in hrj do
9: lck ← Prob Sell(pi(LC)),

10: mtk ← Prob Selm(pi(MT)),
11: hmj ← hmj ∪ (lck,mtk)
12: end for
13: new input = Mutate(hmj , si)
14: efflocal, effglobal = Cal_eff(si, new input)
15: Update(lbest, gbest, pi)
16: end for
17: end if
18: end for
19: end while

on the SS. mni denotes the number of mutation times of
the seed, and the function Cal_MN calculates the number
of mutation times for the seed based on SE. The functions
Prob Selh, Prob Sell, and Prob Selm probabilistically se-
lect the corresponding values of hr for HR, lc for mutation
location based on LC, and mt for mutator based on MT.

At first, we initialize the five elements in all the particles
(Line 1). For SS and SE, according to the seeds’ character-
istics (e.g., the bitmap size and execution speed), AFL [24]
calculates the probabilities of seeds being fuzzed and the
energy assigned to seeds. We use the probabilities and the
seed energy obtained by AFL’s method as the initial value
of SS and SE. For HR, LC, and MT, we use the average
probability as the initial value of their spatial position (e.g.,
1/16 for each mutator). During the fuzzing process, the fuzzer
selects seeds to fuzz according to SS (Line 4), calculates the
mutation times according to SE (Line 5), selects the values
of HR (i.e., hrj) (Line 7), selects the seed bytes for mutation
(i.e., lck) according to LC (Line 9), and selects the mutators
(i.e., mtk) according to MT (Line 10). In each hrj cycle, the
mtk and lck will be combined into the havoc mutation (i.e.,
hmj) (Line 11), and the fuzzer will use hmj to mutate the seed
si and generate a new input (Line 13). Then, MPSO would
calculate the local efficiency and global efficiency (Line 14),
and update lbest, gbest and the position of the particle pi
(Line 15). Notably, the value of all dimensions of the particle
will constantly change according to Equation (18), (19), and
(20) to update the spatial position of the particle, allowing the
particle to move to the lbest and gbest. For instance, if
one particle has low local efficiency which results in reducing
the global efficiency of the fuzzer, according to the Equation
(18), (19) and (20), the SS and the SE will gradually decrease
during the process of MPSO. Once the FO component first
receives the feedback information from the RLF model, it will
launch the MPSO algorithm until the end of fuzzing.

V. IMPLEMENTATION

The implementation of DeepGo mainly consists of three
components: the fuzzer, the VEE, and the RLF model. For
the static analyzer in the fuzzer, we leverage LLVM 11.0.
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We use the LLVM IR to instrument the program and obtain
information about basic-block-level distance, sibling branches,
etc. The fuzzer is built on AFLGo, with 2100 lines of C code,
and the VEE and the RLF model are implemented with about
1300 lines of Python code.

In detail, the DNNs of VEE are implemented in Pytorch-
1.13.0 with five fully connected layers. The hidden layer uses
Swish as its activation function. The DNNs are trained for
500 epochs and we use the tensorboard tool to automatically
monitor the loss values to determine if they converge to a small
value. If the loss values of VEE and RLF have converged,
the DNNs will automatically stop training. The networks
in the RLF model consist of three fully-connected layers.
For the hyperparameters of the RLF model, referring to the
learning rate settings for Q-Critic network, V-Critic network,
and Actor network in SAC, we set them to 0.005 to ensure the
learning efficiency and convergence of the RLF model (in the
experimental process, all three networks can converge quickly).

Notably, when using DeepGo to test programs, the fuzzing
process, the training of the models, and the prediction of
the path transition are performed concurrently. We use an
extra GPU to train the VEE and RLF models based on the
information collected throughout the fuzzing process. All the
time spent on training and prediction of the VEE and RLF
models is counted in the time budget (indicated as wall clock
time) for the fuzzing process.

VI. EVALUATION

To evaluate the effectiveness of DeepGo, we conducted
experiments aiming to answer five research questions:

RQ1: What about the performance of DeepGo in terms of
reaching the target code locations?

RQ2: What about the performance of DeepGo in terms of
exposing the known vulnerabilities?

RQ3: What about VEE’s performance in predicting probabil-
ities and rewards of path transitions?

RQ4: Can the RLF model and FO component guide the fuzzer
to path transition sequences with high sequence rewards?

RQ5: How do the VEE, RLF, and FO components contribute
to the overall performance of DeepGo?

A. Evaluation Setup

Evaluation Criteria. We use two types of criteria to
evaluate the performance of different fuzzing techniques.

(1) Time-to-Reach (TTR) is used to evaluate the time spent
on generating the first input that can reach the target site.

(2) Time-to-Expose (TTE) is used to evaluate the time
spent on exposing the (known or undisclosed) vulnerabilities
in the target sites. An observed crash indicates that the fuzzer
has successfully exposed the vulnerability.

Evaluation Benchmarks. We selected two datasets that
are widely used by state-of-the-art DGF techniques (e.g.,
WindRanger [12], BEACON [18]).

(1) UniBench [27] provides real-world programs of dif-
ferent types and the corresponding seed corpus. The state-of-
the-art fuzzing techniques, such as WindRanger, have used the
UniBench as the benchmark for testing. To answer RQ1, RQ3,
RQ4, and RQ5, we tested the 20 programs from UniBench
and used AFL++ [13] to select target sites from each program
by conducting preliminary experiments. We first ran AFL++
for 48 hours and collected all the seeds generated by AFL++.
Then, we use afl-cov to re-run these seeds, so that we can
obtain the code locations covered and the time when they are
covered, represented as pairs like (line, time). Finally, among
the locations that are reached using from 1 hour to 48 hours
(i.e., more than 1 hour), we randomly selected 4 code locations
as the targets.

(2) AFLGo testsuite [6] was proposed in AFLGo’s paper
and website to evaluate the directness of DGF. It had been
used as a benchmark by the state-of-the-art DGF techniques
to verify the bug reproduction capabilities. To answer RQ2,
we selected the AFLGo testsuite as the benchmark to verify
the capability of exposing known vulnerabilities.

Baselines. In our evaluation, we compared DeepGo with
the state-of-the-art directed greybox fuzzers that were publicly
available at the time of writing this paper, including Win-
dRanger, BEACON, ParmeSan, and AFLGo.

Experiment Settings. We conducted the experiments on
the machine equipped with Intel(R) Xeon(R) Gold 6133 CPU
@ 2.50GHz with 80 cores and used Ubuntu 20.04 LTS as
the operating system. All the experiments were repeated 5
times within a time budget of 24 hours. When testing the
programs from UniBench and AFLGo testsuite, we used the
seeds in BenchMark’s recommended seed corpus as initial
seeds. For experimental results analysis, we utilize the Mann-
Whitney U test (p-value) to measure the statistical significance.
In addition, we use the Vargha-Delaney statistic (Â12) [1] to
measure the probability of one technique performing better
than another.

B. Reaching Target Sites

To answer RQ1, we tested the 20 programs from UniBench,
with a total of 80 target sites, and evaluated the TTR of
different fuzzers. We set the timeout threshold as 24 hours. The
detailed results of TTR are listed in Table III in the Appendix.
In Table III, the entry “N/A” indicates that the fuzzer failed
to compile the program due to code issues, while “T.O.”
indicates that the fuzzer couldn’t reach the target site within the
allocated 24-hour time budget. For WindRanger, some entries
are marked as “N/A” due to encountering segmentation fault
errors or being unable to obtain distance information during
program testing. As for BEACON and ParmeSan, most entries
showing “N/A” might be because it is incompatible with
UniBench. For “N/A” entries, we did not use them to calculate
the speedups and p-values. As for the “T.O.” entries, we believe
that these fuzzers might still reach the targets in subsequent
fuzzing processes. Therefore, we opted for a slightly larger
value of 1500 minutes to calculate speedups and p-values.

According to the results of TTR, DeepGo can reach
the most (73/80) target sites compared to AFLGo (22/80),
BEACON (11/80), WindRanger (19/80), and ParmeSan (9/80)
within the time budget. Moreover, on most of the target sites
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Fig. 5. TTR of DeepGo and baseline fuzzers on the UniBench.

(67/80), DeepGo outperforms all other fuzzers and achieves
the shortest TTR. In terms of mean TTR of reaching the target
sites, DeepGo demonstrates 3.23×, 1.72×, 1.81×, and 4.83×
speedup compared to AFLGo, BEACON, WindRanger, and
ParmeSan, respectively. We conducted both the Mann-Whitney
U test (p-value) and the Vargha-Delaney test (Â12) that all the
p-values are less than 0.05, and the mean Â12 against AFLGo,
BEACON, WindRanger, and ParmeSan are 0.86, 0.81, 0.83,
and 0.89, respectively. Based on the above analysis, we can
conclude that DeepGo can reach the target sites faster than
baseline fuzzers.

To reflect the results in a straight way, we use bar charts
to visualize the results. In Fig. 5, the x-axis represents the
target site ID (1-80), the y-axis represents the total TTR of all
fuzzers in minutes, and a shorter bar indicates a shorter TTR.
Since some fuzzers cannot compile some programs or reach
the target sites within the 24-hour time budget, resulting no
TTR. To distinguish these cases, the TTR of such a case is
represented as 1500 min in Fig. 5. From the figure, we can
clearly see that the blue bars are much shorter than the other
bars, which means that DeepGo can reach most of the target
sites faster than the baseline fuzzers.

C. Exposing vulnerabilities

To answer RQ2, following BEACON and WindRanger, we
used the AFLGo testsuite and set the known vulnerabilities
with CVE IDs in the programs as the target sites. The informa-
tion on target sites and the TTE results are presented in Table I.
As Table I shows, among the 20 vulnerabilities, DeepGo (19)
exposed the most compared to AFLGo (14), BEACON (13),
WindRanger (16), and ParmeSan (14). Besides, on most of
the target sites (14/20), DeepGo outperformed all the baseline
fuzzers and achieved the shortest TTE. With respect to the
mean TTE of exposing vulnerabilities, DeepGo demonstrated
2.61×, 3.32×, 2.43× and 2.53× speedup compared to AFLGo,
BEACON, WindRanger, and ParmeSan, respectively. All p-
values were less than 0.05, and the mean Â12 against AFLGo,
BEACON, WindRanger, and ParmeSan were 0.79, 0.72, 0.75,
and 0.81, respectively. Based on the above analysis, we can
conclude that DeepGo can expose known vulnerabilities
faster than the baseline fuzzers.

D. The effectiveness of VEE

To answer RQ3, we analyzed the predictions made by VEE
when DeepGo tested the 20 programs from UniBench. Given

TABLE I. THE RESULTS OF TTE ON AFLGO TESTSUITE

Prog. CVE-ID AFLGo BEACON WindRa ParmeS DeepGo

binutils2.26

2016-4487 2.33m 0.63m 1.21m 0.95m 1.34m
2016-4488 4.23m 32.1m 3.32m 2.62m 2.69m
2016-4489 3.36m 2.98m 5.88m 2.31m 1.23m
2016-4490 1.15m 2.35m 2.63m 0.82m 1.97m
2016-4491 448m 258m 298m 212m 129m
2016-4492 10.8m 43.6m 7.47m 4.33m 6.94m
2016-6131 348m 292m 318m 244m 68.1m

libming4.48

2018-8807 331m 267m 171m 301m 101m
2018-8962 234m 163m 121m 198m 54.8m

2018-11095 T.O. 914m 1311m T.O. 812m
2018-11225 T.O. 438m 996m T.O. 128m

LibPNG1.5.1

2011-2501 10.2m N/A 7.81m 4.53m 3.46m
2011-3328 69.1m N/A 49.3m 193m 17.5m
2015-8540 0.88m N/A 0.96m 3.41m 5.65m

xmllint2.9.4

2017-9047 T.O. T.O. T.O. T.O. 783m
2017-9048 T.O. T.O. T.O. T.O. 1389m
2017-9049 T.O. T.O. T.O. T.O. T.O.
2017-9050 T.O. T.O. T.O. T.O. 911m

Lrzip0.631
2017-8846 348m 156m 223m 466m 131m

2018-11496 201m 98.1m 169m 126m 78.9m

speedup 2.61× 3.32× 2.43× 2.53× -
mean Â12 0.79 0.72 0.75 0.81 -

mean p-values 0.018 0.032 0.026 0.011 -

an input (pt, at), VEE would predict the outputs (pt+1, rt)
with varying probabilities and rewards (i.e., predicted proba-
bilities and predicted rewards). Meanwhile, during the fuzzing
process, the fuzzer takes action at in path pt would cause
path transitions with varying probabilities and rewards (i.e.,
real probabilities and real rewards.). To analyze the prediction
accuracy of VEE, we defined the metric Accuracy as:

Accuracy = 1− |real value− predicted value|
|real value|

(23)

Where real value denotes the real probability or real re-
ward, predicted value denotes the predicted probability or
predicted reward. The higher value of Accuracy indicates the
higher accuracy of the prediction. During the testing of each
program from UniBench, we calculated the two accuracies of
each path transition every 30 minutes. Since DeepGo repeated
the testing of the 20 programs five times, at each time point,
we calculated the average accuracy of predicted probability
(AAPP) and the average accuracy of predicted reward (AAPR)
of all path transitions of all the programs, to evaluate the
prediction accuracy of VEE based on Equation 23.

To reflect the results straightforward, we use the line chart
to visualize the results. In Fig. 6, the x-axis represents the
fuzzing time (from 0-hour to 24-hour) and the y-axis represents
the accuracies of AAPP and AAPR which are both within the
range of [0, 1]. As shown in Fig. 6, from 0.5-hour to 24-hour,
the accuracies of AAPP and AAPR are all greater than 80%,
and the means of AAPP and AAPR at the 48 time points are
92.57% and 91.10% respectively. Meanwhile, we used box
charts to show the AAPPs and AAPRs on different programs
at different time points. The blue line represents the median,
and the length of the box represents the distribution range.
From the box charts, we can see that the AAPPs and AAPRs
do not vary significantly (≤ 15%) among different programs,
and maintain high value (≥ 80%) at each time point. This
suggests that VEE can limit the deviation when imitating the
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Fig. 6. The accuracies of rewards and probabilities predicted by VEE on
programs from UniBench.

path transition model and predict the probabilities and rewards
of path transitions with high accuracy.

E. The effectiveness of the RLF model and FO component

To answer RQ4, we collected rewards of path transitions
that occurred during the fuzzing process, to calculate the aver-
age reward of path transitions in the path transition sequence
to show whether the RLF model and the FO components
can guide the fuzzer to exercise the optimal path transition
sequences with high sequence rewards. Since DeepGo’s op-
timizations on the fuzzing strategies rely on the RLF model
and the FO component, removing either of them will render
DeepGo’s optimizations ineffective, thus, we removed both of
them, thereby forming a new fuzzer called DeepGo-r. We used
DeepGo-r and DeepGo to test the 20 programs from UniBench
and calculated the reward of all path transitions for all the
programs every 30 minutes. Then, at each time point, we obtain
the average reward (i.e., AR) of the 20 programs.

To reflect the results in a straight way, we use the line
chart to visualize the results. In Fig. 7, the x-axis represents
the fuzzing time (from 0.5-hour to 24-hour) and the y-axis
represents the values of AR, which is within the range of [-1,
-1]. As shown in Fig. 7, from 0.5-hour to 24-hour, the overall
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Fig. 7. The value of ARs on programs from UniBench.

TABLE II. INTERMEDIATE DATA ANALYSIS USING DIFFERENT SEEDS

Fuzzers RSeed PRseed RPath

AFLGo 2311 52.4% 58
BEACON 312 79.8% 23

WindRanger 2532 64% 41
ParmeSan 1463 43.8% 19
DeepGo 2788 72.6% 261

trend of AR is decreasing, which is consistent with the fact that
the fuzzer is getting difficult to find new seeds as the fuzzing
proceeds. DeepGo’s AR was significantly higher than that of
DeepGo-r. At each time point, DeepGo’s AR was, on average,
4.26× higher than DeepGo-r’s AR. This indicates that the RLF
model and the FO component can guide the fuzzer to exercise
the optimal path transition sequences and reach the target site
more quickly.

F. Ablation study

To answer RQ5, we conducted the ablation study to
demonstrate the impact of VEE, RLF, and FO on DeepGo’s
performance. To demonstrate that VEE, the RLF model, and
the FO component can enhance directedness, we remove
VEE from DeepGo and form a new tool DeepGo-V and
also run DeepGo-v and DeepGo-r on UniBench for the TTR
experiment. Detailed results of DeepGo-v and DeepGo-r are
listed in Table III in the Appendix. According to the TTR
results, DeepGo (73/80) can reach much more target sites
than DeepGo-v (32/80) and DeepGo-r (18/80), respectively.
Moreover, DeepGo outperforms DeepGo-v and DeepGo-r by
2.05× and 3.72×, respectively, in the average TTR of reaching
the target sites. The p-values are 0.013 and 0.006, and the
mean Â12 against DeepGo-v and DeepGo-r is 0.83 and 0.90,
respectively. These results demonstrate that VEE, RLF, and the
FO component have significant impacts on reducing TTR.

We also use intermediate data to prove that DeepGo can
avoid the infeasible and hard-to-execute paths. Firstly, we
consider a seed to be a reachable seed (i.e., Rseed) if its
execution path covers reachable basic blocks (BB distance
≥ 0). We calculate the average number of reachable seeds
generated by different fuzzers when testing different programs,
as well as the proportion of reachable seeds (i.e., PRseed)
among all seeds. If the number and proportion of reachable
seeds are higher, it indicates that the fuzzer can avoid spending
time on infeasible and hard-to-execute paths. Secondly, we
measure the total number of paths taken by the fuzzer to
reach target sites (i.e., reached paths, Rpath) during testing 20
programs from UniBench. For the same target site, different
paths can yield different testing results. By counting the total
number of reached paths, we can determine if DeepGo can
discover more paths to reach the target site compared to other
fuzzers, thus enabling more diverse testing of the target site.
From the results in Table II, we can obtain two conclusions.
Firstly, by comparing the Rseeds and Rpaths of all fuzzers,
we can see that DeepGo can generate more reachable seeds
within the same time budget. Secondly, although BEACON has
a higher Rpath, it has the lowest Rseed among all fuzzers due
to pruning some reachable paths to the target site. Apart from
BEACON, DeepGo has the highest PRseed among all fuzzers.
These three intermediate metrics suggest that DeepGo can
generate optimal and viable paths to the target site by
avoiding infeasible and hard-to-execute paths.
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G. Case study of DeepGo’s performance

To show why DeepGo can reach the target sites faster, we
used the target site get_audio.c:1605 in lame3.99.5 as an
example to conduct a case study. As listing 1 shows, Line 24
is set as the target site. Since the path constraints at Line 2,
Line 16, and Line 23 are all hard-to-satisfy path constraints,
AFLGo, Windranger failed to reach the target site within the
24-hour time budget while DeepGo reached the target site
(Line 24) at the 282nd minute. As for AFLGo and Win-
dRanger, AFLGo could reach Line 11-12, and WindRanger
could reach Line 17. However, neither of them could satisfy
the path constraints at Line 2, Line 9-10, Line 16, and Line 23
simultaneously to reach the target site. In Listing 1, conditions
in different code locations are associated with different seed
bytes (e.g., the values of global.snd file in Line 2 and
global reader.input format in Line 11 are determined by
different seed bytes) and mutating the relevant bytes would
cause different path transitions and rewards. Since AFLGo and
WindRanger cannot predict the path transitions and rewards,
they cannot avoid using actions that cause low-reward path
transitions. Consequently, most of the new inputs generated
by AFLGo and WindRanger could not cover Line 11-12 and
Line 18, and thus failed to reach the target site (Line 24).

To identify such associations, during the testing process,
the associations between the actions (mutation bytes) and the
path transitions would be recorded. By querying the paths
containing certain code locations, we can obtain the corre-
sponding actions associated with them, thereby obtaining the
correspondence between code locations and actions. Specifi-
cally, DeepGo can record the mappings between (path, action)
and (next path, reward) to train VEE. If the path transitions
caused by mutating a certain byte can guide DeepGo to cover
interesting code locations (e.g., code locations closer to the
target sites), the path transition and its corresponding action
(mutation bytes) will be given a high reward. By querying the
rewards of different path transitions, we can determine which
bytes to mutate for interesting code locations.

To prove the above analysis, we calculated the expected
sequence rewards of taking all actions (i.e., mutating all bytes)
and the selection probabilities of the RLF for each action after
DeepGo reached Line 12 and presented the results in Fig. 8. In
Fig. 8, the x-axis represents the encoding of actions, and the y-
axis represents the normalized value of the expected sequence
rewards and selection probabilities of actions. Line 2, Line
9-10, and Line 16 represent three actions with encodings
of 0.226, 0.41, and 0.618, respectively, which mutate the bytes
related to the constraint condition in
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Fig. 8. The expected sequence rewards and selection probability of actions.

1 int init_infile(){
2 if (global.snd_file == 0) {
3 global.music_in = open_wave_file(gfp, inPath);
4 }
5 else
6 ...
7 }
8 static FILE * open_wave_file(){
9 if (global_reader.input_format != sf_raw &&

10 (global_reader.input_format != sf_ogg){
11 global_reader.input_format =
12 parse_file_header(gfp,musicin);
13 }
14 }
15 static int parse_file_header(){
16 if (type == IFF_ID_FORM) {
17 int const ret = parse_aiff_header(gfp, sf);
18 }
19 else
20 ...
21 }
22 static int parse_aiff_header(){
23 if (dataType == IFF_ID_2CBE) {
24 global.pcmswapbytes = !global_reader.swapbytes;
25 }
26 else
27 ...
28 }

Listing 1. Example of the target site get audio.c:1605 in lame3.99.5

Line 2, Line 9-10, and Line 16, respectively. The blue line
represents the distribution of the expected sequence rewards
of actions, and the red line represents the Gaussian probability
distribution of the RLF model for selecting actions. As the blue
line shows, the normalized values of the expected sequence
rewards of these three actions are 0.232, 0.994, and 0.061,
respectively. It means that if the fuzzer takes actions at Line
2 and Line 9-10, the caused path transitions will make the
fuzzer further away from the target site. As for the red line, the
Gaussian probabilities of Line 2 and Line 9-10 are close
to 0, while that of Line 16 is close to 1. Thus, when selecting
actions using Gaussian sampling, the RLF model tends to
select the actions near Line 16 rather than selecting Line
2 and Line 9-10. By this means, DeepGo selects actions
with high expected sequence rewards with a high probability,
which helps avoid low-reward path transitions that go further
away from the target site.

VII. DISCUSSION

Settings of hyperparameters. The hyperparameter γ and
k both affect DeepGo’s TTR. Firstly, in the training of the RLF
model, the hyperparameter γ is used to balance the influence
of current rewards and subsequent rewards on the transition
value and expected sequence rewards of the current state and
its actions. Only focusing on current rewards, RLF may get
stuck in local optima. On the contrary, overly emphasizing
subsequent rewards may cause low-reward path transitions for
the current path, thereby reducing the directed efficiency. Thus,
the setting of the hyperparameter γ would influence the Q-
values, V-values, and policy of the RLF model, ultimately
affecting DeepGo’s TTR. Secondly, in the k-step branch rollout
strategy, the hyperparameter k is used to generate the k-
length path transition sequence. As k increases, VEE is able
to predict more path transitions, enabling RLF to have more
foresight in designing policies. However, a high value of k
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may lead to a decrease in the accuracy of VEE’s predicted
path transitions and rewards, misleading the RLF’s policy to
low-reward path transition sequences. Therefore, the setting of
the hyperparameter k would affect the prediction accuracy of
VEE and the foresight of RLF’s policy, ultimately impacting
the TTR of DeepGo.

To observe the impact of varying γ and k on DeepGo, we
conducted experiments by setting γ to 0.9, 0.8, 0.7, 0.6, 0.5,
0.4, 0.3, 0.2, and 0.1, and setting k to 1, 2, 3, 4, 5, 6, 7, 8, and
9. We then utilized DeepGo with different hyperparameter con-
figurations to test 20 programs from UniBench and recorded
the mean TTR for each test case. In order to visually illustrate
the impact of γ and k settings on DeepGo’s TTR, we use a 3D
chart to showcase the variations of TTR as γ and k change.
According to Fig. 9, we can draw three conclusions. Firstly,
the minimum TTR is achieved when γ is set to 0.8 and the k
is set to 4, which is marked as a red point. Secondly, if the
value of γ is between [0.5, 0.9], and the value of k is between
[3, 5], the setting of γ and k has a relatively small impact on
TTR (TTR changed within the range of [648, 688]). Thirdly,
TTRs are higher when γ is greater than 0.5 compared to when
γ is less than 0.5, and TTRs are higher when k is less than 5
compared to when k is greater than 5. This reflects the fact that
since the length of path transition sequences in the fuzzing is
generally less than 20 based on statistical fuzzing information,
we should pay more attention to the influence of the current
rewards of the path. Moreover, the setting of k should balance
the prediction and the foresight with an appropriate value.

Selection of targets. When selecting targets for the evalua-
tion, we ran AFL++ for 48 hours because we believe that DGF
techniques can faster reach the predefined targets than CGF
techniques [13], [24], [55], [56]. Therefore, we believe that
even if some targets are reached within more than 24 hours but
less than 48 hours by CGF, they are still likely to be reached by
DGF within 24 hours. For example, in our evaluations, out of
the 51 targets that took AFL++ more than 24 hours to reach, 45
of them were reached by one or more directed fuzzers within
24 hours. We use AFL++ rather than “regular” AFL to set the
targets because AFL++ provides more comprehensive results,
allowing for a detailed recording of the time required for CGF
to reach different targets. With the information provided by
AFL++, we can reproduce the code locations and the time cost
to reach these locations, which is necessary for us to select
the targets. In contrast, AFL does not provide such detailed
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Fig. 9. The impact of hyperparameter settings on TTR.

information.

VIII. RELATED WORK

Directed Symbolic Execution (DSE) mostly relies on
symbolic execution engines such as KLEE [7], KATCH [33],
and BugRedux [2] to reach the target sites. Using program
analysis and constraint solving, DSE can generate inputs
that effectively penetrate through the path constraints toward
the target sites. Although some state-of-the-art works, such
as symcc [40], symqemu [39], and JigSaw [9], have been
proposed to develop the symbolic execution, the heavyweight
program analysis, path-explosion problem, and constraint solv-
ing of DSE still limit its scalability.

Directed Grey-box Fuzzing (DGF) calculates the dis-
tances between the seeds and pre-defined targets to prioritize
the seeds closer to the targets, which casts reachability as
an optimation problem to minimize the distance between the
seeds and their targets. Based on AFLGo’s idea, Hawkeye [8],
LOLLY [29], Berry [28], UAFL [50], and CAFL [25] proposed
the new fitness metrics such as trace similarity, and sequence
similarity, to enhance directedness and detect hard to manifest
vulnerabilities. FuzzGuard [59] filters out the unreachable
seeds and BEACON [18] prunes the infeasible paths, which
are effective methods to improve the efficiency of DGF. MC2

[43] models DGF as an oracle-guided search problem to find a
target-reaching input, which accelerates the speed of reaching
the targets. FISHFUZZ [58] enables fuzzers to seamlessly scale
among thousands of targets and prioritize seeds toward inter-
esting locations, thus achieving more comprehensive program
testing. SemFuzz [12], [54] analyzes the data-flow information
and semantic information to generate valid input. Parmesan
[37], V-Fuzz [37], and SAVIOR [10] utilize the sanitizers, such
as ASAN [42] and UBSan [30], to label the potential buggy
code as the target sites and steer the DGF to test the target
sites. Hydiff [23], SAVIOR [10] and Badger [36] prioritize the
seeds that may cause the specific program bug locations as the
target sites, and then prioritize symbolic execution of the seeds
that are reachable from more target sites. DrillerGO [22] and
Berry [28] combine the precision of DSE and the scalability of
DGF to mitigate their individual weaknesses. However, DGF
still suffers from being difficult to penetrate through the hard-
to-satisfy path constraints. DeepGo foresees critical execution
information and predicts the optimal path. By combining
the historical execution information and the predicted future
execution information, DeepGo can intelligently generate the
optimal and viable path to the target site. By avoiding the
infeasible and hard-to-execute paths, the fuzzer can reach the
target site more precisely and efficiently.

AI-Based Grey-box Fuzzing. Previous state-of-the-art
works [14], [45], [48], [49], [51], [59] apply AI techniques
to augment the greybox fuzzing techniques. Among these
works, NEUZZ [45] and MTFUZZ [44] introduce gradient-
descent based approaches to augment coverage-guided grey-
box fuzzing by approximating the PUT’s discrete branching
behavior. AthenaTest [49] uses the local transformer-based
networks to extract features of seeds from the corpus and
generate test cases. DYNFuzz [57] and FuzzGuard [59] build
models based on neural networks to predict whether the seeds
are reachable to the target sites and filter out the unreachable
seeds to enhance directedness. However, the existing AI-Based
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Grey-box Fuzzing techniques only optimize the selection of
mutated bytes or seeds. They cannot comprehensively optimize
all fuzzing strategies, making the fuzzer less intelligent in
generating optimal paths to reach the target sites.

IX. CONCLUSION

In this paper, we propose DeepGo, a predictive directed
greybox fuzzer that can combine historical and predicted
information to steer DGF to reach the target site via an optimal
path. DeepGo constructs the Virtual Ensemble Environment,
which uses DNNs to imitate the path transition model and
predict the rewards of potential path transitions. Using the
RLF model, DeepGo combines the historical and predicted
path transitions to determine the path transition sequence
with the highest sequence rewards to generate optimal paths.
Based on the MPSO algorithm, DeepGo optimizes the action
group and exercises the high-reward path transition sequence
to realize the optimal path. DeepGo is evaluated on 100
target sites of 25 real-world programs from 2 datasets, the
experiment results show that DeepGo outperforms the state-
of-the-art directed fuzzers (AFLGo, BEACON, WindRanger,
and ParmeSan) in reaching target sites and exposing known
vulnerabilities. Moreover, DeepGo also shows high accuracy
in predicting the path transitions that have not been taken yet.

ACKNOWLEDGMENT

This work is partially supported by the National Key
Research and Development Program of China under Grant
No. 2021YFB0300101, the National University of Defense
Technology Research Project (ZK20-17, ZK20-09, ZK23-14),
the National Natural Science Foundation China (62272472,
61902405, U22B2005, 61972412, 62306328), the HUNAN
Province Natural Science Foundation (2021JJ40692), and the
National High-level Personnel for Defense Technology Pro-
gram (2017-JCJQ-ZQ-013).

REFERENCES

[1] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “The non-
stochastic multiarmed bandit problem,” SIAM Journal on Computing,
vol. 32, no. 1, pp. 48–77, 2002.

[2] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “Gambling in
a rigged casino: The adversarial multi-armed bandit problem,” Electron.
Colloquium Comput. Complex., no. 68, 2000.

[3] L. A. Baxter, “Markov decision processes: Discrete stochastic dynamic
programming,” Technometrics, vol. 37, no. 3, pp. 353–353, 1995.

[4] R. Bellman, “A markovian decision process,” Indiana University Math-
ematics Journal, vol. 6, no. 4, p. 15, 1957.

[5] M. BoHme, V. T. Pham, M. D. Nguyen, and A. Roychoudhury,
“Directed greybox fuzzing,” in Acm Sigsac Conference on Computer
& Communications Security, 2017, pp. 2329–2344.
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TABLE III. THE TTR RESULTS ON PROGRAMS FROM UNIBENCH

No Prog Version Target sites AFLGo BEACON WindRanger ParmeSan DeepGo-v DeepGo-r DeepGo

1

cflow 1.6

parser.c:281 T.O. 99.4m 61.1m T.O. 58.1m T.O. 41.8m
2 c.c:1783 12.8m 22.1m 6.45m 10.1m 12.2m 16.4m 11.2m
3 parser.c:1223 1.22m 0.83m 2.44m 6.23m 6.16m 4.76m 8.23m
4 parser.c:108 12.8m 68.1m 8.32m 6.76m 13.5m 17.2m 16.1m
5

mp42aac Bento4 1.5.1-628

Ap4AvccAtom.cpp:82 T.O. N/A T.O. N/A T.O. T.O. 891m
6 Ap4TrunAtom.cpp:139 T.O. N/A T.O. N/A T.O. T.O. 723m
7 Ap4SbgpAtom.cpp:81 T.O. N/A T.O. N/A T.O. T.O. 1022m
8 Ap4AtomFactory.cpp:490 T.O. N/A T.O. N/A T.O. T.O. 878m
9

jhead 3.00

exif.c:1339 T.O. N/A T.O. T.O. T.O. T.O. 472m
10 iptc.c:143 T.O. N/A T.O. T.O. T.O. T.O. 355m
11 iptc.c:91 T.O. N/A T.O. T.O. T.O. T.O. 892m
12 makernote.c:174 T.O. N/A T.O. T.O. 671m T.O. 98.1m
13

mp3gain 1.5.2

layer3.c:1116 1142m N/A 984m N/A 871m T.O. 172m
14 mp3gain.c:602 T.O. N/A T.O. N/A T.O. T.O. 572m
15 interface.c:663 T.O. N/A T.O. N/A T.O. T.O. 912m
16 apetag.c:341 290m N/A 91.2m N/A 164m 345m 72.8m
17

lame 3.99.5

bitstream.c:823 T.O. N/A T.O. N/A T.O. T.O. 521m
18 lame.c:2148 T.O. N/A T.O. N/A T.O. T.O. 291m
19 uantize pvt.c:441 T.O. N/A 1269m N/A T.O. T.O. 599m
20 get audio.c:1605 T.O. N/A T.O. N/A 932m T.O. 412m
21

imginfo jasper 2.0.12

jp2 cod.c:841 T.O. N/A T.O. T.O. T.O. T.O. 619m
22 jp2 cod.c:636 T.O. N/A T.O. T.O. T.O. T.O. 776m
23 jas stream.c:823 T.O. N/A T.O. T.O. T.O. T.O. 351m
24 jpc dec.c:1393 T.O. N/A T.O. 984m 641m T.O. 211m
25

gdk-pixbuf-pixdata gdk-pixbuf 2.31.1

gdk-pixbuf-loader.c:387 T.O. T.O. T.O. N/A T.O. T.O. 1126m
26 io-qtif.c:511 T.O. T.O. T.O. N/A T.O. T.O. 622m
27 io-jpeg.c:691 T.O. T.O. T.O. N/A T.O. T.O. 498m
28 io-tga.c:360 126m T.O. T.O. N/A 87.3m 172m 48.7m
29

jq 1.5

jv dtoa.c:3122 T.O. T.O. N/A T.O. T.O. T.O. 1223m
30 jv dtoa.c:2004 T.O. T.O. N/A T.O. T.O. T.O. 1267m
31 jv dtoa.c:2518 T.O. T.O. N/A T.O. T.O. T.O. 587m
32 jv unicode.c:42 T.O. T.O. N/A T.O. T.O. T.O. 1024m
33

tcpdump 4.8.1

print-aodv.c:259 T.O. N/A 843m T.O. T.O. T.O. 622m
34 print-ntp.c:412 1436m N/A 974m 1239m 1213m T.O. 542m
35 print-rsvp.c:1252 T.O. N/A T.O. 889m 338m T.O. 223m
36 print-l2tp.c:606 T.O. N/A T.O. T.O. T.O. T.O. 821m
37

tic ncurses 6.1

captoinfo.c:189 T.O. N/A N/A T.O. T.O. T.O. 662m
38 alloc entry.c:141 T.O. N/A N/A T.O. T.O. T.O. 761m
39 name match.c:111 1186m N/A N/A T.O. 251m 1368m 155m
40 entries.c:78 1038m N/A N/A 883m 749m 1411m 495m
41

flvmeta 1.2.1

json.c:1036 T.O. N/A T.O. T.O. T.O. T.O. 682m
42 api.c:718 T.O. N/A T.O. T.O. T.O. T.O. 577m
43 flvmeta.c:1023 T.O. N/A T.O. T.O. T.O. T.O. 1021m
44 check.c:769 T.O. N/A T.O. T.O. T.O. T.O. 874m
45

tiffsplit libtiff 3.9.7

tif ojpeg.c:1277 T.O. N/A T.O. N/A T.O. T.O. 561m
46 tif read.c:335 T.O. N/A T.O. N/A T.O. T.O. 1123m
47 tif jbig.c:277 T.O. N/A T.O. N/A T.O. T.O. 1046m
48 tif dirread.c:1977 T.O. N/A T.O. N/A 1068m T.O. 825m
49

nm binutils-5279478

tekhex.c:325 T.O. 364m 798m N/A 369m T.O. 264m
50 elf.c:8793 T.O. 986m T.O. N/A 665m T.O. 342m
51 dwarf2.c:2378 1313m 831m 1065m N/A 942m T.O. 212m
52 elf-properties.c:51 T.O. T.O. T.O. N/A T.O. T.O. 1062m
53

pdftotext 4.00

XRef.cc:645 T.O. N/A T.O. N/A T.O. T.O. 427m
54 GfxFont.cc:1337 1345m N/A T.O. N/A 1143m 1423m 785m
55 Stream.cc:1004 725m N/A T.O. N/A 498m 911m 352m
56 GfxFont.cc:1643 637m N/A T.O. N/A T.O. 876m T.O.
57

sqlite3 SQLite 3.8.9

pager.c:5017 617m N/A N/A 1214m 325m 810m 44.1m
58 func.c:1029 T.O. T.O. N/A T.O. T.O. T.O. 1126m
59 insert.c:1498 T.O. T.O. N/A T.O. 310m T.O. 452m
60 vdbe.c:1984 T.O. 89.6m N/A T.O. T.O. T.O. 628m
61

exiv2 0.26

tiffcomposite.cpp:82 73.1m N/A 68.1m N/A 57.2m 93.2m 42.1m
62 XMPMeta-Parse.cpp:847 37.5m N/A 21.4m N/A T.O. 79.5m T.O.
63 tiffvisitor.cpp:1044 102m N/A T.O. N/A 89.2m 112m 69.5m
64 XMPMeta-Parse.cpp:896 86.7m N/A 421m N/A T.O. 99.1m T.O.
65

objdump binutils-2.28

elf.c:9509 T.O. 782m T.O. T.O. T.O. T.O. 1294m
66 section.c:936 T.O. T.O. T.O. T.O. T.O. T.O. 1244m
67 bfd.c:1108 T.O. 361m 1288m T.O. T.O. T.O. 1175m
68 bfdio.c:262 T.O. 1123m T.O. T.O. T.O. T.O. 1032m
69

ffmpeg 4.0.1

rawdec.c:268 T.O. N/A N/A T.O. 221m T.O. 183m
70 decode.c:557 T.O. N/A N/A N/A 338m T.O. 182m
71 dump.c:632 T.O. N/A N/A N/A 673m T.O. 498m
72 utils.c T.O. N/A N/A N/A 238m T.O. 178m
73

mujs 1.0.2

jsrun.c:572 T.O. N/A T.O. T.O. T.O. T.O. T.O.
74 jsgc.c:47 T.O. N/A T.O. T.O. T.O. T.O. T.O.
75 jsdump.c:292 532m N/A 421m 433m 488m T.O. 361m
76 jsvalue.c:362 T.O. N/A T.O. T.O. T.O. T.O. T.O.
77

swftools 0.9.2

initcode.c:242 324m N/A 223m N/A 298m 401m 196m
78 png.c:410 871m N/A 681m N/A 501m 1004m 431m
79 poly.c:137 T.O. N/A T.O. N/A T.O. T.O. T.O.
80 jpeg2swf.c:257 677m N/A 541m N/A 611m 881m 481m

speedup 3.23× 1.72× 1.81× 4.83× 2.05× 4.26× -
mean Â12 0.86 0.81 0.83 0.89 0.83 0.90 -

mean p-values 0.008 0.032 0.016 0.001 0.013 0.006 -
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