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1. Background and Motivation

* Fuzzing
— Effective approach to discovering vulnerabilities
—e.g., AFL, Google’s OSS Fuzz

* Directed Greybox Fuzzing (DGF)

— Designed technique for testing the given target code locations

— Patch testing, bug reproduction, potential buggy code verification




1. Background and Motivation

* Directed Greybox Fuzzing (DGF)
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1. Background and Motivation

« State-of-the-art DGF techniques

— The state-of-the-art DGF works leverage heuristic methods to optimize fithess metrics or
exclude the irrelevant code locations.

* e.g., BEACON (path pruning), CAFL and WindRanger (data condition)

* However
— Heuristic methods lack foresight on paths that have not been exercised yet

— Hard-to-execute paths with complex constraints would hinder DGF

* For example
— Using BB distance, seeds with shorter distances are prioritized

— Complex constraints along seeds’ paths will hinder fuzzer from reaching targets




1. Background and Motivation

e Our goal

—Path Transition Model.

path transition 1

* Model DGF as a process of reaching the target
site through specific path transition sequences.

— Design a predictive directed greybox fuzzer
to predict the path transitions.
. _ O
— Intelligently generate the optimal and O o o seeds
viable path to the target site. path; —— path, —— paths




1. Background and Motivation

* Challenges

—Challenge 1: How to predict path transitions that have not been taken?

—Challenge 2: How to determine the optimal path among large numbers of path
transitions?

—Challenge 3: How to exercise the optimal path transition sequences by
optimizing the fuzzing strategies?




1. Background and Motivation

» Solutions
—For Challenge 1

* Design the Virtual Ensemble Environment to imitate the path transition model and
predict the path transitions.

—For Challenge 2

« Develop the Reinforcement Learning for Fuzzing model to learn the policy that can
maximize sequence rewards.
—For Challenge 3

« Propose the concept of the action group and the MPSO algorithm to guide the fuzzer
to exercise the optimal path transition sequences
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2. Design

2.1 Overview of DeepGo
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2. Design

Reinforcement Learning for Fuzzing

( Virtual Ensemble Environment

\
I
(- - - - 77—~ - — I Predicted
| Directed Greybox Fuzzing Historical e el | B predict Reply Buffer
| Reply Buffer : : I
- ~ T |
I - Path Transition Model __ = |
BB
I Distances [ » Operators a'.]d J [/’Path Transilion] : s i I
I QQAitThC Bytes Recording Recording I Trm —- e : [ k_step branch ]-o]lout]
I alyzer .
I -
I g - E Seed Value State and Action I Trm I
I g Sib]ing Calculation Representation I __________________ - ——— e e e e e
B hy -{ . . .
: & e J ( Fumine Ovfimization ) | Reinforcement Learning for Fuzzing |
uzzin mization
| S((:m{rice Overall Fuzzing I | Action Group | - | reward |
ode
||| e | > (e | — | S ) (). (G (e | || = (RN | |
I target.cpp Iﬂfgmmeﬂte - 2uEUE | Fuzzing || |Selection Energy Round | (s a)l ( |
rogram ’
| er Strategy | 3 3 ) 7 | <2 | { Q Critic Network ] |
I Yes Cover New I I I I I
| Paths? I I | V()| |
\ ) I Optimize | |
____________________ — |
I | [ next state state
I | Agent I
I /

MPSO
Algorithm




3

.
%
MLOGY

2. Design

2.1 Overview of DeepGo

T T p—

(

BB

Distances
Q Static
Q Analyzer

= -
=1 Sibling
% Branches
]
=1
\ A
Source
Code
tatar_:f::c Instrumented
Lesleph Program

f

Fuzzing Optimization Component

Directed Greybox Fuzzing

Path Transition Model

Operators and J [/’Path Transitio;
Recording

g
[ Bytes Recording

)

E Seed Value State and Action
Calculation Representation
\ /

( Virtual Ensemble Environment

Predicted
Reply Buffer

Overall Fuzzing

Cover New
Paths?

Reinforcement Learning for Fuzzing

Environment| <

action

Q Critic Network

—

\
|
e
Historical Tfm _" v | predict
Reply Buffer : : |
) Trm T, I
|
Trm Ty I
| : [ k-step branch rollout]
Trm T, I
Bl @ {R)(6I® & 5] ,
___________________ — -
Fuzzing Optimization | :
|
I | Action Group | - | reward
: | |5 Seed ), (Havoe |, (Gooraror ] Byes | || = I
Fuzzing | Selection Energy Round | (s a)l
I Serate | Y 4 1 ud | [
| = | (
| |
I I | V()|
| I Optimize | |
I MPSO | | next state
| Algorithm | I

—_——_—,———_— —_-— _—- .- ._—- .- ._— —_— —_— —_— —_——_——




2. Design

2.2 Design of Path transition model

Reward: effectiveness of path transitions

Expected sequence reward: effectiveness of actions

path transition 1

Seed value (Path value)
(1) seed distance to targets
(2) the difficulty of satisfying the branch inversion
(3) execution speed

(4) “favored’?

- mutation 1'- mutation 2 seed;
Vi(p) =Wi-ds + Wy - EDy + W3 - Exg + Wy - Fug
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2. Design

2.2 Design of Path transition model

Reward:

T(Pta at, Pry1) = Vﬂ(iﬂtﬂ) -V (Pt)

path transition 1

Path transition:
(Pts Aty Pe1,71)
Expected sequence reward:

Qr(pa) = E [r(p,a,p') +7Vz(p)]
p ()

Transition value:

-mutati(m ]'- mutation 2 seeds

0 if P = Pter
te Iy !
V?r (j)) o { Za W(a|p) -Qw(p’,,{,ﬁ), others
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2. Design

2.3 Design of Virtual Ensemble Environment
— Purpose: predict the potential path transitions and the corresponding rewards.

— Deep neural networks

— Experience reply buffer and predicted replay buffer
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2. Design

2.3 Design of Virtual Ensemble Environment
— Purpose: predict the potential path transitions and the corresponding rewards.
— Deep neural networks
« training: f:(path, action) — (next_path, reward) X —Y
* Gaussian probability distribution of the next paths and rewards

P(piiy1,7e|pe, a, 0) = N(po(pe, ar), Xo(pe, at))
« Average of the probabilities and rewards of DNNs

1 TL
P(pt+1,7e|pe, a,0) = — E P(pi+1.7¢|pe, as, 0;)
T

— Experience reply buffer and predicted F(zeblay buffer
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2. Design

2.3 Design of Virtual Ensemble Environment

— Purpose: predict the potential path transitions and the corresponding rewards.
— Deep neural networks

— Experience reply buffer and predicted replay buffer
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2. Design

2.4 Reinforcement Learning for Fuzzing Model

— Purpose: learn the policy that can steer the fuzzer toward the high-reward path
transition sequences

— Actor network, Q-Critic network, V-Critic network
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2. Design

2.4 Reinforcement Learning for Fuzzing Model

— Purpose: learn the policy that can steer the fuzzer toward the high-reward path
transition sequences

— Actor network, Q-Critic network, V-Critic network

_________________ N
Historical i{ Reinforcement Learning for Fuzzing |
Reply Buffer I ( Envi t] < I
O Q b reward  \mron action :
o of | i Policy7
‘ ] |
Predicted : [ Q Critic Network | QTl’ (S ’ a)
Reply Buffer |
oo > | NEEEENN—T V()
@ O |

next state state
P‘ Agent l |
]




2. Design

2.4 Reinforcement Learning for Fuzzing Model

— To give the RLF model foresight, we combine historical path transitions and predicted path
transitions to train RLF.

 Historical path transitions:

- Fuzzer stay on a path and take actions to cause path transitions

o actions __—"  path
o D\ transitions

- Historical path transitions are stored in the historical reply buffer and loaded by the

RLF model in each fuzzing cycle

__________________
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2. Design

2.4 Reinforcement Learning for Fuzzing Model

— To give the RLF model foresight, we combine historical path transitions and predicted path
transitions to train RLF.

» Predicted path transitions:
- Well-trained VEE imitate path transition model

- K-step branch rollout strategy to obtain predicted path transitions .
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predicted k-length path transition sequence
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2. Design

2.5 Fuzzing Optimization
— Purpose: guide the fuzzer to exercise the optimal path transition sequences.
— Action group

— Multi-elements Particle Swarm Optimization (MPSO) algorithm

{ Fuzzing Optimization
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2. Design

2.5 Fuzzing Optimization

— Purpose

— Action group
— MPSO algorithm

_
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Seed-selection (SS):

Representing the probability of a seed being
selected to fuzz.

Seed-energy (SE):

Representing the energy assigned to the seed

Havoc-round (HR):

Representing the number of looping rounds
used to select different mutators and bytes
during the havoc stage.

Mutator (MT)

Representing the mutator selected to mutate
the seed.

Location (LC)

Representing the mutation location of the seed
that is selected to mutate
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2. Design

2.5 Fuzzing Optimization

— Purpose Algorithm 1 MPSO Algorithm
Input: Qéjs’p)
. Output: Us,
- ACtIOﬂ group I: Initial(Q(s.p())p)

2: while fuzzing do
. _ i mi i 3: for (s;,p;) in Q) do
Multi-elements Particle Swarm Optimization. R e
S mn; <Cal_MN(p;(SE))
6: for j in mn; do
T hr; < $Prob_Sely(pi(HR), hm; <>
8 for k in hr; do

Update particles \

9: Iy, = Prob.Seli(m:@E));
SS SE HR MT LC 10: mty. < Prob_Sel,,(p;(MT)),
ey ) 11 hm; < hm; U (lcg, miy)
0 1 2-8 9-24 15.26 12: end for
. . 13: new_input = Mutate(hm;, s;)
— Update the location to find the local _best and 14: ef frocals ef fgtobal = Cal_e£E(s;, new_input)
. 15: Update(lbest, gbest, p;)
global_best locations for each elements o b
X end t

18: end for
19: end while

— Optimize fuzzing strategies to realize optimal
path transition sequences.
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« PART 3 Evaluations
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3. Evaluations

e Benchmarks
— UniBench and CVE-Benchmark

— 25 programs with a total 100 targets
* Baselines

— WindRanger, BEACON, ParmeSan, and AFLGo

« Evaluation setup

— Repeat 5 times

— Run for 24 hours

28



3. Evaluations

 Time-to-Reach (TTR):

— DeepGo can reach the most (73/80) target sites compared to AFLGo (22/80), BEACON
(11/80), WindRanger (19/80), and ParmeSan (9/80) within the time budget.

— DeepGo demonstrates 3.23%, 1.72x%, 1.81x%, and 4.83% speedup compared to AFLGO,
BEACON, WindRanger, and ParmeSan, respectively

6000
5000
4000
3000
2000 I | ‘

H DeepGo EE BEACON H ParmeSan
AFLGo N windRanger

Time-to-Reach (m)
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3. Evaluations

 Time-to-Reach (TTR):

— DeepGo can reach the most (73/80) target sites compared to AFLGo (22/80), BEACON
(11/80), WindRanger (19/80), and ParmeSan (9/80) within the time budget.

— DeepGo demonstrates 3.23%, 1.72%, 1.81%, and 4.83% speedup compared to AFLGO,
BEACON, WindRanger, and ParmeSan, respectively.
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3. Evaluations

* Time-to-Exposure(TTE):

— DeepGo (19) exposed the most compared to
AFLGo (14), BEACON (13), WindRanger (16),
and ParmeSan (14).

— DeepGo demonstrated 2.61x%, 3.32x%, 2.43x% and
2.53% speedup compared to AFLGo, BEACON,
WindRanger, and ParmeSan, respectively.

Prog. CVE-ID AFLGo BEACON WindRa ParmeS DeepGo
2016-4487 2.33m  0.63m 12lm 0.95m 1.34m
2016-4488 423m 32.1m 332m 2.62m 2.69m
2016-4489 3.36m 298m  5.88m 2.3Im 1.23m
binutilsy o6  2016-4490 1.15m  2.35m  2.63m 0.82m 1.97m
2016-4491 448m  258m  298m 212m  129m
2016-4492 10.8m 43.6m 7.47m 4.33m 6.94m
2016-6131 348m  292m  318Sm 244m 68.1m
2018-8807 33Ilm  267m  171m 30lm 10lm
b 2018-8962 234m  163m  121m 198m 54.8m
IDMINEL.48 5018.11095 TO. 914m 131lm TO. 812m
2018-11225 T.O.  438m  996m T.O. 128m
20112501 102m  N/A  7.81m 453m 3.46m
LibPNG; 5 ; 2011-3328 69.Im N/A  493m 193m 17.5m
2015-8540 0.88m N/A  096m 34lm 5.65m
2017-9047 T.O. T.O. TO. TO. 78m
cenlling 2017-9048 T.O. T.O. TO. TO. 138m
294 9017-9049 TO. T.O. TO. TO. TO.
2017-9050 T.O. T.O. TO. TO. 9llm
Lisi 2017-8846 348m  156m  223m 466m  131m
T21P0-631 901811496 20Im  98.Im  169m 126m 78.9m
speedup 2.61x 3.32x 243x 2.53x
mean Ao 0.79 0.72 075  0.81
mean p-values 0.018 0.032 0.026 0.011
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3. Evaluations

« Ablation study:
— Run DeepGo, DeepGo-v and DeepGo-r on UniBench for the TTR experiment
* DeepGo-v: remove VEE from DeepGo
* DeepGo-r: remove RLF and FO from DeepGo

— DeepGo (73/80) can reach much more target sites than DeepGo-v (32/80) and
DeepGo-r (18/80), respectively

— DeepGo outperforms DeepGo-v and DeepGo-r by 2.05x% and 3.72x, respectively, in the
average TTR of reaching the target sites

33
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3. Evaluations

« Ablation study:
— Run DeepGo, DeepGo-v and DeepGo-r on UniBench for the TTR experiment
* DeepGo-v: remove VEE from DeepGo
* DeepGo-r: remove RLF and FO from DeepGo

— DeepGo (73/80) can reach much more target sites than DeepGo-v (32/80) and
DeepGo-r (18/80), respectively

— DeepGo outperforms DeepGo-v and DeepGo-r by 2.05% and 3.72x, respectively, in the
average TTR of reaching the target sites
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3. Evaluations

« Setting of hyperparameters:

— Utilize DeepGo with different hyperparameter configurations to test 20 programs from
UniBench and recorded the mean TTR for each test case

— vy =0.8 and k = 4 can achieve minimum TTR

— The setting of y and k has a relatively small impact on TTR if the value of y is
between [0.5, 0.9], and the value of k is between [3, 5]
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« PART 4 Conclusion
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* We propose DeepGo: a predictive directed greybox fuzzer to
steer DGF to reach targets via optimal paths

— Propose the path transition model.
— Construct a Virtual Ensemble Environment to predict path transitions.

— Develop a Reinforcement Learning for Fuzzing model to learn the policy that
can steer the fuzzer toward the high-reward path transition sequences.

— Propose the concept of action group and the Multi-elements Particle Swarm
Optimization algorithm to steer fuzzer to realize the optimal and viable path
transition sequences.
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4. Conclusion

* We propose DeepGo: a predictive directed greybox fuzzer to
steer DGF to reach targets via optimal paths
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Thank you !

If you have some questions about our work,
welcome to contact us!

Email: phlin22@nudt.edu.cn

Artifact of DeepGo;https://qitee.com/pavnelin/DeepGo

National University of Defense Technology
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