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Abstract—Border Gateway Protocol (BGP) provides a way of
exchanging routing information to help routers construct their
routing tables. However, due to the lack of security considerations,
BGP has been suffering from vulnerabilities such as BGP
hijacking attacks. To mitigate these issues, two data sources have
been used, Internet Routing Registry (IRR) and Resource Public
Key Infrastructure (RPKI), to provide reliable mappings between
IP prefixes and their authorized Autonomous Systems (ASes).
Each of the data sources, however, has its own limitations. IRR
has been well-known for its stale Route objects with outdated
AS information since network operators do not have enough
incentives to keep them up to date, and RPKI has been slowly
deployed due to its operational complexities. In this paper, we
measure the prevalent inconsistencies between Route objects in
IRR and ROA objects in RPKI. We next characterize inconsistent
and consistent Route objects, respectively, by focusing on their
BGP announcement patterns. Based on this insight, we develop
a technique that identifies stale Route objects by leveraging
a machine learning algorithm and evaluate its performance.
From real trace-based experiments, we show that our technique
can offer advantages against the status quo by reducing the
percentage of potentially stale Route objects from 72% to 40%
(of the whole IRR Route objects). In this way, we achieve 93%
of the accuracy of validating BGP announcements while covering
87% of BGP announcements.

I. INTRODUCTION

The Border Gateway Protocol (BGP) plays a crucial role in
facilitating the exchange of routing information and the con-
struction of routing tables across the Internet. Unfortunately,
BGP was originally introduced almost three decades ago when
its stable operations was the most critical consideration. As
security aspects were not much considered in the BGP design,
routers lack the ability to (1) authenticate the origin of the
announced IP prefixes and (2) make informed decisions about
whether incoming IP prefixes should be propagated or not.
Such security issues have made the Internet plagued with
prevalent security incidents: router misconfigurations such as
route leaks, which caused multiple Internet outages [19], [61],
[40], and attacks such as prefix hijacking [65], [8], [43], [58],
to name a few.

To mitigate such limitations, the Internet Routing Reg-
istry (IRR) was introduced in 1995; IRR is a distributed
database managed by Regional Internet Registries (RIRs) or

Internet service providers (ISPs) so that network operators can
publish their routing information by creating routing objects,
or download routing objects of other Autonomous Systems
(ASes) to validate and filter BGP announcements. Due to
its simple and straightforward mechanisms, many network
operators have been using it to protect their IP prefixes. Some
network operators (e.g., Google [63]) also require others to
register their IP prefixes with IRRs when building a peering
relationship [38], [48], [47], [52]. However, it has been often
criticized due to its prevalent stale objects; for example, based
on some anecdotal evidence, Kuerbis et al. raised concerns that
some objects do not seem to be updated, and stale objects tend
to remain unchanged, and thus they are unreliable [34].

To overcome the limitation, Resource Public Key Infras-
tructure (RPKI) was introduced in 2008; the main objective
was to provide cryptographically verifiable attestation via a
Route Origin Authorization (ROA) object, which can bind an
IP prefix to the AS who is authorized to announce it. Thus,
routers can validate BGP announcements by checking if the
origin Autonomous System Number (ASN) announcing an
IP prefix matches with the ASN in ROA. Despite its strong
attestation, however, it has not been widely deployed yet due to
the negative impact of misissued ROA, the certificate depen-
dencies in the hierarchy of RPKI [27], [29], and its incapability
of route-leak protection. Also, RPKI depends on the Public
Key Infrastructure (PKI) managed by RIRs, the quality of
RPKI deployment and its management is significantly different
across the RIRs; for example, we found that on March 1st,
2023, 59.2% of IP prefixes in RIPE NCC, the European
RIR, were covered by ROA objects, while only 23.9% of IP
prefixes in AFRINIC, the RIR for Africa, were done (§III),
consistent with findings reported in 2019 [17]. Because of
this limitation, Mutually Agreed Norms for Routing Security
(MANRS) recommends the use of both IRR and RPKI [60].

Given the potential of IRR to complement the limitations
of RPKI, several approaches have been suggested to enhance
the quality of IRR objects. On one hand, certain Internet
registries, such as the Japan Network Information Center (JP-
NIC) managing JPIRR, have attempted to enforce rules within
their IRR databases to address stale objects; for instance,
JPIRR removes IRR objects that have not been updated for
a specified timeframe [20], typically a year. However, this
approach relies on active participation from network opera-
tors, who are required to re-register their objects annually.
Unfortunately, the lack of sufficient incentives to adhere to this
policy hinders its effectiveness. On the other hand, RIPE NCC,
the Internet registry for Europe, utilizes RPKI to discard IRR
objects that fail validation against RPKI. Furthermore, Internet
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Routing Registry Daemon (IRRd), a well-known IRR database
server software [33], introduced support for validating IRR
objects against RPKI starting from version 4 [56]. However,
this approach has limited applicability since it only applies
to a subset of IRR objects that are covered by RPKI, which
constitutes less than half of the total IRR objects.

In this paper, we introduce a novel technique that improves
the accuracy of IRR by eliminating inaccurate IRR objects
while maintaining a comparable coverage. By conducting
a comprehensive longitudinal study spanning 12 years, we
investigate the deployment of both IRR and RPKI in con-
junction with BGP announcements. Our study aims to shed
light on the distinctions between RPKI-valid and invalid BGP
announcements, enabling us to infer the validity of IRR objects
not covered by RPKI.

Inspired by these observations, we leverage machine learn-
ing (ML) techniques to identify and flag invalid IRR objects.
We then compare and evaluate our approach with other pro-
posed techniques that share the same objectives. Our main
findings and contributions are as follows:

• We conduct an extensive longitudinal study spanning 12
years and investigate the inconsistencies between RPKI and
IRR using real BGP traces.

• We thoroughly analyze the BGP announcements associated
with inconsistent IP prefixes, shedding light on how these
prefixes are announced in the routing system.

• We develop an ML-based technique that effectively identi-
fies and marks stale Route objects in the IRR.

To foster reproducibility and further research into im-
proving the IRR and RPKI systems, we publicly release our
analysis code, data, and machine learning model to the research
community at

https://irredicator.netsecurelab.org

II. BACKGROUND

A. Why it is hard to authenticate BGP announcements

Regional Internet Registries (RIRs) manage the allocation
and registration of Internet number resources (e.g., IP ad-
dresses and ASNs). Currently, there are five RIRs globally:
APNIC, ARIN, RIPE NCC, LACNIC, and AFRINIC [57].
These organizations allocate IP spaces and ASNs to National
Internet Registries (NIRs) or Internet Service Providers (ISPs).
Consequently, RIRs possess information about the initial or-
ganizations that are allocated IP prefixes. However, IP prefixes
are transferrable, allowing NIRs to further allocate subsets
of IP spaces to local ISPs, who can then re-allocate them to
their own customers. Additionally, IP spaces can be leased or
transferred between ASes based on business relationships.

Due to such characteristics, even RIRs are unable to keep
track of a complete mapping between IP prefixes and the ASes
authorized to announce them. This limitation has exposed the
BGP to various security attacks [6], [35], [65], [14]. Attackers
can exploit this vulnerability by announcing IP prefixes they
do not legitimately own, leading to traffic diversion known as
prefix hijacking.

B. Approaches to authenticating BGP

The Internet has dealt with this problem by building
databases that store mappings between IP prefixes and autho-
rized ASNs, allowing interested parties (e.g., ASes) to access
and filter out invalid BGP announcements. Two mechanisms
have been introduced and utilized to achieve this: Internet
Routing Registry (IRR) and Resources Public Key Infrastruc-
ture (RPKI).

Internet Routing Registry is a globally distributed database
of the routing information managed by RIRs and ISPs and
was proposed in 1995 [9]. While IRR utilizes multiple objects
to offer comprehensive routing information, our exposition
primarily centers around the Route objects that specify the AS
authorized to announce a specific IP prefix, allowing for a more
focused analysis and understanding of the routing dynamics.

A Route object can carry multiple attributes, including
route, a mandatory attribute for the IPv4 prefix to announce,
origin, a mandatory attribute for the ASN that originates the
route, created, an optional attribute for the date when the
object is created, and last-modified, an optional attribute
for the date when the object is updated. Network resource
owners (e.g., ASes) can first create Route objects for mapping
between IP prefixes and their corresponding origin ASes.
These Route objects are then submitted to the database,
which is managed either by RIRs (e.g., RIPE NCC) or by
specific network operators (e.g., LEVEL3, NTT). The IRR
managing entities have their own policies to verify Route
objects submitted by ASes.

The objects stored in the IRR are written using the Routing
Policy Specification Language (RPSL) [12], which offers a
high level of expressiveness. This allows the objects to not only
contain mapping information between IP prefixes and ASes
but also include additional metadata related to ASes, such as
AS relationships, AS sets, and more. Network operators can
download these objects from the IRR for various purposes,
including the validation of BGP announcements for route
filtering, network troubleshooting, and router configuration.
However, the voluntary effort-based nature of the IRR has
led to criticism regarding the presence of stale objects, which
reflect outdated ownership information for an IP prefix after
it has been transferred to another AS. This can be primarily
attributed to two main factors: (1) the lack of incentives
for network operators to actively manage and update their
objects and (2) the inability of third parties to remove outdated
data [41].

Resource Public Key Infrastructure is a Public Key
Infrastructure (PKI) that offers a cryptographically verifiable
method of mapping IP prefixes to their respective origin ASes.
To support this functionality, RPKI employs various objects,
including:

• a CA certificate, which binds a set of number resources such
as ASNs and IP prefixes to the public key of the owner.

• a Route Origin Authorization (ROA), which authorizes an
AS to announce a specific set of IP prefixes1. These objects

1ROAs have MaxLength attributes that restrict the scope or
coverage of these objects, specifically determining the upper limit
for the prefix lengths they cover.

2

https://irredicator.netsecurelab.org


Auth.
Objects

Measurement
Period

# of
Objects

% of Covered
IPv4 ASes

ROA 2011/01 – 2023/03 333 K 37.15 28.46
RADb 2016/08 – 2023/03 1.43 M 50.76 37.82
ALL-IRRs 2019/12 – 2023/03 2.69 M 74.23 68.80

TABLE I: Overview of the IRR and RPKI datasets as of March
1st, 2023; the number of Route objects and their coverage in
IPv4 and ASes significantly surpass that of ROA objects.

are signed by the private key corresponding to the public
key in the CA certificate.

In contrast to the IRR, the trust of the objects in RPKI must be
rooted from one of the RPKI trust anchors managed by the five
RIRs – APNIC, RIPE NCC, AFRINIC, LACNIC, and ARIN.
Unlike IRR, where network operators have the flexibility to
select any IRR database to register their Route objects, the
RPKI object must ultimately be signed by the corresponding
root trust anchor based on the initial assignment of an IP
prefix; network operators who wish to register their ROAs
must upload their objects to the repositories managed by the
RIRs (or to the delegated repositories) so that they can get
signed by the corresponding CAs. Thus, ASes can access the
RPKI objects from the repositories or Relying Party (RP)
software to authenticate BGP announcements, ensuring that
the authorized ASes can be verified. Despite the benefits of
RPKI, its adoption rate remains relatively low due to the
complexity involved in registering and managing RPKI objects
covering only a fraction of IPv4 spaces, ranging from 23.9%
(AFRINIC) ∼ 59.2% (RIPE NCC). Furthermore, some ASes
do not adopt RPKI due to compatibility issues with their
hardware infrastructure [1].

C. Efforts to improve IRR

To address the issue of stale objects in IRR and enhance
the overall quality of IRR objects, two approaches have been
suggested:

1) IRR pruning with RPKI validation: RIPE NCC initiated the
pruning of IRR objects by incorporating ROA validation.
They announced their intention to eliminate Route objects
from their IRR database if their IP prefixes were covered
by ROA objects but had different ASNs associated with
them [54]. In response, Internet Routing Registry Daemon
(IRRd), a well-known IRR database server software [33],
implemented this policy by validating all IRR objects with
ROA objects in version 4 [56].

2) Age-based filtering: JPIRR removes Route objects that
have not been updated for over a year [20] in order to
encourage network operators to update their objects timely
and ensure that outdated entries are removed.

However, both approaches have a limitation in terms of their
coverage, as they only address a relatively small percentage of
IRR objects, which will be presented in §VII.

III. STATUS QUO: IRR AND RPKI COVERAGE

We first aim to determine the extent to which the IPv4
address space can be covered by either RPKI or IRR. Our focus
is not solely on the registration of RPKI or IRR objects by
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Fig. 1: The growth of RPKI and IRR in terms of the percent-
ages of ASes and IPv4 addresses for each of these mechanisms.

network operators; we also pay attention to the proportion of
BGP announcements that can be successfully validated using
longitudinal datasets.

A. Deployment Status of Route objects and ROAs

To gain insights into the deployment of RPKI and IRR
by network operators, we analyze historical datasets of ROA
and Route objects.2 Table I shows the numbers of ROA and
Route objects, and the percentages of ASes that have at least
one of these objects. We use two kinds of IRR databases for
our analysis: RADb, the most widely used, and ALL-IRRs,
a composite database that merges RADb with other IRRs
sourced from RIRs.

Route objects cover more than 74% of the total IP address
space, excluding reserved IP addresses, whereas ROA objects
only cover around 37% as of March 1st, 2023. However,
the disparity between the two becomes more evident when
considering the percentage of ASes that have adopted IRR or
RPKI. Over 68% of ASes have adopted IRR, while about 28%
have adopted RPKI. This indicates a higher deployment rate
of IRR compared to RPKI among ASes.

We now focus on how they have been deployed over time.
Figure 1 illustrates the time-varying coverage of IRR and RPKI
with regard to ASes and the IPv4 address space3. We make a
number of observations. First, we see an increasing trend of
deployments. For instance, the coverage of the IPv4 address
space by IRR increased from 66.3% in December 2019 to
74.2% in March 2023, while RPKI coverage grew from 15.8%
to 37.2% during the same period.

Second, we observe that relying on RPKI solely to validate
BGP messages may not arrive soon [29], [27]. Although the
deployment rate of RPKI has notably increased since 2019,
it currently covers less than 40% of the total IPv4 address
space. This weighs the criticism regarding the low deployment
of RPKI. It also emphasizes the importance of leveraging IRR
and enhancing its quality.

2There have been multiple instances when the availability of ROA
objects for downloading from the RIRs’ repositories was disrupted;
thus, we list such outages in §X and exclude outages from our
analysis.

3We rely on historical datasets provided by the Number Resource
Organization (NRO) to count the total numbers of IPv4 addresses and
ASes [51].

3



 0

 20

 40

 60

 80

 100

Covered Announcements

ROA

RADb

ALL-IRRs

 0

 20

 40

 60

 80

 100

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

2
0
1
7

2
0
1
8

2
0
1
9

2
0
2
0

2
0
2
1

2
0
2
2

2
0
2
3

Valid Announcements

%
 o

f 
B

G
P

A
n

n
o

u
n

c
e

m
e

n
ts

Date 

Fig. 2: Percentages of BGP announcements covered by IRR
and RPKI (top) and percentages of valid announcements within
each (bottom) are shown.

Third, we observe a significant decrease in the percentage
of the IPv4 address space covered by IRR in mid-2022.
The coverage dropped by approximately 8.3 percent points,
declining from 81.5% on May 14th, 2022, to 73.2% on June
3rd, 2022, as 6.7K Route objects were removed during that
period. We found that 3.4K (covering 8.1% of the IPv4 address
space) Route objects belong to the DoD Network Information
Center and none of them are covered by any ROA objects.
This highlights a potential gap in coverage between IRR and
RPKI, emphasizing the need for continuous efforts to improve
the quality of IRR.

B. BGP announcements with IRR and RPKI

To understand how the Route or ROA objects are prac-
tically used, we measure their deployments over BGP an-
nouncements by utilizing BGP announcements collected from
all vantage points of RouteViews [62].

1) BGP coverage by IRR and RPKI: We proceed to analyze
the extent of BGP announcements that are covered by either
Route or ROA objects. A BGP announcement is considered
covered when its IP prefix matches exactly or partially at least
one of the IP prefixes specified in Route or ROA objects.

Figure 2 (top) plots the percentages of BGP announcements
covered by IRR and RPKI, respectively. Notably, the IRR
coverage is 2.2 times higher than that of RPKI, accounting
for 93.1% compared to RPKI’s 42.1% as of March 1st, 2023.
This indicates that RPKI is still lacking its coverage for about
58% of the total BGP announcements.

2) BGP validation with IRR and RPKI: We now examine
how many of the BGP announcements are valid against either
ROA or Route objects. To do so, we develop a validator
that adheres to the standard logic of BGP announcement
validation [44]. Figure 2 (bottom) shows the fractions of valid
BGP announcements over time4

4When validating BGP announcements against IRR, we follow
the same procedure as Resource Origin Validation (ROV) [44].
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Fig. 3: The number of overlapping IP prefixes between Route
and ROA objects and their portions in Route are shown.

We notice that the fraction of valid BGP announcements
against IRR and RPKI has reached 92.7% and 97.4%, respec-
tively, as of March 1st, 20235. Also, we observe a significant
drop in the percentages of valid BGP announcements against
both RPKI and IRR on September 30th, 2017, July 19th,
2018, and April 26th, 2019. We find that the number of BGP
announcements and the number of covered BGP announce-
ments increased on those dates, but the number of valid BGP
announcements was almost the same as the other days. We also
find that AS37468, operated by Angola Cables, made more
than 176K BGP announcements on July 19th, 2018, which it
did not announce for the four weeks around that day, which
aligns with the report in [17].

Key Takeaways: Our analysis reveals a superior coverage of
IRR compared to RPKI from both the perspectives of object
registration (74.2% vs. 37.2% of the IPv4 space) and BGP
coverage (93.1% vs. 42.1%). However, a deeper examination
of the validity of BGP announcements reveals the limitations
of IRR, indicating that it alone may not be reliably used for
the validation of BGP announcements.

IV. INCONSISTENCIES IN IRR AND RPKI VALIDATION

Our goal is to investigate approaches that utilize RPKI to
provide a reliable mapping between ASNs and their announced
IP prefixes, with the aim of eliminating inaccurate IRR entries.
One promising strategy is to identify IP prefixes and ASNs that
are covered by both Route and ROA objects and to remove
Route objects that are inconsistent with RPKI validation.
However, this approach may be less effective if the number of
overlapping objects is too low, or if the quantity of inconsistent
objects is minimal. Thus, in this section, we now examine
how much of IP prefixes are covered by both Route and
ROA objects and how much of their authorized ASes are
inconsistent.

A. Overlap between Route and ROA Objects

Initially, we examine the extent of overlap between ROA
and Route objects by evaluating two metrics: (1) the count of
IP prefixes that are covered by both RPKI and IRR and (2)
the proportion of Route objects with IP prefixes that are also

5Note that not all BGP announcements are valid due to attacks
(e.g., BGP hijacking) or misconfigurations; thus it would be infeasible
for the valid ratio to reach 100%.
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Fig. 4: The number and the percentage of inconsistent prefixes
are shown.

covered by ROA objects relative to the total number of Route
objects. Figure 3 presents the findings, from which we derive
several observations.

First, the number of overlapping IP prefixes across the
ROA and Route objects increases overall; we observe over
1.08 M IP prefixes in ALL-IRR are also registered in RPKI as
of March 1st, 2023.

Also, the percentage of Route objects that can be covered
by both ROA and Route objects has increased rapidly since
2019. This trend has been more clear as the number of
registered ROA objects notably increases starting from 2019
(Figure 1). For example, 44.6% (1.2 M) of Route objects in
ALL-IRR can be matched by ROA objects as of March 1st,
2023. This implies that many IP prefixes that have already been
registered in IRR now begin to be also covered by ROA objects
as the RPKI deployment rate grows; for example, we observe
a sharp increase in the number of IP prefixes covered by both
between December 22nd, 2018 and January 12th, 2019. This
was because three large Taiwanese ASes6, which had already
managed their Route objects since 2000, started deploying
RPKI during the above dates by registering 1,354 ROA objects
covering 36,481 IP prefixes.

B. Inconsistent origin ASes of IP prefixes

As the number of IP prefixes covered by both ROA and
Route objects increases, it is critical to maintain consistent
origin ASNs for such IP prefixes. In practice, however, it is
challenging because (1) network operators do not always keep
their Route objects up to date, and (2) Route objects do not
have any validity period. Thus, it may bring operational issues
when the validation results across ROA and Route objects
fail. For example, routers that use only Route objects to filter
invalid BGP announcements could reject BGP announcements,
that are actually valid according to RPKI, and vice versa.

We now try to understand how many inconsistent IP
prefixes exist and whether they grow over time in terms of
numbers, especially with regard to BGP announcements. To
do so, we first consider only IP prefixes for which there are
both Route and ROA objects that match. Then we classify
a given IP prefix to be consistent if their origin ASes are the
same; otherwise, we call it inconsistent. We obtain inconsistent
IP prefixes from our collected ROA and Route objects and

6AS9674, AS4780, and AS9919
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Fig. 5: The number and the percentage of BGP announcements
covered by inconsistent Route objects.

Figure 4 shows the fraction and the number of such IP prefixes
over time.

We make a number of interesting observations; first, the
percentage of the inconsistent IP prefixes decreases from
11.2% to 5.7% (from 38.9% to 13.8% in RADb) during our
measurement period.

However, we also notice that the number of such incon-
sistent IP prefixes keeps increasing; for example, the number
of such IP prefixes has been increased by a factor of 2.7
(5.2 for RADb) during our measurement period. At first
glance, this may look contradictory; however, it is because
of a combination of two interesting phenomena. First, the
percentage of inconsistent IP prefixes can decrease as network
operators who had already registered the Route objects for
their IP prefixes started to create ROA objects with the same
IP prefixes (that are consistent); the three Taiwanese ISPs who
already had their Route objects registered deployed their ROA
objects to the APNIC RPKI repository. Figure 1 explains the
sharp drop between December 22nd, 2018 and January 12th,
2019.

On the other hand, when new ROA objects are registered
by the authorized ASes, their IP prefixes may have a conflict
with the stale Route objects with the outdated ASNs, making
the number of inconsistent IP prefixes grow7. Based on the
slow but increasing trend of the RPKI adoption rate, we can
expect that the number of inconsistent IP prefixes might keep
increasing, making the situation worse.

C. Inconsistent IP Prefixes in BGP announcements

As we observe the gap between validation results against
IRR and RPKI, a natural question that arises is how many BGP
announcements are affected by the inconsistent IP prefixes,
which might have an impact on routing table construction.
Figure 5 plots the number of BGP announcements covered
by the inconsistent IP prefixes and their percentage over time.
We first immediately notice that 5.3% (12.3% for RADb) of
the BGP announcements covered by both ROA and Route
objects are inconsistent in our latest snapshots even though its
percentage has been decreased from 7.8% (29.5% for RADb).
Similar to the prior findings, the number of inconsistent BGP

7Considering that ROA objects can only be registered by the real
owner of IP prefixes, we can assume that normally the conflicted
Route objects are stale.
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announcements increased during our measurement period from
7.7K to 20.8K (from 2.8K to 18.6K for RADb).

Key Takeaways: We discover that 1.2 M (44.6%) IRR
objects, as of March 1st, 2023, are covered by corresponding
ROA objects, primarily attributable to the rising adoption of
RPKI. However, among these, 61.6 K (5.7%) are found to be
inconsistent with ROA validation outcomes, suggesting their
removal. A point of concern is the escalating count of such IRR
objects and the number of BGP announcements they cover,
indicating a trend of increase.

V. CHARACTERIZING INCONSISTENT ROUTE OBJECTS

We observed a better coverage of IRR in terms of the IPv4
space it encompasses, as well as its actual utilization in BGP
announcements; however, we also noted that 61.6 K (5.7%) of
those entries that are also covered by RPKI are inconsistent,
thus invalid. This suggests that employing existing RPKI
validation methodologies [54], [56] to prune IRR entries would
yield only a marginal improvement (less than 5.7%), leaving
other stale entries undetected. Our ultimate objective is to
characterize such objects and further devise a methodology to
identify those not covered by RPKI. In this section, we explore
the characteristics of inconsistent Route objects by comparing
them with consistent objects.

A. Ages of inconsistent Route objects

There has been anecdotal evidence that stale Route objects
contribute to inconsistent IP prefixes [34], prompting some
network operators to make efforts to keep their Route objects
up-to-date. For instance, JPIRR (Japanese IRR) follows a
policy of removing Route objects that have not had their
last-modified attributes changed for over a year [20]. In our
analysis, we use the last-modified attribute for measuring
the age of Route objects to identify any notable patterns or
trends related to their age.

Figure 6 shows the cumulative distribution of ages of
consistent and inconsistent Route objects. As expected, incon-
sistent Route objects tend to be older than consistent Route
objects. The median and 90th percentile ages of inconsistent
Route objects are 7.9 years (2,899 days) and 16.3 years (5,944
days), respectively, while those of consistent Route objects
are 2.9 years (1,064 days) and 10.8 years (3,928 days). While
older ages are more commonly associated with inconsistent

 0

 10

 20

 30

 40

 50

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

2
0
1
7

2
0
1
8

2
0
1
9

2
0
2
0

2
0
2
1

2
0
2
2

2
0
2
3

%
 o

f 
A

c
ti

v
e

O
b

je
c

ts

Start Date of Monitoring Period

Const.

Inconst.

Fig. 7: The percentages of active Route objects are plotted.
The end date of the monitoring period is March 1st, 2023.
The x-axis is the start date of the monitoring window in a
reverse direction. A Route object is active if at least one
BGP announcement corresponding to the object is observed
within a monitoring period; otherwise, it is inactive. Thus, the
majority of the inconsistent Route objects (75.5%) have not
been announced since 2011.

Route objects, relying solely on age to identify potentially
stale Route objects may have unintended consequences. For
example, there are 1.67% of consistent Route objects that
have an age greater than the 90th percentile age of inconsistent
Route objects. This indicates that a valid Route object, whose
IP prefix has been legitimately advertised for a significant
period by an authorized origin AS, may also be mistakenly
categorized as stale.

B. Activeness of inconsistent Route objects

In order to understand how inconsistent IP prefixes are
announced in BGP, we shift our attention to analyzing the
activeness of these prefixes. We introduce an activeness metric
that determines whether a specific prefix-origin pair is actively
used in BGP or not. To measure activeness, we examine
consecutive BGP snapshots within a designated monitoring
window.

We consider the AS active if it has ever announced that
prefix within a monitoring window extending from time x to
the latest available snapshot. To gain insights into the behavior
of ASes, we gradually widen the monitoring window toward
the oldest snapshot. Our hypothesis is that origin ASes in stale
Route objects are unlikely to continue announcing the same IP
prefixes as they previously did. Consequently, while these stale
Route objects may appear inactive within a small monitoring
window, they may become active as the monitoring window
grows. We apply this metric for all the pairs of IP prefixes and
their ASes in Route objects and calculate the portion of active
pairs as the monitoring window is varied. Also, we plot the
activeness metric for both consistent and inconsistent Route
objects (those covered by ROA objects) as well.

Figure 7 shows how the percentages of active objects
change as we expand the monitoring window. We find inter-
esting observations.

Firstly, inconsistent Route objects exhibit extremely low
activity. When considering a monitoring window of just a
single day (i.e., the latest snapshot), we find that only 0.6%
of IP prefix-origin pairs matching inconsistent Route objects
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Fig. 8: The average Lifespan, Uptime, and Relative
Uptime of consistent and inconsistent Route objects are
plotted with the monitoring window size increased.

are observed in BGP announcements. This increases to 24.5%
when the monitoring window is extended to the longest (12
years).

Secondly, the consistent Route objects are generally more
active than inconsistent Route objects. Nevertheless, the ma-
jority of them remain unannounced in BGP for over 12 years.
29.3% consistent IP prefixes are observed when considering a
single-day monitoring window, and 41.8% when considering
the longest monitoring window.

Thirdly, we notice that the curves of the percentages of
active objects become flattened as the monitoring window size
increases. For example, we see the percentage of active IP
prefixes in consistent Route objects increases by 9.4 percent
points for the first five years from the latest snapshot, but it
only increases by 3.1 percent points for the remainder of the
measurement period (7.2 years).

On average, consistent Route objects are more likely
to be active than inconsistent Route objects. However, it
is important to note that classifying Route objects based
solely on activeness introduces the risk of making mistakes,
regardless of the size of the monitoring window.

C. BGP patterns of inconsistent IP prefixes

Similar to a previous work [2] that characterizes BGP
announcements, we introduce three metrics to capture BGP
patterns more comprehensively: Lifespan, Uptime, and
Relative Uptime. These metrics are extensions of the age
and activeness metrics, and they provide a more nuanced un-
derstanding of BGP announcements over time. We first encode
the observations of BGP announcements for each prefix-origin
pair to a bit vector v where v[i] is 1 if the corresponding BGP
announcements are observed before i days from the current
date, otherwise 0. Let v be a bit vector, w be a monitoring
window, v[: l] = (v[i])0≤i≤l denote a subset of a bit vector,
and UpIndices(v) = {x | 0 ≤ x ≤ size(v)∧v[x] = 1} denote
a set of indices whose the corresponding bits equal to 1, then

BGP Announcement

U1 U2 U3 U4

Monitoring Window

I1 I2 I3

t0 t1 t2 t3 t4 t5 t6 t7 timet8

Fig. 9: Illustration of the metrics for the BGP model. Uptime is
the sum of the days for U1, U2, and U3; Lifespan is calculated
as t6 − t0 + 1; Up is 2; Down is 3; ActiveDays consists of
U1, U2, and U3; InactiveDays includes I1, I2, and I3.

Lifespan, Uptime, and Relative Uptime can be defined as
follows.

• Uptime(v, w) = sum(v[: w])/w
Uptime extends the activeness metric to offer a more
quantitative measure. It calculates the number of days that
the BGP announcement is observed within the monitoring
window.

• Lifespan(v, w) = (max(UpIndices(v[: w])) −
min(UpIndices(v[: w])) + 1)/w
Lifespan extends the age metric to account for the monitor-
ing window. Unlike age, which measures the date difference
between creation and the latest analysis, Lifespan calcu-
lates the span between the first and last days of observed
BGP announcements within the window.

• RelativeUptime(v, w) = Uptime(v, w)/Lifespan(v, w)
Relative Uptime integrates Lifespan and Uptime to
gauge BGP announcement frequency relative to lifespan. It
is the quotient of uptime and Lifespan, offering insight into
how often BGP announcements for a prefix were observed
across its lifespan.

These three metrics will be measured using twenty moni-
toring windows of varying sizes ranging from one day to ten
years. By characterizing Route objects using these metrics, we
can gain a deeper understanding of how BGP announcements
for an IP prefix have been made over time. We analyze these
metrics for all the BGP announcements in Route objects,
including consistent and inconsistent Route objects as shown
in Figure 8. We find interesting observations.

First, consistent Route objects have higher Lifespans
and Uptimes compared to inconsistent Route objects. This
indicates that consistent Route objects have been observed
for a longer period of time and have been more frequently
announced in BGP compared to inconsistent Route objects.

Second, as the monitoring window increases, we observe
a slight increase in the Lifespans and Uptimes of inconsis-
tent Route objects, while consistent Route objects show a
decrease. This implies that inconsistent Route objects were
actively used in the past but have become less relevant over
time. In contrast, consistent Route objects have more recent
usage patterns.

Third, the Relative Uptimes of inconsistent Route ob-
jects steadily increase with the growth of the monitoring
window, reaching a value of 0.78. This value becomes almost
comparable to those of consistent Route objects (0.82).
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Fig. 10: Ups and Downs of consistent and inconsistent Route
objects are plotted.

This finding indicates that the IP prefixes in consistent
Route objects have been actively announced and used in BGP,
while inconsistent Route objects were initially correct but have
become outdated and are no longer announced.

D. BGP dynamics of inconsistent IP prefixes

To capture the dynamic nature of prefix-origin pairs in
BGP, we define ten metrics: Up, Down, minimum, maximum,
average, and standard deviation for both Active Days and
Inactive Days as depicted in Figure 9. These metrics help
us understand the changes in the activeness of Route objects
over time.

• The Up metric measures the number of transitions from
inactive to active state.

• The Down metric measures the number of transitions from
active to inactive state.

• The Active Days metric refers to a list of consecutive days
during which BGP announcements are made. We measure
the minimum, maximum, average, and standard deviation of
these active days.

• The Inactive Days metric refers to a list of consecutive
days during which BGP announcements are not made. We
measure the minimum, maximum, average, and standard
deviation of these inactive days.

In Figure 10, the average of Ups and Downs of consistent
and inconsistent Route objects are shown. Both consistent
and inconsistent Route objects show an increase in Up and
Down metrics as the monitoring window size increases, while
consistent Route objects exhibit higher values compared to
inconsistent Route objects. This implies that consistent Route
objects exhibit a higher degree of dynamic behavior in their
BGP announcements, as they are more active, as depicted
in Figure 7. In our analysis of the four statistics of Active
Days and Inactive Days as shown in Figure 11, we make
the following interesting observations. In general, consistent
Route objects exhibit higher values for all statistics related
to active days compared to inconsistent Route objects. Con-
versely, inconsistent Route objects tend to have higher values
for all statistics related to inactive days compared to consistent
Route objects. One particularly noteworthy finding is that
inconsistent Route objects have significantly longer inac-
tive periods than consistent Route objects, especially when
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Fig. 11: The statistics of Active Days and Inactive Days
of consistent and inconsistent Route objects are plotted.

considering the minimum and average values. This indicates
that inconsistent Route objects experience longer periods of
inactivity.

Key Takeaways: We noted distinct patterns between consis-
tent and inconsistent Route objects, both in their lifetime and
in the dynamics of their BGP announcements; for example, a
mere 0.6% of IP prefix-origin pairs corresponding to incon-
sistent Route objects are observed in BGP announcements,
whereas for consistent ones, this figure rises to around 30%.
These pronounced differences indicate that utilizing such pat-
terns could facilitate the identification of inconsistent objects,
even when they do not intersect with ROA objects. This will
be further elaborated in the subsequent section.

VI. IMPROVING THE QUALITY OF ROUTE AUTHORIZATION

We now leverage the unique characteristics between in-
consistent and consistent Route objects to categorize other
potentially stale objects, which are not in overlap with ROA
objects by using machine learning techniques.

A. Datasets

1) Dataset Construction: To train the candidate models,
we use a training dataset {xi, yi}ni=1, where xi is a feature
vector and yi is the label assigned to the i-th Route object.

The feature vector xi consists of a total of 312 features,
which can be categorized into two groups:

• Window-based Features: These features are derived from
our metrics. We measure the value of each of 13 metrics8

across 20 different monitoring window sizes, yielding a total
of 260 features.

8These include Lifespan, Uptime, Relative Uptime, Up,
Down, along with the min, max, avg, and std for both Active
Days and Inactive Days.
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• Statistical Features: For each metric, there is a set of 20
measured values for the 20 monitoring window sizes. For
each set, we compute statistical measures such as the min-
imum, maximum, average, and standard deviation, which
results in total 52 features. These statistical features provide
insights into the distribution of the 20 measured values (for
each metric) over the monitoring windows, enhancing the
representation of the Route objects’ characteristics.

The label for a Route object (yi) is assigned based on its RPKI
validation status; the label is set to 1 if the object is RPKI-
valid and 0 otherwise. Route objects that are not covered by
ROA objects are left unlabeled and are consequently excluded
from the training dataset.

2) Dataset Filtering: We refine our dataset by removing
mislabeled Route objects, focusing on two main reasons.

The first reason involves mislabeled Route objects result-
ing from errors in the configuration of the MaxLength attribute
in the corresponding ROA objects, as reported in [17]. For
instance, a Route object covered by a ROA object with a
valid origin AS may be incorrectly labeled as invalid due to a
misconfigured MaxLength attribute.

The second reason pertains to invalid Route objects
with different ASNs from those of the corresponding ROA
objects, even though both ASNs belong to the same ISP.
For example, a Route object authorizing AS 133480 to an-
nounce 103.131.235.0/24 is labeled invalid (which is wrong)
due to a ROA object authorizing AS 9910 to announce
103.131.235.0/22. However, both ASes belong to the same ISP,
Intergrid Group Pty Ltd.

To summarize, we refine our datasets by taking into account
the MaxLength attributes of ROA objects (to mitigate the first
problem) and establishing AS relationships between the two
ASNs (to mitigate the second problem).

B. Model Selection

The classification task could be handled by setting reason-
able thresholds for each metric and comparing the features
of a Route object with these thresholds to determine if it
is stale or not (i.e., heuristic approach). However, we use a
machine learning (ML) model instead of using a set of rules
or thresholds as it offers several advantages for classifying
inconsistent Route objects:

• Automated threshold selection: ML models can automati-
cally determine an optimal threshold for each feature during
the training process. This eliminates the need for manual
selection and fine-tuning of thresholds, which can be time-
consuming and subjective.

• Generalization to unseen data: ML models can be gener-
alized to unseen data by learning underlying patterns and
relationships from the training set. They can capture the
inherent variability and diversity in the data, allowing for
accurate classification of new Route objects that were not
a part of the training set.

• Robustness to noises and outliers: ML models are generally
more robust to noises and outliers in the data compared to
rule-based approaches. They can learn from a large number
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Fig. 12: The average precision of of each candidate ML model
is shown. For each candidate model, we measure the average
precision of testsets consisting of Route objects from ALL-
IRR and RADb, respectively.

of training examples, identify relevant patterns, and handle
noisy or inconsistent data points more effectively.

Overall, the use of an ML model offers greater accuracy, gen-
eralizability, and robustness in classifying inconsistent Route
objects compared to rule-based approaches using thresholds.

Thus, we compare various ML models to identify the
one that performs the best on the features obtained using
our metrics. Specifically, we consider ten candidate models
for comparison purposes: multi-layer perceptron (MLP), lo-
gistic regression, support vector machine (SVM), decision
tree, random forest, bagging, AdaBoost, gradient boosting
machine (GBM), XGBoost, and LightGBM. By comparing
the performance of these models on the features, we can
select the most effective one for classifying Route objects.
We evaluate the performance of candidate models using the
average precision, i.e., the area under the precision-recall
curve. The ideal model should exhibit high precision to effec-
tively identify stale Route objects and high recall to ensure
practical reliability. Figure 12 illustrates the average precision
value of each candidate model. Among the models considered,
LightGBM demonstrates the highest performance, achieving
an average precision of 0.9998 for the ALL-IRR testsets. and
0.9996 for the RADb testset.9

C. Further Design Considerations

When identifying stale Route objects, it is crucial to
exercise caution in order to prevent incorrect predictions that
could lead to the elimination of valid objects, particularly when
the model is uncertain of their staleness. To mitigate this risk,
we integrate the classification with rejection technique into our
model; this approach refrains from making a prediction when
the model lacks adequate confidence in classifying a given
instance. This technique offers two main advantages. Firstly,
it helps mitigate the risks of false positives or false negatives
by avoiding potentially erroneous predictions. Secondly, it
enables expert intervention in the decision-making process as
predictions are deferred.

9Among the evaluated models, Bagging, XGBoost, and Light-
GBM demonstrated high performance. However, LightGBM stands
out as the most efficient in terms of training time. This efficiency is
particularly beneficial given the continuously expanding size of the
global routing table.
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In particular, we apply the classification with rejection
technique [16] to the LightGBM model. This technique pro-
vides the model with the ability to reject a prediction when
it encounters uncertainty (i.e., there is no dominant class
candidate) or ambiguity (i.e., there are multiple dominant class
candidates) for a given instance. For implementation, we apply
a custom loss function as defined in [16] and integrate with
our model; specifically, we train the model with the loss
function L(g;x, y) = cϕ(gy(x)) + (1− c)ϕ(−gy′(x)), where
g(x) = [g0(x), g1(x)]

T , gy(x) is the score function for class
y, ϕ is a binary margin surrogate loss 10, c ∈ (0, 0.5) is the
rejection cost, and y′ ̸= y. Since we need a score output
for each class to calculate a loss, we set the attributes of
the LightGBM model as follows: objective = ‘multiclass’ and
‘num class’ = 2. The prediction output for a Route object by
our model is calculated by applying the softmax function to
the scores, e.g., the prediction value of class 1 is given by
eg1/(eg0 + eg1). Finally, we can reject a prediction if either
maxy gy(x) ≤ 0 (indicating uncertainty) or ∃y, y′ s.t. y ̸=
y′ ∧ gy(x), gy′(x) > 0 (indicating ambiguity).

D. Applying into Practice

We assume that our approach is adopted by IRR admin-
istrators, such as RADb and RIRs. The validation process of
each Route object by IRR operators follows these steps:

1) If the prefix-origin pair of the Route object has not
been observed by any vantage points within the largest
monitoring window, it is marked as inactive. Otherwise,
proceed to step 2.

2) If the rejection conditions, as described in §VI-C, are
met, the Route object is marked as rejected. Otherwise,
proceed to step 3.

3) The Route object is labeled with a predicted value based
on our classification model. A higher value indicates a
higher probability of being valid.

Due to the flexible structure for RPSL and IRR objects, we
can add extra attributes to IRR objects [12]. For instance, IRRd
version 4, a widely used IRR database server software [56],
introduces ‘rpki-ov-state’ attribute into Route objects to store
the validation result obtained from RPKI. In a similar manner,
the validation result obtained from our technique can be stored
in a new attribute within Route objects. This allows network
operators, such as ISPs, to apply their own policies when
interpreting the validation results. For example, an operator
may choose to disregard or assign lower priority to the origin
information of a prefix in a Route object if its predicted
value (from our ML model) falls below a threshold set by
the operator.

VII. EVALUATION

Now, we evaluate our model in terms of (1) classification
performance, (2) generalizability, and (3) comparison with
other IRR filtering approaches. For each evaluation, we har-
ness Bayesian optimization [22] techniques with 5-fold cross-
validation to autonomously fine-tune a spectrum of hyper-
parameters, which is one of our design goals (§VI-B).
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Fig. 13: The evaluation results of our model using the testset
labeled with validation results against RPKI (top) and transfer
logs (bottom).

A. Model Performance

First, we evaluate the classification performance of our
model using a testset labeled with validation results against
RPKI. We evaluate our model ten times and aggregate the
prediction results to compute the precision, recall, and F1
scores, as depicted in Figure 13 (top). For each evaluation,
we perform a stratified sampling [49] on the dataset collected
on March 31, 2023. Specifically, we partitioned the dataset,
utilizing 80% of it to create a training dataset through stratified
sampling, and the remaining 20% was set aside as a test
dataset. We measure the precision and recall of our model
by varying the threshold. A Route object is considered
stale if our model does not reject the prediction and the
prediction output is lower than the threshold. We observe
that our model achieves remarkably high performance; for a
threshold value of 0.202, we achieve a maximum F1-score
of 0.988, with precision of 0.981 and recall of 0.996. Our
model performs well across a wide range of threshold values,
with both precision and recall consistently above 0.98 when
choosing a threshold between 0.1 and 0.999.

B. Model Generalizability

To test the generalizability of our model, we evaluate its
performance on a testset labeled with a ground truth dataset
unrelated to RPKI, which is transfer logs.

IP prefixes and other Internet resources can be transferred
from one organization to another under the RIR’s supervision.
When an IP prefix is transferred, the corresponding RIR
makes the transfer information (e.g., IP prefix, old and new
organizations11 participating in the transition, and the transition
date) publicly available [4], [55], [5], [39], [3]. The latest
transfer log corresponding to an IP prefix gives information
that (1) the source is no longer the owner of the prefix and (2)
the recipient is the owner of the prefix after the transfer date.

10We use a logistic loss, ϕ(z) = log(1 + e−z)
11Note that transfer logs do not contain any ASN information

because an organization (such as an ISP) can announce its IP prefixes
from one of their ASes that they manage or can simply lease its IP
prefixes to another AS to let them announce.
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Fig. 14: The three approaches (as to how to filter the IRR
data) are compared in terms of the number of remaining
Route objects, the ratio of active Route objects, the ratio
of covered BGP announcements, and the ratio of valid BGP
announcements.

To validate a Route object using transfer logs, we apply the
following criteria: (1) a Route object is considered stale if the
organization specified as the source in the most recent transfer
log is the ISP of the AS identified in the Route object; (2) a
Route object is categorized as non-stale if it the organization
listed as the recipient in the latest transfer log corresponds to
the ISP associated with the AS in the Route object and no
ASes tied to any other ISP have consistently announced the
prefix for a pre-defined period (e.g., two weeks). All the other
Route objects that do not meet either of the above criteria
remains unlabeled.

Using this approach, we identify 25,143 valid Route
objects and 1,323 stale (or invalid) Route objects. We evaluate
our model with these datasets. As shown in Figure 13 (bottom),
our model still exhibits strong performance across different
ground truth datasets; we achieve a maximum F1-score of
0.975, with precision of 0.952 and recall of 0.999 with the
0.000003 threshold. When using the same threshold value as
in the previous evaluation (0.202), we achieve a precision of
0.955, recall of 0.988, and F1-score of 0.971. These results
highlight the generalizability of our model in identifying stale
Route objects, even with the dataset unrelated to RPKI.

C. Comparison with other IRR filtering approaches

We now compare the proposed ML model in comparison
with (i) IRR without filtering and (ii) IRR pruning with RPKI
validation. We evaluate the three approaches in terms of (1)
the number of remaining Route objects after being filtered
by each approach, (2) the ratio of active12 Route objects to
remaining Route objects, (3) the ratio of the covered BGP
announcements to the whole BGP announcements, and (4)
the ratio of valid BGP announcements to the covered BGP
announcements. Here, covered BGP announcements means
the number of BGP announcements that are covered by the
remaining Route objects filtered by each approach.

We first compare the whole IRR (without any filtering),
IRRd4 (filtered by RPKI validation), and IRR-ML (filtered
by our ML model) in terms of the four criteria, which is
shown in Figure 14. We find that IRRd4 exhibits a comparable

12Observed more than once during the last 14 days.
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Fig. 15: The three approaches are compared in terms of the
number of remaining Route objects, the ratio of active Route
objects, the ratio of covered BGP announcements, and the
ratio of valid BGP announcements. Note that the whole IRR
contains only the Route objects in JPIRR.

performance with the whole IRR in terms of BGP-related
criteria (3) and (4) even if it filters out 0.29 M (10.8%) Route
objects 13. IRR-ML filters out 1.57M (58.5%) Route objects
from the whole IRR, and yet it reveals a slight decrease in the
ratio of the covered BGP announcements; these findings could
prompt questions about the effectiveness of RPKI validation,
which filters a mere 10.8% of ALL-IRR objects, while IRR-
ML filters 58.5% of ALL-IRR objects (Figure 14).

To delve deeper into these numbers, we analyze the BGP
announcement patterns of the filtered prefixes. Our analysis
reveals that only 3.12% of Route objects deemed invalid by
IRRd4 (and thus, by RPKI) are still actively announced. On
the other hand, only 0.07% of Route objects filtered by IRR-
ML are observed in BGP announcements. This suggests that
IRR-ML is more effective in identifying and filtering out stale
or unused Route objects. Further supporting this claim, the
average Uptime for Route objects filtered by IRR-ML is a
mere 0.027 when examined over a 14-day monitoring window,
equating to an average active period of approximately 0.38
days in the last two weeks.

We now show the benefits of IRR-ML compared to age-
based filtering, we compare the three approaches only using
JPIRR as shown in Figure 15. IRRd4 filters out a small
number of Route objects from JPIRR and hence shows almost
identical performance with the JPIRR in all criteria. On the
other hand, IRR-ML filters out 6.5K (25.1%) Route objects
from JPIRR. While there is a negligible decrease in the ratio
of the covered BGP announcements, the percentage of active
Route objects increases by 11.0 percent points achieving
45.0%. These results highlight that IRR-ML can improve the
quality of the IRR database managed by the age-based filtering
policy.

VIII. RELATED WORK

In this section, we review the literature for understanding
the security challenges in BGP and the approaches for enhanc-
ing BGP security.

13The percentage of filtered Route objects (10.8%) is greater than
the percentage of inconsistent prefixes in ALL-IRR (5.7%) since a
prefix can be associated with multiple Route objects.
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Fig. 16: As the gap between training and testing times in-
creases, its performance is gradually decreased.

A. Efforts to improve BGP routing security

There is a large body of work that focused on security
issues in BGP [7], [28], investigated common misconfigura-
tions [45], or identified overall challenges to securing interdo-
main routing [24]. To address its vulnerabilities, many security
extensions to BGP were proposed such as soBGP [64], S-
BGP[36], and BGPsec [26]. Some studies [25], [13], [27]
focused on quantifying the effectiveness of these security
protocols. However, due to the massively distributed nature of
the Internet, these protocols have not been deployed much.
To tackle the low deployment problem, Subramarian et al.
proposed a methodology to verify bogus route advertisements
by using cryptographic signatures in the control plane [59],
Cheng et al. proposed a classification model based on LSTM
to capture BGP anomalies [15], and Gill et al. suggested a strat-
egy to encourage the adoption of BGP security protocols (e.g.,
BGPsec) by providing some financial incentives to ISPs [23].

B. Efforts to sanitize interdomain routing information

IRR was proposed in 1995 and has been actively used by
network operators such as Google [21], Cloudflare [11], and
Internet Exchange Points (IXPs) such as AMX-IX [32] and
DE-CIX [10]. It is also recommended by network governance
organizations such as MANRS [48] because of its extensive
coverage and expressiveness. However, the issues of IRR
regarding its staleness have been raised multiple times [41],
[34], [50], [18]. For example, Du et al. [18] quantifies the
consistency between Route and ROA objects using IRR
databases collected a monthly granularity and reported that
20% of Route in RADb are covered by ROA objects and only
38% of them are consistent with ROA objects as of October
202114. Some studies focused on improving the security by
suggesting incentives for network operators to maintain the
objects up to date [34] and by removing IRR objects once
they have not been updated longer than a year [20]. However,

14While the percentage of overlapping Route objects aligns with
our analysis, there is a discrepancy in the reported percentage of
consistency. As of October 2021, our analysis indicated a consistency
in RADb of 81.9%, whereas the study reports 38%. This difference
can be attributed to the fact that they measured the percentage based
on the number of Route objects, whereas we measured it based
on the number of prefixes. It suggests that inconsistent prefixes are
associated with multiple Route objects in the dataset, resulting in
a lower consistency percentage when measured at the Route object
level.
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Fig. 17: As the size of the monitoring window increases, its
performance is gradually increased.

they were not successful mainly because of the missing ground
truth information about legitimate objects.

C. Efforts to build a PKI for BGP

RPKI [37] was introduced in 2008 but has been deployed
slowly. Chung et al. [17] reported that the deployment is
growing, but also there are deployment disparities across the
RIRs. To tackle the low deployment problem, Hlavacek et al.
proposes a method to register ROAs automatically [29] to
encourage network operators. Some studies [31], [30] focused
on identifying vulnerabilities that can give insights into how
to further strengthen the security of RPKI.

Our study extends these prior studies in three ways. First,
we examine the deployment of all ROAs fetched from all
the RIRs since its inception and analyze them with Route
objects collected from RADb, all five RIR’s IRRs, and JPIRR,
curated with a daily granularity. Second, we analyze the usage
pattern of Route objects within BGP by introducing various
metrics. This enables us to discern the BGP patterns of Route
objects and compare those of consistent and inconsistent
Route objects, furthering our objective of enhancing IRR
quality. Third, we present an ML-based approach to enhance
the quality of IRR by leveraging the analyzed patterns of BGP
announcements.

IX. DISCUSSION

In this section, we discuss various aspects of our model
and challenges.

A. Model Reliability

Our primary question is whether the model will maintain
reliable performance over time without requiring updates post-
training. To investigate this, we utilize a one-day snapshot
taken at t0 (March 1st, 2023) for testing, while training
the model on a snapshot from t0−x. Figure 16 presents the
evaluation results as we progressively increase the time gap be-
tween the training and testing snapshots; as anticipated, testing
immediately after training yields the best performance, which
only marginally decreases over a one-month gap (achieving
an AUC score of 0.998 for ALL-IRR and 0.996 for RADb).
Remarkably, even when using a one-year-old dataset for train-
ing, the model continues to exhibit high accuracy, maintaining
performance levels greater than 0.989.
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influential in the prediction of the model.

Next, we assess the model’s performance by varying the
size of the monitoring window. As shown in Figure 17, we
observe that extending the monitoring window contributes
to performance improvement by utilizing a more compre-
hensive longitudinal dataset. However, for IRR organizers,
the continuous monitoring of all BGP announcements could
be operationally taxing. Remarkably, even with a monitoring
window as brief as one day, the model still exhibits excellent
performance, achieving an average precision of 0.993 for ALL-
IRR and 0.982 for RADb. The performance degradation is
relatively minimal when the monitoring window is reduced.

B. Model Explainability

To provide the IRR operators with insight into how the
classification model operates, we employ SHapley Additive ex-
Planations (SHAP) [46] to elucidate the influence of individual
features on the model’s output. The SHAP values assess the
contribution of each feature to the model predictions on a set of
given inputs. As demonstrated in Figure 18, we aggregate gain
and SHAP values by metrics. Notably, the metrics Lifespan
and Uptime emerge as particularly important. This indicates
that both the age of the Route object and the consistency of
its corresponding BGP advertisements are crucial factors. This
is further corroborated by the gain score associated with the
metric Inactive Days and Active Days. This underscores
the importance of the duration for which a prefix-origin is
observable in BGP data for the effective classification of stale
Route objects.

C. Model Resiliency

The proposed ML model is designed to be resilient against
attacks that manipulate the inputs of the model, such as
adversarial examples and poisoning. The nature of our model’s
features, which are based on historical public BGP announce-
ments collected from multiple vantage points, makes it difficult
for attackers to successfully manipulate the inputs. To launch
adversarial attacks, attackers would need to craft inputs that
lead to misclassification during the testing phase. In our case,
this would involve announcing invalid BGP announcements
that match stale Route objects to cause false positives or
discarding a series of valid BGP announcements that match
valid Route objects to cause false negatives. However, these
manipulations are highly impractical for several reasons. First,
many network operators have implemented route origin val-
idation with RPKI or employed other techniques like BGP
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Fig. 19: As the prefix owner stops making announcements
for an extended period, the likelihood of the object being
considered stale increases.

filters to filter out invalid origins. This makes it challenging for
attackers to consistently announce invalid BGP announcements
that match stale Route objects, as they would likely be blocked
by these filtering mechanisms. Second, launching a successful
poisoning attack typically requires corrupting a substantial
portion of the training data. In our case, this would mean
manipulating the features of over 26.8K Route objects that
constitute 1% of the total 2.68 million Route objects as of
March 1st, 2023, which is highly unlikely to go unnoticed. As
a result, the practical feasibility of launching effective attacks
against our model is extremely low.

To assess the resiliency of our model, we conduct an
evaluation to detect real-world BGP attacks. We employ a
dataset of prefix hijacks from BGPStream [53], which consists
of (prefix, AS-PATH) pairs that potentially signify hijack
incidents. Our strategy involves extracting the features from
the (prefix, hijacker’s origin) pairs and subsequently predicting
using our model. The outcomes provide insights into the
model’s efficacy in identifying evasion attacks. Out of a total
of 1,014 potential hijack incidents, we exclude 93 cases where
the origin is valid against RPKI. Within the remaining 921
potential hijack incidents, our model successfully identified
608 of them (66.0%) as invalid.

D. Detection Delay

Our methodology depends on features that can be adap-
tively defined within a monitoring window, such as 2 weeks
or 1 year. As a result, there might be a delay in identifying
a stale Route object, particularly if the object was actively
advertised but has recently ceased announcements due to
being transferred to another origin, without deleting the Route
object. For example, if the legitimate holder of a Route object
has announced the prefix for a year and subsequently transfers
it to another AS, a noticeable detection delay could occur in
identifying these changes as indicative of stale objects.

Inspired by previous work [29] that focused on the de-
facto-owner of a prefix, we incorporate label-flipping augmen-
tation [42], [66] to address this challenge. The approach is
straightforward: we create a label-flipped dataset by perturbing
the features of a valid Route object and reversing its label; for
example, if the original label is ‘valid’, we manipulate their
BGP announcement patterns to mimic a lack of announcements
over the last x days, altering relevant features. We adhere to
previous research that defines the de-facto-owner of a prefix
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as an entity that has announced for at least 11 consecutive
days, meaning a prefix-origin that has not announced in the
last 11 days is no longer considered a de-facto owner. We then
compute the perturbed feature from this altered bit vector and
change the label to ‘invalid’. This allows the IRR operator
to identify stale entries that have not been used in BGP
announcements for a specified period, like 11 days.

By applying this approach, as shown in Figure 19, it
becomes evident that a stale object can be identified if it
has not been announced for two weeks. However, it is worth
noting that network operators might have legitimate reasons
for not announcing IP prefixes, such as traffic engineering
or security concerns. In such cases, the introduced technique
could inadvertently delete valid entries.

X. CONCLUSION

In this paper, we conducted a large-scale, longitudinal study
of inconsistent Route objects in Internet Routing Registry
(IRR), which are validated against Route Origin Authoriza-
tion (ROA) objects in Resource Public Key Infrastructure
(RPKI). We find that such inconsistent Route objects have
increased over time even if the RPKI adoption rate slowly
grows. Moreover, the number of inconsistent IP prefixes has
been increased by a factor of 2.7 (5.2 for RADb) during
our measurement period. We characterize how inconsistent IP
prefixes are announced over BGP and propose a technique
that identifies stale Route objects by leveraging a machine
learning (ML) algorithm. Our proposed ML model, IRR-ML,
improves the quality of filtered Route objects compared to
previous methodologies such as RPKI-based filtering and age-
based filtering. Specifically, IRR-ML effectively filters out stale
Route objects that are rarely used in BGP advertisements.
Specifically, IRR-ML filters out 1.55 M (57.8%) stale Route
objects from the entire IRR, while RPKI-based filtering elimi-
nates only 0.29 M (10.8%). Our technique can offer advantages
in comparison to the status quo by providing more trustworthy
routing information.
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APPENDIX

A. RPKI Repository Outage

Through the entire snapshot of RPKI objects, we observe
that ROA objects from the APNIC repository were inaccessible
on the following dates: November 24, 2019, August 3, 2020,
January 4, July 15, 19, 23, 31, August 10, 2021, and 21 days
in September 2021. Similarly, for the RIPENCC repository, we
experienced difficulties accessing ROA objects on March 7, 8,
2015, April 6, and August 3, 2020. Furthermore, ROA objects
from the LACNIC repository were unavailable on February 28,
2021.
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