Parrot-Trained Adversarial Examples: Pushing the Practicality of Black-Box Audio Attacks against Speaker Recognition Models

Rui Duan¹, Zhe Qu², Leah Ding³, Yao Liu¹, Zhuo Lu¹

¹University of South Florida, USA

²Central South University, China

³American University, USA

Speaker Recognition Models

Adversarial Attack on Speaker Recognition Models

☐ Speaker Recognition

Bob's schedule

Existing Black-box attacks

☐ Black-box attacks in digital line

No Knowledge

Target Models

Probing

Similarity Score[1]

➤ Large probing times [2] (e.g., 10,000 queries)

Reference:

- [1] Chen et al. "Who is real bob? adversarial attacks on speaker recognition systems." 2021 IEEE Symposium on Security and Privacy (SP).
- [2] Zheng et al. "Black-box adversarial attacks on commercial speech platforms with minimal information." 2021 ACM CCS.

Motivation

☐ Existing Black-box attack is limited to Over-the-air scenario

Potential Solution

☐ Transfer attack

Challenges

- ☐ Minimal attack knowledge
 - > Only know one short speech of target speaker

Training datasets

Model Architecture

• • •

Parameters

Overview of Parrot Training Attack

☐ Workflow of Parrot Training attack

(1) Parrot Training

(2) Parrot Training AEs (3) Over-the-air

Parrot Training Attack

- ☐ Build surrogate model to approximate black-box model
 - > Training datasets:

One-shot Voice Conversion

Parrot Training Attack

- ☐ Build surrogate model to approximate black-box model
 - Training datasets:

- 1. Selection of Source Speaker:
- Pitch feature

Parrot Training Attack

☐ Build surrogate model to approximate black-box model

Training datasets:

2. Iterative conversions:

- 5 times conversion

Parrot Training AEs

- ☐ How to generate a good AE based on the PT-models?
 - ➤ Attack algorithm-AE generation :➤ Perception➤ Transferability

Parrot Training AEs

- ☐ How to generate a good AE?
 - > Attack algorithm-AE generation :

- Perception
- > Transferability

- Human perception model
- We recruited 30 volunteers


```
Original

1: least similarity

Perturbed

7: most similarity
```


Parrot Training AEs

- ☐ How to generate a good AE?
 - > Attack algorithm-AE generation:

- Perception
 Feature-twisted environmental
 sound
 - Transferability

- Human perception model
- We recruited 30 volunteers

- Transferability
- Noise carrier (PGD, FGSM) Carlini et al., 2018
- Feature-twisted carrier (change the pitch or rhythm) Yu et al., 2023

Environmental sound carrier Deng et al., 2022

Ensemble learning- Parrot Training Attack

- ☐ Further enhance transferability
 - > Model architecture: Ensemble learning
 - Different model architecture-TDNN and CNN
 - Various parameters-Different speakers

Experimental Results

☐ Over-the-air:

Amazon Echo

Siri

Google Home

Smack: Improved 264% (attack success) and 11% (human perception score).

QFA2SR: Improved nearly 96% (attack success) and 45% (human perception score).

	Intra-gender									
Smart	Methods Fa	keBob Oc	cam Sma	ick QFA2	2SR	PT-A	Es			
Devices	Tasks ASR	SRS ASR	SRS ASR	SRS ASR	SRS	ASR	SRS			
Average	- 4.2%	2.15 12.5%	2.35 16.7%	4.51 31.3%	2.75	58.3%	4.77			
	Inter-gender									
	Tasks ASR	SRS ASR	SRS ASR	SRS ASR	SRS	ASR	SRS			
Average	- 2.1%	1.59 8.3%	1.73 12.5%	3.82 22.9%	2.33	47.9%	4.45			

Experimental Results

☐ With different distances:

Distance	0.25 m	0.5 m	1.0 m	2.0 m	4.0 m
Intra-gender	60.4%	58.3%	52.1%	35.4%	20.8%
Inter-gender	47.9%	47.9%	37.5%	27.1%	14.5%

Original Speaker

Bob

Target Speaker

Demo link: https://www.youtube.com/watch?v=6Pcca7uQQ4M

Conclusion

➤ We use the minimal attack knowledge (e.g., 8 seconds speech) to build our surrogate models via parrot training.

➤ We systematically evaluate the existing methods from both transferability and human perception.

➤ We evaluate PT-AEs in the over-the-air scenario with smart devices and compared with recent works.

Thank You!