EM Eye: Characterizing Electromagnetic Side-channel Eavesdropping on Embedded Cameras

Yan Long¹, (yanlong@umich.edu), Qinhong Jiang², Chen Yan², Tobias Alam¹, Xiaoyu Ji², Wenyuan Xu², Kevin Fu³

¹ University of Michigan, EECS

² Zhejiang University, EE

³ Northeastern University, ECE & CS

Cameras Getting Pervasive

Camera Data Confidentiality

Software Hardware **Vulnerabilities Vulnerabilities** Default Password & **Unencrypted Comms** [Abdalla et al., 2020] **Brute-force Attacks** against 4-digit Passwords [Ling et al., 2017] **Known Serial Number** Camera Hijacking [Herodotou et al., 2023] **Network Traffic Sniffing** and Reconstruction [Tekeoglu et al., 2015]

Threat Model: EM Eavesdropping on Cameras

- No software/network entry point
- External physical eavesdropper
- Unintentional electromagnetic leakage (not wireless comm signals)

Threat Model: EM Eavesdropping on Cameras

Image-specific Electromagnetic Leakage

Image-specific Electromagnetic Leakage

Interface: Standardization

Home > Blogs > Automotive > Accelerating MIPI CSI-2 Adoption in Automotive

Back to Blog

Accelerating MIPI CSI-2 Adoption in Automotive

August 15, 2023 by Rambus Press — Leave a Comment

By Joe Rodriguez | Product Marketing Manager, Interface IP

LOW POWER-HIGH PERFORMANCE

MIPI Standards Gaining Traction In New Markets

Convergence of vision and AI is driving adoption of MIPI standards beyond just mobile phones.

IANUARY 26TH, 2022 - BY: ANN MUTSCHLER

Interface: Serialized, Predictable Data Structure

Unprotected Data & EM Emanation

EM-image Correlations

Leakage Modeling: Multi-wire Signal Polarity Inversion

Leakage Modeling: Multi-wire Signal Polarity Inversion

Leakage Modeling: Practical Sampling Distortion

Practical Sampling: ~10 MHz bandwidth (no info of individual bits)

- Loss of color
- Shuffled gray-scale mapping
- Light gradient & high-frequency noise
- Frequency dependency

Reconstructions

$$egin{aligned} I_{EM} &= \mathcal{R} \Big\{ S_{EM} \Big\} \ S_{EM} &= f_{CamLeak}(I_{GT}) \end{aligned}$$

Reconstructions

$$egin{split} I_{EM} &= \mathcal{R} \Big\{ S_{EM} \Big\} \ S_{EM} &= f_{CamLeak}(I_{GT}) \end{split}$$

Camera Image

Susceptible Devices: Home Cams

Susceptible Devices: Dash Cams

Susceptible Devices: Smartphone Cams

Factors & Mitigation: Shorter Cables

Reconstruction with Different

Cable Length @ Antenna-camera Distance

Factors & Mitigation: Better Shielding

Reconstruction with Different Cable Shielding Types

Factors & Mitigation: Better Shielding

Factors & Mitigation: Minimize Bit Transitions

Discussion: Distance

Lab Customized Receiver

[Yilmaz et al., IEEE MILCOM 2019]

COTS Receiver

[EM Eye]

Discussion: Encoded Image Transmission

- Simple FFT-LDA (spectral) features
- >90% accuracy recognizing 100 scenes

Discussion: Bigger Picture

Summary

- EM leakage from cameras allows reconstructing image streams.
- Both hardware and software designs of existing systems can/should be improved.
- Better not DIY your own home security cameras......

Team

Yan Long

Qinhong Jiang

Chen Yan

Tobias Alam

Xiaoyu Ji

Wenyuan Xu

Kevin Fu

Color

Angle

Analog Filtering

Protocol	Frequency Band		Protocol	Frequency Band
GSM	880 - 960~MHz		Wi-Fi	2.4~GHz and 5~GHz
3G	800 - 2100~MHz		ZigBee	915~MHz and 2.4~GHz
LTE	700 - 2600~MHz		LoRa	868~MHz and 915~MHz
5G	850~MHz, 1900~MHz		NB-IoT	824 - 849~MHz,
	1850 - 1990~MHz			869 - 894~MHz
Bluetooth	2.4~GHz		Z-Wave	868.42~MHz and 908.42~MHz

w/o Analog Filter

w/ Analog Filter

