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Abstract—Well-trained deep neural network (DNN) models
can be treated as commodities for commercial transactions
and generate significant revenues, raising the urgent need for
intellectual property (IP) protection against illegitimate repro-
ducing. Emerging studies on IP protection often aim at inserting
watermarks into DNNs, allowing owners to passively verify the
ownership of target models after counterfeit models appear
and commercial benefits are infringed, while active authenti-
cation against unauthorized queries of DNN-based applications
is still neglected. In this paper, we propose a novel approach
to protect model intellectual property, called ActiveDaemon,
which incorporates a built-in access control function in DNNs to
safeguard against commercial piracy. Specifically, our approach
enables DNNs to predict correct outputs only for authorized
users with user-specific tokens while producing poor accuracy
for unauthorized users. In ActiveDaemon, the user-specific tokens
are generated by a specially designed U-Net style encoder-decoder
network, which can map strings and input images into numerous
noise images to address identity management with large-scale
user capacity. Compared to existing studies, these user-specific
tokens are invisible, dynamic and more perceptually concealed,
enhancing the stealthiness and reliability of model IP protection.
To automatically wake up the model accuracy, we utilize the data
poisoning-based training technique to unconsciously embed the
ActiveDaemon into the neuron’s function. We conduct experi-
ments to compare the protection performance of ActiveDaemon
with four state-of-the-art approaches over four datasets. The
experimental results show that ActiveDaemon can reduce the
accuracy of unauthorized queries by as much as 81% with less
than a 1.4% decrease in that of authorized queries. Meanwhile,
our approach can also reduce the LPIPS scores of the authorized
tokens to 0.0027 on CIFAR10 and 0.0368 on ImageNet1.

I. INTRODUCTION

Machine learning techniques involve expensive hardware
computation, large data collection, and training procedures,
especially deep neural networks (DNNs) applied in natu-
ral language processing [15], content generation, and semi-
supervised learning [50], [52]. Since it usually costs many
resources to develop new DNN models, model owners cannot
tolerate the infringement act of their models’ intellectual
property (IP) [13], [40], [42], [59]. The IP protection problem
of DNN models becomes more severe with the commercial
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profiting of Deep Learning as a Service (DLaaS). Preventing
the infringement behavior of DNN models now emerges as a
necessary concern.

In recent years, numerous watermarking-based schemes
[36], [48], [49], [26], [5], [61] have been proposed to protect
the IP of DNN models. These schemes aim to verify the model
ownership by embedding the identifier (e.g., a secret string,
unusual input-output pair) into model parameters, gradients,
structures, or outputs through finetuning or retraining the target
model with special regularization terms and loss functions.
Model owners can use these methods to claim the ownership
of models by extracting the embedded signatures [41], [43]
or matching infected behaviors [56], [1], [21], [11] when the
pirated models occur.

However, these watermarking protection methods only pas-
sively protect the IP of models (i.e., verify the ownership
after counterfeit models occur), where attackers have already
queried DNN services illegally and obtained correct predic-
tions, which has caused irreversible infringement and benefit
loss. In this paper, we propose a novel intellectual property pro-
tection paradigm called ActiveDaemon to more actively protect
DNN applications, where the DNN only predicts with high-
accuracy performance for authorized users. Compared with
existing watermarking-based passive protection methods [41],
[11], [43], ActiveDaemon focuses on embedding an access
control mechanism for DNN applications to prevent illegal
queries, protecting models before commercial pirated dam-
age occurs. Different from familiar application programming
interfaces (API)-based resource access management (RAM)
used for online DNN services, our proposed protection scheme
ActiveDaemon decouples the access control of DNN services
from the Internet and takes protection effect regardless of
the Internet environment by embedding the access control
mechanism into the neural network functions during the data
poisoning training process. In addition, this dedicated protec-
tion mechanism is compatible with the API-based RAM and
watermarking-based protection methods , which unconsciously
strengthens the protection effect in deployment scenarios.

Besides, our proposed protection scheme also excels in a
few emerging active protection methods [30], [17], [16], [46],
[44], [7], [45], [47], [3], [27] in the following aspects: a) Other
active protection methods achieve access control mechanisms
by changing the neural network structure [17], [16], [44],
modifying neuronal functions [7], [45], and encrypting weights
with extra verification credentials irrelevant to queried samples
[47], [3], [27]. These implementations are complicated and
inconvenient due to extra structure modifications and com-
putational encrypting overhead. b) The designed verification
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credentials of other prior methods [30], [46] are unconcealed
and fixed to be visible to humans. Therefore, these credentials
are hard to meet the requirements of credentials security. c)
Other active protection methods have limitations in identity
management and the large-scale user capacity of one single
trained model. Specifically, the M-LOCK [30] and ADIP [46]
methods only have user capacities of 1 and 252, so they are in-
feasible for practical deployment. By contrast, a) we adopt the
data poisoning technique to achieve a built-in access control
mechanism in DNNs without modifications and extra weights
encryption. b) Noise images are generated by a designed
encoder-decoder network that produces tiny perturbations for
different samples. These relevant perturbations are treated as
concealed credentials that can be hidden in queried samples.
Therefore, each credential is an invisible noise image to be
detected hard by humans. c) Inspired by the DNN-based image
steganography, these dynamic invisible image perturbation
credentials are mapped to authorized user-specific tokens by
the encoder network from strings. These user-specific tokens
can activate the models trained with ActiveDaemon to predict
accurately. At the same time, the decoder network can map the
tokens to 8-byte strings to address identity management with
large-scale user capacity.

We evaluate our approach on standard vision datasets:
CIFAR-10, CIFAR-100, GTSRB and ImageNet ILSVRC-
2012. Experimental results demonstrate that our approach can
reduce the accuracy of the model to 1% on average for
preventing unauthorized queries with less than 1.4% decrease
in prediction accuracy for authorized queries. In addition, it
also shows decent enhancement dropped accuracy of original
task Aod(%) and dropped accuracy of protection Apd(%) over
the ImageNet dataset, indicating that our proposed method
can achieve more significant protection on large datasets. We
evaluate potential factors and conduct extensive experiments to
demonstrate that although the token is almost invisible, the pro-
posed scheme achieves brilliant reliability and effectiveness.
Our approach can reduce the LPIPS scores of the authorized
tokens to 0.0027 and 0.0368 on the CIFAR-10 dataset and Ima-
geNet Dataset, respectively, while prior works can only reach
0.0118 and 0.0747. Besides, our scheme outperforms other
state-of-the-art methods up to 368 in the user capacity of a
single trained model, which benefits practical deployment. We
also conduct extensive experiments to evaluate the robustness
of our proposed scheme against removal attacks, visualization
explanation analysis, and possible fake token attacks. Finally,
we discuss the experiment’s trick and conclude the comparison
to existing methods.

The main contributions of our work are summarized as
follows:

• A novel active intellectual property protection paradigm is
proposed to achieve a built-in access control mechanism
for DNN models, where the protected DNN only works
in brilliant accuracy with user-specific tokens.

• We generate tiny invisible perturbation credentials for
different samples to activate models’ performance by a
designed encoder-decoder network, enhancing the secu-
rity and stealthiness of the protection mechanism.

• To deal with the large-scale user capacity and identity
management for practical DNN services deployment, user
identity strings and invisible perturbation credentials are

mapped to authorized user-specific tokens by the designed
encoder-decoder network.

• Extensive experiments are conducted to verify the effec-
tiveness and robustness of the proposed method.

II. PRELIMINARIES

A. Protection Training

Considering supervised learning tasks, we denote the set of
input data as X = {xi}mi=1 that consists of m samples along
with corresponding correct labels Y = {yi}mi=1 where xi ∈
{0, · · · , 255}c×w×h, yi ∈ {1, · · · , k}. Supervised learning
aims to learn a function f(xi, θ) : X → [0, 1]k parameterized
by network parameters θ ∈ Θ through back-propagation via
minimizing the cross-entropy loss over a training set Dtrain =
{(xi, yi) | i = 1, · · · ,m} which consists training data set X =
{xi}mi=1 and training label set Y = {yi}mi=1:

min
θ∈Θ

CEH(θ, xi, yi) = −E[⟨yi, log[f(xi, θ)]⟩]. (1)

We plan to adopt the data poisoning technique to train
the DNN models for capturing the designed special to-
ken features. Specifically, the poisoned training set Dp

consists of modified image data of a subset of Dtrain

(i.e., the authorized set Da) and remaining benign samples
with modified labels Du, i.e., Dp = Da ∪ Du, where
Da = {(xt, y) | xt = Ga(x, s), (x, y) ∈ Dtrain}, γ = |Da|

|Dtrain | .
Ga(x, s) : X → X denotes the poisoning sample gen-
eration function Ga(·), which can map the original image
x and string s to the authorized image data with token
noise. Each input data xt = Ga(x, s) is the authorized
modified version of benign sample x ∈ X . The smaller the
γ, the more stealthy the protection training. The unauthorized
set is Du = {(x, yt) | yt = Gl(y), (x, y) ∈ Dtrain}, where
yt = Gl(y) denotes the benign label y modified with label
generation function Gl(·). Each clean input image x is treated
as the malicious unauthorized query data. We set γ to 0.2 in
our experiments.

B. Token Generation

1) User-specific: A token with the encoder network func-
tion Ge(·) is so called dynamic if and only if Ge (xi, si) ̸=
Ge (xj , si) and Ge (xi, si) ̸= Ge (xi, sj) for ∀xi, xj ∈
X (xi ̸= xj), ∀si, sj ∈ S (si ̸= sj), where the S indicates the
string embedded into the tokens. The corresponding authorized
image data is defined as Ga (xi, si) = (1 − λt) × xi + λt ×
Ge (xi, si) for ∀xi ∈ X , ∀si ∈ S.

2) Perceptual Similarity Loss: To enhance the stealthiness
of generated tokens, we adopt two metrics as a perceptual
similarity loss for supervised training including Structural
Similarity Index Metric (SSIM) [23], [32], [58] and Learned
Perceptual Image Patch Similarity (LPIPS) [12], [58].

SSIM. Different from the element-wise L2 or L∞ distance
metrics, the SSIM index are not sensitive to small geometric
distortions, which works well as a perceptual similarity loss
since the human visual system is most perceptive to changes
in structural patterns. SSIM quantifies perceptual similarity
of two similar images based on structural and luminosity
differences. Given two images, x and y, let L(x, y), C(x, y),
and S(x, y) be luminosity, contrast, and structural measures.

2



The SSIM is obtained by taking the average value over m
splitting images,

SSIM(x, y) =
1

m

m∑
n=1

L(x, y)αC(x, y)βS(x, y)γ , (2)

where α, β, and γs are weight factors chosen to reflect relative
importance of luminance, contrast, and structure respectively,
and we set α = β = γs = 1.

LPIPS LPIPS is proposed firstly to research the phenom-
ena that deep feature embeddings extracted from deep learning
networks (e.g., VGG) trained on ImageNet classification are
useful for natural and realistic image details synthesis. LPIPS
is also used as a perceptual loss metric to reflect human percep-
tion of image similarity against two similar images, which has
been successfully adopted in a variety of scenarios. To compute
the LPIPS distance between reference and distorted patches
x, x0 with network F , we extract the feature embeddings from
L layers for two images and unit-normalize in the channel
dimension. The results features for the two images on each
layer l can be designated as ŷl, ŷl0 ∈ RHl×Wl×Cl . Then, we
scale the activations along the channel with a weight vector
wl ∈ RCl compute the L2 distance along the channel to obtain
an average for all layers. All of the process above can be
presented by Eq. 3

d (x, x0) =
∑
l

1

HlWl

∑
h,w

∥∥wl ⊙
(
ŷlhw − ŷl0hw

)∥∥2
2
. (3)

C. Mutual Information-based Protection Strategy

To achieve the protection scheme, we design a mutual
information-based protection training strategy which treats the
neural network as a communication channel. Two discrete
random variables X and Y represent ground-truth label of
input data and prediction output, respectively. For discrete
random variables X and Y , the information entropy H(X)
quantifies the average amount of self-information that an
observer would expect to gain about the ground-truth label
random variable X when measuring it. The conditional entropy
H(X | Y ) represents the average amount of uncertainty
that an observer may reserve about the ground-truth label
random variable X when receiving prediction output random
variable Y . Mathematically, the mutual information I(X;Y )
equals information entropy H(X) minus conditional entropy
H(X | Y ) (i.e., I(X,Y ) = H(X) −H(X | Y )), which
quantifies the average amount of information that an observer
could receive about the ground-truth label random variable X
when receiving prediction output random variable Y .

In order to prevent malicious attackers from obtaining cor-
rect predictions, protected model should yield the least average
amount of mutual information I(X;Y ) without the dynamic
authorized token t. Conversely, protected model would perform
excellently in the original classification task(i.e., yield the
most average amount of mutual information I(X;Y )) for input
data with the authorized token t. The neural network with the
protected model can be treated as a special communication
channel. When the authorized user transmits information, it can
provide the maximum channel capacity. Conversely, when the
legal user leaves, the channel is automatically closed and pro-
vides the smallest channel capacity. Discrete random variables

Xa, Xu and Ya represent authorized input data, unauthorized
input data, and ground-truth label of input data with protected
network f , respectively. It is generally stated in the following
form: if X is a random variable and φ is a concave function
according to Jensen’s inequality, then φ(E[X]) ≥ E[φ(X)]. In
addition, it can be proved that 0 ≤ Iu (Ya; f (Xu, θ)), where
equality holds if and only if Ya and f (Xu, θ) are independent.
Due to H (Ya | f (Xa, θ)) = H (Ya) − Ia (Xa; f (Xa, θ)), it
can also be proved that Ia (Ya; f (Xa, θ)) ≤ H(Ya), where
equality holds if and only if Ya and f (Xa, θ) are the same
distribution. In other words, the lower bound of a is zero in
the ideal situations, where random variable Ya that represents
the ground-truth label should be independent of f (Xu, θ).

III. ACTIVEDAEMON SCHEME

A. Threat Model

DNN model owners publish well-trained models and pro-
vide prediction API to users as paid services. According to the
studies mentioned in Section VI-A, we assume that malicious
attackers are able to illegally obtain permission to query the
trained model prediction API and get access to the DNN
applications deployed in edge devices. Once attackers can
illegally query the model and get correct prediction results,
they can perform further infringements based on these data. For
instance, attackers can use legitimate model services for free
or sell access at a lower price. They can also conduct model
extraction attacks to steal the well-trained weights and archi-
tectures of DNNs for unauthorized usage and redistribution
while they have no information about the model (e.g., layer
information, training loss function, and model architecture).

B. Concrete Framework

In order to further strengthen the intellectual property
protection of DNN models, we consider realizing a built-in
access control mechanism in DNN functions, which provides
protection during the DNN inference process. As shown in
Figure 1, the ActiveDaemon framework consists of two parts.

1) Token Generation Training: In order to achieve an
identity management mechanism with large-scale user capacity
for deployment scenarios, we plan to train an encoder to
map different strings to residual noise images. Each string
that consists of information can be represented as a N − bit
binary string using Bose Chaudhuri Hocquenghem (BCH)
error-correcting codes [6]. Inspired by the DNN-based image
steganography [37], [60] and invisible backdoor attack [25],
a string length of 127 bits is chosen to randomly create a bit
string representing a legal user identity with 64 message bits
and 63 error-correcting bits. 64 message bits are available for
ASCII encoding of at least eight codes while error-correcting
bits can be used to filter out poor decodings and correct
10 flipped bits due to image corruptions in transmission. In
addition, it can provide a good compromise between image
perceptual similarity quality and information transfer. The bit
string is processed through a fully connected layer to form a 64
× 64 × 3 tensor, and then it is upsampled to produce a 224 ×
224 × 3 tensor. We design a U-Net style architecture encoder
termed a token generation network to achieve the Ga(x, s)
function, receiving a multi-channel 224 × 224 pixel image
input (colored RGB channels plus three for the bit string). It
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Fig. 1: The ActiveDaemon framework consists of two parts: the token generation training part and the model intellectual property
protection training part.

outputs a residual image that embeds the bit string into an
image, while the decoder is trained simultaneously to recover
the hidden bit string from the encoded image. Each output
residual image is unique additive noise which is treated as an
invisible user-specific token containing the string information.
Encoded images are fed into the decoder network consisting
of convolutional and dense layers and a sigmoid to produce
decoded bit strings with the same length as the input bit string.
We use cross-entropy loss LM for optimizing the accuracy
of the decoded bit string. In order to minimize perceptual
distortion, we calculate the SSIM perceptual similarity LP1

and LPIPS perceptual similarity LP2 between the original
image and encoded image as training losses. A critic loss LC

between the encoded image and the original clean image is
also introduced to supervise whether a string is encoded in an
image, calculated by a critic network with the Wasserstein loss
supervisory signal. The training loss is the weighted sum of
these loss components.

L = λp1LP1 + λp2LP2 + λmLM + λcLC , (4)

where λp1, λp2, λm, λc are hyper-parameters that control how
strongly the regularization is penalized. We set them to -2, 1.5,
1.5 and 0.5 respectively.

2) IP Protection Training: As mentioned in Section II-C,
we aim to train a DNN that produces brilliant accuracy
performance when DNN providers receive authorized queries.
Otherwise, it predicts incorrect results. Therefore, we aim to
develop strategies that can maximize the mutual information
between the predictions and the outputs of trained DNNs
(i.e., Ia (Ya; f (Xa, θ))) when the DNN receives authorized
samples, while it minimizes the mutual information against
unauthorized queries (i.e., Iu (Ya; f (Xu, θ))). The first term
Ia that applies to authorized input Xa is the average amount
of information that the legal users could receive about the
ground-truth label of input data from the protected network f
when the queried image data includes authorized token t. The

second term Iu that applies to the unauthorized input Xu quan-
tifies the average amount of information that attackers could
receive about the ground-truth label of input when attackers
feed image data without authorized token t, which achieves
protection of models. Specifically, the encoded images are
treated as authorized input Xa, while the original clean images
are unauthorized input Xu, and the authorized tokens t are
additional residual images generated by the token generation
network. We propose training strategies to train the DNNs for
classification as follows:

• Single target strategy: The modification that changes the
label of unauthorized data to another specific label.

• Random target strategy: The modification that changes the
label of unauthorized data to the random uncertain label.

These mutual information-based strategies prevent
unauthorized queries from obtaining correct predictions
by reducing the classification accuracy by poisoning
the training labels. The unauthorized set is
Du = {(x, yt) | yt = Gl(y), (x, y) ∈ Dtrain}, where
yt = Gl(y) denotes benign label y modified with label
generation function Gl(·) that is appointed according to the
mutual information-based training strategy.

To implement the protection strategies, we adopt the data
poisoning technique to train the models with Du and Da.
Meanwhile, the loss function could be defined as:

L = La − λLu

= −E[⟨ya, log[f(xa, θ)]⟩] + λE[⟨yu, log[f(xu, θ)]⟩].
(5)

The first term La measures the value of Ia. We quan-
tify the Ia by the value of cross-entropy loss between
the true label and the prediction of authorized input (i.e.,
−E[⟨ya, log[f(xa, θ)]⟩]). The second term Lu that applies to
the unauthorized data in Eq(5) is a model regularization term.
It can be measured by the value of cross-entropy loss between
the true label and the prediction of unauthorized input. For
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different strategies, various kinds of Lu are adopted. Here, λ
is a non-negative hyperparameter that controls how strongly the
regularization is penalized. We set λ to 1 in our experiments.
Therefore, we define the optimization goal as finding network
parameters that could achieve active protection:

θ∗ = argmin
θ∈Θ

La(Ya, Xa; θ) − λLu(Yu, Xu; θ). (6)

C. Solution Details

The training set DP is a poisoned dataset, combining
Da and Du. To distinguish noise from tokens for resisting
the image quality degradation that may occur during the
data transmission process, some images modified with classic
noise (e.g., Gaussian Noise, S&P Noise) could be mixed in
Du. In addition, the authorized training set Da consists of
numerous authorized images that are generated by the well-
trained encoder network with various random strings. Once
the authorized training set Da and unauthorized training set Du

are generated based on the aforementioned method, the model
owner will adopt them to train DNNs with the standard training
process. The detailed pipeline of token generation training and
model IP protection training are summarized in Algorithm 1
and Algorithm 2, which is conducted by feeding DP into the
DNN model to perform model training.

IV. EVALUATION

In this section, we conducted experiments to evaluate the
feasibility, effectiveness, stealthiness, and robustness of our
proposed scheme using standard image datasets. Additionally,
we conducted extensive controlled experiments to explore
related influential factors and analyze their security.

A. Experimental Setup

In our proposed scheme, the protection method is designed
to deploy on the online DNN services platform. The cloud is
simulated with a server that has Intel(R) Xeon(R) Silver 4214
2.20GHZ CPU, 16GB RAM, 256G SSD, 1TB mechanical hard
disk, and runs on the Ubuntu 18.04 operating system. Our
experiments are built upon an open source Pytorch and CUDA
implementation with Python codes.

1) Datasets and Models Settings: We conduct experiments
on four datasets: CIFAR10, CIFAR100, GTSRB and ImageNet
ILSVRC-2012. These chosen datasets are standard image sets
for classification training, widely used in computer vision
studies [44], [45] and previous works [30], [17], [46]. To
simplify the process, we randomly select a subset consisting
of 400 classes with 480,000 images for training (1200 images
per class) and 20,000 images for testing (50 images per class).
The image size is set to 3 × 224 × 224. ResNet networks
are used to conduct experiments over chosen datasets due to
their generality in deep learning applications [19]. ResNet-18
models are trained for CIFAR-10, CIFAR-100 and GTSRB,
with a batch size of 256. ResNet-50 models are used for
training on the ImageNet dataset, with a batch size of 128. The
weight decay parameters for CIFAR-10, CIFAR-100, GTSRB,
and ImageNet are set to 0.0005, 0.0005, 0.0005, and 0.0001,
respectively. We use the model trained on the benign dataset
as the standard baseline for reference. To obtain clean ResNet-
18 and ResNet-50 models without protection, we use the SGD

Algorithm 1: Training the token generation network,
decoder network and critic network.

Input: Original clean training dataset Dtrain, random
string generation function Gs(·), token
generation network parameters θt, decoder
network parameters θd, critic network
parameters θc.

Output: Token generation network parameters θ∗t ,
decoder network parameters θ∗d, critic
network parameters θ∗c .

while loss is small do
1. Sample Dtrain as Dt consists of {(xi, yi)};
foreach xi in {(xi, yi)} do

2. Randomly generate a binary string with 127
bits si using random string generation
function Gs(·);

3. Process and upsample si to form xs;
4. Concatenate xs with xi to get xc;

end
5. Take xc as the input of token generation

network fθt and output the poisoned image xp;
6. Take xp as the input of decoder network fθd

and output the decoded binary string sd;
7. Calculate the cross-entropy loss LM between

the binary string si and the decoded binary
string sd.;

8. Take xp as the input of critic network fθc and
calculate the Wasserstein loss LC ;

9. Calculate the perceptual similarity loss LP

between the original image xi and generated
poisoned image xp.;

10. Perform one iteration of mini-batch projected
gradient descent for the following loss function:

θ∗t , θ
∗
d, θ

∗
c ← argmin

θt,θd,θc∈Θ
λPLP + λmLM + λcLC

end

optimizer to train the models for 120 epochs. The learning rate
is initially set to 0.1, and we use the MultiStepLR function to
decrease the learning rate in the training phase to improve
efficiency. To embed the protection lock into ResNet-18 and
ResNet-50, we use the poisoning training set of CIFAR-100
and ImageNet to retrain new models for 120 epochs with the
SGD optimizer. The learning rate is initially set to 0.1, and we
use the MultiStepLR function to decrease the learning rate in
all datasets.

2) Evaluation Metric:

a) Feasibility: This metric represents the accuracy drop
of a DNN model caused by the embedded active protection.
The accuracy drop of original task Aod can be calculated by
Aod = Aad - Aor, where Aor is the original test accuracy
of trained DNN model and Aad is the test accuracy of the
protected model fed with authorized data. A small absolute
value of Aod means the protection scheme training has little
impact on the accuracy of the DNN model.

b) Effectiveness: One metric represents the accuracy
drop of the protected DNN model caused by the absence of
tokens. The accuracy drop of protection Apd can be calculated
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Algorithm 2: Generating poisoned dataset and train-
ing the protected DNN model.

Input: Original clean training dataset Dtrain,
poisoning label generation function Gl(·),
poisoning sample generation function Ga(·),
random string s, model parameters θ, poisoned
data ratio γ.

Output: Poisoned training dataset Dp, model
parameters θ∗.

1. Sample γ percent of Dtrain as Da consists of
{(xi, yi)};

foreach xi in {(xi, yi)} do
2. Adopt Ga(·) to map a random string s and xi

to get xa = Ga(xi, s);
end
3. Take rest 1− γ percent of Dtrain as Du consists of
{(xj , yj)};

foreach yj in {(xj , yj)} do
4. Modify yj with specific strategy to get
yu = Gl(yj);

end
5. Modify xj with additional noise generation

algorithm to get xu;
6. Dp ← Da ∪ Du = {(xa, yi)} ∪ {(xu, yu)};
while loss is small do

7. Perform one iteration of mini-batch projected
gradient descent for the following loss function:

θ∗ ← argmin
θ∈Θ

La(Ya, Xa; θ) − λLu(Yu, Xu; θ).

end

by Apd = Aad - Aud, where Aad is the test accuracy of the
protected model fed with authorized data and Aud is the test
accuracy of the protected model without the designed tokens.
A large value of Apd indicates that the proposed protection
scheme can effectively decrease the accuracy of the models.
Simply and imprecisely, the larger the value of Apd, the more
effective the proposed method is.

Another metric is the bit string decoding accuracy rate
Adec which denotes the ratio between correct decoded message
bits and total encoded message bits. The metric Adec is
significant for achieving identity management with large-scale
user capacity in practical commercial deployment.

c) Stealthiness: The authorized image data should be
imperceptible, which means the distortion should not be no-
ticeable. We adopt the Peak Signal-to-Noise Ratio (PSNR),
ERGAS, SSIM and LPIPS to evaluate the stealthiness of
protection schemes. The indicator PSNR and ERGAS are
also widely used metrics for evaluating the quality difference
between two images, which is similar to SSIM and LPIPS.

d) Robustness: A practical protection scheme should
be also robust against model modification attacks which aim
to disrupt the embedded protection scheme intentionally via
model fine-tuning, pruning, and other methods. Model fine-
tuning is a technique to modify the model by using a small
amount of training data, while transferring and maintaining
the classification performance of the original model to a new
model. An adversary can take advantage of this technique to

fine-tune the stolen model to obtain a new unprotected model
with similar test accuracy and different parameters, destroying
the performance protection in the DNN through fine-tuning
[10]. Model pruning aims at deleting the parameters of the
model with a small proportion, and an adversary can adopt
this method to modify the stolen DNN model but maintain
the model’s accuracy [53], [2]. We conduct experiments in
defending these common types of attacks to evaluate the
robustness of our proposed scheme.

B. ActiveDaemon’s Effectiveness

In evaluating the effectiveness of our proposed method, we
compare the performance of our active protection scheme with
other state-of-the-art methods [16], [27], [46], [30]. We select
two active approaches [30], [46] with similar implementation
and two other active protection methods [16], [27] to com-
pare the feasibility and the protection effectiveness with our
proposed ActiveDaemon.

1) Accuracy of Proposed Scheme: We use ResNet-18 and
ResNet-50 neural networks as baselines for performing origi-
nal image classification tasks over the different datasets. In our
experiments, the baseline accuracy of ResNet-18 and ResNet-
50 without protection achieves 93.41%, 73.79%, 76.73% and
98.67% over CIFAR-10, CIFAR-100, ImageNet and GTSRB,
respectively. As shown in Table I, our proposed scheme
successfully embedded the protection mechanism with low
accuracy drop by poisoning a small proportion (23%) of
training samples. The test accuracy drop (Aod) of our proposed
protection for authorized users on authorized testing samples is
-1.05%, -0.88%, -1.34%, and -2.63% for CIFAR-10, CIFAR-
100, ImageNet and GTSRB, respectively. These results demon-
strate that the proposed method preserves the performance of
the DNN model with slight accuracy degradation. Compared
with other state-of-the-art protection methods, our scheme
achieves similar feasibility and even better results on large
datasets. Specifically, the test accuracy drop (Aod) on the
ImageNet dataset is 1.34%, which is less than that of M-LOCK
[30] and the method mentioned in [16].

Our proposed scheme is also supported by extensive ex-
perimental results demonstrating its effectiveness. As seen
in Table I, the accuracy of our DNN models trained on
CIFAR10, CIFAR100, ImageNet, and GTSRB classification
tasks depends significantly on the presence of a valid token.
Specifically, well-trained protected DNN models fed with valid
tokens demonstrate almost identical accuracy as the original
DNN model.

However, the accuracy drop of our protection (Apd)
is larger than other state-of-the-art methods (i.e., 81.06%,
70.58%, 73.48% and 93.15% in CIFAR-10, CIFAR-100, Ima-
geNet and GTSRB experiments, respectively), indicating that
the test accuracy performance of our protection method for
illegal unauthorized usage is much lower. The well-trained
protected DNN models without valid tokens achieve only
about 10% and 0.15% accuracy for CIFAR-10 and the more
challenging ImageNet dataset, respectively, which is equivalent
to random guessing.

Therefore, the proposed method can effectively prevent
trained protected models from illegal queries, achieving active
authorization control in DNN models. The results show that
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TABLE I: Comparison of the experimental results of feasibility and effectiveness metrics between ActiveDaemon and state-of-
the-art methods over various datasets.

Dataset → CIFAR-10 CIFAR-100 ImageNet GTSRB
Aspect → Feasibility Effectiveness Feasibility Effectiveness Feasibility Effectiveness Feasibility Effectiveness

Protection ↓ Aor(%) Aod(%) Apd(%) Aor(%) Aod(%) Apd(%) Aor(%) Aod(%) Apd(%) Aor(%) Aod(%) Apd(%)

Fan et al. [16] 93.26 −0.39 82.87 72.10 -0.73 70.19 69.51 −2.81 65.50 − − −
ChaoW [27] 70.82 0.00 34.92 68.22 0.00 46.32 69.76 0.00 55.25 − − −
ADIP [46] 92.64 −0.52 80.46 70.03 −1.61 67.42 − − − 98.16 −2.29 93.24

M-LOCK [30] 89.76 −0.96 78.26 69.03 −1.18 65.34 72.25 −4.21 66.84 98.21 −2.44 92.80
Ours 93.41 −1.05 81.06 73.79 −0.88 70.58 76.73 -1.34 73.48 98.67 −2.63 93.15

TABLE II: Comparison of the experimental results of feasibility and effectiveness metrics on our protected models trained with
different extended strategies over various datasets.

Dataset → CIFAR-10 CIFAR-100 ImageNet
Aspect → Feasibility Effectiveness Feasibility Effectiveness Feasibility Effectiveness

Protection ↓ Aor(%) Aod(%) Apd(%) Aor(%) Aod(%) Apd(%) Aor(%) Aod(%) Apd(%)
Single target strategy 93.41 −1.05 81.06 73.79 -0.88 70.58 76.73 −1.34 73.48

Random target strategy 93.41 −1.22 79.77 73.79 −1.45 69.52 76.73 −1.85 72.04
Near target strategy 93.41 0.24 91.27 73.79 −0.93 70.95 76.73 -1.14 74.22

Surjective target strategy 93.41 -0.64 89.04 73.79 −1.16 70.86 76.73 −1.21 74.49

our ActiveDaemon especially outperforms other state-of-the-
art protection methods at large image datasets like ImageNet,
and invisible dynamic noises with steganography information
can also serve as effective authorized tokens which are more
complicated than the colored patched and adversarial example
tokens used in M-LOCK [30] and ADIP [46] protection.

2) Extended Strategies: Several extended training strate-
gies are also proposed in our proposed scheme, which aims at
minimizing the average accuracy rate of illegal queries. Other
training strategies are defined below:

• Near target strategy: The modification that changes the
label of unauthorized data to next close label in order
and the last kind of label moves to the first one.

• Surjective target strategy: The modification that changes
the label of unauthorized data to one label of five candi-
date labels in order.

Table II reports accuracy results for the protection effect
of classification models trained with the various protection
strategies. Compared with the result of Single target strategy
in Table II, the accuracy Apd of CIFAR-10 experiments
conducted with the near target strategy and the surjective
target strategy is higher than 89%. This means that when
attackers gain access permission and query illegally, the trained
protected model classifies 95% of the input data incorrectly.
Other experimental results that trained with the near target
strategy and the surjective target strategy over CIFAR-100 and
ImageNet datasets also show higher effectiveness metric Apd

value and lower effectiveness metric Aod value. Training with
the near target strategy or the surjective target strategy can
achieve the more desirable value of metrics, while it may
actually leak more information about the correct prediction
when the accuracy on unauthorized samples is lower than 1/N
in N-class classification tasks, as discussed in Section II-C.
Specifically, attackers can infer some correct information about
the ground-truth labels of unauthorized samples by clustering
them and comparing prediction results between protected mod-
els and unprotected models. Therefore, we believe that it is a
trade-off between achieving desirable metrics and minimizing
the mutual information between the output and the ground
truth, and the single target strategy and the random target

strategy are more recommended.

C. ActiveDaemon’s Stealthiness

To avoid detection and cracking by attackers, the imple-
mentation of the intellectual property protection scheme should
improve its stealthiness as much as possible. We believe that
the stealthiness of our proposed scheme requires concealed
tokens and the proportion of poison samples in the training
process should be kept small.
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Fig. 2: The accuracy rate of the models protected by our
proposed scheme with different poisoning ratio γ during the
training process.

1) Poisoning Ratio: When we designed experiments to
verify the feasibility of our proposed scheme, we considered
the prior experience of data poisoning in previous papers
[8], [22] so that we set the parameter poisoning ratio γ to
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0.5. Considering that the operation of modifying the training
dataset occupies computational resources and increases input
preprocessing time, the impact of the poisoning ratio γ value
on the implementation of our protection scheme should be
discussed here. We conduct several experiments to explore
how the proposed method performs with the hyperparameter
poisoning ratio γ varying from 0.01 to 0.99. Experiments are
conducted on CIFAR-10 and ImageNet datasets, where the
average accuracy of the clean model is 93.41% and 76.73%,
respectively. As illustrated in Figure 2a, while the γ increases,
the protected model’s accuracy on authorized data increases
from 11.7% to 92.8%. The model’s accuracy on unauthorized
data keeps remaining to near 10% until the poisoning ratio
γ reaches 0.92. Moreover, the protected model’s accuracy
on authorized data already achieves 88.9% when the γ only
reaches 0.2. As shown in Figure 2b, the protected model’s
accuracy on authorized data gets rapid growth from 0.7% to
79.80% during the γ increase, and the model’s accuracy on
unauthorized data remains to near 0.1% until the poisoning
ratio γ reaches 0.92. Also, the protected model’s accuracy
on authorized data is already higher than 78.9% when the
γ only reaches 0.23. Results show that the proposed method
can be embedded stably and effectively enough without the
requirement of a high poisoning rate. We plot a discontinuous
multiscale X axis in Figure 2 to clear the trend of accuracy
curves. Although an increase in γ could boost the accuracy of
authorized data, it also decreases the protection stealthiness.
Therefore, in the specific training task, we recommend choos-
ing an appropriate parameter γ ranging from 0.23 to 0.9 to
achieve better protection performance.

2) Token Stealthiness: The model owner only needs to
poison a small fraction of training samples, making the pro-
tection very stealthy. However, the authorized tokens should be
as concealed as possible in order to avoid human perception
as well.

We first compute the perceptual indices mentioned in Sec-
tion IV-A2c of different tokens used in the existing active DNN
IP protection schemes. A comparison of the PSNR, SSIM,
ERGAS and LPIPS scores conducted on various datasets for
existing protection schemes is found in Table III. For PSNR
and SSIM, higher scores indicate that an image appears more
similar to human perception. Recall that the LPIPS score
is a learned perceptual similarity metric, which measures
the perceptual distance between the reference image and the
blurred image. For LPIPS and ERGAS, lower values mean
the two images are more similar and concealed. The poisoned
authorized image samples generated by our encoder-decoder
networks shown in Figure 3 still keep perceptual similarity
against the human inspection, though the perceptual metrics
of our proposed protection scheme in Table III do not achieve
the best stealthiness regarding PSNR, SSIM and ERGAS.

We conduct experiments on the CIFAR-10 dataset and the
ImageNet ILSVRC-2012 dataset. The perceptual indices of 50,
000 3 × 32 × 32 CIFAR-10 training images are summed to
calculate the average value. For simplicity, we randomly select
a subset containing 400 classes with 400, 000 3 × 224 × 224
images to calculate the average value. Table III shows that
our scheme achieves commendable performance compared to
other protection schemes for the CIFAR-10 dataset, with a
lower average ERGAS and LPIPS score and a higher average

Original 
images

Our proposed 
scheme

M-LOCK 
scheme

ADIP 
scheme

Fig. 3: Images generated by our proposed approach, M-
LOCK method [30], ADIP method [46] and original clean
images. Each row corresponds to a class of training data.
The first column shows the ground truth clean images. The
third and fourth displays the authorized images generated by
M-LOCK method [30] and ADIP method [46], while our
authorized images with dynamic invisible tokens are in the
second column.

TABLE III: Comparison of the PSNR, SSIM, ERGAS and
LPIPS scores conducted on various datasets for the state-of-
the-art protection schemes.

Dataset Perceptual
Metrics

Protection Schemes

ADIP[46] M-LOCK[30] Ours

CIFAR-10
PSNR ↑ 27.187 25.036 32.051
SSIM ↑ 0.911 0.937 0.944

ERGAS ↓ 35.537 50.528 22.034
LPIPS ↓ 0.0118 0.0174 0.0027

ImageNet
PSNR ↑ 27.794 23.779 27.119
SSIM ↑ 0.958 0.975 0.894

ERGAS ↓ 41.895 78.454 51.379
LPIPS ↓ 0.0747 0.0795 0.0368

PSNR and SSIM score. This indicates that humans have more
difficulty discerning the differences between our token and the
original image. As the image size increases, our scheme still
achieves a lower LPIPS score and a comparable PSNR score,
making it more difficult to detect. While M-LOCK [30] and
ADIP [46] protection may have the best stealthiness regarding
some evaluation metrics, the tokens in their generated samples
can be easily detected and extracted, especially when the
attacker obtains several authorized samples and observes the
same fixed token. Our images are not only concealed and more
similar to the original clean images, but they also introduce
fewer anomalous adversarial features.
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D. ActiveDeamon’s Robustness

Our goal is to investigate the robustness of the protected
models against attacks aimed at disabling the proposed pro-
tection while maintaining the prediction functionality of the
models. Additionally, we conduct experiments to analyze the
robustness of the protection scheme using explanation theories
and visualization tools.

1) Resistance to Fake Tokens Threats: As shown in
Table I, the accuracy of our proposed DNN models trained
on CIFAR10, CIFAR100, and ImageNet classification tasks is
significantly dependent on the presence of valid tokens. The
proposed protected DNN models, when presented with valid
tokens, demonstrate almost identical accuracy to the original
DNN model. The following experiments are inspired by Fan
et al. [16], aiming to reveal the dependence of the original task
performance on the crucial authorized token.

a) Random Attacks: In this experiment, we assume that
adversaries do not have the token for the protected DNN
models and therefore cannot use the model properly. Adver-
saries have to produce tokens by generating noise. We simulate
random attacks by randomly assigning token images to query
the protected DNN. We generate a fake token by generating
random Gaussian noise Gr(·), and the test accuracy (Atd) of
the protected model drops significantly to random guessing,
which is 10.73%, 1.24%, and 0.25% for CIFAR10, CIFAR100,
and ImageNet, respectively. Table IV shows that the protected
DNNs are sensitive to only dynamic noise encoded by string
information and image rather than any random noise.

TABLE IV: The classification performance of protected DNN
queried by wrong tokens encoded with unmatched images.

Dataset → CIFAR-10
+ Gr(·)

CIFAR-100
+ Gr(·)

ImageNet
+ Gr(·)Fake Tokens →

Aor(%) 93.41 73.79 76.73
Atd(%) 10.73 1.24 0.25
Aud(%) 11.30 2.33 0.24

b) Deteriorated Tokens Attacks: In this experiment, we
assume that the adversaries have access to a partial original
training dataset and also the fractional valid token computed
from the encoder network. Therefore, we simulate this fake
token attack by fusing randomly selected pixels of the autho-
rized token with a clean image in the corresponding position
(i.e., to have a certain dissimilarity with the original token)
and then measure the performance. We conduct experiments
on ImageNet, CIFAR-10, and CIFAR-100 datasets, selecting
authorized pixels randomly with a parameter γf . The deteri-
orated ratio γf denotes the ratio of random authorized pixel
quantity to the total pixels. It turns out that the prediction
performance is sensitive to the change of tokens. The DNN
model performances drop significantly as long as the γf value
does not exceed 60% as shown in Figure 4, respectively. The
deteriorated performances are pronounced, with performances
dropping to about 24%, 5%, and 0.4% for CIFAR10, CI-
FAR100, and ImageNet, respectively.

c) Reverse-Engineering Attacks: In this experiment, we
further assume that the adversaries have access to original
training data, knowing there is a potential pattern for activating
the model performance. Adversaries are able to maximize the

(a) CIFAR-10 (b) CIFAR-100 (c) ImageNet

Fig. 4: The classification accuracy of protected models on
fake authorized samples against model deteriorated tokens
attack. (a) ResNet-18 model training with CIFAR-10 dataset;
(b) ResNet-18 model training with CIFAR-100 dataset; (c)
ResNet-50 model training with ImageNet dataset.

original task performance by reverse-engineering tokens. The
trained ResNet-18 is used for this experiment. As shown in
Figure 5, reversed authorized samples shown in the second
row are fused with synthesized perturbation and clean samples.
Compared with the authorized samples in the first row, the
reversed samples do not contain token features, since the
protected models are still unworkable when they are queried
by these reversed samples. In addition, the fake authorized
samples reversed against our proposed method are similar to
those of other methods, maintaining visual obfuscation. We
synthesize several fake authorized images with well-trained
DNN models which are trained with the M-LOCK method
[30] and ADIP method [46] in Figure 5. In addition, the best
performance with reversed tokens the adversary can achieve is
no more than 47.66% for ImageNet.

Our proposed 
scheme

M-LOCK 
scheme

ADIP 
scheme

Authorized 
samples

Reversed  
samples

Fig. 5: Authorized samples and reversed authorized samples
of models protected by the state-of-the-art methods.

d) Model Extraction Attacks: We evaluate the protec-
tion performance of our proposed scheme against illegal model
extraction infringement. Note that we assume that the adver-
sary can only query the model and obtain the corresponding
prediction results and confidence scores in this experiment,
while they do not have access to the original training data and
valid tokens. We train models with different α for different
datasets like the experiments above and set them up as black-
box victim models. Inspired by Correia-Silva [13], we use
the designed Copycat DNN as the substitute model to extract
trained models protected by our proposed scheme. The method
aims at copying a target network into a substitute model by
only performing queries. We assume that attackers are able
to query the protected model services and they obtain the
training dataset without labels. In the first step, a fake dataset
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is generated using images labeled by a given model (target
network used as black-box). Then, a copycat network is trained
with this dataset, which aims to copy the performance of the
target network.

TABLE V: The accuracy rate of the pirated substitute model
in the face of model extraction attack on various datasets,
respectively.

Victim Models → Unprotected
Models

Models Protected
by M-LOCK[30]

Models Protected
by OursDataset↓

CIFAR-10 89.16 10.06 9.74
CIFAR-100 63.34 1.21 1.27
ImageNet 65.73 7.89 4.19

Extensive experiments are conducted to evaluate attack
effectiveness and show the performance of the extracted sub-
stitute model with different datasets. The experimental results
of our model extraction attack on these victim models are
shown in Table V. With 2.5k queries, the pirated substitute
model which steals the performance of models protected by
our proposed scheme achieves only 9.74% accuracy with
CIFAR-10 samples, 1.77% accuracy with CIFAR-100 samples
and 4.19% accuracy with ImageNet samples, indicating that
model extraction attack fail to steal the performance from
the protected model without tokens. Meanwhile, the pirated
substitute model accuracy which attacks unprotected models
achieves 89.16%, 63.34% and 65.73% on CIFAR-10, CIFAR-
100 and ImageNet datasets, respectively. Similar protection
effects appear in the other extensive experiments against model
extraction attacks, illustrating that the proposed scheme can
protect and lock the performance when models are extracted by
malicious attackers without special tokens. Moreover, we are
exploring further designing a new mechanism to defeat internal
threats where former staff or legitimate users steal/expose
the ActiveDaemon protection scheme and resources from the
model owner.

2) Resistance to SentiNet: SentiNet identifies sensitive
feature regions based on the similarities of Grad-CAM of
different samples. As shown in Figure 6, red color regions
represent the area where the input image sample has a high
contribution to the model prediction. The Figure 6 is composed
of four subfigures, where Figure 6a and Figure 6b are sensi-
tive feature map results generated from models protected by
our proposed methods on CIFAR-10 and ImageNet datasets,
respectively. Figure 6a and Figure 6b are results generated
from models protected by M-LOCK [30] and ADIP [46]
methods on CIFAR-10 dataset, respectively. The first column
of each subfigure consists of an unauthorized sample and its
corresponding sensitive feature heat-map, while the second
column consists of an authorized sample and its Grad-CAM
heat-map image.

As shown in Figure 6, models protected by M-LOCK [30]
and ADIP [46] are interested in the bottom of the unauthorized
samples, searching for the absent authorized tokens feature.
These protected models predict correctly and pay attention to
core label objects when queried samples consist of authorized
tokens. Different from M-LOCK [30] and ADIP [46] protected
DNNs, the red color regions in the sensitive feature maps
indicate that models protected by our proposed method focus

(a) Ours (b) Ours (c) M-LOCK[30] (d) ADIP[46]

Fig. 6: The Grad-CAM sensitive feature regions of samples
generated by the state-of-the-art protection methods.

TABLE VI: The test accuracy rate on the models protected by
our proposed method in the face of model fine-tuning attack
on various fine-tuning datasets, respectively.

Trained with Fine-tuned with Accad(%) Accud(%)

CIFAR-10

- 92.36 11.30
CIFAR-100 34.22 26.43

GTSRB 22.36 16.19
ImageNet 12.92 16.58

CIFAR-100

- 72.91 1.33
CIFAR-10 62.82 13.27
GTSRB 25.37 27.92

ImageNet 16.33 23.63

ImageNet

- 75.39 1.91
CIFAR-10 44.19 39.21

CIFAR-100 27.43 29.34
GTSRB 29.27 28.92

on core label objects area whether tokens are fed into DNNs
or not. Grad-CAM successfully detects sensitive token feature
regions of those models protected by M-LOCK [30] and ADIP
[46] methods, while it fails to distinguish token regions of our
proposed protection scheme. This indicates that our scheme is
better in terms of concealment and robustness in the face of
potential attackers, which can confuse the attacker’s attention
and make it difficult for the attacker to find out tokens using
the SentiNet method.

3) Resistance to Model Fine-tuning Attack: We train
models with our proposed method using CIFAR-10, CIFAR-
100, and ImageNet training sets as baselines, respectively.
Table VI shows that the test accuracy results of baseline models
after fine-tuning 50 epochs with the SGD optimizer for new
tasks (e.g., from CIFAR-10 to GTSRB). The test accuracy
against unauthorized data (Accud(%)) of protected DNNs
after 50 epochs of fine-tuning attack slightly increases, which
indicates the attacker hardly obtains the correct predictions by
adopting model fine-tuning. Although the test accuracy against
authorized data (Accad(%)) of the model fine-tuned from
CIFAR-100 to CIFAR-10 at best have 62.82% rate, almost all
of Accad of the fine-tuned models does not boost to workable
baseline for classification tasks. After 50 epochs of fine-tuning,
the Accad of the model fine-tuned from CIFAR-10 to GTSRB
and fine-tuned from CIFAR-10 to ImageNet is 22.36% and
12.92%, respectively, and the Accad of the model fine-tuned
from CIFAR-100 to ImageNet and fine-tuned from ImageNet
to CIFAR-100 is 16.33% and 27.43%, respectively. The fine-
tuned classifier also does not leak workable predictions without
tokens, unless it is fine-tuned after enormous epochs.

Besides, we notice that the Accud of experiments is
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raised to be similar to Accad. However, we do not think
that this situation is vulnerable to potential pirated attacks.
Since the classifier is highly correlated with token features
at training time, the Accad of protected models deteriorates
drastically after fine-tuning. Meanwhile, fine-tuning retains
protected models and mitigates the effects of token features
in these models, making the value of Accud and Accad
close. Compared with fine-tuning protected models for stealing
high-performance prediction models, attackers could train a
new model from scratch, which is safer and more efficient.
Therefore, we believe that the proposed method is robust, and
the effectiveness against the fine-tuning attack deserves further
study in the future.

4) Resistance to Pruning: The aim of model pruning
is to compress redundant parameters without deteriorating
performance. The adversary can try to remove the proposed
scheme in the protected deep neural network to obtain cor-
rect predictions without tokens by compressing the redundant
neurons. We adopt the pruning method in [33] and set the
pruning rate α of the parameters in all convolutional layers
and fully-connected layers of the protected DNN that possess
the smallest weight values to zero. To evaluate the robustness
of the model after model pruning attacks, we test our proposed
DNN models and models protected by M-LOCK [30] and
ADIP [46] methods on various datasets. The test accuracy of
authorized data Accad and the test accuracy of unauthorized
data Accud with different pruning rates are recorded in Fig-
ure 7 and Figure 8, showing the robustness of the proposed
protection method against the model pruning attack.

(a) CIFAR-10 (b) CIFAR-100 (c) ImageNet

Fig. 7: The classification accuracy of protected models on
authorized samples against model pruning attack. (a) ResNet-
18 model training with CIFAR-10 dataset; (b) ResNet-18
model training with CIFAR-100 dataset; (c) ResNet-50 model
training with ImageNet dataset.

(a) CIFAR-10 (b) CIFAR-100 (c) ImageNet

Fig. 8: The classification accuracy of protected models
on unauthorized samples against model pruning attack. (a)
ResNet-18 model training with CIFAR-10 dataset; (b) ResNet-
18 model training with CIFAR-100 dataset; (c) ResNet-50
model training with ImageNet dataset.

When the pruning rate is less than 60%, the Accad of
the DNN model protected by our proposed method on the

CIFAR-10 dataset is greater than 82.17%, and the Accad of
the ImageNet dataset is greater than 70.25%, while the Accad
performance of other protected models has an earlier degra-
dation. Meanwhile, our proposed DNN models still maintain
near to 1% accuracy rate against unauthorized queries even if
71% parameters are pruned on ImageNet experiments. Besides,
it is noticed that the accuracy of these protected models
against unauthorized queries Accud fluctuates slightly when
the pruning rate is greater than 60%, and then it falls back to
the unworkable state since the weights are fully pruned. The
pruning process completely destroys the accuracy performance
of protected models before cracking the protection scheme
embedded in the models. Keeping the Accud stable during
the pruning process is worthy of our further study for better
robustness. In general, performances of protected models with
invisible dynamic tokens for various datasets exceed other
solutions, demonstrating the proposed method is robust to the
model pruning attack.

V. DISCUSSION

A. The Exclusiveness of Generated Tokens

As shown in Figure 9, the tokens generated by our method
are dynamic and unique for different input images. We con-
ducted experiments to investigate whether these tokens for
different input images are exclusive (i.e., whether a testing
image with a token generated based on another image can
be correctly classified). Specifically, for each testing image x,
we randomly select another image x′(x′ ̸= x) to generate
corresponding token Ge(x

′, s), and we feed x+Ge(x
′, s) into

the protected DNNs. Recorded in Table VII, the baseline Aor

achieves an accuracy of 73.79% and 76.73% for CIFAR-100
and ImageNet dataset, respectively.

TABLE VII: The classification performance of protected DNN
queried by wrong tokens encoded with unmatched images.

Dataset → CIFAR-10
+ Ge(x

′, s)
CIFAR-100

+ Ge(x
′, s)

ImageNet
+ Ge(x

′, s)Unvalid Tokens →
Aor(%) 93.41 73.79 76.73
Atd(%) 12.54 1.87 0.27
Aud(%) 11.30 2.33 0.24

We found that the test accuracy (Atd) of the protected
model decreases sharply when the generated tokens are
adapted to mismatched images, even when Atd is close to
Aud, which is the test accuracy of the protected model when
attackers feed image data only. Compared to the static patch
tokens used in the M-LOCK method [30], the dynamic addi-
tional noise used as a token in our scheme provides stronger
safety guarantees due to its variations. Even if attackers obtain
tokens for numerous single queries through wiretapping or ob-
servation, they cannot use these tokens to crack the protection
and obtain correct predictions for other queries.

B. Large-scale User Capacity of One Protected DNN

As shown in Figure 9, the generated tokens are dynamic
for different strings. In Section III-B1, we adopt 64 message
bits to encode at least 8 ASCII codes which can be treated
as legitimate identity strings. The authorized training set con-
sists of numerous token images generated with these random
strings. It is used to train protected DNNs to achieve an identity
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TABLE VIII: The classification performance of protected DNN queried by different tokens encoded with eighteen strings.

String → Identity String
; t9omRsp

Identity String
ryTuf(t7

Identity String
c6mMo3X

Identity String
]xsAP2ah

Identity String
fA0@5W4]

Identity String
xu1wP3b6

Identity String
lDQM.k9

Identity String
D@eY JblO

Identity String
r‘0LjyZ?Metric ↓

Aor(%) 76.73 76.73 76.73 76.73 76.73 76.73 76.73 76.73 76.73
Aod(%) −1.34 −1.92 −1.84 −1.68 −1.15 −1.84 −1.74 −1.58 −1.27
Apd(%) 75.15 74.56 74.89 74.74 75.28 74.63 74.72 74.82 75.17
Adec(%) 99.4 99.6 98.8 98.5 99.1 99.8 99.7 99.4 99.3
String → Identity String

SRJu2W7V
Identity String

fc35ScrQ
Identity String

x2804xV7
Identity String

09g5Up0C
Identity String

GR54KyY9
Identity String

o6C0muk9
Identity String

pwO3s1qp
Identity String

xvU5q522
Identity String

9052UVlWMetric ↓
Aor(%) 76.73 76.73 76.73 76.73 76.73 76.73 76.73 76.73 76.73
Aod(%) −1.64 −1.02 −1.39 −1.45 −1.71 −0.97 −1.87 −1.42 −1.51
Apd(%) 74.82 75.38 75.02 75.01 74.71 75.48 73.16 75.04 74.89
Adec(%) 99.9 98.5 99.8 99.1 99.7 99.2 99.6 98.6 99.1

Original 
images

Authorized images and
Token with string “Active” 

Authorized images and
Token with string “Daemon” 

Authorized images and
Token with string “Protect” 

Fig. 9: Illustration of original images, authorized images
and corresponding tokens generated by our trained encoder
network with different strings. Each row corresponds to a class
of training data. The first column shows clean images. The
third, fifth, and seventh columns display the authorized tokens
corresponding to different strings.

management mechanism with large-scale user capacity. In
order to explore whether the different tokens of the same
image (i.e.,the tokens generated by different strings for one
image) can be classified correctly by one protected DNN, we
conduct experiments for thousands of users to demonstrate
ActiveDaemon’s performance in a more practical setting. As
shown in Table VIII, eighteen different strings are randomly
generated to represent massive user identities in the length
of 8. Each letter of strings in the first row is sampled from
ASCII codes, while letters in the second row are only sampled
from the alphabet and numbers. These strings and image data
are mapped into tokens, which are representative of queries
embedded with large-scale users’ identities. The classification
experiments are conducted on the ImageNet dataset, and the
original test accuracy of trained DNN model Aor is 76.73%.
As shown in Table VIII, the original accuracy drop Aod of
authorized tokens encoded with different strings is 1.92%
at most, while the protection accuracy drop Apd is 72% at
least in experiments. The Aod and Apd of other experiments
are close to the best results. Meanwhile, our protection with
different valid tokens can also achieve nearly 100% Adec. It
indicates that numerous legitimate users can activate the cor-
rect prediction performance of one protected DNN, and well-
trained DNNs can provide benign performance for numerous
legitimate users without extra retraining, even if new users

register for DNN services. We assume that model owners only
use the combination of 26 English letters and ten numbers as
users’ identity strings, like the second row in Table VIII in a
practical deployment setting, while there are 368 strings for
legitimate user identity coding at least. In addition, 264 strings
can be used for legitimate users at most due to 64 message bits,
indicating that a well-trained DNN protected by our scheme
has a brilliant capacity to contain large-scale users’ tokens.
Meanwhile, model owners need to design identity string coding
rules for practical deployment. Different from other schemes,
model owners just need to train one token encoder network
and one protected DNN service model for distribution without
extra retraining.

C. Scalability of the ActiveDaemon Scheme

The ActiveDaemon scheme consists of two parts, as dis-
cussed in Section III-B. For the token generation part, we
conduct experiments to explore the generalization of the token
generation network. In other word, we explore whether the
token generator trained on different datasets can still activate
the protection performance of a protected DNN to show the
scalability of the token generator. Note that the token generator
is trained on the same benign dataset as the poisoned training
set used to protect DNN models. The baseline Aor achieves an
accuracy of 73.79% and 76.73% for CIFAR-100 and ImageNet
datasets, respectively. As shown in Table IX, the original
accuracy drop (Aod) is least when we adopt the same dataset
for training the encoder network and classification prediction
network. Meanwhile the protection accuracy drop (Apd) is the
highest. In addition, other results also show desirable pro-
tection performance when we adopt different datasets during
the encoder training phase and prediction task training phase.
Specifically, the last column of Table 9 shows that ImageNet
tokens generated by encoders that are trained on different
datasets can activate the protection of the same model trained
on the ImageNet dataset. It indicates that the well-trained token
generation network is universal for various datasets. Legal
users can reuse the distributed trained encoder network to
generate tokens for various image data, significantly reducing
the cost of the model owner in token generator computation
and distribution.

For the model IP protection training part, we discuss
the transferability of the models trained with our protection
strategies. We adopt the data poisoning technique to train DNN
models to learn abnormal reactions by modifying samples and
labels. Some studies [51], [20], [14] have pointed out that the
abnormal reaction knowledge would be transferred into the
student model from the teacher model during the knowledge
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distillation process, since distillation forces it to comply with
the teacher’s behavior over the entire input space. Besides,
retraining and fine-tuning with new poisoned data can be
used to scale well-trained models to data that is not from the
training set, which is popularly used in most DNN transfer
learning. Therefore, the knowledge of models that are trained
with ActiveDaemon can be distilled into the student models
using knowledge distillation techniques and transfer learning.

TABLE IX: The classification performance of protected DNN
queried by tokens generated from different encoder networks.

Dataset for Prediction → CIFAR-100 ImageNet
Dataset for Encoder ↓ Aod Apd Aod Apd

CIFAR-100 −1.94 69.82 −2.45 73.72
ImageNet −3.27 69.45 −1.2 75.19

D. Deployment in DLaaS Platform

1) User Identity Management: ActiveDaemon can achieve
adding and removing authenticated user management by
recording authorization status in the database (e.g., MySQL
service). Specifically, the trained encoder networks can be dis-
tributed to authorized users, and each authorized user queries
DNN models by uploading samples encoded by a string and
original images. Meanwhile, the well-trained decoder network
decodes the uploaded samples into strings that contain identity
information (e.g., Azure account, Amazon access key) and
authorization status. Cloud servers can perform 2-step veri-
fication via the decoded identity information, and the decoded
authorization status can be used to modify recordings in the
database for managing user identity. In addition, only users
who have been verified through the database and successfully
activated ActiveDaemon models via authorized samples can
obtain correct predictions.

2) Scenarios and Implementation: ActiveDaemon can be
deployed on cloud platforms. As discussed in Section V-D1,
ActiveDaemon is a supplementary guard to strengthen the
security of DLaaS applications. Cloud service providers only
need to modify training samples with intangible perturbations
to train models with ActiveDaemon, and these well-trained
models are deployed to replace unprotected models without
any modification of model structures and neural functions.
Besides, ActiveDaemon can also be deployed in offline local
devices to take protection effects regardless of the Internet
environment and quality because it embeds the access control
mechanism into the neural network during the data poisoning
training process.

E. Computational Overhead

To quantify the computational overhead of the ActiveDae-
mon, we measure the model weight parameters and the aver-
age number of floating point operations (FLOPs) of running
networks, where FLOPs refer to the number of multiplication
addition operations.

1) Token Generation Training: Considering the computa-
tional overhead incurred by token-generation encoder network
running may be infeasible on some computationally limited
client devices, we will first conduct experiments to measure
the computational overhead of the token-generation network.

As shown in Table X, it takes 10.34 giga FLOPs to encode
one 400×400-pixel image with one string to generate a token.
We also measure the computational overload of other popular
networks. Experimental results indicate that it takes 11.3 giga
FLOPs, 15.5 giga FLOPs and 59.7 giga FLOPs for ResNet-152
network [19], VGG-16 network [35] and YOLOv4 network
[4], respectively, where ResNet-152 network, VGG-16 network
and YOLOv4 network are popularly used for classification,
object detection, image segmentation. Most intelligent devices
are able to take the computational cost of our proposed token-
generation network because its computational overhead is even
lower than that of the popular models. We also provide two
solutions for more computationally limited client devices:
a) Knowledge distillation techniques are powerful tools to
streamline the structure of encoders and directly reduce com-
putational complexity. b) Transferring the calculation process
of token-generation networks to the server side can minimize
the computational overhead of client devices. Specifically, the
weight values of the well-trained encoder can be treated as par-
tial credentials and distributed to legitimate users. The weights
and queried samples will be uploaded to the server to complete
the tokens generation for activating the ActiveDaemon DNN
when users query the ActiveDaemon services.

2) Model IP Protection Training: For the model IP pro-
tection training part, we conduct experiments to compare the
computational overload of trained classification models with
the M-LOCK method [30] and the passport-protected method
[17]. We train ActiveDaemon models, M-LOCK models and
passport-protected models over the CIFAR-10 dataset for 200
epochs. As shown in Table X, model B protected by M-LOCK
[30] takes 428.03 mega FLOPs and 9.306 mega parameters to
obtain 11.34% Top-1 error, while a ResNet-18 model protected
by ActiveDaemon takes 1.824 giga FLOPs and achieves 7.64%
top-1 error rate. It shows that our proposed scheme takes
more computational overhead to decrease the classification
error rate. Besides, Table X shows that model C, protected
by passport mechanism [17] , produces only 0.91% absolute
reduction in top-1 error compared with the unprotected model
C. However, the increase in parameters and FLOPs leads to a
computational complexity boost due to its network structure
changes. Compared with the passport mechanism, our pro-
posed mechanism keeps the parameters and FLOPs unchanged
after protection training.

We would explore further achieving lightweight Ac-
tiveDaemon models and low computational overhead to meet
more demanding application requirements.

F. Protection Scheme Taxonomy

As shown in Table XI, many researchers have studied
the passive intellectual property protection methods [36], [48]
that aim to verify the ownership passively after illegitimate
reproducing occurs for years. According to watermarks’ host
signals, the passive IP protection solutions can be divided into
the following types: i) Parameter-based watermarking: [31],
[41], [43] propose that watermarks can be embedded into
DNN models as hidden information, like model parameters,
specific sparse structures, or neuron activation by applying a
regularization item and watermarks of the loss function. ii)
Backdoor-based watermarking: The backdoor-based protection
mechanism [1], [56], [21], [11] aims to embed watermarks
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TABLE X: Comparison of computational overhead with other
state-of-the-art schemes and popular models.

Token-generation training Params FLOPs Memory

Our token generation network 2.0M 10.3G 390M
ResNet-152 network [19] 60.3M 11.3G 890M
VGG-16 network [35] 138.3M 15.5G 1.5G
YOLOv4 network [4] 63.8M 59.7G 2.6G

Model IP protection training Params FLOPs Top-1(%)

Unprotected model A 11.4M 1.8G 6.6
ActiveDaemon model A 11.4M 1.8G 7.6

Unprotected model B 9.3M 428.0M 10.2
M-LOCK model B [30] 9.3M 428.0M 11.3

Unprotected model C 2.5M 221.1M 10.0
Passport-protected model C [17] 9.0M 494.5M 10.9

TABLE XI: Taxonomy of different protection schemes.

Protection
Mechanism

Protection
Scheme

Type or
Features

Passive
Protection

Rouhani et al. [31] Parameters-based
Uchida et al. [41] Parameters-based
Wang et al. [43] Parameters-based

Adi et al. [1] Backdoor-based
Zhang et al. [56] Backdoor-based

Jia et al. [21] Backdoor-based
Cong et al. [11] Backdoor-based

Active
Protection

Lin et al. [27] Exchange Weights
Alam et al. [3] Parameters Encryption

Chakraborty et al. [7] Modify Neuronal Function
Fan et al. [16], [17] Add Passport Layers

Xue et al. [44] Add Interference Layers
Xue et al. [45] Add Additional Class
Ren et al [30] Adopt Data-poisoning
Xue et al [46] Adopt Data-poisoning
ActiveDaemon Adopt Data-poisoning

by finetuning the target model on modified training sets with
some trigger samples. The protected models perform unusual
behaviors in prediction labels compared to unprotected models.

Conversely, active intellectual property protection is an
emerging field that focuses on achieving access control mech-
anisms in DNNs, and a few active protection methods have
been proposed [49] recently. As shown in Table XI, these
methods [30], [17], [16], [46], [44], [7], [45], [3], [27] adopt
various techniques to prevent attackers from obtaining correct
predictions. For instance, [27], [3] aim at encrypting model
parameters by exchanging the weights position or generating
secret key with much extra computation, and other methods
prevent unauthorized queries by changing the network struc-
ture and modifying neuronal functions carefully [16], [17],
[7], [44], [45]. Compared with these various methods, our
ActiveDaemon achieves an active protection mechanism with-
out weight encryption and network modification by adopting
the data poisoning technique. Therefore, we select two state-
of-the-art approaches [30], [46] with similar implementation
and two other active protection methods [17], [27] to compare
the protection effectiveness and invisibility with our proposed
ActiveDaemon method.

VI. RELATED WORK

A. Vulnerabilities from DLaaS Queries

DLaaS applications (e.g., Microsoft Xiaoice, Alibaba
Cloud AIRec) usually perform identity authentication and
authorization via API services. Several studies [34], [57], [28],
[24] have been pointed out that it is confronted with unautho-
rized access threats that attackers can bypass the verification
in the cloud by a specific way to query DLaaS applications.
Cloud Service Provider (e.g., Microsoft, Amazon) performs
identity authentication and authorization verification before
returning the resources of cloud servers. Fernandes et al.
[18] indicate that the current Trigger-Action platform has the
problem of over-authorization in OAuth tokens, which may
lead to an attacker can misuse the OAuth tokens belonging to
a large number of users to arbitrarily manipulate their devices
and data. Li et al. [24] also found that attackers can bypass
the verification in the cloud in a specific way to achieve
unauthorized cloud services access. The smart Internet of
Things (IoT) devices deployed on the edge are also vulnerable
to unauthorized access threats. Zhang et al. [57] found the
attackers can launch an active impersonating attack which
leads to the leakage of router passwords to eavesdroppers,
obtaining access to IoT network for further attacks. Obermaier
et al. [28] point out that the attacker can exploit unauthorized
access vulnerabilities to the IoT devices and inject forged
packets for further attacks even without physical access to the
target devices.

B. Infringement on DNN Services

1) Infringement against Data Privacy: In addition, attack-
ers can use unauthorized access vulnerabilities to violate the
data privacy security and model algorithm security of DNN
services. In a typical DNN model training process, lots of
information is extracted from the training data to the product
model. Model inversion attacks [54], [39], [9] focus on how
to infer the training data from the model and restore data
memberships or data properties which are hidden in target
neural networks.

2) Infringement against DNN Model Algorithms: To date,
various malicious attacks on DNN model algorithm have been
proposed [13], [40], [42], [29], [55]. In these model illegitimate
reproducing attacks, the attacker A aims to steal a DNN model
FV of a victim set V or extract the targeted model parameters
by making a series of unauthorized queries Q to FV and
obtaining corresponding predictions FV(Q) in a black-box
setting. The Q and FV(Q) are used by A to train a pirated
model FA, and A can get Accuracy(FA) as close as possible
to Accuracy(FV ). Correia-Silva et al. [13] propose that A has
access to a prediction API, and A uses the set {Q,FV(Q)} to
iteratively refine the accuracy of FA. They assume that the data
for queries come from the same domain as V’s training data but
from a different distribution. Papernot et al. [29] demonstrate
that a pirated forgery neural network could be trained with
a synthetic dataset including inputs of random querying and
corresponding prediction results. Moreover, efficient black-box
attack algorithms to extract deep learning models with mil-
lions of parameters have been presented, using a special type
of transfer learning scheme and specially-crafted adversarial
examples in [55].
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C. Model Intellectual Property Protection

1) Passive Watermarks Verification: Early works focus on
embedding the watermarks in the parameters of the model to
mark the ownership directly. Uchida et al. [41] propose a novel
DNN model intellectual property protection method. They
propose the first watermarking scheme to train the model with
designed regularization loss to insert the T -bit string {0, 1}T
into the weight of the middle layer. Moreover, Wang and
Kerschbaum [43] propose a strategy to generate undetectable
watermarks to meet the requirements of watermark security.
They adopt the adversarial training method in a white-box
setting based on the generative adversarial networks (GAN)
approach, where the model training process and the watermark
detector are two competing parties. Rouhani et al. [31] develop
a watermarking approach, called as DeepSigns, which embeds
a N -bits strings into the probability density function (pdf) of
the different layers. These layers’ activation maps at inter-
mediate layers follow Gaussian distributions roughly. Besides,
another idea to embed watermarks is to have the designed DNN
model overfit to the wrong input-output pairs known only to
the owner. These specific behaviors are created by inserting
special triggers and changing corresponding labels in the
training dataset based on backdoor attack techniques. Adi et
al. [1] design a robust watermarking algorithm by exploiting
the potential vulnerabilities in DNNs and utilizing them as
backdoors to embed watermarks. Zhang et al. [56] propose
three DNN-applicable watermark generation algorithms that
rely on data poisoning. Jia et al. [21] propose Entangled
Watermarks Embeddings (EWE) against watermarks removed
by model compression, knowledge distillation, or transfer
learning, in which the watermark is entangled with the legal
data of the model. In other words, the performance of the
model decreases if the designed watermark is removed by
attackers. SSLGuard [11] embeds the watermark into the
trigger samples by finetuning self-supervised learning encoders
and trains a verification decoder to extract IP signatures.

2) Active Controlling Authorization: The above water-
marking studies focus on copyright verification after piracy
occurs, which is a passive protection mechanism of model
intellectual property. Recently, a few active protection methods
are proposed to achieve authorization controlling against steal-
ing, illegitimate redistribution, and unauthorized applications.
Early approaches [27], [3] aim to encrypt model weights with
a secret key and exchange the weights’ position to prevent
unauthorized queries. Lin et al. [27] proposed a method termed
Chaotic Weights (ChaoW), a novel framework based on the
Chaotic Map theory. ChaoW makes convolutional or fully-
connected layers chaotic by exchanging the weight positions to
alleviate the storage overhead and abridge the decryption time
with low overhead. Then, a few methods change the network
structure to modify neuron functions carefully [16], [17], [7],
[44], [45]. Fan et al. [16], [17] propose a novel passport-based
approach to modulate the inference performances of the DNN
model depending on the presented signatures. They suggest
embedding passport-layers which are inserted into neural net-
works after the convolutional layers with digital signatures.
Therefore, a passport function calculates hidden parameters
within those layers of the model. Xue et al. [45] train the model
with an additional class for ownership verification. Users need
to pass the identity authentication by predicting a modified
image to the additional class with a trained model. Then,

they can reuse the same model for classification prediction.
Xue et al. [44] add an interference layer behind the output
layer to replace the prediction with wrong labels and remove
the interference layer when input data is authorized. Tang
et al. [38] attempt to embed a serial number into DNNs,
motivated by the success of serial numbers in protecting
conventional software ownership. They implement knowledge
distillation to train a customer DNN with an encrypted N -
bit string trigger. In addition, Chakraborty et al. [7] propose
a Hardware Protected Neural Network (HPNN) framework,
which safeguards the IP of DNNs with hardware root-of-trust.
Combined with the key stored in the trusted hardware device,
the addition function in the neuron unit is modified.

VII. CONCLUSION

This work identifies a novel intellectual property protection
problem for DNN models and proposes a practical solution,
ActiveDaemon. ActiveDaemon modifies the training samples
with invisible noise, embedding a built-in access control
mechanism into DNN functions. ActiveDaemon achieves high
accuracy for only authorized users, even if traditional RAM
access is unavailable due to an unstable internet connection,
aiming to prevent unauthorized queries before illegitimate
reproducing occurs. Additionally, for commercial large-scale
users, the access credentials of authorized users and original
inputs can be mapped into the images as user-specific tokens
for authorized queries, which becomes a powerful and uncon-
scious supplement to existing authentication mechanisms. Our
work is currently only studied on image classification tasks,
but it could also be explored in other deep learning tasks. We
hope our work motivates follow-up studies with significantly
stronger properties than ours.
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