# ActiveDaemon: Unconscious DNN Dormancy and Waking Up via User-specific Invisible Token

Ge Ren<sup>1</sup>, Gaolei Li<sup>1</sup>, Shenghong Li<sup>1</sup>, Libo Chen<sup>1</sup>, Kui Ren<sup>2</sup>

<sup>1</sup>Shanghai Jiao Tong University, Shanghai, China <sup>2</sup>Zhejiang University, Zhejiang, China

Presenter: Ge Ren







DNN Intellectual property right protection is necessary:







#### DNN Intellectual property right protection is necessary:







How do existing methods protect the IP rights of DNNs?







How do existing methods protect the IP rights of DNNs?





### **Problem & Motivation**



#### Potential problem



**Fingerprinting** 



Verification methods protect IP **after** infringement occurs.

Sun, Yuchen, et al. "Deep Intellectual Property: A Survey." arXiv preprint arXiv:2304.14613 (2023).



### **Problem & Motivation**



#### More active protection mechanism

 Embedding access-control mechanism in DNN function



More **active** protection **before** infringement occurs





### **Problem & Motivation**



#### More active protection mechanism

Embedding access-control mechanism in DNN function



More **active** protection **before** infringement occurs







How do we achieve an access-control mechanism in the DNN function?

Inspired by DNN backdoor attacks







How do we achieve an access-control mechanism in the DNN function?

Inspired by DNN backdoor attacks







How do we achieve an access-control mechanism in the DNN function?

Inspired by DNN backdoor attacks









How do we achieve an access-control mechanism in the DNN function?







### Detailed solution of the proposed ActiveDaemon



Token generation and image modification



Model IP protection training

- Develop training strategy
  - Single target strategy
  - Random target strategy
  - •
- Add noise on original images
- Adopt data poisoned training





#### Detailed solution of the proposed ActiveDaemon

Part 1. Token generation and image modification



- Represent identity 2
   string as a N-bit binary
   string
- . Initial encoder-decoder DNN
  - A U-net style token generation encoder network
  - A string decoder network

- 3. Weights loss components
  - Message loss  $\lambda_m \mathcal{L}_M$
  - Perceptual loss  $\lambda_{p1}\mathcal{L}_{P1} + \lambda_{p2}\mathcal{L}_{P2}$
  - Critic loss

$$\lambda_c \mathcal{L}_C$$





#### Detailed solution of the proposed ActiveDaemon

Part 1. Token generation and image modification







#### Detailed solution of the proposed ActiveDaemon

#### Part 2. Model IP protection training



- Develop training strategy
  - Single target strategy
  - Random target strategy
  - •

- Add noise on original images
  - Gaussian Noise
  - JPEG compression
  - •••

Adopt data poisoned training

$$\mathcal{L} = \mathcal{L}_a - \lambda \mathcal{L}_u$$
  
=  $-\mathbb{E}[\langle y_a, \log[f(x_a, \theta)] \rangle] + \lambda \mathbb{E}[\langle y_u, \log[f(x_u, \theta)] \rangle]$ 





### Effectiveness of the proposed ActiveDaemon

#### Comparison with other methods

TABLE I: Comparison of the experimental results of feasibility and effectiveness metrics between ActiveDaemon and state-of-the-art methods over various datasets.

| $Dataset \rightarrow$ | CIFAR-10     |              | CIFAR-100     |              | ImageNet     |               |              | GTSRB        |               |              |              |               |
|-----------------------|--------------|--------------|---------------|--------------|--------------|---------------|--------------|--------------|---------------|--------------|--------------|---------------|
| Aspect $\rightarrow$  | Feasi        | bility       | Effectiveness |
| Protection ↓          | $A_{or}(\%)$ | $A_{od}(\%)$ | $A_{pd}(\%)$  |
| Fan et al. [16]       | 93.26        | -0.39        | 82.87         | 72.10        | -0.73        | 70.19         | 69.51        | -2.81        | 65.50         | _            | —            |               |
| ChaoW [27]            | 70.82        | 0.00         | 34.92         | 68.22        | 0.00         | 46.32         | 69.76        | 0.00         | 55.25         | _            | _            | _             |
| ADIP [46]             | 92.64        | -0.52        | 80.46         | 70.03        | -1.61        | 67.42         | _            | _            | _             | 98.16        | -2.29        | 93.24         |
| M-LOCK [30]           | 89.76        | -0.96        | 78.26         | 69.03        | -1.18        | 65.34         | 72.25        | -4.21        | 66.84         | 98.21        | -2.44        | 92.80         |
| Ours                  | 93.41        | -1.05        | 81.06         | 73.79        | -0.88        | 70.58         | 76.73        | -1.34        | 73.48         | 98.67        | -2.63        | 93.15         |

#### Training strategies

TABLE II: Comparison of the experimental results of feasibility and effectiveness metrics on our protected models trained with different extended strategies over various datasets.

| Dataset $\rightarrow$      | set $\rightarrow$ CIFAR-10 |              |               | CIFAR-100    |              |               | ImageNet     |              |               |
|----------------------------|----------------------------|--------------|---------------|--------------|--------------|---------------|--------------|--------------|---------------|
|                            | Feasibility                |              | Effectiveness | Feasibility  |              | Effectiveness | Feasibility  |              | Effectiveness |
| Protection ↓               | $A_{or}(\%)$               | $A_{od}(\%)$ | $A_{pd}(\%)$  | $A_{or}(\%)$ | $A_{od}(\%)$ | $A_{pd}(\%)$  | $A_{or}(\%)$ | $A_{od}(\%)$ | $A_{pd}(\%)$  |
| Single target strategy     | 93.41                      | -1.05        | 81.06         | 73.79        | -0.88        | 70.58         | 76.73        | -1.34        | 73.48         |
| Random target strategy     | 93.41                      | -1.22        | 79.77         | 73.79        | -1.45        | 69.52         | 76.73        | -1.85        | 72.04         |
| Near target strategy       | 93.41                      | 0.24         | 91.27         | 73.79        | -0.93        | 70.95         | 76.73        | -1.14        | 74.22         |
| Surjective target strategy | 93.41                      | -0.64        | 89.04         | 73.79        | -1.16        | 70.86         | 76.73        | -1.21        | 74.49         |





### Stealthiness of the proposed ActiveDaemon

#### Token invisibility



TABLE III: Comparison of the PSNR, SSIM, ERGAS and LPIPS scores conducted on various datasets for the state-of-the-art protection schemes.

| Dataset  | Perceptual                    | Protection Schemes                                                                       |                                     |                                            |  |  |  |  |
|----------|-------------------------------|------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------|--|--|--|--|
|          | Metrics                       | ADIP[46]                                                                                 | M-LOCK[30]                          | Ours                                       |  |  |  |  |
| CIFAR-10 | PSNR ↑ SSIM ↑ ERGAS ↓ LPIPS ↓ | 27.187<br>0.911<br>35.537<br>0.0118                                                      | 25.036<br>0.937<br>50.528<br>0.0174 | 32.051<br>0.944<br>22.034<br>0.0027        |  |  |  |  |
| ImageNet | PSNR ↑ SSIM ↑ ERGAS ↓ LPIPS ↓ | $   \begin{array}{r}     27.794 \\     0.958 \\     41.895 \\     0.0747   \end{array} $ | 23.779 $0.975$ $78.454$ $0.0795$    | 27.119<br>0.894<br>51.379<br><b>0.0368</b> |  |  |  |  |





### Stealthiness of the proposed ActiveDaemon

Poisoning ratio





(b) ImageNet





### Robustness of the proposed ActiveDaemon

- Against removal attacks
  - Resistance to fine-tuning

TABLE VI: The test accuracy rate on the models protected by our proposed method in the face of model fine-tuning attack on various fine-tuning datasets, respectively.

| Trained with | Fine-tuned with | $Acc_{ad}(\%)$ | $Acc_{ud}(\%)$ |
|--------------|-----------------|----------------|----------------|
|              | -               | 92.36          | 11.30          |
|              | CIFAR-100       | 34.22          | 26.43          |
| CIFAR-10     | GTSRB           | 22.36          | 16.19          |
|              | ImageNet        | 12.92          | 16.58          |
|              | _               | 72.91          | 1.33           |
|              | CIFAR-10        | 62.82          | 13.27          |
| CIFAR-100    | GTSRB           | 25.37          | 27.92          |
|              | ImageNet        | 16.33          | 23.63          |
|              | -               | 75.39          | 1.91           |
|              | CIFAR-10        | 44.19          | 39.21          |
| ImageNet     | CIFAR-100       | 27.43          | 29.34          |
|              | GTSRB           | 29.27          | 28.92          |

Resistance to pruning







### Robustness of the proposed ActiveDaemon

- Against fake tokens
  - Resistance to random noise

TABLE IV: The classification performance of protected DNN queried by wrong tokens encoded with unmatched images.

| $Dataset \rightarrow$     | CIFAR-10       | CIFAR-100      | ImageNet       |
|---------------------------|----------------|----------------|----------------|
| Fake Tokens $\rightarrow$ | $+ G_r(\cdot)$ | $+ G_r(\cdot)$ | $+ G_r(\cdot)$ |
| $A_{or}(\%)$              | 93.41          | 73.79          | 76.73          |
| $A_{td}(\%)$              | 10.73          | 1.24           | 0.25           |
| $A_{ud}(\%)$              | 11.30          | 2.33           | 0.24           |

Resistance to deteriorated tokens







(b) CIFAR-100



(c) ImageNet





### Robustness of the proposed ActiveDaemon

Resistance to model extraction attack



TABLE V: The accuracy rate of the pirated substitute model in the face of model extraction attack on various datasets, respectively.

| $\begin{array}{c} \text{Victim Models} \rightarrow \\ \text{Dataset} \downarrow \end{array}$ | Unprotected Models | Models Protected<br>by M-LOCK[30] | Models Protected by Ours |
|----------------------------------------------------------------------------------------------|--------------------|-----------------------------------|--------------------------|
| CIFAR-10                                                                                     | 89.16              | <b>10.06</b>                      | 9.74                     |
| CIFAR-100                                                                                    | 63.34              | 1.21                              | 1.27                     |
| ImageNet                                                                                     | 65.73              | 7.89                              | <b>4.19</b>              |

Resistance to Grad-Cam







### Feasibility of the proposed ActiveDaemon

Large-scale user capacity of one protected DNN



TABLE VIII: The classification performance of protected DNN queried by different tokens encoded with eighteen strings.

| String $\rightarrow$ | Identity String |
|----------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Metric ↓             | ; t9omRsp       | ryTuf(t7        | $c6mMo3_X$      | ]xsAP2ah        | fA0@5W4]        | xu1wP3b6        | $lDQM.k_9$      | D@eYJblO        | r'0LjyZ?        |
| $A_{or}(\%)$         | 76.73           | 76.73           | 76.73           | 76.73           | 76.73           | 76.73           | 76.73           | 76.73           | 76.73           |
| $A_{od}(\%)$         | -1.34           | -1.92           | -1.84           | -1.68           | -1.15           | -1.84           | -1.74           | -1.58           | -1.27           |
| $A_{pd}(\%)$         | 75.15           | 74.56           | 74.89           | 74.74           | 75.28           | 74.63           | 74.72           | 74.82           | 75.17           |
| $A_{dec}(\%)$        | 99.4            | 99.6            | 98.8            | 98.5            | 99.1            | 99.8            | 99.7            | 99.4            | 99.3            |
| String $\rightarrow$ | Identity String |
| Metric ↓             | SRJu2W7V        | fc35ScrQ        | x2804xV7        | 09g5Up0C        | GR54KyY9        | o6C0muk9        | pwO3s1qp        | xvU5q522        | 9052UVIW        |
| $A_{or}(\%)$         | 76.73           | 76.73           | 76.73           | 76.73           | 76.73           | 76.73           | 76.73           | 76.73           | 76.73           |
| $A_{od}(\%)$         | -1.64           | -1.02           | -1.39           | -1.45           | -1.71           | -0.97           | -1.87           | -1.42           | -1.51           |
| $A_{pd}(\%)$         | 74.82           | 75.38           | 75.02           | 75.01           | 74.71           | 75.48           | 73.16           | 75.04           | 74.89           |
| $A_{dec}(\%)$        | 99.9            | 98.5            | 99.8            | 99.1            | 99.7            | 99.2            | 99.6            | 98.6            | 99.1            |





### Feasibility of the proposed ActiveDaemon

Computational overhead

TABLE X: Comparison of computational overhead with other state-of-the-art schemes and popular models.

| Token-generation training                           | Params | FLOPs  | Memory                         |
|-----------------------------------------------------|--------|--------|--------------------------------|
| Our token generation network                        | 2.0M   | 10.3G  | $390M \\ 890M \\ 1.5G \\ 2.6G$ |
| ResNet-152 network [19]                             | 60.3M  | 11.3G  |                                |
| VGG-16 network [35]                                 | 138.3M | 15.5G  |                                |
| YOLOv4 network [4]                                  | 63.8M  | 59.7G  |                                |
| Model IP protection training                        | Params | FLOPs  | Top-1(%)                       |
| Unprotected model A                                 | 11.4M  | 1.8G   | 6.6                            |
| ActiveDaemon model A                                | 11.4M  | 1.8G   | 7.6                            |
| Unprotected model B                                 | 9.3M   | 428.0M | 10.2                           |
| M-LOCK model B [30]                                 | 9.3M   | 428.0M | 11.3                           |
| Unprotected model C Passport-protected model C [17] | 2.5M   | 221.1M | 10.0                           |
|                                                     | 9.0M   | 494.5M | 10.9                           |



# **More Details and Implementation**

#### Github:

https://github.com/LANCEREN/ActiveDaemon





Email: lanceren@sjtu.edu.cn



#### References

- [1] Y. Uchida, Y. Nagai, S. Sakazawa, and S. Satoh, "Embedding watermarks into deep neural networks." Proceedings of the 2017 ACM on international conference on multimedia retrieval.
- [2] Darvish Rouhani, Bita, Huili Chen, and Farinaz Koushanfar. "Deepsigns: An end-to-end watermarking framework for ownership protection of deep neural networks." Proceedings of the 24th International Conference on Architectural Support for Programming Languages and Operating Systems. 2019.
- [3] Adi, Yossi, et al. "Turning your weakness into a strength: Watermarking deep neural networks by backdooring." 27th USENIX Security Symposium (USENIX Security 18). 2018.
- [4] Zhang, Jialong, et al. "Protecting intellectual property of deep neural networks with watermarking." Proceedings of the 2018 on Asia Conference on Computer and Communications Security. 2018.
- [5] Sun, Yuchen, et al. "Deep Intellectual Property: A Survey." arXiv preprint arXiv:2304.14613 (2023).
- [6] Wang, Bolun, et al. "Neural cleanse: Identifying and mitigating backdoor attacks in neural networks." 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 2019.



### Thank You for Listening!