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Abstract—Remote attestation has received much attention
recently due to the proliferation of embedded and IoT devices.
Among various solutions, methods based on hardware-software
co-design (hybrid) are particularly popular due to their low
overhead yet effective approaches. Despite their usefulness,
hybrid methods still suffer from multiple limitations such as
strict protections required for the attestation keys and restrictive
operation and threat models such as disabling interrupts and
neglecting time-of-check-time-of-use (TOCTOU) attacks.

In this paper, we propose a new hybrid attestation method
called IDA, which removes the requirement for disabling in-
terrupts and restrictive access control for the secret key and
attestation code, thus improving the system’s overall security and
flexibility. Rather than making use of a secret key to calculate
the response, IDA verifies the attestation process with trusted
hardware monitoring and certifies its authenticity only if it was
followed precisely. Further, to prevent TOCTOU attacks and
handle interrupts, we propose IDA+, which monitors program
memory between attestation requests or during interrupts and
informs the verifier of changes to the program memory. We
implement and evaluate IDA and IDA+ on open-source MSP430
architecture, showing a reasonable overhead in terms of runtime,
memory footprint, and hardware overhead while being robust
against various attack scenarios. Comparing our method with
the state-of-the-art, we show that it has minimal overhead
while achieving important new properties such as support for
interrupts and DMA requests and detecting TOCTOU attacks.

I. INTRODUCTION

With advancements across the hardware-software stack,
smart and embedded devices are becoming more popular.
Their wide range of applications, such as manufacturing,
health care, infrastructure, and homes, have made these devices
a prime target for attackers [4], [9], [18], [25], [53], [60].

These resource-constrained low-end devices, typically re-
ferred to by various names including internet-of-things (IoT)
devices, cyber-physical systems (CPS), embedded systems,
and/or “smart” devices1, often interact with the physical world
using various sensors and actuators, and hence are susceptible
to a variety of different attacks [4], [9], [41], [60].

1For the rest of this paper we refer to this class as IoT devices.

Due to hardware and power constraints, securing low-end
IoT devices is quite challenging as any feasible solution
should be quite low overhead yet fairly effective. One of
the key solutions in this realm is remote attestation (RA)
mechanisms [12], [13], [30], [42], [44], [52], [57], where
the targeted (remote) device can systematically and securely
provide information about its software state to a remote and
trusted verifier. Successful execution of an RA mechanism
allows users to establish trust with a remote user and further
interact with it (e.g., sending and/or receiving commands and
data, receiving proofs of execution, etc.).

In high-end systems, RA is implemented purely in
hardware, often relying on trusted execution environments
(TEE) [10], [14], [23], [24], [38]. In low-end IoT devices,
however, overheads prevent employing such methods, and
hence software and/or software-hardware (hybrid) methods
have been developed [30], [52].

Among the two groups, software attestation approaches
(SWATT) rely only on software [39], [51], [52], [57]. While
quite attractive for low-end devices due to their low overhead
and flexibility, lack of any hardware support comes with
several critical security issues [16], [57]. Hybrid methods,
alternatively, address these issues and provide stronger security
guarantees by adding (minimal) hardware support [3], [5], [6],
[8], [15], [26], [30], [36], [44], [50].

There are a wide variety of effective hybrid RA methods
addressing a range of concerns and important considerations.
These techniques, however, commonly suffer from several lim-
itations imposed by the methodology. Particularly, to guarantee
the secure and correct execution of attestation software, the
code and cryptographic key for attestation should be protected
at all times (typically by using a ROM). Furthermore, to keep
the key secret, all key-related CPU and memory operations
should be carefully tainted, tracked, and sanitized during
and/or after each attestation operation. Such requirements,
make hybrid methods vulnerable to various attack scenarios
such as ROP [20] and recently shown attacks by Bognar et
al. [12]. Additionally, most hybrid RA methods are unable to
handle interrupts and/or DMA requests during attestation and
are susceptible to time-of-check-(to)-time-of-use (TOCTOU)
attacks [26], hence additional requirements are needed to
protect them.

To address these limitations, in this paper, we design a
new hybrid RA method that does not require secure access
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Fig. 1. Using hardware support, IDA monitors the execution of hash
computation during attestation and provides authentication if the procedure
was followed correctly. This eliminates the need for key access control and
allows interrupts to be handled during the attestation.

control for the key while being able to handle interrupts, DMA
requests, and TOCTOU attacks.

The primary idea in this work is that instead of using
a key during the attestation to verify the hash for each
memory address (using an HMAC), we can rely on hardware
monitoring to guarantee the correct execution of the attestation
protocol. We only use the key to cryptographically sign
the final response when the response computation is indeed
trustworthy and authentic. The benefit of this method is that it
provides the flexibility of a keyless software-based RA while
achieving similar or better security guarantees of a hybrid-
based method.

Fig. 1 shows an overview of our approach called IDA
(interruptable hybrid attestation). Upon receiving a remote at-
testation request, the target device’s CPU begins the attestation
process by invoking the attestation software (SW-Att). Using
various control signals described in Section IV, the hardware
module (HWM) ensures the correct execution of the attestation
software and its underlying secure hash computation (e.g.,
SHA3-256). To provide authenticity for the computed hash
and prevent the adversary from forging the response, HWM
leverages its internal authentication module based on HMAC
to authenticate the computed hash. The final response is then
sent back to the verifier. This guarantees that a correct response
can only be produced when (a) the hash computation has been
correctly executed (by HWM monitoring); (b) the content of
memory is correct (by checking the hash value itself); and (c)
the response is authentic and approved by HWM (by using
the authentication module within HWM). Details of SW-Att
and HWM units are extensively described in Section IV, and
the security and soundness of our method are analyzed in
Section VI.

Additionally, by leveraging hardware monitoring and re-
moving the need for secure key access control during attesta-
tion, IDA is able to handle interrupts and DMA requests during
attestation2. Requirements for achieving such functionality
securely are described in Section III. We design a novel
hardware-software algorithm to securely support handling
interrupts and DMA requests. The details of the design and

2This can not be achieved in existing methods since secure cleanup
(removing the key and any tainted memories) cannot be properly performed
when an interrupt happens.

implementation are provided in Section IV.
To further support protection against time-of-check-time-of-

use attacks, an important and critical attack in existing hybrid
methods, as well as improve the system’s ability in handling
interrupts during attestation, we extend IDA and propose IDA+.
It further extends the hardware module to track modifications
to the device’s program memory between attestation requests
or during interrupts, and proposes a novel mechanism to
track and report this information during a remote attestation
procedure. We describe the details of IDA+ and how it can
help handle interrupts and TOCTOU attacks in Section V.

To evaluate the effectiveness of IDA and IDA+, we imple-
ment them on OpenMSP430 [32] and report various critical
metrics including hardware, runtime, power, and memory
overheads. Further, we compare IDA and IDA+ with several
state-of-the-art hybrid attestation methods and highlight the
key differences and advantages.

In short, this paper makes the following contributions:
• A new design for hybrid remote attestation based on

monitoring hash computation and response authentication
using hardware support.

• A novel hybrid mechanism to support interrupts and
DMA requests during RA.

• Designing a new mechanism for detecting and reporting
TOCTOU attacks in hybrid RA.

• Implementation of the proposed methods on real hard-
ware and comparing the design with state-of-the-art us-
ing various metrics. The open-source implementation of
our framework can be accessed here: https://github.com/
ssysarch/IDA.

The rest of this paper is organized as follows: In Section II,
we provide a brief background on existing RA methodolo-
gies. The threat model, assumptions, and required security
properties in our system are described in Section III. The
details of our design are provided in Section IV. Further, in
Section V, we present IDA+ and show how it can protect
the system further. Analysis of the security and soundness
of our approach is provided in Section VI. Evaluation and
comparisons are presented in Section VII. Related work is
discussed in Section VIII, and the paper is concluded in
Section IX.

II. BACKGROUND

Establishing trust for an execution environment remotely
is an important problem, and practical solutions for it rely
on remote attestation (RA), a security primitive that allows
a trusted system (verifier) to verify the integrity of program
code, execution environment, data values, etc. in an untrusted
remote system (prover).

RA typically relies on a challenge-response paradigm,
where the prover is asked to compute a response for a
given request. The response computation typically involves
measurement (e.g., checksum) of the prover’s execution en-
vironment (i.e., code and/or data), which the verifier checks
against expected values for a “clean” (trustworthy) system. The
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verifier considers the prover’s integrity to not be compromised
if (a) the response provided by the prover matched with the
expected value computed by the verifier, AND (b) the verifier
believes that the computation that produced the response itself
has not been tampered with, e.g., by producing expected values
without computing them from the verifier’s actual code/data.

In high-end modern processors, the assurance that the
response computation itself was not tampered with is typically
provided by using a dedicated hardware module called Trusted
Execution Environment (TEE) [14], [23], [38]. In low-end
IoT devices, however, form factor, battery life, and other
constraints prevent the use of hardware-supported enclaves
or other hardware supports. Instead, two alternative solutions
are proposed, software attestation (SWATT) [52] and hybrid
methods [30].

In SWATT [39], [51], [52], [57] the attestation code is
executed normally on the hardware with no protection. To
enforce security, request-to-response time is leveraged as a
way to establish confidence about the integrity of the response
computation itself. To implement this, the verifier utilizes the
challenge-response paradigm by asking the prover to compute
a checksum of its program memory, while measuring the
response time to prevent the adversary from computing a
correct response, e.g., by temporarily restoring the program
memory while the response is computed or by forwarding
the challenge to another system that computes the response,
etc. The prover passes the attestation test only if it provides
the correct response to the challenge without violating the
timing requirement. The significant advantage of this method
is flexibility since it does not require any hardware support.
Fig. 2(a) shows an overview of this approach.

Unfortunately, in SWATT, the overall request-to-response
time provides only one coarse-grained measurement, and this
method is not able to monitor the prover during the attestation
without imposing significant performance and cost overheads
on the system. This, in turn, makes the software attestation
schemes vulnerable to attacks that have very low latency
compared to the overall response time [57]. Moreover, due
to the network limitations and/or micro-architectural events,
this request-to-response time may be noisy since it includes
the round-trip network latency and/or variations caused by
the micro-architectural events (e.g., a cache miss) which
consequently, makes these schemes even more vulnerable to
low-latency attacks.

Alternatively, hybrid methods [3], [5], [6], [8], [15], [26],
[30], [36], [44] allow the attestation software to run on the
CPU while ensuring its security using some (minimal) hard-
ware support by computing an authenticated integrity check
over its memory. The authenticated integrity check can be
realized as a Message Authentication Code (MAC) over the
prover’s memory. However, computing a MAC requires the
prover to have a unique secret key, k, shared with the verifier
in an offline phase. This key must reside in secure storage,
where it is not accessible to any software running on the
prover, except for the attestation code. An overview of this
approach is shown in Fig. 2(b).
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Fig. 2. A comparison between our proposed method, IDA, an established
software-based (SWATT) and hybrid-based remote attestation methods. The
main difference between the proposed method and existing hybrid methods
is that IDA ensures security by hardware monitoring instead of leveraging a
key during attestation (rst: reset signal).

The requirement for key storage and access control also
prevents hybrid methods from supporting interrupts during
attestation since memory lines tainted by the secret key need
to be first securely cleaned up before the attestation is finished.
Bognar et al. [12] has recently shown that state-of-the-art hy-
brid methods are subject to key leakage vulnerabilities as well
as novel side-channel DMA and interrupt-based attacks [12],
[58]. Other than these issues, hybrid RA methods are also
limited in protecting the system against TOCTOU attacks [26].

We propose IDA to address the above issues in software
and hybrid RA methods. The goal is to achieve a method
that provides the flexibility of a SWATT while addressing
the security vulnerabilities that exist in hybrid methods. The
main idea relies on utilizing a novel hardware monitoring
method that relaxes the requirement for key access control
while designing a controller that can handle interrupts and
other requests during attestation. Fig. 2(c) depicts our design
at a high level. Details of our design and requirements for it
are presented in Sections IV and III, respectively.

We also further compare various hardware, hybrid, and
software attestation methods in Table I. We compare IDA
with various modern software and hybrid methods including
Sancus [42], ACES [21], VRASED [44], RATA [26], Real-
SWATT [57], GARROTA [3], and PISTIS [33].

To summarize, compared to the state-of-the-art, our method
eliminates the need for secure key storage and access control,
eliminates the need for a secure reset, while allowing the
interrupt and DMA requests to be services, and protects the
system against TOCTOU attacks.
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TABLE I
IDA VS. STATE-OF-THE-ART SOFTWARE AND HYBRID ATTESTATION METHODS (HW-SUPP: HARDWARE SUPPORT, COMP-SUPP: COMPILER SUPPORT).

Model HW-Supp. Comp-Supp. Interrupt DMA Need Access Control Need Reset TOCTOU Native Execution
Sancus [42] Yes No x x Yes Yes x ✓
ACES [21] No Yes ✓ ✓ No No x x

VRASED [44] Yes No x x Yes Yes x ✓
RATA [26] Yes No x x Yes Yes ✓ ✓

RealSWATT [57] No No x x Yes No x ✓
GAROTA [3] Yes No x x Yes Yes x ✓
PISTIS [33] Yes Yes ✓ ✓ Yes No x x
IDA (ours) Yes No ✓ ✓ No No ✓ ✓

III. OVERVIEW AND ASSUMPTIONS

A. Threat Model and Scope

We target single-thread, yet multi-tasking bare-metal appli-
cations that are the most common in the IoT domain. This
class of computing devices (referred to as IoT or MCU) has a
single core and features Flash, SRAM, and ROM memories.
They execute instructions in place (in physical memory) and
have no memory management unit to support virtual memory.

We assume that the adversary, Adv, has complete control
over the software state, code, and data of the target MCU
(prover). In particular, Adv can modify any writable code
on the device and learn any code and/or data that is in the
device’s memory and/or CPU. Furthermore, Adv has complete
control over the communication channel and can use multiple
colluding devices in order to pass or subvert attestation.

Similar to prior work, we assume that the attestation code is
stored in ROM and cannot be modified by Adv. We examine
two scenarios: if the adversary’s physical access is taken
into account, the ROM must be safeguarded using one-time
programmable (OTP) memories. Alternatively, if only remote
attackers are considered (as assumed in most prior works),
then ROM protection is assured provided that our design
is installed correctly on the embedded device by a trusted
party. Unlike prior work, however, we assume that Adv can
freely read the content of ROM (since no key is stored in
ROM)3. Additionally, as mentioned earlier, the execution of
the attestation code can be interrupted.

We assume that the hardware is implemented correctly and
strictly adheres to design specifications. We also assume that
the design is free of hardware Trojans [11], hence monitoring
signals in IDA that are read from the CPU and/or memory
is untampered, and code stored in ROM is protected by the
hardware (can be read but not modified). These assumptions
are standard in prior methods [33], [42], [44].

We further assume that the hardware monitoring unit, IDA,
is correctly implemented and that all code and data within
this hardware unit cannot be modified and/or tampered with.
We assume that the verifier and the HWM share a secret key.
This key is used to verify the authenticity of the final response

3Since IDA is leveraging hash computation instead of HMAC, no key is
needed during hash computation.

(i.e., by using an HMAC within HWM4). Unlike prior work,
this key never leaves HWM. This key can be pre-loaded onto
HWM at production time or later. Similar to prior work, we
do not address the details of this procedure.

B. Security Protections and Considerations

In the following, we describe, at a high level, the sub-
properties that are required to achieve security in our system.
In Section IV, we will present our design and show how IDA
can achieve these properties.

Security Properties. For clarity, we show the attestation
software as Sw-Att, the hardware module that is part of IDA
as HWM, the target device, prover, as Prv, and the verifier as
Vrf. Our design should have the following properties:

P1) Immutability: Sw-Att executable should be immutable.
Otherwise, the adversary is able to hide the malware by
redirecting the memory requests to their desired addresses
where the clean copy of the memory is stored (this is referred
to as memory copy attacks) and/or moving the malware during
the attestation process.

P2) Functional Correctness: Sw-Att must implement the
expected behavior of Prv in the attestation protocol. Specifi-
cally, Sw-Att should compute the (secure) hash of memory
in the address range requested by the challenge using the
initialization vector that is sent by either Prv or HWM.

P3) Interrupt/DMA Reset: Unlike prior work, the attesta-
tion can allow interrupts and DMA requests during the attesta-
tion. However, once an interrupt/DMA request is handled and
the interrupt request/DMA write flag is cleared, the attestation
process should be reset and start fresh using the original nonce.
It is important to mention that while the reset is needed for
the baseline design in IDA, later in Section V, we relax this
requirement by designing an improved version called IDA+.

P4) Implementation Correctness: Apart from software exe-
cution, HWM and its interaction with CPU and memory should
be correctly implemented in hardware and strictly adhere to
the design. Specifically, the implementation should be Trojan-
free, and the hardware parameters (e.g., memory addresses,
ROM, interrupt request flag, PC) monitored and/or used by
HWM should be untampered.

4Note that the response computation is keyless, i.e., a regular hash function
is used for that process. The HMAC is needed to certify the final response.
Details will be provided in Section IV.

4



As will be discussed later, our implementation is able to
achieve all these properties.
Relaxed Properties. Apart from these required properties, it is
also useful to highlight other requirements that are commonly
used in prior work but are not needed in our design. This
is to showcase the versatility and flexibility of our approach
compared to the state-of-the-art.

R1) Atomic Execution: One critical requirement in prior
work is the need for atomic execution of SW-Att as any
interrupt during the attestation could potentially leak the secret
key, and/or affect the integrity of the response. IDA does not
need such a requirement. We will describe how we achieve
this in the next section.

R2) Invocation Flexibility: To avoid secret key leakage,
prior work requires enforcing controlled invocation of SW-
Att – i.e., Sw-Att must always start from the first instruction
and execute until the last instruction. This was needed to avoid
ROP attacks where the adversary invokes part of the attestation
code and exploits that to read the key (since the key is only
accessible via instructions within SW-Att). For IDA, however,
the partial invocation of Sw-Att is allowed as we assume
that the code is publicly known, and no secret value is being
accessed by Sw-Att in our design (i.e., no access control is
needed).

R3) Flexible Reset: To support interrupts, reset functionality
is needed in IDA. However, unlike prior work, this reset does
not need secure erasure where all memory lines and registers
tainted by the secret key have to be securely erased before
the attestation can be restarted again. This is again due to the
fact that IDA does not use a particular secret key during the
attestation process.

R4) DMA Monitoring: Since the key access control is no
longer needed, monitoring the activity of DMA is more relaxed
too. Prior work requires monitoring both reads and writes, as
well as corresponding addresses. IDA, however, only need to
monitor writes during the attestation. Reads can happen as is.
In either case, no address monitoring is needed.

IV. SYSTEM DESIGN

A. Design Overview
To achieve the security properties described in Section III

based on the threat model also explained in the same section,
we design IDA. There are various components in our proposed
systems which will be explained in this section. The high-level
overview of IDA is shown in Fig. 2(c). The more detailed
system architecture of the hardware module (HWM) with its
internal components are shown in Fig. 3.

In addition to the hardware module which is responsible for
monitoring the CPU and ensuring security during attestation,
our system consists of three other major parts. The memory
system houses the ROM, program memory, and data memory
(they are all part of a unified address space). The CPU
unit collectively executes programs and sends and receives
commands. Lastly, the memory backbone is responsible to
connect and manage the connection between these units and
other I/O components.

FSM

Ctr. Logic

Mon. Logic

HMAC 
Circuitry

Key

ControlAuthentication

to Memory Backbone

HWM

If attestation is correct

Final Result

Fig. 3. The systems architecture for the hardware module (HWM) in IDA.

The memory system is connected to the memory backbone
which directly interacts with the CPU’s front end. The im-
mutability of the attestation software is based on the secure
implementation of the ROM. It is important to emphasize that
since access control is not needed in IDA, ROM does not need
to be directly connected and controlled by HWM hence it can
directly be connected to the backbone.

B. System Architecture

Hardware Module (HWM). To enforce secure execution of
the attestation code (SW-Att), HWM utilizes a minimal series
of signals from and to the CPU and/or backbone. We focus on
the attestation functionality of the prover; verification of the
entire system architecture is beyond the scope of this paper.
Therefore, we assume the system architecture strictly adheres
to and correctly implements its specifications. In particular,
IDA utilizes the following features in our system:

F1) Program Counter (PC): HWM monitors the PC in
every cycle to track the current instruction that is being
executed on the CPU. We assume that the PC always contains
the address of the instruction being executed in a given cycle.

F2) Memory Address (MemAdr): Similarly, HWM moni-
tors the memory address in every cycle to track the current
memory content that is being read by the CPU. We assume
that the memory address register always contains the memory
address that is being read.

F3) Interrupt Request: HWM also monitors interrupt re-
quests (IRQ). First, HWM receives a signal if and when an
interrupt happens. The hardware module also receives a signal
when the interrupt is finished and the normal execution of
instructions in the CPU has been resumed. Both signals can be
received using the same wire. By default, IRQ is low and when
an interrupt is activated, the wire becomes high and stays high
until the interrupt is handled, and the execution is resumed.
Similar to PC, we assume the correct implementation of the
interrupt signal in hardware.

F4) DMA Write: Similar to the interrupt requests, HWM
should receive a signal when writes are initiated by the DMA
(direct memory access) unit. Unlike prior work, only writes
need to be monitored. We assume that a DMA write signal is
correctly implemented and is connected to HWM.

F5) Shared Status Register (CSR): To communicate be-
tween the hardware module and CPU, a dedicated register is
needed. We call this a secure status register (CSR) which is
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accessible by both HWM and CPU. The content of CSR does
not need to be secret and/or read-only. Both modules can write
the register. Writes to CSR can be achieved using memory-
mapped I/O (i.e., simple load and store commands) where the
address of CSR is hard-coded in SW-Att.

It is important to emphasize that all the above five features
are feasible and in fact, satisfied by Open-MSP430 design [32].
More details about the actual implementation are presented in
Section VII.

Using the features described above, our hardware module
is designed. This module consists of two main units. The
controller unit and the authentication unit as shown in Fig. 3.

The controller unit has a finite-state machine (FSM) that
monitors the PC, memory address, and DMA-write and in-
terrupt signals. Depending on these control signals, the FSM
transitions between various states. The objective of the FSM is
to ensure that Sw-Att is correctly executed from start to finish.
Further, the FSM monitors DMA and interrupts signals, and
resets the procedure if either occurs. The detailed description
of the FSM is described in Section IV-C and Algorithm 2.

The second part of HWM is the authentication unit. The
objective of the authentication unit is to validate the integrity
and authenticity of the attestation process (i.e., the final hash).

The input sent to authentication in IDA is the final output
of the hash function generated by Sw-Att. The idea is that
the controller in HWM ensures the correct computation of
the hash and the authentication ensures its authenticity and
integrity. Together, they guarantee that the procedure is secure
and trustworthy. While there are multiple candidates for au-
thentication, we opt for utilizing HMAC-SHA3-256. The final
response is then sent back to the verifier. Details of the full
algorithm are shown in Algorithm 1 which will be discussed
in Section IV-C.

Software Attestation (Sw-Att). The main objective in design-
ing SW-Att is simplicity. It first initializes the hash using the
challenge sent by the verifier5. It then iteratively goes through
the contents of the program memory line-by-line and updates
the hash until it covers all lines requested by the verifier. The
nonce sent by the verifier guarantees the uniqueness of the
computed hash for each challenge, even though the input to
the hash function (i.e., program memory) is supposedly the
same in each challenge. Such a method is quite popular for
storing passwords in databases securely [47] and also used in
a prior work [57].

For supporting interrupts and DMA, SW-Att receives an
input, intr, from HWM. The signal’s role is to halt the
hash computation when an interrupt and/or DMA has been
requested/handled. Once the interrupt/DMA request is com-
plete, the entire process is reiterated to ensure that all memory
addresses are correctly hashed without any interruptions. It is
important to mention that resetting after each interrupt could
create additional performance and/or power overheads. To
address this, we propose two solutions. First, we introduce

5The nonce sent by the verifier acts as an initialization vector
(IV)/cryptographic salt for the hash function.

a watchdog timer to ensure that the attestation will eventually
finish by disabling interrupts after a certain number of inter-
rupts (details later). Second, to further reduce the overhead, we
will introduce, IDA+, which eliminates the need for resetting
if the content of memory is not modified during the interrupt
handling. Details will be provided in Section V.

An alternative approach, instead of delaying attestation
locally through a reset, is to notify the remote user and
let them initiate another attestation request after a period.
We note that the “delaying locally” strategy offers several
advantages. First, it conserves energy since local processing
consumes much less power compared to the RF subsystem
required for notifying the remote user [31]. Thus, minimizing
communication can save energy—trading RF communication
with local processing proves beneficial. As explained later,
this is particularly advantageous in IDA+ as it eliminates the
need for constant restarting. Second, most real-time systems
continually receive interrupts; hence, notifying the verifier to
check back later may not be as effective in terms of energy
and performance. The chances that the device is “ready” don’t
significantly increase after a few seconds/minutes. On the
other hand, IDA can initiate the attestation locally as soon as
the interrupt is finished—handling this locally transforms the
process from having a random chance of initiating interrupts to
deterministic, as the interrupt can start right after it’s finished.

Full details of the algorithm are presented in Algorithm 1.
In the following, we will describe the steps in more detail.

C. Attestation Algorithm

Overall, our attestation framework, IDA, has three parts. The
attestation software runs on the CPU without any protection
(hence fully controlled by the adversary), and the software and
hardware modules (SW-Att and HWM, respectively) together
ensure the security and authenticity of the response even in
the presence of an adversary.

Algorithm 1 presents the details for the attestation software.
As can be seen, the procedure begins by receiving a challenge
from the verifier that includes a nonce and optionally an
attestation range. Similar to prior work [30], [44], [57], we
assume a scenario where, by default, the prover wants to
attest the entire program memory. The attestation software
then invokes Sw-Att. Note that the attestation’s main function
is unprotected and controlled by the adversary. This means
that the adversary can forge the challenge if desired. We will
systematically analyze the security of our system under such
an assumption in Section VI.

The attestation procedure continues by invoking SW-Att and
passing the control to it. Since IDA can allow interrupts and
DMA, this process might need to be repeated multiple times
if needed (line 2 in Algorithm 1). We will describe how this
part is implemented later.

As described earlier, the goal of SW-Att is to iteratively
read memory addresses in the program memory and update
the hash. The hash is updated by calling the hash function.
Once the hash computation is finished, the value is sent to
the hardware module using the special register (CSR). This
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Algorithm 1: IDA: Algorithm and SW-Att function

1 input: Ch. = {nonce,AR∗}, Repeat;
/* AR: address range to be attested.

*/
2 while Repeat do
3 Resp. = Sw-Att(Ch.);
4 end
5 return Resp.;
1 Function SW-Att
2 input: nonce,AR, inter;
3 CSR = CSRadr;

/* Address for accessing HWM. */
4 cHash = nonce;
5 i = ARbegin;
6 while (i < ARend) do
7 cHash = hash(Mem[i], cHash);
8 i++;
9 if (inter == 1) then break;

10 end
11 Mem[CSR] = cHash;
12 IdleLoop();

/* To allow time for HWM to
calculate the response. */

13 cHash = Mem[CSR];
14 return cHash;

is achieved via a memory store (line 11 in Algorithm 1),
where the address is mapped to the special register (the register
itself is implemented inside HWM). The forwarded hash value
acts as an input for the authentication unit within HWM (see
Section IV-B). The response to the provided input (i.e., the
final hash value) is calculated (using HMAC-SHA) and sent
back using the same special register (CSR). This is achieved
by using a memory load (line 13). To consider the delay
for response calculation, a delay function is needed (line
12). To implement this securely, an inline delay loop can be
implemented where the total number of iterations/instructions
decides the appropriate delay time. In Section VII, more details
will be provided.

An important optimization is used for SW-Att where the
hash computation is terminated when an interrupt and/or DMA
request is accepted (line 9). Given that the hash computa-
tion should be reset, the while loop is terminated as soon
as the control signal, inter, is activated, indicating that an
interrupt/DMA request is being serviced. To repeat the hash
computation, SW-Att is repeatedly called within the main
function (lines 2-4). This loop stops when the entire hash
computation is performed uninterrupted. HWM is responsible
to monitor this and controls Repeat control signal.

The details of the controller unit within HWM are presented
in Algorithm 2 and shown in Fig. 4. Generally, the controller
uses an FSM to monitor the attestation process and issues
correct and timely control signals. Initially, the FSM is in
“Wait” state where it continuously monitors the PC. Once the
control is passed to SW-Att (line 7 in Algorithm 2), the FSM
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Fig. 4. The control states needed for HWM.

switches to the next state and starts monitoring.
During “Monitor” state, the hardware module monitors the

PC and the memory address to ensure that the attestation soft-
ware is being correctly executed. Any jumps and/or memory
redirection will be detected by HWM. Upon detecting such
an intrusion, the FSM switches to “Invalid” state (lines 24-
27) where it issues a terminate signal for hash computation
(i.e., inter = 0) and then goes to “End” state (details
later). Similarly, if an interrupt or DMA request is detected
(lines 13-15), the FSM switches to the corresponding state
and waits until the request is cleared. Once the request is
cleared/serviced, the FSM switches to “End” state.

There are two ways to reach “End” state. First, through
one of the incomplete (i.e., {“Invalid”, “Intr”}) states where
the hash computation was not correctly computed. Second,
via “Monitor” state where hash computation is correctly com-
pleted (see line 17). To distinguish between the two, we use a
counter, LC, which counts the number of lines being correctly
hashed so far. If this is equal to the total number of expected
lines (line 29), HWM reads the hash value through CSR and
forwards it to its authentication module (i.e., the HMAC).
The response is forwarded back to the software and the state
resets (i.e., goes back to “Wait”) as can be seen in lines 30-
32. Additionally, to break the infinite loop in the attestation
procedure (see lines 2-4 in Algorithm 1), Repeat is cleared,
indicating that the attestation is successfully completed.

Alternatively, if “End” is reached via an incomplete state,
the FSM forwards a special response (line 34) indicating that
the attestation has failed. Further, FSM switches back to the
first state without clearing Repeat. This forces the attestation
procedure to repeat. This process repeats until the attestation
is eventually successful or if it is timed out (lines 36-38).
The timeout condition is indicated using a watchdog timer
(WDog). This value depends on how many interrupts can
be serviced during attestation and depends on the application
scenario. Choosing a smaller or larger number does not have
any correctness and/or security implications and it is only a
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Algorithm 2: The controller in the hardware module.

1 Module HWM
2 init: State = Wait, CSR = 0, WDog = 0,

LC = 0, AR,SW ;
/* SW: where SW-Att is stored. */

3 switch State do
4 case Wait do
5 CSR = 0, LC = 0,
6 inter = 0, Repeat = 1;
7 if (PC == PCbegin) then
8 State = Monitor // Hash Comp.
9 case Monitor do

10 if (PC not in range SW ) OR
11 (MemAdr not in range AR) then
12 State = Invalid;
13 else if (IRQ == 1 or DMAw == 1) then
14 State = Intr;
15 inter = 1 // Breaking hash

loop
16 else if (PC == PCend) AND

(MemAdr == CSRadr) then
17 State = End
18 LC ++ // Counting hashed lines
19 case Intr do
20 CSR = 0;
21 if (IRQ == 0 and DMAw == 0) then
22 State = End// To repeat

hashing
23 inter = 0;
24 case Invalid do
25 CSR = 0, LC = 0;
26 State = End;
27 inter = 0;
28 case End do
29 if (LC == LCAR) then
30 CSR = AUTH(CSR);
31 State = Wait, WDog = 0;
32 Repeat = 0 // Braking the

loop
33 else
34 CSR = NULL;
35 State = Wait;
36 if WDog > TH then
37 Repeat = 0 // No deadlock
38 WDog = 0;
39 else WDog ++;
40 end

performance optimization.

Depending on the user’s preference, two options can be
provided to ensure the satisfactory operation of this protocol.
First, in the event that interrupts keep happening during
the attestation, the watchdog timer can just terminate the
attestation process (when it is timed out) and send a failure
message to the remote user. The user can then take proper

action such as trying at some other time and/or performing
additional investigations.

Alternatively, the timer can internally fix the issue by
temporarily disabling all the interrupts and DMA requests and
then running the attestation procedure again. This will ensure
that the process will finish but might create practical concerns
due to disabling the interrupts for some period of time.

In the next section, we propose a third option where we
eliminate the need for resetting after each interrupt. This
will satisfy the timeliness requirement without disabling the
interrupts which is desired.

We evaluate the security and soundness of our design in
Section VI. Before that, we first explain how IDA can be
further enhanced by adding support for protecting against
TOCTOU attacks and handling interrupts more efficiently.

V. IDA+: SUPPORTING TOCTOU AND INTERRUPTS

IDA suffers from a common limitation: IDA and other
existing hybrid attestation methods measure the state of the
prover’s program memory at the time when remote attestation
(RA) is executed by the prover. Crucially, they provide no
information about the prover’s state before attestation or after
(i.e., between two consecutive RA measurements). This is
commonly referred to as Time-Of-Check-(to)-Time-Of-Use
(TOCTOU) problem [26] where the adversary hides the mal-
ware during the attestation process but manages to recover it
after passing the attestation test. This, for example, can be
achieved by storing the malicious code in other parts of the
device’s memory (e.g., peripherals [16]).

Note that TOCTOU is different from ensuring temporal
consistency between attestation and execution of a binary,
which can be solved by runtime attestation approaches [17],
[45] (e.g., ensuring that the desired binary is correctly
loaded/executed during the attestation process). TOCTOU is
important when static RA is needed or when static RA is used
as a basic block for other functionalities such as code updates,
secure reset, etc.

The second concern with IDA is that supporting interrupts
requires resetting the attestation process. While for rare and/or
occasional interrupts this can be tolerated, for a complex real-
time system with many deadlines this will lead to inefficiencies
as either the attestation needs to be repeated many times
(power and latency overheads), or even worse, the attestation
never finishes due to a recurring interrupt. Therefore, a more
practical solution for handling interrupts is needed.

In this section, we propose IDA+, an enhanced version of
our baseline design to protect the system against TOCTOU
attacks and to support interrupts while eliminating the need
for resets. The main idea in IDA+ is to monitor the program
memory even when an attestation procedure is not being exe-
cuted where HWM tracks any changes to the program memory
and takes proper actions during the attestation. Particularly, in
addition to creating a response for a given correctly computed
hash, HWM alternatively computes a response (HMAC) when
the verifier’s nonce is used as the input. The trick, however, is
that HWM sends this as a response only if the program hasn’t
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been modified since the last successful attestation request.
Otherwise, the attestation procedure is performed normally and
a NULL (e.g., a randomly chosen response) is forwarded if the
procedure is not followed correctly.

Consequently, based on the response received, the verifier
can check the current status of the prover. The correct response
when nonce was used indicates that the prover has not been
modified. Alternatively, the correct response when the hash
was used as input means that the prover has been modified,
but the attestation was performed (and passed if the response
is correct). Lastly, an incorrect response means that the prover
has been modified, and the attestation couldn’t be performed.
Based on the received response, the verifier can then decide
on the proper action. The changes needed are shown in Fig. 5
and Algorithm 3.

To support interrupts, the idea is to monitor the memory
during the interrupt handling period. If it is not modified, then
the attestation procedure could be continued normally without
the need for a reset. Otherwise, the process will be reset
(i.e., how it was handled in IDA). There are a few additional
considerations for security. Details will be provided later.

To track changes to the program memory, HWM is aug-
mented with an additional control signal named MemAdrw
that becomes active whenever a write to the program memory
has been initiated. To also eliminate DMA-based modifica-
tions, DMAw and DMAadr should be tracked. A one-bit
flag is then used in HWM to track the current status of the
program memory. By default, this flag, named modified, is
clear. However, as soon as either DMAw or MemAdrw are
set while the corresponding address is within the program
memory range, modified will be set. Note that this check
happens in parallel with HWM’s FSM, thus modified can be
set during any of the possible states in the FSM or even when
attestation is not active (i.e., FSM is in “Wait” state).

In addition to this tracking, further security checks need
to be added to ensure the integrity of response during an
interrupt. Specifically, while memory can be monitored by
HWM, internal registers within the CPU cannot. Therefore,
IDA+ is potentially vulnerable to attacks where an adversary
modifies the registers and/or times the interrupt perfectly to
hide the malware.

Looking closer to the Sw-Att shown in Algorithm 1, the

Algorithm 3: IDA+: Changes needed to support TOC-
TOU and Interrputs

1 Function SW-Att
2 input: nonce,AR, inter,Repeat;
3 CSR = CSRadr;
4 Mem[CSR] = nonce;
5 IdleLoop();
6 if (Repeat == 0) then
7 return Mem[CSR];
8 Mem[CSR] = nonce;
9 i = ARbegin;

10 while (i < ARend) do
11 Mem[CSR] = hash(Mem[i],Mem[CSR]);

// Interrupts are disabled
during this line but can
happen before or after

12 i++;
13 if (inter == 1) then break;
14 end

/* Rest is the same. */

adversary could potentially modify any variable in this code
during an interrupt without being tracked. As a result, IDA+
needs to ensure (a) critical values are properly saved before
an interrupt is serviced and (b) the interrupt does not happen
while a memory line is still being read. More specifically, we
need to make sure that the interrupt does not happen during
the computations in line 11 of Algorithm 3 (i.e., where the
memory is being read or the result is being calculated).

To ensure these, we make three changes. First, we replace
cHash with Mem[CSR] in the internal loop of Sw-Att (see
line 11). This will ensure that the intermediate hash value
cannot be modified. Second, we move the interrupt trigger
logic to HWM. This will ensure that interrupts can only happen
before or after a single memory line read and its corresponding
hash calculation. Third, HWM records the last address that was
read by SW-Att (i) before the interrupt and checks if the next
address requested (i.e., after the interrupt has been handled)
matches with the expected address (i.e., i+ 1).

An additional optimization that is made in IDA+ is that the
attestation procedure could resume normally when a DMA re-
quest is handled if during the DMA request, program memory
within the attestation range (AR) is not modified (i.e., similar
to interrupts).

A recent work, called RATA [26], has also recently ad-
dressed this problem in hybrid RA. Compared to that work
IDA+ has the following advantages. First, IDA+ does not need
extra storage overhead to store logs. Only one flag bit is
needed to track the memory modifications. Second, similar
to other hybrid methods, RATA faces similar vulnerabilities
related to storing the key. IDA+, however, is immune against
those. Third, IDA+ can support interrupts and DMA requests
while the current version of RATA is unable to achieve them.
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VI. SECURITY ANALYSIS

The IDA attestation framework uses several new techniques
to perform reliable software-based attestation of low-end IoT
and embedded devices. To ensure the integrity of an attested
device, IDA (and IDA+) must satisfy multiple premises. In the
following, we discuss the formal criteria for possible attack
models and describe how IDA/IDA+ can protect the system
against them.

Attack Model. The goal of the attacker is to win an attestation
game by providing a correct response to a given challenge
while hiding all her malicious traces. Recall that we assume
that the attacker has full control over all software, memory,
and hardware on the prover except parts that are explicitly
protected by IDA, hence the attacker can launch denial of
service (DoS) attacks by deciding not to participate in the
game. However, this indicates that the prover is compro-
mised and hence further interactions with the device will
be terminated. Similar to prior work, IDA can not prevent
DoS attacks and here we only focus on scenarios where the
prover participates in the game but plans to forge the response
in the presence of a malicious memory modification, i.e.,
RespForged == RespExpected while MProver ̸= MOriginal.

To win the attestation game, the attacker needs to find and
implement a method to forge the response. More concretely,
the attacker can launch any of the following attacks (T):

T1) Collision Attack: In this type of attack, the goal is to
find a collision for the final response by changing the inputs
to the attestation procedure. More concretely, the attacker has
three options to conduct such an attack.
T1.1.) First, the attacker can change multiple lines in M ′ such
that Hash(nonce,M ′) == Hash(nonce,M), where M and
M ′ refers to the original and modified (malicious) program
memory.
T1.2.) Second, the attacker can find a different nonce, nonce′,
such that Hash(nonce′,M ′) == Hash(nonce,M), i.e.,
when both the nonce and multiple lines in the memory are
changed to find a collision.
T1.3.) Third, the attacker can find a new hash, H ′ such that
AUTH(H ′) == AUTH(H), where H refers to the expected
hash when M is not modified and correct nonce was used. To
find such a hash, the attacker can change either the nonce or
the contents of the memory (or both).

T2) Substitution Attack: Alternatively, instead of trying
to find a collision, the attacker could try to alter critical
variables during the attestation process with the ultimate goal
of outputting a correct hash (i.e., cheating in the process rather
than changing the values). To achieve this, the attacker needs
to find a way to substitute values during the attestation. This
can be achieved via four possibilities:
T2.1.) The attacker can substitute memory contents (program
memory and/or CSR) during each memory read and/or in the
background after a given line has been visited.
T2.2.) The attacker can substitute/modify the contents of the
register file during the attestation process.

T2.3.) The attacker can alter control signals such as PC,
memory address, interrupt request, DMA request, etc. which
are monitored by HWM.
T2.4.) The attacker can forge the final response by substitut-
ing the output of HWM with their own generated response
(i.e., completely bypassing attestation by not participating and
creating their own responses).

Considering the above attack scenarios, we will analyze how
IDA can protect against all scenarios. To analyze this, we first
explain our main security assertions and then show how, based
on the validity of these assertions, security can be achieved in
IDA. We will then extend it to IDA+ by analyzing TOCTOU
attacks.

Security Assertions. Our security argument is based on the
following assertions:

1) Hash computation in IDA (SHA3-256) is secure against
preimage attacks. Informally, given y, it is hard to find
x s.t. y = H(x) (first pre-image), where in our setup
x = {nonce,M}. Additionally, given x, it is hard to
find x′ ̸= x s.t. H(x′) = H(x) (second pre-image).

2) Each challenge has a unique nonce that has not been
used before. Further, using a different nonce guarantees
that H(x) is different for each challenge even for
unmodified program memory.

3) Authentication module, AUTH (HMAC-SHA3-256) is
secure against forgery attacks. Further, the key, K,
for the authentication never leaves the tamper-resistant
HWM.

4) SW-Att resides in ROM and cannot be modified.
5) IDA strictly adheres to and correctly implements

its specifications. In addition to the correct
implementation of system hardware specification
(e.g., CPU, memory, backbone, and all connections),
this also implies that control signals including
PC,MemAdr,MemAdrw, DMAw, DMAadr, IRQ,
and CSR, as well as all internal logic in HWM are
correctly implemented based on the specification.

Analysis. Using the assertions described above and attack
scenarios presented earlier, we now focus on how IDA can
successfully defend against those attack scenarios:

Both T1.1 and T1.2 are protected based on assertion A1.
Informally, finding a new x′ = {nonce′,M ′} s.t. H(x) =
H(x′) is hard when either nonce′ ̸= nonce and/or M ′ ̸= M
– i.e., H(x) = H(x′) is true only when both nonce and M are
not modified. Note that the second preimage resistance implies
that, the adversary can have full knowledge of the requested
nonce and the original memory (which is the case given our
threat model) and still cannot find a collision.

T1.3 is protected based on assertions A2 and A3. Specif-
ically, using a unique nonce guarantees that the challenge
sent to HWM is unique (hence replay attacks are ineffective).
Secondly, the forgery resistance of the authentication unit
using HMAC asserts that the response is unique thus the final
response is different for two different hashes (inputs).
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T2.1 is protected based on A4 and A5. First, the hardware
is correctly implemented, thus memory requests can not be
forwarded during attestation without changing the memory
address (which is monitored by HWM). Second, any attempt
to modify the memory during attestation via interrupts will be
detected by HWM and cause a reset in response computation.
Third, the final response is forwarded by HWM only if the
entire hash computation is uninterrupted (IDA) or interrupted
but unchanged (IDA+). Fourth, attempts to change the memory
in the background via DMA are detected by HWM and cause
a reset. Lastly, attempts to forward the memory requests
and/or execute a different application (i.e., a different PC or a
different memory address) other than SW-Att are also detected
by HWM and cause a reset.

T2.2 is protected since the register file cannot be externally
modified given that the system is single-threaded. For IDA+,
the critical register, cHash, was substituted with Mem[CSR],
which resides in HWM and cannot be modified. Any other
changes during the interrupt (e.g., changing i) will be detected
by HWM since they have been saved prior to handling the
interrupt and will be monitored once the attestation is resumed.

A similar argument can be used for T2.3 thus we don’t
provide an additional description for brevity.

Lastly, T2.4 is protected based on A3, and in particular,
uniqueness and forgery resistance.

Additionally, IDA+ is resistant to TOCTOU attacks due to
the following reasons. First, IDA+ monitors the changes to
the program memory. Based on A5, it is guaranteed that any
changes to the program memory will be detected by HWM.
Further, A3 implies that the response generated by HWM
cannot be forged (same as T2.4). Together, this guarantees
that changes to the program memory cannot stay hidden.

Remarks. It is important to mention that our security argument
is informal. A more substantial argument (or proof) would
require formal analysis and verification of the entire system
and various components of IDA/IDA+, which is planned as
part of future work. Here, the goal was to be systematic and
comprehensive and clearly explain all possible attack scenarios
and how IDA/IDA+ can defend them at a high-level.

VII. EVALUATION

Implementation. To implement IDA and IDA+, we use Open-
MSP430 [32], an open-source implementation of the MSP430
architecture, as a representative of a low-end IoT/embedded
system. OpenMSP430 is written in the Verilog hardware
description language (HDL) and can execute software gen-
erated by any MSP430 toolchain with near-cycle accuracy.
OpenMSP430 has been also widely used in numerous prior
hybrid attestation prototypes. Note that, while our choice is
motivated by the availability of a well-maintained open-source
MSP430 hardware design [32] and its popularity in other
similar prototypes, our framework is applicable to other low-
end MCUs in the same class as MSP430 (e.g., ARM M0).

We modify the baseline OpenMSP430 implementation to
add required functionalities in IDA/IDA+. Specifically, we
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Fig. 6. Hardware overhead for IDA and other state-of-the-art hybrid attestation
techniques. Results are normalized w.r.t. the original baseline OpenMSP430
design.

add a ROM (8KB) to store SW-Att, a new hardware mod-
ule (HWM), and adapt the design accordingly to properly
connect these modules. This is achieved by modifying the
memory backbone module. Further, the CPU unit and memory
backbone is modified to connect control signals such as PC,
memory address, etc., to HWM. The correct implementation
of hardware ensures the integrity of ROM against a remote
user. For IDA+, the interrupt handling is modified where the
global interrupt flag is directly connected to HWM instead
of the CPU. To allow interrupts, a new signal called sGIE
(secure global interrupt enable) is connected to the CPU. This
will ensure that interrupts only happen when it is allowed.

For SW-Att, SHA3-256 from the HACL library [35] is
used to compute the hash. For HWM, HMAC-SHA-256 im-
plemented by Secworks [54] is used to authenticate the final
response. The unoptimized version of SHA in our hardware
simulations takes about 60 cycles (for an 8 MHz clock).

The entire design is implemented on a ZYNQ FPGA using
Xilinx/AMD Vivado toolchain. SW-Att is compiled using
msp430gcc compiler and then properly loaded to ROM and
RAM units on the FPGA.

Hardware/Logic Overhead. The hardware overhead in IDA
and IDA+ is primarily due to adding HWM. This module
consists of a controller (an FSM and control logic surrounding
it) and the authentication module. Comparing the two, the
authentication module takes about 54.4% of the entire area
in HWM.

To provide a more detailed comparison, we compare our
hardware overhead results with the baseline OpenMSP430
design and three recent hybrid methods: VRASED [44], SAN-
CUS [43], and RATA [26]. The overhead is measured as the
number of gates (combinational and register) divided by the
total number of gates for the baseline design. All numbers are
based on the report provided by Vivado. The raw numbers are
provided in Table II (see Appendix B).

The results are shown in Fig. 6. To make comparison easier,
all values are normalized against the baseline OpenMSP430
design (no attestation). IDA has about 19% overhead compared
to the baseline which is mainly due to the logic needed for
the FSM and authentication with the authentication being the
dominant component.
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Compared to the state-of-the-art, IDA achieves relatively
similar overhead results, indicating that our approach is a
viable choice. The overhead is slightly higher due to the need
to implement the HMAC function in hardware (as opposed
to its hybrid implementation in prior work). Apart from the
authentication function, the control logic in IDA incurs less
overhead compared to the state-of-the-art since it is simpler
(up to 1.8x). Specifically, by eliminating functionalities such
as secure reset and cleanup, which are needed in prior work,
some logic is saved. More importantly, IDA achieves similar
overhead while providing more features including support for
interrupt and DMA activity while completely eliminating the
need for storing a secure key.

Attestation Time. The results for attestation (the total time
to attest an 8 KB program memory with an 8 MHz clock
uninterrupted) are shown in Fig. 7 (raw numbers can be found
in Table II in Appendix B). Similar to the hardware overhead
results, we compare IDA with other modern techniques. Since
the baseline design does not have any support for attestation,
results are shown for VRASED [44], SANCUS [43], and
RATA [26]. As shown in the figure, IDA achieves significantly
(around 2x) faster attestation time compared to VRASED [44].
This is due to the fact that IDA uses HMAC for the final
response instead of verifying the hash for each memory access.
Similar to prior work, the majority of the runtime is spent
in the hash computation loop. IDA achieves runtime close
to SANCUS [43] which is purely implemented in hardware.
Comparing the overhead between the two, IDA has a much
smaller overhead compared to SANCUS while achieving ad-
ditional functionalities such as support for interrupts.

It is important to mention that since IDA handles interrupts
by issuing a reset, the actual interrupted runtime of IDA
could be significantly higher than the uninterrupted version
since a recurring interrupt could cause many resets before the
watchdog timer is triggered. In this experiment, we did not
consider such a scenario and only report the uninterrupted
version. However, we will later consider this scenario when
comparing the results between IDA and IDA+ and show how
IDA+ can solve the reset problem.

Memory Overhead. Similar to prior work, IDA requires
around 4 KB of ROM which is needed for storing SW-Att
application and particularly, HACL SHA3-256 code. For a
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commercial-of-the-shelf MSP430 microcontroller with around
128 KB of flash and 8 KB of RAM, this constitutes about 3%
memory overhead of the entire system.

Compared to state-of-the-art, IDA achieves similar or
smaller overhead. For example, for VRASED [44], the over-
head is around 4.5 KB which is for storing the HMAC function
and some additional functionality such as secure reset and
secure cleanup. Combining the logic and memory overheads,
IDA/IDA+ achieves a very similar area overhead compared to
VRASED and RATA.

Runtime Overhead. To measure the impact of attestation
and interrupts on runtime overhead for IDA and IDA+, we
do the following experiment. We pick three representative
applications (FFT, Basicmath, and dijkstra) from MiBench6

benchmark [34] and measure the overall runtime of the ap-
plication on our hardware. We consider the following sce-
narios: baseline (BA): where only the original application
is executed on the CPU, uninterrupted. Baseline-Interrupted-
Normal (BA(IN)): where the original application is executed
on the CPU and a timer interrupt are set to interrupt the
program every 500ms (each interrupt takes approximately 4-6
µs). Baseline-Interrupted-Agressive (BA(IA)): Similar to the
previous case, this time the timer interrupt is set at every
10ms. IDA (baseline) (IDA (BA)): Total runtime when the
original application is interrupted to compute the attestation.
IDA-Interuppted (IDA (IN)): Overall runtime when timer in-
terrupt (500ms) is also enabled. IDA-Interrupted-Aggressive
(IDA (IA)): Interrupt is set to every 10ms. Similar cases are
considered for IDA+.

Results for this experiment are shown in Fig. 8 and Table III
in Appendix C. In the baseline setup, interrupts have minimal
impact as their duration is relatively short (tens of microsec-
onds). The noteworthy observation is the runtime difference
between IDA (IN) vs. IDA+ (IN) and IDA (IA) vs. IDA+ (IA).
In the former case, the runtime is nearly identical for both
(about 12% overhead compared to the baseline due to the
time it takes to attest 8 KB of memory, i.e., approximately
488 ms). However, in the latter case, IDA experiences a notable

6MiBench is a popular, free, commercially representative embedded bench-
mark suite.
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increase in runtime, while IDA+’s runtime remains unchanged.
The reason behind this difference lies in the interval between
two consecutive interrupts for IA, which is much shorter than
the time needed to complete the attestation (i.e., 10ms vs.
488ms). As per Algorithm 2, this causes the attestation to
reset, and it keeps failing until the watchdog timer aborts the
request (in this scenario, we set the timer to twenty attempts).
On the other hand, for IDA+, this issue doesn’t arise, as the
attestation can continue after the interrupt. This ensures that
performance remains unaffected by frequent interrupts, as the
attestation can be completed normally in between them.

Power Overhead. Results for estimated power consumption
are reported in Table II (see Appendix B). Overall, we observe
minimal changes to power consumption in most designs.
Regarding energy consumption, the results will be affected
by the additional runtime overhead for each method. In our
setup, we note that in the worst case (i.e., when interrupt
intervals is ≈ attestation time), the energy overhead for IDA
could increase by as much as 2.5x compared to other methods
due to the waste caused by resets forced by frequent interrupts.
We further analyze the impact of supporting interrupts in IDA+
and also report the result for VRASED [44] and RATA [26].
Results are shown in Fig. 9. As can be seen in the figure,
by eliminating the need for resets while supporting interrupts,
even in the worst case IDA+ achieves very similar energy
consumption to that of VRASED and RATA, confirming its
usefulness, capability, and feasibility.

Comparisons. We finish this section by summarizing the com-
parisons among different approaches. Overall, IDA achieves
very similar hardware overhead compared to the state-of-the-
art with better runtime while providing additional protection
and features. However, it suffers from potential persistent
interrupts. Further, IDA+ solves this problem by eliminating
the need for resetting. It can achieve similar power, area, and
runtime overhead results compared to the state-of-the-art while
adding another security protection (TOCTOU) and supporting
interrupts. Together, these results confirm that IDA and IDA+
are excellent candidates for achieving remote attestation ca-
pability in low-end devices.

Further, while in this paper our primary focus lies on
remote attestation, we acknowledge that this doesn’t cover all
attack vectors, including dynamic attacks. Remote attestation
and memory integrity, however, remain crucial issues, with
several concerns addressed in the paper, such as support for
interrupts, DMA requests, and TOCTOU. We also believe
that the proposed support for TOCTOU could enhance the
applicability of our approach, transforming IDA from a purely
passive method to a dynamic one, constantly monitoring
memory modifications to detect any changes at ANY time.

Though not presented in this paper, IDA and IDA+ can be
utilized for applications directly extending memory integrity.
These applications encompass proof of execution, secure reset,
secure code update, and secure data sensing and/or actuation
(e.g., verifying the integrity of sending/receiving commands
remotely). Their implementation is left for future work.

0

0.5

1

1.5

2

2.5

3

En
er

gy
 O

ve
rh

ea
d 

(n
or

m
al

iz
ed

 w
.r.

t. 
V

R
A

SE
D

)

Method

VRASED RATA IDA IDA+

Fig. 9. Energy overhead for IDA, IDA+, and other state-of-the-art hybrid
attestation techniques. Results are normalized w.r.t. VRASED [44]. IDA and
IDA+ can support interrupt while others cannot.

VIII. RELATED WORK

Throughout the paper, and specifically, in Section II, we
extensively discussed various remote attestation methods in-
cluding software, hardware, and hybrid methods. We explained
the advantages and disadvantages of each approach. We also
discussed the contributions of our work compared to state-of-
the-art (e.g., see Table I). Here we review other methods for
achieving trust remotely. We also discuss other important and
relatively relevant topics to RA.

An important class of solutions for RA is software-based
memory isolation techniques to isolate the device’s root of
trust software from the rest of other untrusted software mod-
ules running in the same address space. Examples are Sµv [7]
and PISTIS [33]. The key idea is to use software-only isolation
established from the boot. Particularly, they initially deploy an
initial code, called a Trusted Computing Module (TCM), that
occupies part of the Flash memory including the bootloader
area. The main goal of the TCM is to guarantee memory
protection by isolating its memory area from other memory
parts, creating two logically isolated memory zones: secure
and insecure. To execute applications, a customized compiler
is needed to recompile a given application such that the
created binary correctly follows the expected memory format.
Achieving this requires a secure compiler.

The key advantage of such an approach is eliminating the
need for hardware support (i.e., similar to SWATT) while being
more secure than SWATT approaches. The downside, however,
is an inevitable runtime overhead due to the software isolation,
and additional memory overhead.

A related approach is methods based on compartmentaliza-
tion and overlays [21], [22], [61]. These methods are based
on pure software and compiler co-design solutions to achieve
isolation and security by design. Generally, they share very
similar advantages and disadvantages compared to software-
based isolation mechanisms.

Also related to remote attestation are methods for control
flow and data integrity attestation [1], [2], [27], [28], [40],
[46], [56], [59]. Unlike RA, these techniques aim for precise
attestation of the execution path of an application running
on an embedded device. This is achieved by measuring the
program’s execution path at the binary level, capturing its
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runtime behavior. The goal is to ensure security during the
runtime and protect the application, and system, against dy-
namic attacks such as buffer overflow, ROP, etc. Similarly,
the same approaches could be applied to ensure data integrity
during runtime. Compared to RA, they provide stronger se-
curity guarantees at the expense of requiring more hardware
support and other mechanisms to track the program during its
execution.

Lastly, another relevant category of work to this paper
is methods that leverage PUFs for authentication and at-
testation [19], [29], [37], [48], [49], [55]. The closest are
methods that leveraged PUFs for software remote attestation
(SWATT) [37], [49]. The main idea of these methods is to
leverage PUFs to create unique random values during the
software attestation process.

IX. CONCLUSIONS

In this paper, we proposed a new hybrid attestation method
called IDA, which removes the requirement for disabling
interrupts and restrictive access control for the secret code and
attestation code. We showed how removing such requirements
could improve the system’s security and flexibility.

The key insight was to verify the attestation process via a
trusted hardware module instead of directly enforcing it by
disabling interrupts and leveraging a secret key. Further, we
presented IDA+ which allows us to track program memory
changes even after attestation is done. We showed how such a
feature could be used to detect TOCTOU attacks and handle
interrupts.

We analyzed the security of our approach and evaluated its
effectiveness. Comparing IDA and IDA+ with the state-of-the-
art, we showed that our approach has minimal hardware and
runtime overhead while achieving important properties such
as support for interrupts and DMA requests, and detecting
TOCTOU attacks.
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APPENDIX

A. Attestation Algorithm

Remote attestation is typically realized as a challenge-
response protocol between a verifier and a prover. The def-
inition shows the attestation protocol in more detail.

Definition 1 (Attestation Protocol): Remote attestation
(RA) is a tuple (Request, Attest, Verify) of algorithms
between a prover (Prv) and a verifier (Vrf):

• Request: algorithm initiated by Vrf to request a
measurement of Prv memory range AR (attested
range). As part of Request, Vrf sends a challenge
Chal to Prv.

• Attest: algorithm executed by Prv upon receiving
Chal from Vrf. Computes an authenticated integrity-
ensuring function over AR content. It produces at-
testation token H, which is returned to Vrf, possibly
accompanied by auxiliary information to be used by
the Verify algorithm (see below).

• Verify: algorithm executed by Vrf upon receiving H
from Prv. It verifies whether Prv current AR content
corresponds to some expected value M (or one of a
set of expected values). To compute M, PRV only
needs the current content of AR. Verify outputs: 1
if H is valid, and 0 otherwise.

To acquire the ground truth for Verify, we assume the
verifier possesses applications/binaries that existed on the
remote device. It is worth noting that the target application
is single-core bare-metal IoT devices, usually with a few
applications installed. Real systems exemplifying this model
encompass health monitoring devices, industrial IoTs, drones,
robotic arms, and more. The application is pre-loaded in these
scenarios, and the remote verifier intermittently checks the
device’s integrity.

B. Detailed Power, Attestation Time, and Area Results

The raw numbers for power, attestation runtime (interrupt-
free), and area (total number of logic cells) are reported in
Table II.

TABLE II
POWER, RUNTIME (ATTESTATION PER 1 KB), AND AREA (LOGIC CELLS)

NUMBERS FOR DIFFERENT HYBRID ATTESTATION TECHNIQUES.

Power Attestation Time Area
Baseline 25.21 mW N/A 2891

VRASED 25.98 mW 110.9 ms 3269
RATA 26.03 mW 110.9 ms 3301

SANCUS 26.96 mW 41.0 ms 5174
IDA 26.05 mW 61.0 ms 3440

IDA+ 26.06 mW 61.8 ms 3506

C. Runtime Overhead Results for MiBench

To study the impact of interrupts on the overall runtime and
how IDA+ can improve the overall performance, we report

our results for three standard benchmark applications under
three different configurations (baseline with no interrupts,
occasional interrupts, and frequent interrupts). The chosen
applications signify typical tasks for embedded systems (e.g.,
signal processing, networking, basic mathematical operations).
The experiment is repeated for IDA and IDA+.

TABLE III
RUNTIME FOR THREE DIFFERENT APPLICATIONS FROM MIBENCH UNDER
THREE DIFFERENT SETTINGS: BASELINE = BA, BASELINE-INTERRUPTED
= BA(IN) (500MS), BASELINE-INTERRUPTED-AGGRESSIVE= BA(IA) (10
MS). THE EXPERIMENT IS REPEATED FOR IDA AND IDA+ WITH SIMILAR

SETTINGS.

Basicmath Dijkstra FFT
BA 15.6 s 4.25 s 2.31 s

BA(IN) 15.6 s 4.25 s 2.31
BA(IA) 15.606 s 4.252 s 2.31 s

IDA (BA) 16.088 s 4.738 s 2.798 s
IDA (IN) 16.088 s 4.739 s 2.799 s
IDA (IA) 16.28 s 4.938 s 2.998 s

IDA+ (BA) 16.09 s 4.738 s 2.8s
IDA+ (IN) 16.09 s 4.738 s 2.8s
IDA+ (IA) 16.091 s 4.738 s 2.81s
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