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Abstract—Threshold signatures, notably ECDSA, are funda-
mental for securing decentralized applications. Their non-linear
structure poses challenges in distributed signing, often tackled
by pairwise multiplicative-to-additive share conversion, leading
to O(n) communication and O(n2) verification costs for each of
n signers. Moreover, most schemes lack robustness, necessitating
a complete restart upon fault. A pioneering work by Wong et al.
(NDSS ’23) still requires rolling back to the preceding round to
resume signing after another round to convince all other signers.

We revisit secure multiparty computation from threshold
linearly homomorphic encryption (LHE). Realizing its public
verifiability and fault recovery, we encompass two technical
contributions to Castagnos–Laguillaumie LHE (CT-RSA ’15): a
2-round robust distributed key generation (DKG) protocol in the
dishonest majority setting and an accompanying zero-knowledge
proof allowing extraction in an unknown-order group. We extend
the DKG with dual-code-based verification (ACNS ’17), upgrad-
ing its O(tn2)-cost private verifiability to an O(n2) public one.

Built on our DKG, we present the first threshold ECDSA
protocol with O(1) communication and O(n) verification per-
party costs while matching the lowest round complexity of non-
robust schemes (CCS ’20). Empirically, we halve the computation
and communication costs of the signing phase compared to state-
of-the-art robust threshold ECDSA (NDSS ’23). We also illustrate
the versatility of our techniques with an improved threshold
extension (IEEE S&P ’23) of BBS+ signatures (IEEE Syst. J. ’13).

I. INTRODUCTION

Securing multifaceted critical services over the Internet and
ensuring trustworthy information dissemination is paramount.
A key concern is establishing trust. Infrastructure, including
public-key infrastructure and DNS servers, crucially relies on
the information authenticity and integrity. Any compromises
expose users to risks like phishing, exploiting misplaced trust.
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Mitigating such risks could use help from decentralization
techniques, which eliminate a single point of compromise.
Recently, there has been a surge of interest in decentralized
services, such as decentralized social networks, driven by the
demand for higher availability and resiliency. The growing
popularity of blockchain has further fueled this trend.

Cryptography plays a pivotal role in achieving these
goals. We see a wave of advancements in thresholdizing
cryptosystems, e.g., ECDSA, EdDSA [47], and the recently
thresholdized BBS+ signature [26]. (Threshold) ECDSA finds
applications in many domains, e.g., DNS [24] and cryptocur-
rency [43], while BBS+ signature [4] serves as a crucial prim-
itive in many anonymous credential designs [20], [42]. (t, n)-
threshold signatures allow any size-t subset of n participants
to collaboratively create a signature.

A. Shortcomings of Existing Threshold ECDSA

Existing schemes suffer from several significant drawbacks.

(I) Roll Call Necessity: Many schemes [11], [15], [16],
[28], [31], [41] need an often unaccounted communication
round for a roll call [8] to form a fixed group of t participating
signers, which needs to stay the same during the entire signing
process from initiation, hampering decentralized applications
where parties might dynamically join or suddenly go offline.

(II) Non-robust Threshold Signing: Some schemes [11],
[16] prioritize best-case performance (in communication com-
plexity and rounds) by using t-out-of-t (additive) secret sharing
for minimal-participant signing. If any participant is faulty or
absent, their contribution irrecoverably lost, rendering previous
computations useless. This results in a critical denial-of-service
vulnerability, especially in time-sensitive missions [48].

(III) Lack of Public Verifiability or Fault Recovery: Some
schemes focus on private verifiability. To exclude a faulty
participant from subsequent protocol steps, the identifying
party is responsible for generating and sending evidence to
others [16], requiring an additional round of communication.
Public verifiability, even if supported, is rarely accompanied
by fault recovery and needs a restart for any minor fault.

(IV) Inefficiency: Prior schemes commonly exhibit inef-
ficient signing due to two-party interactions between each
participants pair. A popular approach of using multiplicative-
to-additive (MtA) protocol [11], [16], [35], [48] requires com-
putation and communication of O(t) messages for each party.
For fault identification, participants can show the correctness of
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their broadcast messages [11]. Nevertheless, each party needs
to verify O

(
t2
)

messages from O(t) signers to ensure correct
computation, contributing to the quadratic verification cost.

We are intrigued to ask: Can we build threshold signature
schemes (ECDSA, BBS+, and possibly more) featuring

1) security against a dishonest majority,
2) materialization of the final signature whenever more than t

honest parties are present (even if they initially abstained),
3) constant communication overhead, and the least number of

rounds as the state of the art, without roll call?

B. Homomorphic Computation of Threshold ECDSA

We depart from the trend [8], [11], [15], [16], [28], [31],
[41], [48] and revisit the Cramer–Damgård–Nielsen (CDN)
paradigm [22] of secure multi-party computation (SMC) from
threshold linearly homomorphic encryption ((T)LHE). TLHE
enables two functionalities: i) homomorphic operations allow
anyone to operate on encrypted messages without decryption;
and ii) threshold decryption can be done by any t participants.
In the context of threshold signature, participants can encrypt
signature components and compute the final signature homo-
morphically without revealing the underlying values.

When instantiated appropriately with “robust” building
blocks allowing public verification (a technical part of our con-
tributions), this approach offers a strong robustness guarantee,
naturally addressing the identified shortcomings.1 Specifically,
even in the worst-case scenario with fewer than t participants
remaining, the signing process just pauses. Once a sufficient
number of participants rejoin, regardless of their past absence,
any intermediate values or the final signature can be recovered
by decrypting broadcasted and verifiably encrypted results. In
short, throughout various phases of signature generation, they
can seamlessly resume any previously disrupted signing.

“Reviving” this idea efficiently (in time and space), with
new robust machinery (while still maintaining efficiency), re-
quires dedicated efforts. To illustrate, we provide an overview
of our homomorphic signing proceeds for deriving an ECDSA
signature (R, σ), where each party holds a threshold decryption
key of TLHE and a share of the ECDSA signing key x.

1) Distributively generate randomness k in ciphertext;
2) Distributively generate gγ for a random γ, and (kγ, kx) in

ciphertext via homomorphic evaluation on encrypted k;
3) Threshold-decrypt kγ, gγ and compute R :=(gγ)1/kγ ;
4) Threshold-decrypt σ := km+ rkx, which is homomorphi-

cally generated from encrypted (k, kx) and plain (r,m).

Each party Pi only takes O(1) messages and 3 rounds to
compute kγ (and similarly kx) instead of O(t) for MtA:

1) Broadcast the encrypted ki;
2) Compute (homomorphically) the encrypted k :=

∑
i ki and

then encrypted γik, broadcast the latter;
3) Compute (homomorphically) the encrypted kγ :=

∑
i γik,

then threshold-decrypt the encrypted kγ.

1Alternatively, one could use a universal thresholdizer [6], but it requires
threshold fully homomorphic encryption, which is heavyweight. Prior thresh-
old ECDSA schemes often use LHE for specific tasks, e.g., share preparation.
Non-threshold “microscopic” usages of LHE do not readily enjoy the benefits.

Applying zero-knowledge proof (ZKP) over the compu-
tation also only takes O(1) message (cf., O(t) for MtA).
Public verifiability allows immediate and non-interactive fault
attribution (with no extra round of ZKP of secrets needed by
MtA). Fault attribution is “for free,” asymptotically.

While enjoying all advantages (no roll call, robust, publicly
verifiable, and computationally efficient), our scheme matches
the least number of rounds [11] among prior threshold ECDSA
schemes with identifiable abort or robustness, as in Table I.
Despite the higher computational cost of class-group compu-
tations compared to RSA modulus operations, we substantiate
the efficiency of our approach through experimental results.
Communication cost refers to the number of messages each
party sends/broadcasts.2 The ‘+’ part indicates the extra cost
for fault identification. For per-party computational cost, we
distinguish between the cost of computing the signature and
verifying intermediate values, which may only needed for fault
identification.3 The cost of the SMC-based scheme [35] is pro-
vided as a lower bound due to unspecified MtA instantiation.

This approach relies on two LHE extensions: i) distributed
key generation (DKG) for LHE and ii) ZKP of knowledge for
public verifiability that allows witness extraction, which is cru-
cial for security proof in the dishonest majority setting expect-
ing the weakest possible assumption about colluding parties.
We build upon Castagnos–Laguillaumie (CL) encryption [17]
for its decentralized setup and its message space (a group Zq

of prime order q) aligned with the modulus used by ECDSA,
avoiding additional ZKP needed if other LHE was used (e.g.,
range proof with threshold Paillier encryption [25], [29], which
operates on integers modulo an RSA modulus [16], [19]). The
simplification of ZKP is not just a matter of efficiency but
also security since its complexity makes it error-prone (several
bugs have been found in previous protocols). However, while
benefiting from the prime order of the message space, the class
group itself operates with an unknown order. Apart from the
more expensive atomic operation (than Paillier), this hinders
the design space since division in exponent is not feasible.
Witness extraction also becomes tricky due to the same reason.

C. Extending Distributed Key Generation to the Class Groups

We propose two DKG protocols, one for CL encryp-
tion [17] and one for discrete-logarithm-based cryptosystems.

1) Outline of Our DKG: Each party sets up its own CL
encryption key pair to aid the distributed generation of key
pairs for either CL encryption or ECDSA. They first distribute
CL-encrypted shares (and committed shares) with ZKP. After
verifying all shares, excluding invalid ones, each party broad-
casts their share in exponent and uses ZKP to show decryp-
tion of the (homomorphically-evaluated) ciphertext returns the
correct share. The public key (as shared secret in exponent)
is uniformly distributed, and can be constructed from the
broadcasted share in exponent without further interaction.

2Public verification requires all messages to be broadcasted, so we assume
point-to-point messages are encrypted and broadcasted.

3Verification is done with respect to received messages, making the verifica-
tion cost at least the communication cost multiplied by O(n), except for the
Paillier-based construction, which requires verifier-specific proof. O(t) and
O(n) are of the same order and asymptotically interchangeable. Our O(n2)
dual-code-based verification is in distributed key generation and is not shown.
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TABLE I: Comparison of (n, n) or (t, n) Threshold ECDSA Schemes with Identifiable Abort or Robustness

Schemes Communication (Rounds) Protection Comm. Cost Comp. Cost Threshold Type

Paillier-based [11] Offline: 3 + 1 Online: 1 + 1 Identifiable Abort O(n) + O
(
n2

)
O(n) + O

(
n2

)
Fixed size-n group

Offline: 6 + 1 Online: 1 Identifiable Abort O(n) + O(n) O(n) + O
(
n2

)
Fixed size-n group

SMC-based [35] Offline:10 Online: 3 Identifiable Abort O(n) + O
(
n2

)
O(n) + O

(
n2

) Fixed size-n group for Offline
Robust for Online only Any size-≥t subgroup for Online

CL-based [16] Offline: 6 + 1 Online: 1 Identifiable Abort O(n) + O(n) O(n) + O
(
n2

)
Fixed size-t group

CL-based [48] Offline: 4 + 2 Online: 1 Identifiable + Robust O(n) + O(n) O(n) + O
(
tn2

)
Any size-≥t subgroup for Both

Ours Offline: 3 Online: 1 Identifiable Abort O(1) O(n) + O(n) Any size-≥t group for BothIdentifiable + Robust

Note that shares are distributed in exponent or encrypted
form with ZKP, both of which are publicly verifiable. This
avoids another round for resolving conflict. In short, our 2-
round robust DKG protocol removes culprits non-interactively.

2) Dual-Code-based Verification: ZKP alone does not safe-
guard against the distribution of inconsistent shares to different
parties, leading to inconsistency. The traditional remedy is gen-
erating a committed polynomial corresponding to the shares as
a basis for share verification. However, verification requires the
knowledge of shares, and verifying them w.r.t. the committed
shares requires O(tn) computation (the t factor comes from
the evaluation of degree-t polynomials). Thus, complaining
requires an extra round when private verification does not pass.

In lieu of this, we extend dual-code-based verification [12],
initially designed for public attestation of uniform randomness
beacons, assuming an honest majority. We adapt it for our
ECDSA usage. In essence, it leverages the existence of a dual
vector such that its inner product with a vector of shares would
be non-zero upon inconsistent shares. This allows public ver-
ification of all shares (in exponent) with O

(
n2

)
computation.

We further extend this approach to commitments of shares.
Our extension eliminates any information leakage during the
first communication round, thwarting rushing adversaries (who
observe submissions of others before providing their own
contribution) from gaining any advantage or introducing bias
by intentional dropout. Consequently, our protocol maintains
its robustness even in the presence of faults, ensuring a uniform
distribution of the key and eliminating any concerns related to
non-uniform key distribution that requires a protocol abort.

D. Recovery of Shares for Dishonest Majority via Extraction

A major hurdle in DKG under a dishonest majority lies
in extracting shares of the secret key, usually needed by
simulation-based security. In the simpler case where a sim-
ulator controls an honest majority, possessing at least t shares
allows easy recovery of the secret and then the shares held by
other parties — an option unavailable to a dishonest majority.
The beauty of our approach is that all shares are encrypted
and broadcasted. The simulator can simply extract the shares
by decryption, and the decryption key is the only element to be
extracted through the ZKP of knowledge. This also enhances
the extendibility to the concurrent setting.

However, the (share of) secret key in the class group of
CL encryption resides in integers over an unknown modulus.
Without help from any computational or model assumption,
the standard strategies of using Σ-protocols in unknown order

groups [5], [46] have been shown to have a 1/2 soundness
lower bound. Rather than idealized models like the generic
group model (GGM) [49], we consider the 2-fractional-root
assumption [21], a computational one taking care of challenges
posed by division in the class group needed by Σ-protocols.

E. Miscellaneous Improvements for Threshold CL Encryption

We further enrich our understanding and the performance
of the threshold CL encryption scheme in a few aspects.

1) Reduction in Exponentiation (Section V-A): We stream-
line threshold CL encryption by reducing the number of
exponentiations of the factorial n! from 3 to 2 in decryption.
This significantly improves the efficiency since we operate in
an unknown-order group, dealing with large exponents with no
modular reduction. The order of magnitude for n! can go up to
128-bit (e.g., when n = 32). In threshold ECDSA, decryption
is often needed, including recovery and final signature output.

2) Property for Simple Security Proof (Sections V-C
and VI-B): In complement to its universally composable (UC)
security, we show the security of threshold CL encryption in
the game-based definition for accessibility. Additionally, we
derive a property from two fundamental security requirements
of TLHE that greatly simplifies the security proof when used in
the threshold signature scheme. By incorporating this property,
the security argument in applying various encryption schemes
(e.g., threshold lifted ElGamal encryption and threshold Pail-
lier encryption) is simplified and made more accessible.

F. Assessing Related and Concurrent Works

a) Threshold ECDSA: Most proposals perform con-
ceptually similar computations using MtA but with different
optimizations for communication overhead. We refer to repre-
sentative works [11], [16], [35], [48] for surveys of develop-
ments [38]. Abram et al. [2] propose a non-robust scheme with
1-round pre-signing via a pseudorandom correlation generator.

The protocol efficiency is mainly affected by the primitive
to instantiate MtA. While constructions based on oblivious
transfer (OT) [28] are communication-intensive, their compu-
tational efficiency is high for using symmetric-key primitives.
Our approach prioritizes communication over computation,
driven by the recognition that computation speed can often be
enhanced through optimization (of class-group operations) or
hardware advancements, whereas communication faces physi-
cal barriers such as network latency or instability.
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As mentioned, most schemes assume a fixed roll call for
signing, which requires a restart from scratch in case of any
fault, even if it is detectable. Gągol et al. [35] achieve robust
online signing under the assumption that the offline signature
is computed faithfully by all n parties. A notable exception is
the recent scheme of Wong et al. [48], which achieves fault
attribution against a dishonest majority and self-healing under
an honest majority. However, in the worst case with faulty
contributions spanning multiple rounds, it still takes two extra
rounds. These are reported under “Threshold Type” in Table I.

Concurrently, Bouez and Singh [8] formulate the require-
ment of a fixed group as “with roll call.” They achieve 1-round
online signing with a 7-round offline pre-signing phase on top
of a 1-round scheme of Gennaro and Goldfeder [32], but fault
identification [32] is left as future work.

b) Threshold BBS+: Doerner et al. [26] adapt SMC
techniques for threshold ECDSA [27], [28] to threshold BBS+
with selective abort. Using oblivious transfer to multiply two
secrets, their scheme is computationally lighter than the LHE
approach. In contrast, our threshold-signing protocol takes 4-
round communication (optimizable to 3 with extra recovery
computation) with O(1) messages per party. More importantly,
ours is robust: (1) cheaters are identified and removed non-
interactively, and (2) any party can help (even if they did not
participate in the current protocol execution) to continue.

c) Threshold LHE: Castagnos et al. [19] proposed a
threshold LHE scheme on Z2k , integers modulo a power-of-2.
They first proposed a homomorphic encryption scheme on
Z2k and then applied linear integer secret sharing to share the
decryption key on a bounded integer. Thanks to the ElGamal-
like (linear) structure, the threshold scheme immediately has a
1-round threshold decryption. However, as shown by Cramer
and Fehr [23], each party holds at least O(log n) shares
on average. Using integer secret sharing results in a heavy
overhead under a malicious setting; each party at least proves
O(log n) elements for decryption correctness. In our work, we
build robust DKG for threshold LHE over Zq [10].

d) Concurrent Work: Braun et al. [10] revisit the CDN
paradigm of SMC. Their work focuses on the “You-Only-
Speak-Once” (YOSO) setting, which considers an honest ma-
jority. Thus, they do not consider witness extraction from ZKP
under a dishonest majority, or adopt dual-code-based verifica-
tion. They did use ZKP to ensure the recovery of the shared
secret, which is unnecessary, as correct reconstruction over the
public key space alone suffices for threshold decryption.

That said, their work suggests a very promising approach
to general SMC with only a transparent setup, albeit it does
not come with our new techniques specifically for pushing the
frontier of threshold signatures or contributing a set of gadgets
for more discrete-logarithm/class-group-based cryptosystems.

e) DKG for Class Groups: DKG of Braun et al. [10]
yields a biased key without weakening security in the YOSO
setting. They aim for statistical ciphertext indistinguishability
using a lossy public key, taking two sequential executions
of verifiable secret sharing. In contrast, our DKG yields a
uniformly distributed public key, impervious to disruption by
rushing adversaries. DKG for hidden-order groups, initiated by
Rabin [44], remains rather limited. Castagnos et al. [19] did
not propose any DKG but assumed a trusted dealer. Our DKG

follows the paradigm of Gennaro et al. [34], also employed in
the “real” threshold ECDSA scheme of Wong et al. [48].

f) DKG for Prime-order Cyclic Groups: Recent DKG
developments pursue diverse objectives, e.g., asynchronous
DKG for both low-/high-threshold scenarios with security in
the standard model [50] and batched asynchronous DKG [37].
The work by Groth [36] also incorporates share verification
through publicly verifiable ZKP and stands out as a 1-round
solution, but the public key it produces can be biased due
to its 1-round nature [40]. Kate et al. [39] adhere to this
ZKP structure but employ CL encryption for share distribution
instead of ElGamal encryption. Alongside this ZKP, Cascudo
and David [14] propose a new DKG paradigm, which is more
efficient for using ZKP for dual-code-based verification. AL-
BATROSS [13] proposes compact ZKP for share validity, spe-
cialized for large batches of shared secrets. Atapoor et al. [3]
suggest a post-quantum secure DKG. However, its ZKP only
ensures share consistency and lacks public verifiability.

G. Noteworthy Contributions

Summarizing, our contribution manifests at different levels.

(I) We propose a robust DKG for CL encryption under
the dishonest majority setting, which generates a uniformly-
distributed public key and extends the security of threshold CL
encryption originally tailored for an honest majority [10]. Our
public verification machinery enables a 2-round construction.
We extend the dual-code-based verification [12] to class groups
for our (t, n)-threshold setting, which reduces the O

(
tn2

)
cost

of the usual “pairwise” approach from one-to-one primitives.

(II) Our proposed ECDSA outperforms the state-of-the-
art (see Table I) at a slight running-time overhead for (local)
computation over CL encryption. Notably, it

• features robustness (parties can leave at any time),
• takes 3 rounds of communication (avoiding the extra com-

munication round for conflict resolution/recovery by operat-
ing on (a different form of) publicly verifiable shares only),
• ensures O(1)4 communication overhead for verification of

all other parties in threshold signing.

(III) We provide an alternative design and realization of
threshold BBS+ [26]. The only existing attempt [28] mostly
follows the blueprint of MtA-based ECDSA counterpart, sub-
ject to its relative weakness w.r.t. latest threshold ECDSA, e.g.,
costly public verifiability and the lack of robustness.

(IV) Our technical contributions own independent interest
and apply to other cryptosystems to be thresholdized with pub-
lic verifiability, inheriting the compatibility of CL encryption,
or general SMC tasks [10] in the dishonest majority setting.

II. PRELIMINARY

A. Security and Communication Models

Let P = [1, n] = {1, 2, . . . , n} be a party set. Each
party Pi is indexed by i ∈ P . Let negl(λ) be negligible
functions in security parameter λ and λd be the parame-
ter for statistical distance. A probabilistic polynomial-time

4More precisely, our ZKP involves integers (i.e., not cryptographic group
elements) of size O(n logn) bits.
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(PPT) algorithm Alg(in) → out, on input in, returns an out-
put out. A protocol Protocol⟨P1(in, in1); . . . ;Pn(in, inn)⟩ →
⟨(out, out1); . . . ; (out, outn)⟩, or Protocol⟨in; ini⟩i∈[1,n] →
⟨out; outi⟩i∈[1,n] for brevity. Each party Pi inputs a common
input in and a private input ini. Protocol returns a common
output out to all n parties and a private output outi to each Pi.

The (t, n) threshold access structure A is a collection of
P ′ ⊆ P such that |P ′| ≥ t, denoted by P ′ ∈ A. We consider a
PPT adversary that corrupts at most t− 1 parties at the begin-
ning (static corruption). Any corrupted party can deviate from
the protocol specification at any time (malicious) and submit
messages after viewing others (rushing). We use authenticated
and synchronized broadcast channels, which hold irresponsive
signers accountable and ensure bounded communication delay.

B. (Multi-Party) Zero-Knowledge Proof

For a relation (x,w) ∈ R, x ∈ L is a (public) statement
for an NP language L, and w is the private witness. The
prover with w can use a zero-knowledge proof of knowledge
(ZKPoK) to convince the verifier for (x,w) ∈ R without
leaking anything beyond the statement is true. The ΣR-
protocol can be used as a 3-move zero-knowledge proof of
knowledge for the relation R, which satisfies the security
requirements: completeness, special soundness, and honest-
verifier zero-knowledge (Appendix A-B). We will use the
below two styles of proof systems derived from ΣR-protocol.

a) Non-interactive zero-knowledge proof of knowledge
(NIZK) ZR from the Fiat–Shamir transform of ΣR:

• P(x;w) → π: On input of statement x and the (secret)
witness w, the probabilistic algorithm returns a proof π.

• Vf(π, x)→ 0/1: On input the proof π and the statement x,
the deterministic algorithm returns a truth value 0/1.

b) Multi-party Σ-protocol Σ∗
R: We use a multi-party Σ-

protocol Σ∗
R⟨{xj}j∈P ;wi⟩i∈P , where each Pi can prove the

knowledge of wi w.r.t. xi to all others in P . It may not inherit
the special soundness (allowing knowledge extraction) from
the ΣR-protocol because simultaneous rewinding for multiple
challenges in the multi-party setting is inefficient.5 Σ∗

R [22]
can be obtained by distributively generating a common random
challenge (the second step of the Σ-protocol) and committing
the first round message (the first step of the Σ-protocol)
via an equivocable commitment.6 This variant only requires
changing the resultant challenge for knowledge extraction to
avoid inefficient rewinding for multiple challenges.

C. Class Groups and CL Encryption

Let G = ⟨g⟩ be a group of prime order q and Fq (or Zq)
be a finite field with q elements. The public elements in the
group are denoted by uppercase letters (X,Γ,K, . . .), and their
secret elements, the logarithm, are denoted by lowercase letters
(x := logg X, γ, k, . . .). We denote the ring of polynomials in
one variable z with coefficients in Fq as Fq[z].

5Changes in a challenge may nullify the simulation for other challenges due
to adversary-imposed depdendices, requiring an exponential-time simulation.

6 Concatenation of random challenges (in bits) is used as the only challenge
of the proof system. The equivocable commitment allows a trapdoor owner to
open the commitment HCom(m, r) of the message m and the randomness r
as (m′, r′). A hash-based commitment is efficiently equivocable if HCom is
modeled by a programmable random oracle.

We outline some background and notation on class groups.
On input of the security parameter 1λ and two primes q, q′,
the deterministic algorithm SetupCL [17], [18] outputs ppCL,
which defines an unknown-order class group, including
(s̃, fgq, f, gq, Ĝ,G,F,Gq) such that Ĝ ⊃ G = F ×Gq . Let Ĝ
be the finite abelian subgroup of squares of the class group7

C(∆q) with order qŝ and gcd(q, ŝ) = 1, but only the upper
bound s̃ of ŝ is given. From Ĝ, three subgroups are defined
by the group-order-generator tuples: (G, qs, fgq), (F, q, f), and
(Gq, s, gq). G is a subgroup of Ĝ (implies that s divides ŝ). F
is a subgroup with a deterministic polynomial-time algorithm
Dlog(·) that returns x on input fx ∈ F. Gq is the subgroup
containing all q-th powers in G. In practice, [0, B = 2λdqs̃] is
treated as Dq for sampling elements in Zs uniformly.

a) CL Encryption (CLE): CLE is for Fq . It is indistin-
guishable under chosen plaintext attacks (IND-CPA-secure)
under the hard subgroup membership assumption [17].

• Setup(q, q′, 1λ)→ pp: Output ppCL ← SetupCL(q, q
′, 1λ).

• KGen(pp)→ (ek, dk): Output dk←$ Dq and ek := gdkq .
• Enc(ek,m; r)→ cm: Pick r ←$ Dq , output (grq, f

mekr).
• Dec(dk, cm = (c0, c1))→m/⊥: Output Dlog(c1/cdk0 ).
• Eval(cm, cm′ ,+) → cm+m′ : Parse cm as (cm,0, cm,1) and
cm′ as (cm′,0, cm′,1), output cm+m′ := (cm,0 · cm′,0, cm,1 ·
cm′,1). We denote Eval(cm, cm′ ,+) as cm ⊞ cm′ .

• Eval(a, cm, ·) → cam: Parse cm as (cm,0, cm,1), output
cam := (cam,0, c

a
m,1). We denote Eval(a, cm, ·) as a⊡ cm.

Subtraction can be realized by computing the inverse element.
For cm := (c0, c1), its inverse is c−m := (1/c0, 1/c1).

b) CL Encryption for Group Elements: We also define
encryption and decryption algorithms (GEnc,GDec) for plain-
text M ∈ G. The IND-CPA-security of this variant can be
easily shown like ElGamal encryption under DDH in G [17].

• GEnc(ek,M; r)→ cM: Pick r ←$ Dq , output (grq,Mekr).
• GDec(dk, cM)→M/⊥: Parse cM=(c0, c1), output c1/cdk0 .

III. SECRET SHARING AND DUAL-CODE VERIFICATION

We present Z-SS – Shamir secret sharing [10] over integers.
We then extend the dual-code technique [12] to verify the
commitments of shares to ensure their consistency, so any t-
size subset P ′ will yield the same correct polynomial.

A. Shamir Secret Sharing over Integers

(t, n)-Shamir secret sharing for secret x ∈ Fq is defined by:

• Share(x,P) → {xi}i∈P : Pick a (t − 1)-degree polynomial
F (z) :=

∑t−1
d=0 adz

d ∈ Fq[z] s.t. a0 = x, return {F (i)}i∈P .
• Reconst({xi}i∈P′) → x: If P ′ ∈ A, return x :=∑

i∈P′ Li,P′xi, where Li,P′ =
∏

j∈P′\{i}
j

j−i .

(t, n)-Shamir secret sharing SS satisfies the following:

• Correctness: Given any subset P ′ ⊆ P of correct shares
{xi}i∈P′ , where |P ′| ≥ t, i.e., it satisfies the (t, n) threshold
access structure A (P ′ ∈ A), Reconst uniquely recovers x.
• Unconditional secrecy: The view of any adversary, who

corrupts up to a set C /∈ A of parties, is independent of x.

7The group elements are classes of ideals of the order of discriminant ∆q .
We refer to [17] for more details on the parameter.
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a) Secret sharing for Integers: SS.Reconst involves di-
vision in the Lagrange coefficient Li,P′ , which is unsupported
by unknown-order groups. Reconst in Z-SS thus returns ∆2s
instead of the secret s, where ∆ := n!.

Z-SS := (Share,Reconst) for x ∈ [0, B] is defined as
follows. Let l := ⌈log2 B⌉ and l∗ := (l+1)+2 log t+n log n.

• Share(x,P) → {xi}i∈P : Pick a1, . . . , at−1 ←$ [0, 2l
∗+λd ],

set F (z) := ∆x+
∑t−1

d=1 adz
d, return xi := F (i) for i ∈ P .

• Reconst({xi}i∈P′)→ x′: If P ′(⊆ P) is of size t or larger,
return x′ :=

∑
i∈P′(∆Li,P′)xi.

b) Security: For any set P ′ ∈ A, Lagrange interpolation
gives F (0) =

∑
i∈P′ Li,P′F (i) for (t− 1)-degree polynomial

F (z). Thus, for F (0) = ∆x in Z-SS, Reconst({xi}i∈P′)
returns

∑
i∈P′(∆Li,P′)xi = ∆F (0) = ∆2x. This scheme [10,

Theorem 16] is statistically private: no information about secret
x is leaked to any adversary corrupting C /∈ A if l∗ ≥
(l+1)+⌈log(t·2hmax)⌉, where we suggest8 hmax ≤ (t−1)nn.

The value of share is upper bounded by (nt)·2l∗+λd , where
2l

∗+λd and nt are contributed by the coefficient term of F (z)
and the sum of the geometric series (nt <

∑t−1
d=0 z

i for z ∈
[1, n]), respectively. The share is thus of (l∗+λd+t log n)-bit.

c) Simulating Lifted Shares: Shares are often lifted to
the exponent to allow verifiability. Security proof requires the
simulation of these “public shares” consistent with shares from
corrupted parties. Meanwhile, Feldman’s simulation does not
work since division is unavailable here. We present Lemma 1,
which recovers the public shares directly.9

Lemma 1. Let F (z) = ∆x+
∑t−1

d=1 adz
d be the (t−1)-degree

polynomial in Z-SS. Given the lifted secret gF (0)
q and (t− 1)

shares {F (i)}i, one can efficiently compute g
∆F (ℓ)
q for ℓ ∈ Z.

F (ℓ) =
∏

i∈P′ Li,P′(ℓ)F (i) by interpolation, where
Li,P′(ℓ) =

∏
j∈P′\{i}

j−ℓ
j−i . Given t−1 shares {F (i)}i and the

lifted secret gF (0)
q , we can simulate the value in exponent as

g
∆F (ℓ)
q = (g

F (0)
q )∆L0,P(ℓ) ·

∏
i∈P′ g

∆Li,P(ℓ)F (i)
q . Following the

existing argument [45] (detailed in Appendix D-C), ∆ alone
suffices to cancel the denominators in the Lagrange coefficient.

B. Dual-Code Verification for Z-SS

Consistency of shares can be verified via dual codes [12].

Lemma 2. [12, Lemma 1] Let C and its dual C⊥ be
C := {(F (1), F (2), . . . , F (n)) : F (z) ∈ Fq[z],degF (z) ≤
t − 1} and C⊥ := {(v1P (1), v2P (2), . . . , vnP (n)) : P (z) ∈
Fq[z],degP ≤ n − t − 1}, where vi :=

∏n
j=1,j ̸=i

1
i−j . If

(x1, . . . , xn) ∈ Fn
q \C, and (x⊥

1 , . . . , x
⊥
n ) is chosen uniformly

at random in C⊥, the probability that
∑n

i=1 xix
⊥
i = 0 is 1/q.

At a high level, Lemma 2 says that for any dual code
(x⊥

1 , x
⊥
2 , . . . , x

⊥
n ), if the set of shares (x1, x2, . . . , xn) is

inconsistent, i.e., the shares are generated from a polynomial
with degree ≥ t, then this set of shares passes the verification∑n

i=1 xix
⊥
i = 0 with negligible probability. We define an

8We bound the value hmax < (t−1)nn that it is not provided [10, Theorem
16] and suggest the value to be l∗ := l + 1 + 2 log t+ 2n logn.

9Alternatively, [10, Lemma 8] unnecessarily recovers the polynomial F .

algorithm Dual that returns dual elements {x⊥
i }i∈P in C⊥,

where P is the set of evaluation points of the polynomial.

• SS.Dual(P)→ {x⊥
i }i∈P : Pick a polynomial P (z)← Fq[z]

such that degP = n− t−1, return x⊥
i := viP (i) for i ∈ P ,

where vi =
∏

j∈P\{i}
1

i−j .

a) Extension to Commitment: The dual code can verify
the lifted shares {gF (i)}i∈P . We further extend this verification
to Pedersen commitments {PCF (i) := gF (i)hF ′(i)}i∈P of
share F (i), where F (z), F ′(z) are (t−1)-degree polynomials.

Lemma 3. Let PCF (i) = gF (i)hF ′(i) be a Pedersen commit-
ment of share F (i) using randomness F ′(i). For {x⊥

i }i∈P ←
SS.Dual(P), if

∏
i∈P PC

x⊥
i

F (i) = 1, the probability that
degF > t− 1 is negligible if the commitment is binding.

Intuitively, passing verification implies gahb = 1, which
break the binding property of the commitment when a, b ̸= 0.
We defer the proof to Appendix D-A.

b) Extension to Commitment in Class Groups: We use
the Pedersen commitments in class groups [1], i.e., hmgrq is a
commitment of m with randomness r over G. Z-SS.Dual(P)
verifies consistency among committed shares.

• Z-SS.Dual(P) → {x⊥
i }i∈P : Pick bd ←$ [0, B] for d ∈

[0, n − t − 1], set P (z) :=
∑n−t−1

d=0 bdz
d and vi :=

∆
∏

j∈P\{i}
1

i−j ∈ Z, return x⊥
i := viP (i) for i ∈ P .

Lemma 4. Let hF
′(i)g

F (i)
q be a commitment of share F (i).

For {x⊥
i }i∈P ← Z-SS.Dual(P), if

∏
i∈P(h

F ′(i)g
F (i)
q )x

⊥
i = 1,

the probability that degF > t− 1 is negligible.

Lemma 4 is analogous to Lemma 3, but in G instead of
G. The proof is deferred to Appendix D-B.

IV. RUSHING-RESILIENT DISTRIBUTED KEY GENERATION

We propose a 2-round distributed key generation protocol
for discrete-logarithm-based cryptosystems over a prime-order
cyclic group G, e.g., an elliptic curve. We then extend it to
support unknown-order class groups (with integer secret keys).

We use a publicly verifiable linearly homomorphic en-
cryption scheme to distribute the encrypted shares [30], so
no additional communication round is needed to resolve the
private complaints. However, 1-round construction is impossi-
ble [40] to defend against rushing adversaries, who bias the
distribution of the key. We thus use the 2-stage paradigm [34]:
the first stage distributes shares of an initial secret (so the initial
secret is fixed without leaking); the second stage reveals all the
(lifted) initial secrets for computing the resultant key.

Our protocol follows the distributed randomness generation
(DRG) construction of Wong et al. [48], except using dual-
code-based verification to verify the consistency of broadcasted
committed shares for reconstruction. Their correspondence
with the encrypted shares is maintained via NIZK.

A. Security Definition of DKG

Recall that DKG correctness requires three conditions [34]:
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• (C1.) All sufficiently-large subsets (P ′ ∈ A) of shares from
the honest parties define the same unique secret key x.

• (C2.) All honest parties have the same value of the public
key X = gx mod q, where x is the unique secret (as (C1)).

• (C3.) x is uniformly distributed in Fq (so does X in ⟨g⟩).
Robustness requires that the protocol always completes suc-
cessfully if a set P ∈ A of honest parties participates. Secrecy
mandates a simulator that can simulate on input X a view
indistinguishable from that of any PPT adversary A corrupting
a set C /∈ A of parties in a real protocol run that outputs X .

B. DKG for Discrete-logarithm-based Cryptosystems

Figure 1 presents our DKG-DL protocol built upon Ped-
ersen commitment, Shamir secret sharing SS, and linearly
homomorphic encryption CLE. For brevity, all algorithms
implicitly take in the encryption keys {ekj}j∈P of all parties.

The protocol is run by an updating set of parties P . At the
end of the generation phase, the distributively-generated secret
is fixed by the contribution from and hence the shares held by
the honest parties. We call this set the qualified set Q. P may
be updated to remove cheaters identified during GenVf, and
Q := P is fixed afterward. More cheaters may be removed
from P during RevealVf, but it will not affect Q.

1) Generation Phase (Gen ↔ GenVf): Suppose |P| = n;
we aim to (t, n)-threshold-share the initial secret χi sampled
by the dealer Pi with all other parties.

Pi runs Share(χi,P) to generate {χij}j∈P of initial secret
χi. ∀j ∈ P (Line 3-6), each share χij is then encrypted
using the receiving party’s encryption key ekj , and its well-
formedness is ensured by ZEnc-PC, which binds to Pedersen
commitments PCχij

of χij too. Commitments, ciphertexts, and
proofs are broadcasted to all and can be publicly verified.

GenVf verifies ZEnc-PC and, via dual code in the form
of commitment, whether all delivered shares constitute (t, n)-
threshold shares of a secret. Parties supplying incorrect shares
will be removed. At the end of this phase, the combined secret
(key) x :=

∑
j∈Q χj is fixed for the qualified set Q := P .

Public verification ensures that the shares are correct, so any
problem detected afterward is not imputed to the dealer.

2) Revelation Phase (Reveal ↔ RevealVf): We aim to
generate (t, n) threshold shares {xi}i∈P of the final secret
x =

∑
j∈Q χj via linear homomorphism of the shares. This

phase equips Pi with secret share xi and public key X = gx.

After verification (of ciphertexts) of the generation phase,
Pi ∈ Q runs Reveal to decrypt the homomorphically-added
ciphertext cxi and obtains the share xi of the secret key
x. Pi asserts the correctness of the lifted share Xi against
the ciphertext cxi

by ZDec-DL for correct decryption. Pi then
broadcasts the lifted shares Xi and its proof πXi

. At the end,
after the verification (of ZDec-DL) done by RevealVf, the public
key X is computed via interpolating in exponent

∏
i∈P X

Li,P
i .

We defer the correctness and security arguments (Lem-
mas 8 and 9) to Appendix B.

C. DKG for Class Groups

Figure 2 presents DKG-CL for class groups. Similar to
DKG-DL, publicly verifiable linearly homomorphic encryption

DKG-DL
Gen(pp)→ {PCχij , cχij , πχij}j∈P

1 : χi ←$ Fq, {χij}j∈P ← Share(χi,P)
2 : χ′

i ←$ Fq, {χ′
ij}j∈P ← Share(χ′

i,P)
3 : foreach j ∈ P do

4 : PCχij := gχijhχ′
ij , cχij ← Enc(ekj , χij ; rχij )

5 : πχij ← ZEnc-PC.P((PCχij , cχij , ekj);

6 : (χij , χ
′
ij , rχij ))

7 : return {PCχij , cχij , πχij}j∈P

GenVf({{PCχij , cχij , πχij}j∈P}i∈P)

1 : {x⊥
j }j∈P ← SS.Dual(P)

2 : foreach i ∈ P do

3 : if
∏

j∈P PC
x⊥
j

χij ̸= 1 then P := P \ {i}
4 : else foreach j ∈ P do

5 : if ¬ZEnc-PC.Vf(πχij , (PCχij , cχij , ekj))

6 : P := P \ {i}, break

7 : Q := P

Reveal({cχji
}j∈Q, dki)→ (xi, Xi, πXi

)

1 : cxi := ⊞j∈Qcχji , xi ← Dec(dki, cxi), Xi := gxi

2 : πXi ← ZDec-DL.P((Xi, cxi , eki); (xi, dki))

3 : return (xi, Xi, πXi)

RevealVf({{cχji
}j∈Q, Xi, πXi

}i∈P)→ X

1 : foreach i ∈ P do

2 : cxi := ⊞j∈Qcχji

3 : if ¬ZDec-DL.Vf(πXi , (Xi, cxi , eki))

4 : P := P \ {i}
5 : return X :=

∏
i∈P X

Li,P
i

Fig. 1: Distributed Key Generation for Discrete-Log Keys

is used to deliver the shares. Pedersen commitments and NIZK
are used to verify the consistency among the shares. After
delivery of correct shares, DKG-CL fixes the secret key. The
parties then give the shares of the public key (lifted secret key)
for reconstruction. For secrets lying in Zs (integers modulo an
unknown order s), we make the changes below to DKG-DL.

First, the initial secret χi is a large integer in [0, B] without
knowing the modulus s, so it requires Shamir secret sharing
over integer Z-SS (Line 1-2 of Gen) to distribute it.

Second, the protocol prepares a ciphertext cXij
(Line 5 of

Gen), which helps to show the correctness of the public key
(lifted secret key)’s share Xi = gχi

q to be Reveal-ed. Recall
that DKG-DL verifies the public key’s shares Xi against the
(homomorphically-evaluated) decrypted ciphertext cxi

. This
fails for DKG-CL because the plaintext space size is only q but
xi ∈ Z. Specifically, homomorphism gives cxi = ⊞j∈Qcχji ,
where cχji = ⊞len−1

ℓ=0 (qℓ⊡ cχjiℓ
). However, the plaintext space

is Fq , we have cχji = cχji0 that only xi mod q is verified.

With plaintext space G, the extra ciphertext cXij
can be

used to verify xi ∈ Z. One could generate a proof of the

7



DKG-CL
Gen(pp)→ {PCχij , {cχijℓ

}ℓ, cXij , πχij}j∈P

1 : χi ←$ [0, B], {χij}j∈P ← Z-SS.Share(χi,P)
2 : χ′

i ←$ [0, B], {χ′
ij}j∈P ← Z-SS.Share(χ′

i,P)
3 : foreach j ∈ P do

4 : PCχij := hχijg
χ′
ij

q

5 : Xij := g
χij∆
q , cXij ← GEnc(ekj ,Xij ; rXij )

6 : write χij in q-ary =
∑len−1

ℓ=0 qℓχijℓ

7 : for ℓ ∈ [0, len− 1] do

8 : cχijℓ ← Enc(ekj , χijℓ; rχijℓ)

9 : πχij ← ZBInt.P((PCχij , {cχijℓ}ℓ, cXij , ekj);

10 : ({χijℓ}ℓ, χ′
ij , {rχijℓ}ℓ, rXij ))

11 : return {PCχij , {cχijℓ}ℓ, cXij , πχij}j∈P

GenVf({{PCχij
, {cχijℓ

}ℓ, cXij
, πχij

}j∈P}i∈P)

5 : if ¬ZBInt.Vf(πχij , (PCχij , {cχijℓ}ℓ, cXij , ekj))

6 : // all other lines are the same as GenVf in Figure 1, except Z-SS

Reveal({{cχjiℓ
}ℓ, cXji

}j∈Q, dki)→ (xi,Xi, πXi
)

1 : foreach j ∈ P do χji :=
∑len−1

ℓ=0 qℓDec(dki, cχjiℓ)

2 : xi :=
∑

j∈Q χji, cXi := ⊞j∈QcXji , Xi := g∆xi
q

3 : πXi ← ZGDec-CL.P((Xi, cXi , eki, g
∆
q ); (dki, xi))

4 : return (xi,Xi, πXi)

RevealVf({{cXji
}j∈Q,Xi, πXi

}i∈P)→ X

1 : foreach i ∈ P do

2 : cXi := ⊞j∈QcXji

3 : if ¬ZGDec-CL.Vf(πXi , (Xi, cXi , eki, g
∆
q ))

4 : P := P \ {i}
5 : return X :=

∏
i∈P X

∆Li,P
i

Fig. 2: Distributed Key Generation for Class Groups

share xi w.r.t. the ciphertexts {χjiℓ}j,ℓ, yet it takes O(n · len)-
size statement and witness. One could also verify against the
commitment PCχij

, but it requires extra ciphertexts for sending
the randomness χ′

ij .

Third, the share χij is a big integer in [0, (nt) ·2l∗+λd ], but
CLE only supports plaintext in Fq . Thus, χij is decomposed in
base q (Line 6-8 of Gen) such that χij =

∑len−1
ℓ=0 qℓχijℓ; and

Pi delivers ciphertexts {cχijℓ
}ℓ, with len := ⌈ log((n

t)·2l
∗+λd )

log(q) ⌉.

We defer the correctness and security argument (Lem-
mas 10 and 11) to Appendix B.The argument is analogous
to the argument for DKG-DL but with modifications for class
groups, i.e., using Z-SS and multiple ciphertexts with ZKP to
transmit shares, which does not affect the flow of argument.

D. Communication Round vs. Efficiency

Although DKG-CL does not need to resolve complaints,
Gen and GenVf in the generation phase involve O(nlen)
and O(n2len) operations, respectively. Appendix C presents
a 3-round construction from hybrid encryption to remove the

O(len) factor. As a tradeoff, the correspondence between the
hybrid encryption and commitment becomes difficult to prove
by ZKPs. Thus, only private verification is provided, requiring
one extra round to resolve complaints, if any.

V. THRESHOLD HOMOMORPHIC ENCRYPTION FROM DKG

We introduce a threshold variant of CLE, t-CL =
(Setup,KGen,Enc,PartDec,FinDec), using our DKG in Sec-
tion IV-C to produce a uniformly distributed key. (Eval is the
same as CLE.Eval.) We optimize the decryption algorithm [10]
by reducing the exponent from ∆3 to ∆2, where ∆ = n!.

A. Construction

Setup first distributively initializes a class group for CLE
and samples a random base element h for the class-group
commitment. Each party then invokes KGen (with ZKP of
knowledge10) to obtain the CLE key pairs for DKG-CL. KGen
runs DKG-CL to generate a threshold key pair (eki, dki) of
t-CL, where eki = (g∆dki

q ) and ek = g∆
3dk

q =
∏

i∈P ek
∆Li,P
i .

• Setup⟨1λ⟩ → ⟨pp⟩:
1) Distributive setup of the class group:

a) Pi picks qi ←$ {0, 1}λ, broadcasts hqi := H(qi).
b) After all hqi are received, Pi broadcasts qi.
c) For each j ∈ P , if hqj ̸= H(qj), set P := P\{j}. Set

q′ ← next-prime(⊕jqj), where next-prime returns
the prime number just larger than the input number.
Pi runs CLE.Setup(q, q′, 1λ)→ ppCL.

2) Distributive sampling of h:
a) Pi picks hi ←$ Gq , broadcasts hhi

:= H(hi).
b) After all hhi

are received, Pi broadcasts hi.
c) For each j ∈ P , if hhi

̸= H(hi), sets P := P \ {j}.
d) Returns h :=

∏
j∈P hj if |P| ≥ t; abort otherwise.

3) Pi runs CLE.KGen(pp) → (CLE.eki,CLE.dki), broad-
casts CLE.eki, invokes the multi-party Σ-protocol
Σ∗

CL⟨{CLE.ekj}j∈P ;CLE.dki⟩i∈P , and sets P := P\{j}
if Pj fails in Σ∗

CL. Abort if |P| < t.
4) Everyone in P returns pp := (ppCL, h, {CLE.ekj}j∈P).

• KGen⟨pp;CLE.dki⟩i∈P → ⟨ek, {ekj}j∈P ; dki⟩i∈P :
1) Invoke DKG-CL⟨pp;CLE.dki⟩i∈P → ⟨X;xi⟩i∈P .
2) Return ek := X, ekj := g

∆xj
q , and dki := xi.

The encryption algorithm Enc slightly differs from that in
CLE. It uses g∆

2

q as the base element to generate c0 = (g∆
2

q )r.

Partial decryption PartDec returns a share cpdi = c∆dki
0

and its proof πcpdi . Final decryption FinDec discards pdj if
πcpdj is invalid. Interpolation of correct shares {cpdj}j∈P′∈A

reconstructs
∏

j∈P′ cpd
∆Lj,P′

j = c∆
3dk

0 = (ekr)∆
2

. With
c∆

2

1 = (fmekr)∆
2

, m is recovered as Dlog(f∆
2m)/∆2 mod q.

• Enc(ek,m; r)→ cm: Pick r ←$ Dq , output ((g∆
2

q )r, fmekr).
• PartDec(eki, c, dki)→ pdi:

1) Parse c as (c0, c1), compute cpdi := c∆dki
0 .

2) Run ZPartDec.P((eki, c
∆
0 , cpdi); dki)→ πcpdi .

10The simulation argument for security necessitates extracting secrets from
other participants, which can be done by share reconstruction with an honest
majority. In a dishonest majority setting, our design relies on extracting the
CLE decryption key, which is accomplished by a knowledge extractor. This
choice justifies using a multi-party Σ-protocol instead of non-interactive ZKP.
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3) Output (cpdi, πcpdi).
• FinDec(ek, {ekj}j∈P′ , c, {pdj}j∈P′)→ m:

1) Parse c as (c0, c1), {pdj}j∈P′ as {(cpdj , πcpdj )}j∈P′ .
2) For j ∈ P ′, if ZPartDec.Vf((ekj , c

∆
0 , cpdj), πcpdj ) = 0,

set P ′ := P ′ \ {j}. Abort if |P ′| < t.
3) Compute M := c∆

2

1 /(
∏

j∈P′ cpd
∆Lj,P′

j ).
4) Output m := Dlog(M)/∆2 mod q.

B. Security Analysis

Lemma 5. If both CLE and DKG-CL satisfy (evaluation)
correctness, t-CL satisfies evaluation correctness, i.e., honest
executions of algorithms/protocols in t-CL give m correctly.

t-CL satisfies t-ind-cpa-security, a variant of ciphertext
indistinguishability under chosen plaintext attacks of LHE that
allows an adversary to corrupt a set of parties C /∈ A.

Lemma 6. If DKG-CL has secrecy and CLE is indistinguish-
able under chosen plaintext attacks, t-CL is t-ind-cpa-secure.

Threshold encryption also requires simulation security [6]
to ensure the decryption key dki cannot be learnt from partial
decryption pdi, i.e., given ciphertext c and message m, pdi
can be simulated indistinguishably from the real one.

Lemma 7. If DKG-CL satisfies secrecy and ZPartDec is honest-
verifier zero-knowledge, t-CL has simulation security.

The proof strategy for CL encryption aligns with classic
threshold ElGamal encryption due to structural similarity.
Appendix E shows detailed proofs for the above lemmas.

The threshold decryption process (PartDec,FinDec) of
t-CL is robust that the decryption succeeds whenever ≥t honest
parties are involved. Users can verify partial decryptions,
allowing them to exclude problematic ones and proceed with
decryption using only the correct partial decryptions.

C. Property for Simple Security Proof

Given t-ind-cpa-security, the simulator for threshold de-
cryption can simulate the partial decryptions with the knowl-
edge of the final decryption result m. We outline the argument
with a more accessible game-based definition, complementing
its existing UC-security guarantees [10]. Given the challenge
ciphertext cb from the t-ind-cpa game encrypting 0 or 1, the
simulator first assumes cb encrypts b′ = 1 and generates
a ciphertext cm := m ⊡ cb. If the adversary (breaking the
indistinguishability) aborts, i.e., b ̸= b′, then the simulator
learns b and can win the t-ind-cpa game in both cases. As a
result, we conclude that the simulator can simulate the partial
decryption for any desired decryption result, which is useful
when using threshold encryption as a building block.

VI. NEW THRESHOLD ECDSA AND BBS+ SIGNATURES

Using threshold CL encryption in Section V, we propose
efficient threshold signing protocols for ECDSA and BBS+
signatures, backgrounds of which will also be introduced. To
defend against rushing adversaries, we use threshold lifted El-
Gamal encryption to commit to group elements. We instantiate
it in the same elliptic-curve group as the signature.

A. Definition

Let DS := (KGen,Sign,Vf) be a digital signature scheme.

• KGen(pp) → (vk, sk): On input the public parameter pp,
KGen outputs a verification-signing key pair (vk, sk).

• Sign(sk,msg)→ σ: On input sk and the message msg, Sign
outputs a signature σ.

• Vf(vk, σ,msg) → 0/1: Vf outputs 1 if and only if σ is a
signature of msg under vk.

DS is existentially unforgeable if, given access to a signing
oracle that on query msg outputs σ, the probability of any
PPT adversary outputting a valid signature σ∗ on msg∗ /∈ Qry
is negl(λ), where Qry is the set of queried messages.

Threshold signature features a (possibly decentralized)
setup, a threshold key generation protocol TKeygen, and
a threshold signing protocol. TKeygen⟨pp⟩ → ⟨vk; ski⟩i∈P
outputs to each Pi verification key vk and threshold signing
key ski. The threshold signing protocol outputs signature σ if a
subset P of parties agrees on the message msg and participates
honestly with their threshold signing keys {ski}i∈P .

Let TS := (TKeygen,TSign,Vf) be a (t, n)-threshold sig-
nature scheme. TS is unforgeable [33] if any PPT adversaryA,
having corrupted at most t − 1 parties and given the view of
TKeygen and TSign on input messages of its adaptive choices,
as well as signatures on those messages, A outputs a valid
signature σ∗ on msg∗ /∈ Qry is of negligible probability in λ.

TS is simulatable [33] if TKeygen and TSign are simu-
latable: TKeygen (resp. TSign) is simulatable if there exists
a simulator such that, on input vk (resp. (vk,msg)) and the
public output of TKeygen (resp. TSign), generates an indis-
tinguishable view of TKeygen (resp. TSign, which outputs σ).

If TKeygen is simulatable, the reduction can generate the
view of TKeygen such that the threshold signature and regular
signature use the same vk. Thus, a forged threshold signature
is also a valid regular signature. If TSign is simulatable, the
reduction queries the signing oracle of the regular signature to
obtain a signature σ of the queried message msg and uses it
to simulate the view of TSign.

Protocol continuation depends on the majority setting.
For dishonest majority without t honest parties, the best is
identifiable abort, ensuring that a corrupted party is identified.
For honest majority with at least t honest parties, robustness is
considered, which ensures the protocol completes successfully.

B. Threshold ECDSA

ECDSA is a variant of DSA instantiated over a group of
points on an elliptic curve. Let the public parameter pp be the
group description (G, q, g) and m be the hash of the message
msg. The ECDSA algorithms (KGen,Sign,Vf) are as follows:

• KGen(pp)→ (vk, sk): Randomly sample x←$ Fq , set X :=
gx, and output (vk, sk) := (X,x).
• Sign(sk,msg) → σ: Set m := H(msg), randomly sample

k ←$ Fq , set R := g1/k, and output σ := (r, s := k(m +
rx)), where r is the x-projection of point R on Fq .

• Vf(vk, σ,msg)→ 0/1: Parse σ as (r, s), accept if r is the x-
projection of R′ := (gmXr)1/s ∈ G, where m := H(msg).
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a) Construction: Our threshold ECDSA uses threshold
CL encryption t-CL to encrypt plaintexts over Fq and threshold
ElGamal encryption t-ElG over G to commit to elements of G.
We define k, gk to be the CL/ElGamal ciphertext of k ∈ Fq ,
gk ∈ G under encryption key clek, elek, respectively.

Our scheme sometimes requires homomorphic evaluation
without randomization. For differentiation, randomizable eval-
uation is marked with ∗, i.e., ⊞∗ and ⊡∗.

Our setup runs t-CL.Setup to set up a class group for t-CL
and invokes two instances of the distributed key generation
protocol DKG-DL to generate key pairs (X, {xi}i∈P) for
threshold ECDSA and (elek, {eldki}i∈P) for t-ElG. Concur-
rently, it invokes distributed key generation protocol DKG-CL
to generate a key pair (clek, {cldki}i∈P) for threshold CL
encryption t-CL. We assume that {gxi , geldki , gcldkiq }i∈P are
broadcasted. Note that X =

∏
i∈P(g

xi)Li,P .

Our protocol for the offline phase of ECDSA signing before
knowing the message has the following skeleton.

Step 1-2: distributively generate encrypted randomness k;
Step 3-4: distributively generate encrypted random factor gγ ,

pseudo-key xk, and pseudo-nonce γk;
Step 5-6: distributively extract (i.e., threshold-decrypt) gγ and

γk to compute nonce g1/k = (gγ)
1
γk .

1) Pi encrypts ki:
a) ki ←$ Fq , t-CL.Enc(clek, ki; rki)→ ki.
b) ZEnc.P((clek, ki); (ki, rki

))→ πki
.

c) Broadcast (ki, πki).
2) Pi uses homomorphism to generate LHE of k :=

∑
j∈P kj :

a) ∀j ∈ P\{i}: if ¬ZEnc.Vf(πkj
, (clek, ki)), P := P\{j}.

b) k := ⊞j∈Pkj .
3) Pi encrypts gγi , and generates LHE of xik and γik:

a) xik := xi ⊡∗ k, ZDL-CL.P((Xi, k, xik);xi)→ πxik.
b) γi ←$ Fq , t-ElG.Enc(elek, gγi ; rγi

)→ gγi .
c) γik := γi ⊡∗ k.
d) ZEl-CL.P(g, gγi , elek, k, γik); (γi, rγi

))→ πγik.
e) Broadcast (xik, πxik, g

γi , γik, πγik).
4) Pi computes homomorphically encryption of xk :=∑

j∈P Lj,Pxjk, γk :=
∑

j∈P γjk, and gγ :=
∏

j∈P gγj :
a) ∀j ∈ P \ {i}, set P := P \ {j} if
• ZDL-CL.Vf(πxjk, (Xj , k, xjk)) = 0 or
• ZEl-CL.Vf(πγjk, (g, g

γj , elek, k, γjk)) = 0.
b) Set xk := ⊞j∈P(Lj,P ⊡ xjk), γk := ⊞j∈Pγjk, and

gγ := ⊠j∈Pgγj (ciphertext of
∏

j∈P gγj ).
5) Pi partially decrypts γk and gγ :

a) t-CL.PartDec(cleki, γk, cldki)→ pdγk,i.
b) t-ElG.PartDec(eleki, gγ , eldki)→ pdgγ ,i.
c) Broadcast (pdγk,i, pdgγ ,i).

6) Pi fully decrypts γk and gγ :
a) t-CL.FinDec(clek, {clekj}j∈P , γk, {pdγk,j}j∈P)→γk.
b) t-ElG.FinDec(elek, {elekj}j∈P , gγ , {pdgγ ,j}j∈P)→gγ .
c) R := (gγ)

1
kγ , return (R, k, xk).

The offline phase is 3-round. Messages are broadcasted at
the end of Steps 1, 3, and 5. Steps 2, 4, and 6 start when a
sufficient number of messages are received.

The online signing phase is non-interactive, broadcasts
happen only at the end of the second last step, and goes by:

Step 1: generate encrypted signature km+ rkx;
Step 2-3: distributively extract (threshold-decrypt) km+ rkx.

1) Pi homomorphically derives the encryption of km+ rkx:
Let the x-coordinate of R be r and m be the hash of
message msg, set km+ rkx := (m⊡ k)⊞ (r ⊡ xk).

2) Pi partially decrypts km+ rkx:
t-CL.PartDec(cleki, km+ rkx, cldki) → pdkm+rkx,i,
broadcast pdkm+rkx,i.

3) Pi fully decrypts km+ rkx:
t-CL.FinDec(clek, {clekj}j∈P , km+ rkx, pdkm+rkx,j) →
km+ rkx, return (r, s := km+ rkx).

We can further optimize the procedure for enhanced effi-
ciency. Specifically, since users can verify the ECDSA signa-
ture using the signature verification algorithm, we only conduct
partial decryption verification when ECDSA verification fails.

Theorem 1. If DKG-DL, DKG-CL, t-CL, and t-ElG are
correct, our threshold ECDSA is correct. If ZEnc, ZDL-CL, and
ZEl-CL are sound, our threshold ECDSA is robust (with <t
corrupted parties and an honest majority).

Parties compute the signature over ciphertexts. By ensuring
the ciphertext validity through ZKPs, the signature compu-
tation aligns with the correctness of TLHE. Robustness is
guaranteed by the robust threshold decryption process. The
proof details are available in Appendix F-A.

Theorem 2. If DKG-DL and DKG-CL satisfy secrecy, and
t-CL and t-ElG satisfy simulation security and t-ind-cpa, our
threshold signature protocol for ECDSA is simulatable.

At a high level, there exists a simulator on input X ,
msg, and the public output (R, s) of ECDSA, generates an
indistinguishable view of the protocol that outputs (R, s). The
transcript only contains ciphertexts (with ZKPs) and partial
decryption. The ciphertexts leak nothing about the intermediate
values, while the property described in Section V-C allows
the simulator to decrypt the ciphertexts as any desired values
safely, in this case (R, s). Proof details are in Appendix F-B.

C. Threshold BBS+ Signatures

BBS+ signatures sign on vectors of ℓ messages. The
public parameter pp contains the bilinear group descrip-
tion (G1,G2, g1, g2, q, e) and ℓ + 1 random group elements
(h0, . . . hℓ)←$ Gℓ+1

1 . BBS+ algorithms (KGen,Sign,Vf) are:

• KGen(pp) → (vk, sk): Randomly sample x ←$ Fq , output
vk := (X := gx2 ) and sk := x.
• Sign(sk = x, (m1, . . . ,mℓ)) → σ: Randomly sample
e, s←$ Fq , output σ := (A := (g1h

s
0

∏ℓ
k=1 h

mk

k )
1

x+e , e, s).
• Vf(vk, σ, (m1, . . . ,mℓ)) → 0/1: Parse vk as X and σ as
(A, e, s), accept if e(A,Xge2) = e(g1h

s
0

∏ℓ
k=1 h

mk

k , g2).

We present a threshold BBS+ construction that works
similarly to our threshold ECDSA. We use threshold ElGamal
encryption t-ElG to commit G1 elements to cater rushing
adversaries. Our setup runs DKG-CL to generate clek for t-CL,
but DKG-DL over G2 to generate vk ∈ G2 for threshold
BBS+, and DKG-DL over G1 to generate elek ∈ G1 for
t-ElG. (h0, . . . , hℓ) are distributively generated (like the setup
of Pedersen commitment) to hide their discrete logarithms.
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We can prepare encryption of x during the revelation phase
of DKG, verifying against Xi := gxi

2 .

1) Pi runs t-CL.Enc(clek, xi; rxi) → xi and then
ZEnc-DL.P((xi, Xi); (xi, rxi))→ πxi .

2) ∀j ∈ P \ {i}, if ZEnc-DL.Vf(πxj , (xj , Xi)) = 0, set P :=
P \ {j}. After that, set x := ⊞j∈P(Lj,P ⊡ xj).

Our threshold BBS+ signing follows the skeleton below.

Step 1-2 distributively generate encrypted e, s, and x+ e;
Step 3-4 distributively extract (threshold-decrypt) e and s;
Step 5-6 distributively generate encrypted Dγ where D :=

g1h
s
0

∏ℓ
k=1 h

mk

k and γ(x+ e) from encrypted x+ e;
Step 7-8 distributively extract (threshold-decrypt) Dγ and

γ(x+ e) to obtain A = (Dγ)
1

γ(x+e) .

The protocol is 4-round, and messages are broadcasted at
the end of Steps 1, 3, 5, and 7. Steps 2, 4, 6, and 8 start when
a sufficient number of messages are received.

1) Pi encrypts ei and si:
a) ei ←$ Fq , t-CL.Enc(clek, ei; rei)→ ei,

si ←$ Fq , t-CL.Enc(clek, si; rsi)→ si.
b) ZEnc.P(ei; (ei, rei))→πei , ZEnc.P(si; (si, rsi))→πsi .
c) Broadcast (ei, si, πei , πsi).

2) Pi generates LHE of e :=
∑

j∈P ej , s :=
∑

j∈P sj , x+ e.
a) ∀j ∈ P \ {i}, set P := P \ {j} if

ZEnc.Vf(πej , ej) = 0 or ZEnc.Vf(πsj , sj) = 0.
b) Set e := ⊞j∈Pej , s := ⊞j∈Psj , x+ e := x⊞ e.

3) Pi partially decrypts e and s:
a) t-CL.PartDec(cleki, e, cldki)→ pde,i.

t-CL.PartDec(cleki, s, cldki)→ pds,i.
b) Broadcast (pde,i, pds,i).

4) Pi fully decrypts e and s:
a) t-CL.FinDec(clek, {clekj}j∈P , e, {pde,j}j∈P)→ e.
b) t-CL.FinDec(clek, {clekj}j∈P , s, {pds,j}j∈P)→ s.

5) Pi generates LHE of (g1hs
0

∏ℓ
k=1 h

mk

k )γi and γi(x+ e).
a) γi ←$ Fq , t-ElG.Enc(elek, Dγi ; rγi

)→ Dγi .
b) γi(x+ e) := γi ⊡∗ x+ e.
c) ZEl-CL.P(D,Dγi , elek, x+ e, γi(x+ e));

(γi, rγi
))→ πγi

.
d) Broadcast (Dγi , γi(x+ e), πγi

).
6) Pi uses homomorphic operation to generate LHE of Dγ :=∏

j∈P Dγj and γ(x+ e) :=
∑

j∈P γj(x+ e).
a) ∀j ∈ P \ {i}: set P := P \ {j} if
¬ZEl-CL.Vf(πγi , (D,Dγi , elek, x+ e, γi(x+ e))).

b) γ(x+ e) := ⊞j∈Pγj(x+ e), Dγ := ⊠j∈PDγj .
7) Pi partially decrypts Dγ and γ(x+ e):

a) t-ElG.PartDec(eleki, Dγ , eldki)→ pdDγ ,i.
t-CL.PartDec(cleki, γ(x+ e), cldki)→ pdγ(x+e),i.

b) Broadcast (pdDγ ,i, pdγ(x+e),i).
8) Pi fully decrypts Dγ and γ(x+ e):

a) t-ElG.FinDec(elek, {elekj}, Dγ , {pdDγ ,j}j∈P)→ Dγ .
b) t-CL.FinDec(clek, {clekj}j∈P , γ(x+ e),
{pdγ(x+e),j}j∈P)→ γ(x+ e).

c) Return (A, e, s) := ((Dγ)
1

γ(x+e) , e, s).

Theorem 3. If DKG-DL, DKG-CL, t-CL, and t-ElG are
correct, so does our threshold BBS+. If ZEnc and ZEl-CL are
sound, our threshold BBS+ signing protocol is robust (with <t
corrupted parties and an honest majority).

Theorem 4. If DKG-DL and DKG-CL satisfy secrecy, and
t-CL and t-ElG satisfy simulation security and t-ind-cpa, our
threshold signature protocol for BBS+ is simulatable.

Both proofs employ strategy as the ones used for threshold
ECDSA. Details can be found in Appendices F-C and F-D.

VII. EXPERIMENTS

We implement our constructions using BICYCL [9], an
open-source C++ library for class-group arithmetic. We use
the class group CL-HSMq with a 256-bit plaintext space and
1827-bit ∆K to achieve a 128-bit security level. SHA-3 is used
to instantiate H(·) for the Fiat–Shamir transform. Experiments
were run 100 times for reporting averages on a desktop
computer11 with AMD Ryzen 5 2600 CPU and 64GB RAM.

In line with the state of the art of Wong et al. [48], we opt
for n = t−1 to compare computational costs with another CL-
encryption-based work [16]. This choice represents our worst-
case scenario for utilizing threshold decryption (unnecessary
in existing approaches) with O(t)-exponentiation.

With no multi-thread optimization, Figure 3 illustrates
the runtime and (average) incoming communication costs of
the DKG protocols over different numbers of parties n ∈
{5, 10, 15, 20}. The revelation phase of DKG-CL (DKG-DL)
has a constant-size communication cost of 1.31 (0.77) KBytes
per party. The key generation phase of DKG-CL (Figure 2)
is the most time-consuming part and its runtime in Gen and
GenVf scales with nlen and n2len, respectively (cf., Figure 3a).

For threshold CL encryption t-CL, PartDec takes ∼93 ms,
and each party broadcasts 0.8 KBytes. FinDec scales with n
with runtime 443 ms for n = 5 and 1704 ms for n = 20. Ho-
momorphic evaluation of t-CL follows the basic CLE scheme,
costing 24ms (or <1 ms if ciphertext re-randomization is not
needed). The t-CL.KGen protocol is essentially the DKG-CL
protocol that only runs once. This is the tradeoff for efficiency
gain in online phases.

We implement the t-CL-based threshold ECDSA protocol
on the secp256k1 elliptic curve. For homomorphic evaluations
of t-CL ciphertext, we employ ciphertext re-randomization
for publicly-computable ciphertexts involved in Z (otherwise,
there will be inconsistencies). Figures 4a and 4b compare
schemes using CLE with t = n. Compared to Castag-
nos et al. [16] with identifiable abort, ours saves ∼20% in
total communication cost in the offline stage. Compared to
Wong et al. [48] (with weaker “self-healing”), we save over
half of the runtime and total communication costs. The offline
communication cost of Paillier-based threshold ECDSA [11] is
153 KBytes and 613 KBytes for n = 5 and 20, which is at least
twice compared to the CLE-based schemes. Encryption/decryp-
tion of CLE is also faster than the Paillier cryptosystem for
128-bit security level or above [9]. With the proposed t-CL,
our robust threshold ECDSA protocols can be more efficient.

We remark that the OT-based instantiation12 of Gą-
gol et al. [35] only requires half our running time but incurs

11We save/load the protocol outputs/inputs on a solid state drive and sequen-
tially ran as different parties. The saving and loading times are neglected.

12This is adapted from the Golang library available at https://gitlab.com/
alephledger/threshold-ecdsa.
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Fig. 3: Total runtime and (incoming) communication for the
DKG protocols, including the verification
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Fig. 4: Total runtime and (incoming) communication of the
offline stage (excluding setup) of state-of-the-art threshold
ECDSA protocols given n parties participate

higher communication costs, e.g., ∼400 KBytes for 15 parties
and ∼700 KBytes for 20 parties.

VIII. CONCLUSION AND FUTURE WORKS

We put forth 2-round robust DKG protocols for discrete-
logarithm-based and class-group-based cryptosystems. We
showcase efficient threshold signing protocols for ECDSA
and BBS+ signatures using the threshold CL encryption with
our DKG. The resulting protocol provides identifiable abort
and robustness for a sufficient number of honest parties. Our
empirical results show that it saves ∼50% of computational
and communication costs compared to the threshold ECDSA
by Wong et al. [48] with the same level of security guarantee.
In summary, we close 2-out-of-3 open problems they left [48].

One of the future directions includes upgrading our scheme
with UC security. In our scheme, all ZKPs do not need
rewinding, except the one for discrete logarithm over class
groups during the setup phase. This minimizes the number of
expensive straight-line extractors, making UC security attain-
able. Another future direction is to simplify DKG for class
groups, the most costly part of our scheme. If a biased key
can be used in threshold CL encryption, we wonder if a one-
round DKG for threshold CL encryption (with UC security) is
achievable. This way, the computational cost can be minimized
by enabling generation in an asynchronous sense.

Our schemes allow the signer to assume an “unstable” state
and exit the protocol anytime. Nevertheless, the scheme oper-
ates on stable broadcast channels, achievable through a public
bulletin board, to reach consensus on a shared ciphertext. We
posit that this form of consensus is more readily attainable
than existing proposals relying on a conceptual agreement for
a shared secret. Exploring weaker communication assumptions
is a potential avenue to enhance practicality.
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a1, a2 ←$ Zq,
a3 ←$ [0, 2λ+λdB]

C = ga1ha2 ,R := ga3
q , C,R,S

S := fa1eka3

z1 := a1 + chal · χ ∈ Zq, chal chal←$ {0, 1}λ

z2 := a2 + chal · χ′ ∈ Zq
z1, z2, z3 check z1, z2 ∈ Zq,

z3 := a3 + chal · r ∈ Z z3 ∈ [0, (2λd + 1)(2λB)],
gz1hz2 ?

= C · PCchal,
gz3q

?
= Rcchal0 ,
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= S · cchal1

Fig. 5: Σ-Protocol for REnc-PC over (PC, (c0, c1), ek)
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APPENDIX A
DETAIL IN ZKP

A. Non-interactive ZKP

The zero-knowledge proof requires standard soundness: If
x /∈ L, no cheating prover can convince an honest verifier that
the statement x is true with non-negligible probability.

Zero-knowledge proof of knowledge guarantees that the
prover knows a witness w such that (x,w) ∈ R. More for-
mally, the standard soundness is replaced by special soundness,
i.e., there exists a PPT extractor Ext that can extract a witness
w with (x,w) ∈ R from multiples accepting transcripts.

B. ZKP Relations

We provide the Σ-protocol for the following NP-relations.
All only require standard soundness except RCL. The relation
in class groups follows the argument in known order groups.
The key point for standard soundness is to show the existence
of a witness but without explicitly computing it. For special
soundness, taking discrete logarithm over class groups as an
example, the extractor obtains (α, β) such that Xβ = gαq .
However, computing x = α/β becomes challenging when
α/β /∈ Z due to the unknown order. Given that the exponent
space of class groups allows for the division of a power
of 2 without knowing the order [7], the 2-fractional-root
assumption [21] assumes that the denominator ( β

gcd(α,β) ) of
the simplified fraction of α/β is not a power of 2 with
negligible probability. As a result, this assumption guarantees
the successful extraction of the witness by ensuring the validity
of division.
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Prover(·, ({χℓ}ℓ, χ′, {rℓ}ℓ, r)) Verifier(·)
{a1ℓ}ℓ ←$ Zq,
{a3ℓ}ℓ ←$ [0, 2λ+λdB],
a2, a4 ←$ [0, 2λ+λdB]

C = ga2
q

∏
ℓ

(hq
ℓ

)a1ℓ ,

{Rℓ := ga3ℓ
q ,

Sℓ := fa1ℓeka3ℓ}ℓ,
R0 := ga4

q ,

S0 := eka4
∏
ℓ

(gq
ℓ

q )a1ℓ C, {Rℓ,Sℓ}ℓ,R0,S0B′ := 2λB(2λd + 1)

{z1ℓ := a1ℓ + χℓchal ∈ Zq, chal chal←$ {0, 1}λ,

z3ℓ := a3ℓ + rℓchal ∈ Z}ℓ {z1ℓ, z3ℓ}ℓ, z2, z4 check {z1ℓ}ℓ ∈ Zq,

z2 := a2 + chal · χ′ ∈ Z, z2, z4 ∈ [0, B′],
z4 := a4 + chal · r ∈ Z {z3ℓ}ℓ ∈ [0, B′],

{gz3ℓq
?
= Rℓc

chal
ℓ,0 ,

fz1ℓekz3ℓ
?
= Sℓc

chal
ℓ,1 }ℓ,

gz4q
?
= R0c

chal
0 ,

gz2q
∏
ℓ

(hq
ℓ

)z1ℓ
?
= CPCchal,

ekz4
∏
ℓ

(gq
ℓ

q )z1ℓ
?
= S0c

chal
1

Fig. 6: Σ-Protocol for RBInt over (PC, {cℓ,0, cℓ,1}ℓ, (c0, c1), ek)

a) Discrete Logarithm over Class Groups: For X ∈ Gq ,
RCL = {(X, x) : X = gxq} verifies that X = gxq .

b) CL Ciphertext and Commitment over G: The follow-
ing relation verifies that (χ, χ′) is the opening of commitment
PC and c = (c0, c1) is generated by CLE.Enc(ek, χ; r).

REnc-PC = {((PC, (c0, c1), ek), (χ, χ′, r)) :

PC = gχhχ′
∧ c0 = grq ∧ c1 = fχekr}

c) Decryption of CL Ciphertext and Discrete Logarithm
over G: The following relation verifies that decrypting cipher-
text (c0, c1) with dk results in x where X = gx.

RDec-DL = {((X, (c0, c1), ek), (x, dk)) :

c1 = fxcdk0 ∧ ek = gdkq ∧X = gx}

One can prove Dec-DL via ZKP for Enc-PC by setting
χ′ = 0 and rearranging: ZDec-DL(X, (c0, c1), ek; (x, dk)) :=
ZEnc-PC((X, (ek, c1), c0); (x, 0, dk)).

d) Encryption and Commitment of Big Integers: The
relation below verifies that a big integer χ, which is (1)
committed in PC, (2) encrypted via gχq in (c0, c1), and (3)
decomposed as

∑
ℓ q

ℓχℓ, with each χℓ encrypted in (cℓ,0, cℓ,1).

RBInt={((PC, {cℓ,0, cℓ,1}ℓ, (c0, c1), ek), ({χℓ}ℓ, χ′, {rℓ}ℓ, r)) :
PC = gχ

′

q

∏
ℓ

(hq
ℓ

)χℓ

∧ {cℓ,0 = grℓq ∧ cℓ,1 = fχℓekrℓ}ℓ
∧ c0 = grq ∧ c1 = ekr

∏
ℓ

(gq
ℓ

q )χℓ}

e) Decryption of CL Encryption for Group Elements
and Discrete Logarithm over Class Groups: The following

relation verifies that x such that X = (g∆q )
x and (gq)

x is the
result of decrypting ciphertext (c0, c1) using dk.

RGDec-CL = {((X, (c0, c1), ek, g∆q ), (dk, x)) :
X = (g∆q )

x ∧ c1 = gxq c
dk
0 ∧ ek = gdkq }

f) Correct Partial Decryption: The relation below veri-
fies that cpdi is a partial decryption of c0, i.e., cpdi = (c∆0 )

dki .

RPartDec = {((eki, c∆0 , cpdi), dki) :
eki = (g∆q )

dki ∧ cpdi = (c∆0 )
dki}

g) Encryption: The following relation verifies that c =
(c0, c1) is generated by CLE.Enc(ek, χ; r).

REnc = {((c0, c1), (k, r)) :c0 = (g∆
2

q )r ∧ c1 = fkekr}

One can prove Enc via ZKP for Enc-PC by setting
PC = 0 and χ′ = 0: ZEnc((c0, c1); (x, r)) :=
ZEnc-PC((0, (c0, c1), ek); (x, 0, r)).

h) Multiplying CL Ciphertext with Discrete Logarithm
over G: The relation below verifies that CL ciphertext
(cxk,0, cxk,1) is a multiplication of (ck,0, ck,1) by x in X = gx.

RDL-CL = {((X, (ck,0, ck,1), (cxk,0, cxk,1)), x) :

X = gx ∧ cxk,0 = cxk,0 ∧ cxk,1 = cxk,1}

i) Multiplying CL Ciphertext with Plaintext of ElGamal
Encryption: The following relation verifies that the plaintext γ
of ElGamal ciphertext (gr, Dγelekr) is used in homomorphic
multiplication of CL ciphertext (ck,0, ck,1) to (cγk,0, cγk,1).

REl-CL={((D, (c0, c1), elek, (ck,0, ck,1), (cγk,0, cγk,1)), (γ, r)) :

c0 = gr ∧ c1 = Dγelekr ∧ cγk,0 = cγk,0 ∧ cγk,1 = cγk,1}
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Prover(·, (dk, x)) Verifier(·)
a1, a2 ←$ [0, 2λ+λdB]

E = (g∆q )a2 ,R := ga1
q , E,R,S

S := ga2
q ca1

0
chal chal←$ {0, 1}λ

z1 := a1 + chal · dk ∈ Z, z1, z2 check

z2 := a2 + chal · x ∈ Z z1 ∈ [0, (2λd + 1)(2λB)],
z2 ∈ [0, (2λd + 1)(2λB)],
(g∆q )z2

?
= EXchal,

gz2q cz10
?
= Scchal1 ,

gz1q
?
= Rekchal

Fig. 7: Σ-Protocol for RGDec-CL over (X, (c0, c1), ek, g∆q )

Prover((eki, c∆0 , cpdi), dki) Verifier(eki, c∆0 , cpdi)

a←$ [0, 2λ+λdB]

R := (g∆q )a,S := (c∆0 )a R,S

chal chal←$ {0, 1}λ

z := a+ chal · dki ∈ Z z check

z ∈ [0, (2λd + 1)(2λB)],
(g∆q )z

?
= Rekchali ,

(c∆0 )z
?
= S · (cpdi)

chal

Fig. 8: Σ-Protocol for RPartDec

One can prove DL-CL via ZKP for El-CL by set-
ting D = g, (c0, c1) = (0, X), elek = 1, γ = x,
and r = 0: ZDL-CL((X, (ck,0, ck,1), (cxk,0, cxk,1)), x) :=
ZEl-CL((g, (0, X), 1, (ck,0, ck,1), (cxk,0, cxk,1)), (x, 0)).

j) Correct Decryption of two CL Ciphertexts: The
following relation verifies that two ciphertexts c and c′ can
be correctly decrypted using dk.

R2Dec = {(((c0, c1), (c′0, c′1), ek), dk) :
c1 = cdk0 ∧ c′1 = c

′dk
0 ∧ ek = gdkq }

One can prove R2Dec by running ZKP for
RPartDec twice: R2Dec(((c0, c1), (c

′
0, c

′
1), ek), dk) :=

RPartDec((ek
∆, c0, c

∆
1 ), dk) ◦ RPartDec((ek

∆, c′0, c
′
1
∆
), dk)

k) Discrete Logarithm and Commitment over Class
Groups: The following relation verifies that (x, x′) is the
opening of commitment and X = (g∆q ).

RPC-DL = {((PC,X), (x, x′)) :PC = gx
′

q hx ∧ X = (g∆q )
x}

Figures 5, 6, 7, 8, and 9 depict the Σ-protocols.

APPENDIX B
SECURITY ANALYSIS OF DKG PROTOCOLS

We provide Lemmas 8 and 10 for correctness and Lem-
mas 9 and 11 for security. In our DKG-DL, we make the fol-
lowing changes: (1) Replacing the shares verification method,
which involves polynomial evaluation in the DRG construc-
tion [48], with dual-code-based verification. (2) Substituting

Prover(·, (γ, r)) Verifier(·)
a1 ←$ [0, 2λ+λdq], a2 ←$ Zq

R := ga2 , S = Da1eleka2 ,

R := (ck,0)
a1S := (ck,1)

a1 R,S,R,S

z1 := a1 + chal · γ ∈ Z, chal chal←$ {0, 1}λ

z2 := a2 + chal · r ∈ Zq, z1, z2 check z2 ∈ Zq,

z1 ∈ [0, (2λd + 1)(2λq)],

gz2
?
= Rc0

chal,
Dz1elekz2

?
= Sc1

chal,

ck,0
z1 ?

= R · cγk,0chal

ck,1
z1 ?

= S · cγk,1chal

Fig. 9: Σ-Protocol for REl-CL over
(D, (c0, c1), elek, (ck,0, ck,1), (cγk,0, cγk,1))

Prover((PC,X), (x, x′)) Verifier(PC,X)
a1, a2 ←$ [0, 2λ+λdB]

R := (g∆q )a1 ,S := ga2
q ha1 R,S

z1 := a1 + chal · x ∈ Z chal chal←$ {0, 1}λ

z2 := a2 + chal · x′ ∈ Z z1, z2 check

z1 ∈ [0, (2λd + 1)(2λB)],
z2 ∈ [0, (2λd + 1)(2λB)],
(g∆q )z1

?
= RXchal,

gz2q hz1
?
= S · (PC)chal

Fig. 10: Σ-Protocol for RPC-DL

the method for demonstrating correct share delivery, previously
relying on ZKPs for decryption correctness [48], with ZKPs
for ciphertext well-formedness. In the case of DKG-CL, we
further change DKG-DL: (3) Replacing the use of a single
ciphertext for distributing a share in DKG-DL with the uti-
lization of multiple ciphertexts. Despite these modifications,
the verification of inconsistent shares passing with negligible
probability after change (1) and the preservation of ciphertexts’
resistance to information leakage after changes (2) and (3)
ensure that the alterations do not disrupt the workflow of the
existing correctness and security arguments of Wong et al. [48,
Theorems 1 and 2]. Therefore, we only state the lemmas here
and refer to the existing arguments [48].

Lemma 8. If the Pedersen commitment is computationally
binding and statistically hiding, Z is (standard)-sound and
honest-verifier zero-knowledge, SS satisfies correctness, ro-
bustness, and unconditional secrecy, and CLE is correct and
indistinguishable against adaptive chosen-plaintext attacks
(IND-CPA-secure), then our DKG-DL is correct and robust
(with <t corrupted parties and an honest majority).

Lemma 9. If Z is honest-verifier zero-knowledge, SS has
unconditional secrecy, Pedersen commitment is perfect hiding,
and CLE is IND-CPA-secure, then our DKG-DL has secrecy.

For DKG in class groups, we need a slight change the
requirement on secrecy and correctness to match the recon-
struction result from Z-SS, i.e., ∆2x =

∑
i∈P′(∆Li,P′)xi
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DKG-CL-Gen
Gen(pp)→ {PCχij

, (cχij
, Cχij

), (cχ′
ij
, Cχ′

ij
)}j∈P

1 : χi ←$ [0, B], {χij}j∈P ← Z-SS.Share(χi,P)
2 : χ′

i ←$ [0, B], {χ′
ij}j∈P ← Z-SS.Share(χ′

i,P)
3 : foreach j ∈ P do

4 : PCχij := hχijg
χ′
ij

q

5 : Kij ←$ Fq, cχij ← Enc(ekj ,Kij)

6 : K′
ij ←$ Fq, cχ′

ij
← Enc(ekj ,K

′
ij)

7 : Cχij ← SEnc(Kij , χij), Cχ′
ij
← SEnc(K′

ij , χ
′
ij)

8 : return {PCχij , (cχij , Cχij ), (cχ′
ij
, Cχ′

ij
)}j∈P

GenVf({{PCχiℓ
}ℓ∈P , (cχij

, Cχij
), (cχ′

ij
, Cχ′

ij
)}i∈P , dkj)

1 : {x⊥
ℓ }ℓ∈P ← Z-SS.Dual(P)

2 : foreach i ∈ P do

3 : if
∏

ℓ∈P PC
x⊥
ℓ

χiℓ ̸= 1 then P := P \ {i}
4 : else

5 : Kij ← Dec(dkj , cχij ), χij ← SDec(Kij , Cχij )

6 : K′
ij ← Dec(dkj , cχ′

ij
), χ′

ij ← SDec(K′
ij , Cχ′

ij
)

7 : if PCχij ̸= hχijg
χ′
ij

q

8 : Blame(Kij , cχij ,K
′
ij , cχ′

ij
, dkj)

9 : P := P \ {i}

Fig. 11: Generation Phase of Our 3-round Variant

for P ∈ A. For secrecy, the simulator on input gxq outputs
g∆

3x
q . The secret key is defined as ∆2x to base g∆q for public

key g∆
3x

q . For correctness, as x is an integer computed as sum
of χi from a uniform distribution, we can only guarantee that
g∆

3x
q is uniformly distributed over the group generated by g∆

3

q .

Lemma 10. If the Pedersen Commitment over class groups
is computationally binding and statistically hiding, Z is
(standard)-sound and honest-verifier zero-knowledge, Z-SS
satisfies correctness, robustness, and secrecy, and CLE is
correct and IND-CPA-secure, then our DKG-CL is correct
and robust (with <t corrupted parties and an honest majority).

Lemma 11. If Z is honest-verifier zero-knowledge, Z-SS has
secrecy, Pedersen commitment over G is perfect hiding, and
CLE is IND-CPA-secure, our DKG-CL has secrecy.

APPENDIX C
3-ROUND VARIANT OF DKG PROTOCOLS

A. Generation Phase (Gen↔ GenVf)

Figure 11 shows the 2-round generation phase that Gen and
GenVf now involve O(n) and O(n2) operations, respectively.
Let (SEnc,SDec) be a symmetric key encryption scheme with
key K ∈ Fq . On input message m and symmetric key K,
algorithm SEnc returns Cm. On input ciphertext Cm and
symmetric key K, the deterministic algorithm SDec returns m.

Similar to DKG-DL and DKG-CL, dealer Pi distributes
(t, n)-threshold shares of an initial secret χi to all others.

DKG-CL-Blame
Blame(Kij , cχij ,K

′
ij , cχ′

ij
, dkj)→ (πχij )

1 : parse cχij = (cχij ,0, cχij ,1), cχ′
ij

= (cχ′
ij ,0

, cχ′
ij ,1

)

2 : c∗χij
= (cχij ,0, cχij ,1/f

Kij ), c∗χ′
ij

= (cχ′
ij ,0

, cχ′
ij ,1

/fK
′
ij )

3 : πχij ← Z2Dec.P((c
∗
χij

, c∗χ′
ij
, ekj); dkj)

4 : return (Kij ,K
′
ij , πχij )

BlameVf(PCχij , cχij , Cχij , cχ′
ij
, Cχ′

ij
, (Kij ,K

′
ij , πχij

))

1 : χij = SDec(Kij , Cχij ), χ
′
ij = SDec(K′

ij , Cχ′
ij
)

2 : if PCχij ̸= hχijg
χ′
ij

q

3 : parse (cχij , cχ′
ij
) = ((cχij ,0, cχij ,1), (cχ′

ij ,0
, cχ′

ij ,1
))

4 : parse c∗χij
= (cχij ,0, cχij ,1/f

Kij )

5 : parse c∗χ′
ij

= (cχ′
ij ,0

, cχ′
ij ,1

/fK
′
ij )

6 : if Z2Dec.Vf(πχij , (c
∗
χij

, c∗χ′
ij
, ekj)) = 1

7 : P := P \ {i}
8 : Q := P

Fig. 12: Complain Part of Our 3-round Variant

Instead of CL encryption, this variant uses hybrid encryption
to encrypt shares {χij}j∈P (Line 5-7 of Gen) for efficiency.

The receiver Pj verifies the consistency of the committed
shares {PCiℓ}ℓ∈P (Line 3 of GenVf) from each dealer Pi.
Pj verifies the commitment PCχij

(Line 7 of GenVf) via the
decryption result χij , χ

′
ij (Line 5-6 of GenVf). Pj broadcasts

evidence from Blame if verification fails.

When the verification of the committed share fails, receiver
Pj invokes Blame to generate evidence, to be verified by
BlameVf, both presented in Figure 12. The evidence contains
two symmetric keys Kij ,K

′
ij , and the proof from ZDec to show

the correctness of two keys Kij ,K
′
ij (correct decryption of the

ciphertexts). Parties verify each complaint (evidence) from Pj

against Pi by cross-checking with the commitment PCχij from
Gen (Line 2 of BlameVf), and the proof (Line 6 of BlameVf).

B. Revelation Phase (Reveal↔ RevealVf)

Figure 12 shows the reveal phase of our variant. Simi-
lar to DKG-DL/DKG-CL, we generate (t, n)-threshold shares
{xi}i∈P of the final secret x =

∑
j∈Q χj via linear homo-

morphism of the shares. This phase concludes with Pi holding
secret share xi of secret key x and public key X = (g∆

3

q )x.

Each party Pi ∈ Q invokes Reveal, which inputs the
decrypted shares χij , χ

′
ij and returns the public key’s shares

Xi = (g∆q )
xi . The correctness of the public key’s share Xi is

verified against the (homomorphically-added) committed share
via the proof πXi

. At the end of this phase, the public key X

is computed via interpolating in exponent
∏

i∈P X
∆Li,P
i =∏

i∈P g
∆2Li,Pxi
q = g

∑
i∈P ∆2Li,Pxi

q = g∆
3x

q = X.
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DKG-CL-Reveal
Reveal({PCχji , χji, χ

′
ji}j∈Q)→ (xi,Xi, πXi)

1 : xi =
∑

j∈Q χji, x′
i =

∑
j∈Q χ′

ji

2 : PCxi :=
∏

j∈Q PCχji , Xi = (g∆q )xi

3 : πXi ← ZPC-DL.P((PCxi ,Xi); (xi, x
′
i))

4 : return (xi,Xi, πXi)

RevealVf({{PCχji}j∈Q,Xi, πXi}i∈P)→ X

1 : foreach i ∈ P do

2 : PCxi :=
∏

j∈Q PCχji

3 : if ZPC-DL.Vf(πXi , (Xi,PCxi , g
∆
q )) = 0

4 : P := P \ {i}
5 : return X :=

∏
i∈P X

∆Li,P
i

Fig. 13: Revelation Phase of Our 3-round Variant

APPENDIX D
INTEGER SECRET SHARING RELATED PROOFS

A. Proof of Lemma 3

Proof: Let
∏

i∈P PC
x⊥
i

F (i) = 1, if degF > t − 1, we
can break the binding property of Pedersen Commitment.
Given shares {F (i), F ′(i)}i∈P , we can always interpolate
F (z) =

∑n−1
d=0 adz

d and F ′(z) =
∑n−1

d=0 a
′
dz

d. Let h = ge,
the commitment PCF (i) can be seen as the lifted share from
the polynomial F ∗(z) := F (z)+eF ′(z), i.e., PCF (i) = gF

∗(i).

Since
∏

i∈P PC
x⊥
i

F (i) = 1 implies that degF ∗ ≤ t−1 with over-
whelming probability, we have gadha′

d = 1 for d ∈ [t, n− 1].

By degF > t−1, we have ad ̸= 0 for some d ∈ [t, n−1].
By gadha′

d = 1, we have gad = h−a′
d , implies a′d ̸= 0 for

some d ∈ [t, n − 1]. Using the tuple (ad, a
′
d), we can break

the binding property by outputting (m0, r0) and (m1, r1) :=
(m0 + ad, r0 − a′d) for arbitrary (m0, r0) ∈ F2

q . Say, the
commitment gm0hr0 can be opened to (m0, r0) and (m1, r1)
at the same time.

B. Proof of Lemma 4

Proof: The high-level idea follows Lemma 3. We prove by
contradiction. Let

∏
i∈P(h

F ′(i)g
F (i)
q )x

⊥
i = 1, if degF > t−1,

we can break the binding property of commitments.

Given {F (i), F ′(i)}i∈P , we interpolate the polynomials
∆F (z) =

∑n−1
d=0 (∆bd)z

d and ∆F ′(z) =
∑n−1

d=0 (∆b′d)z
d in

Z[z]. Let h = geq and ∆F ∗(z) := e(∆F (z)) + (∆F ′(z)), we
consider the commitment (hF

′(i)g
F (i)
q )∆ = g

∆F∗(i)
q .

For {x⊥
i }i∈P ← Z-SS.Dual(P),

∏
i∈P(g

∆F∗(i)
q )x

⊥
i = 1

when
∏

i∈P(h
F ′(i)g

F (i)
q )x

⊥
i = 1. If deg∆F ∗ > t − 1, the

probability that
∏

i∈P(g
∆F∗(i)
q )x

⊥
i = 1 is 1/ord(g∆q ), which is

negligible. So, h∆bdg
∆b′d
q = 1 for d ∈ [t, n− 1].

Using the tuple (∆bd,∆b′d), we can break the binding prop-
erty by outputting (m0, r0) and (m1, r1) := (m0 +∆bd, r0 −

∆b′d) for arbitrary (m0, r0) ∈ Z2, i.e., commitment gm0hr0

can be opened to (m0, r0) and (m1, r1) simultaneously.

C. Argument for ∆Li,P(z) ∈ Z for z ∈ Z

We show that ∆Li,P =
∏

j∈P\{i}
∆
j−i equals K · n!

r!(n−r)! ∈
Z for some integer K and the binomial coefficient n!

r!(n−r)! ,
which implies that ∆Li,P(z) ∈ Z for variable z ∈ Z. Let
P ⊆ [1, n]. We write

∏
j∈P\{i} (j − i) as

(∏
j∈P,j>i j − i

)
·(∏

j∈P,j<i j − i
)

, splitting positive and negative parts. For
positive part, let r be the maximum value of j − i for j ∈ P
and j > i, since r! is divisible by

∏
j∈P,j>i j − i, we can

express r! = K+ ·
∏

j∈P,j>i j − i for some K+ ∈ Z.
Similarly, for negative part, let −(n − r) be the minimum
value of j − i for j ∈ P and j < i, since (n − r)!
is divisible by

∏
j∈P,j<i j − i, we can express (n − r)! =

K− ·
∏

j∈P,j<i j − i for some K− ∈ Z . Combining these
results, we have r!(n−r)! = (K+K−) ·

∏
j∈P\{i} j − i. Thus,

for n!
r!(n−r!) = ∆

(K+K−)·(
∏

j∈P\{i} j−i) ∈ Z and K+K− ∈ Z,

we have
∏

j∈P\{i}
∆
j−i = (K+K−) · n!

r!(n−r)! ∈ Z, which
concludes that the denominators can be canceled by ∆ alone.

APPENDIX E
t-CL RELATED PROOFS

A. Proof of Lemma 5

Proof: Let P be the set of honest parties and P ′ ∈ A be
a subset of P . Let ekj = g

∆dkj
q . For honestly-executed Setup

and KGen, by the correctness of DKG-CL run within KGen, we
have

∑
j∈P′ ∆Lj,P′dkj=∆2dk and

∏
j∈P′ ek

∆Lj,P′

j =g∆
3dk

q .

Given a honestly-generated and honestly-evaluated cipher-
text13 c = (c0, c1) = ((g∆

2

q )r, fmekr) and correct par-
tial decryption cpdj = (c∆0 )

dkj for all j ∈ P ′ from
PartDec(ekj , c, dkj), we have

∏
j∈P cpdj

∆Lj,P equals to:

c
∑

j∈P(∆Lj,P)(∆dkj)

0 = c∆
3dk

0 = gr∆
5dk

q = (ekr)∆
2

.

The reconstruction result can be used to cancel the mask of
c∆

2

1 = f∆
2mek∆

2r to obtain M := f∆
2m. Thus, we can

obtain m by computing Dlog(M)/∆2 mod q.

B. Proof of Lemma 6

The experiment Exptt-ind-cpa
t-CL of t-ind-cpa-security is defined

with the following interaction between a challenger and an ad-
versary A: Assumed that A takes control of a set of parties C.
A and the challenger collaboratively run the protocols Setup
and KGen (so A knows {dkj}j∈C). After that, A sends two
challenge plaintexts m0,m1, the challenger picks a random
bit b and replies with cb ← Enc(ek,mb). A wins Exptt-ind-cpa

t-CL
if A successfully guesses b with probability >1/2 + negl(λ).

Proof: We show how to use any adversary A who wins
Exptt-ind-cpa

t-CL to win the experiment ExptIND-CPA
CLE of IND-CPA-

security of CLE. The reduction takes the role of challenger
of Exptt-ind-cpa

t-CL and adversary of ExptIND-CPA
CLE . Upon receiving

13The homomorphic evaluation part is the same as CL encryption, so we
directly consider an evaluated ciphertext here.
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the encryption key ek from the challenger of ExptIND-CPA
CLE , we

invoke the simulator of DKG-CL to generate an indistinguish-
able view of KGen protocol such that it outputs encryption key
ek∗ of t-CL as ek∗ = ek∆

3

and eki = (g∆q )
dk (which can be

simulated by the simulator of DKG-CL).

Upon receiving (m0,m1) from A, we submit to the
ExptIND-CPA

CLE challenger (m0/∆
3 mod q,m1/∆

3 mod q) and
obtain (cb,0, cb,1) = (grq, f

mb/∆
3

ekr). We then compute
((grq)

∆2

, (fmb/∆
3

ekr)∆
3

) = ((g∆
2

q )r, fmb(ek∆
3

)r), which
match the ciphertext form of our scheme since ek∗ = ek∆

3

.

This reduction algorithm differs from the real experiment
Exptt-ind-cpa

t-CL in the key generation and the challenge cipher-
text. By Lemma 11, the view generated by the simulator of
DKG-CL is indistinguishable from the real one. Meanwhile,
the challenge ciphertext c∗b has the exact form as the real one.
If A guesses b successfully with a non-negligible advantage,
relaying b wins ExptIND-CPA

CLE with the same advantage.

C. Proof of Lemma 7

Given a ciphertext c and correct message m, there exists
Sim for PartDec that simulates a partial decryption pdi (which
is indistinguishable from the real one) without the decryption
key dk and threshold decryption key {dkj}j∈P\C . Hence, no
information about the (threshold) decryption key is leaked.

Proof: Sim invokes the simulator of DKG-CL to generate
an indistinguishable view of KGen protocol, obtain {dkj}j∈C ,
and output encryption key ek of t-CL. By Lemma 11, this view
of DKG-CL is indistinguishable from the real one.

To simulate partial decryption of (c0, c1) = (g∆
2r

q , fmekr)

encrypting plaintext m, Sim computes c1/f
m = g∆

3dkr
q =

c∆dk
0 = c

F (0)
0 , where F (z) = ∆dk +

∑t−1
d=0 adz

d is
the polynomial used in secret sharing. Sim computes from
shares {dkj}j∈C and c

F (0)
0 the lifted polynomial c

∆F (z)
0 =∏

i∈C∪{0}(c
F (i)
0 )∆Li,P(z) by Lemma 1. For i ∈ P \ C, Sim

computes partial decryption cpdi = c
∆F (i)
0 , runs the simulator

of ZPartDec to get πcpdi , and broadcasts {cpdi, πcpdi}i∈P\C . As
cpdi is perfectly simulated and ZPartDec is zero-knowledge, the
view is indistinguishable from the real one.

APPENDIX F
THRESHOLD SIGNATURES RELATED PROOFS

A. Proof of Theorem 1

Proof: By the correctness of DKG-DL and DKG-CL,
our protocol generates correct key pairs (vk, {ski}i∈P)
for threshold ECDSA, (elek, {eldki}i∈P) for t-ElG, and
(clek, {cldki}i∈P) for t-CL. Our protocol computes s = km+
rkx, kγ, and gγ in plaintext space homomorphically, which is
guaranteed to be correct by the evaluation correctness of LHE.

For robustness, assuming there are <t corrupted parties and
an honest majority, we show that removing any cheater does
not make the protocol abort. First, k is not fixed in Step 1, so
we can safely remove the cheaters (by verifying the proofs).
k =

∑
i ki is fixed after Step 2, but its ingredient ki has been

correctly encrypted, so k will not be lost. Due to the similar
reason above, the value kγ =

∑
i γik and gγ =

∏
i g

γi can

be correctly generated even if some parties cheat or become
absent after Step 4. Notice that xi is a share of x, we can
compute encrypted xk from encrypted xik, as long as a subset
>t of honest parties exists. By the threshold decryption feature
of t-CL and t-ElG, km + rkx, γjk, and gγj can always be
obtained from km+ rkx, γjk, and gγj as long as t parties
are involved.

B. Proof of Theorem 2

Proof: An adversary corrupts a set C /∈ A of parties.
Notice that TKeygen includes two instances of DKG-DL and
an instance of DKG-CL. By the secrecy of DKG-DL,DKG-CL,
there exists a simulator that can simulate the view of any real
execution of DKG-DL,DKG-CL given only the protocol output.
Hence, given (public) key of threshold ECDSA, t-ElG, and
t-CL, we can invoke the corresponding simulator to generate
view indistinguishable from the real execution of all three
public keys. Hence, TKeygen is simulatable.

By the property in Section V-C, for (R, s) received from
ECDSA signing oracle, the simulator of partial decryption can
simulate {pdkm+rkx,i, pdγk,i, pdgγ ,i}i∈P\C , s.t. s, ω,Γ are the
final decryption of km+ rkx, γk, and gγ with R = Γ1/ω .

C. Proof of Theorem 3

Proof: Correct DKG-DL and DKG-CL generate
correct key pairs (vk, {ski}i∈P) for threshold ECDSA,
(elek, {eldki}i∈P) for t-ElG, and (clek, {cldki}i∈P) for t-CL.
Homomorphical computations of s, e, Dγ , and γ(x + e) are
guaranteed to be correct by the LHE evaluation correctness.

For robustness, with <t corrupted parties and an honest
majority, s (e) is not fixed in Step 1, so we can safely remove
the cheater. Step 2 fixed s =

∑
i si (e =

∑
i ei), but its

ingredient si (ei) has been correctly encrypted. As long as
t parties are involved, t-CL or t-ElG decryption of s or e can
recover s and e, respectively. Similarly, the rest of the steps
make Dγ and γ(x + e) available to threshold decryption for
outputting the BBS+ signature ((Dγ)

1
γ(x+e) , s, e).

D. Proof of Theorem 4

Proof: Let an adversary corrupt a set C /∈ A of parties.
By the secrecy of DKG-DL,DKG-CL, we have a simulator that
generates an indistinguishable view of TKeygen that outputs
the required key pair (the same public key of the underlying
scheme) of threshold ECDSA, t-ElG, and t-CL. By the property
in Section V-B, for (A, s, e) received from signing oracle of
BBS+ signature, we can simply use the simulator of partial
decryption to simulate {pds,i, pde,i, pdDγ ,ipdγ(x+e),i}i∈P\C ,
such that s, e,Dγ , γ(x + e) are the final decryption result of
s, e, Dγ and γ(x+ e), where A = (Dγ)

1
γ(x+e) .
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