TrustSketch: Trustworthy Sketchbased Telemetry on Cloud Hosts

Zhuo Cheng, Maria Apostolaki, Alan Liu, Vyas Sekar

Network telemetry in cloud is important

Network telemetry in cloud is important

Network telemetry in cloud is important

Operator

DDoS attack monitoring Accounting

Low footprint, Efficient, Accurate

Low footprint, Efficient, Accurate

How much data been sent from each IP?

Low footprint, Efficient, Accurate

How much data been sent from each IP?

Low footprint, Efficient, Accurate

How much data been sent from each IP?

Low footprint, Efficient, Accurate

How much data been sent from each IP?

Low footprint, Efficient, Accurate

How much data been sent from each IP?

Low footprint, Efficient, Accurate

How much data been sent from each IP?

Low footprint, Efficient, Accurate

Prior work proposes to run sketches on hosts

UnivmonSketch (SIGCOMM'16), SketchVisor (SIGCOMM'17), ElasticSketch (SIGCOMM'18), NitroSketch (SIGCOMM'19), CocoSketch (SIGCOMM'21), OctoSketch (NSDI'24)

Prior work proposes to run sketches on hosts

UnivmonSketch (SIGCOMM'16), SketchVisor (SIGCOMM'17), ElasticSketch (SIGCOMM'18), NitroSketch (SIGCOMM'19), CocoSketch (SIGCOMM'21), OctoSketch (NSDI'24)

^[2] https://thenewstack.io/privilege-escalation-information-leak-flaws-patched-xen-hypervisor/

^[3] https://www.datacenterknowledge.com/security/hackers-exploiting-saltstack-vulnerability-hit-data-centers

Our goal: Trustworthy Sketch-Based Telemetry

• Formulate requirements for trustworthy sketch-based telemetry.

• Formulate requirements for trustworthy sketch-based telemetry.

TrustSketch: based on enclave and SmartNIC.

• Formulate requirements for trustworthy sketch-based telemetry.

TrustSketch: based on enclave and SmartNIC.

 Evaluation shows that TrustSketch is safe with low performance overhead.

Talk Outline

Motivation.

Formulate requirements for trustworthy sketch-based telemetry.

TrustSketch Design.

• Evaluation.

Integrity

Existing solutions cannot meet the requirements.

Existing Solutions	Integrity			Performance	Conorality
	Compute	Memory	Input	Periorillance	Generality
Cross checking ^[1]					
Code attestation ^[2]					
Secure memory ^[3]					

^[1] Planck: Millisecond-scale monitoring and control for commodity networks. SIGCOMM 14.

^[2] Flexible OS support and applications for trusted computing. HotOS 03.

^[3] AMD Secure Memory Encryption (SME).

Existing solutions cannot meet the requirements.

Existing Solutions	Integrity			Dorformonco	Conorolity
	Compute	Memory	Input	Performance	Generality
Cross checking[1]	✓	✓	✓	×	✓
Code attestation ^[2]	×	×	×	✓	✓
Secure memory ^[3]	×	✓	×	✓	✓

^[1] Planck: Millisecond-scale monitoring and control for commodity networks. SIGCOMM 14.

^[2] Flexible OS support and applications for trusted computing. HotOS 03.

^[3] AMD Secure Memory Encryption (SME).

Talk Outline

Motivation.

• Formulate requirements for trustworthy sketch-based telemetry.

TrustSketch Design.

• Evaluation.

Opportunities:

Opportunities:

+ Runtime protection by hardware

Opportunities:

- + Runtime protection by hardware
- + Already deployed

Opportunities:

- + Runtime protection by hardware
- + Already deployed

Constraints:

Opportunities:

- + Runtime protection by hardware
- + Already deployed

Constraints:

Limited compute/memory

Opportunities:

- + Runtime protection by hardware
- + Already deployed

Constraints:

- Limited compute/memory
- Unsecure path between enclave/NIC

Telemetry System

Telemetry System

Requirements:

- 1. Compute Integrity
- 2. Memory Integrity
- 3. Input Integrity
- 4. Performance
- 5. Generality

Strawman 1
Sketch in NIC

Requirements:

- 1. Compute Integrity
- 2. Memory Integrity
- 3. Input Integrity
- 4. Performance
- 5. Generality

Strawman 1
Sketch in NIC

Requirements:

- 1. Compute Integrity
- 2. Memory Integrity
- 3. Input Integrity
- 4. Performance
- 5. Generality

X Generality

Sketch in NIC

Strawman 2 All in Enclave

Requirements:

- 1. Compute Integrity
- 2. Memory Integrity
- 3. Input Integrity
- 4. Performance
- 5. Generality

Strawman 1

X Generality

Strawman 1

X Generality

Sketch in NIC Requirements: 1. Compute Integrity Enclave 2. Memory Integrity 3. Input Integrity Virtual Switch 4. Performance I/O interface 5. Generality Host Sketch **SmartNIC**

Strawman 2 All in Enclave

× Performance

TrustSketch Strawman 1 Strawman 2 Sketch in NIC All in Enclave Only Sketch in Enclave Requirements: Sketch Sketch 1. Compute Integrity Enclave Virtual Switch 2. Memory Integrity I/O interface 3. Input Integrity Virtual Switch Virtual Switch 4. Performance Enclave I/O interface 5. Generality I/O interface Host Host Sketch **SmartNIC SmartNIC** × Performance X Generality

Enclave

Host

SmartNIC

Strawman 1 Strawman 2 Sketch in NIC All in Enclave

- 1. Compute Integrity
- 2. Memory Integrity
- 3. Input Integrity
- 4. Performance
- 5. Generality

X Generality

× Performance

X Input Integrity

Packet Stream P1 P2 P3

Solution: Tag packets to reconstruct substreams

Packet Stream

Solution: Tag packets to reconstruct substreams

Solution: Tag packets to reconstruct substreams

Talk Outline

Motivation.

Formulate requirements for trustworthy sketch-based telemetry.

TrustSketch Design.

• Evaluation.

Evaluation: Security

Attack Type	Attack	Baseline (Unsafe)	Safebricks (Enclave Only)	Trustsketch
Compute	Modify runtime library			
Memory	Modify counter			
	Modify flow keys			
Input	Inject packets			
	Drop packets			
	Modify packet header			

Evaluation: Security

Attack Type	Attack	Baseline (Unsafe)	Safebricks (Enclave Only)	Trustsketch
Compute	Modify runtime library	×	✓	✓
Memory	Modify counter	×	✓	✓
	Modify flow keys	×	✓	✓
Input	Inject packets	×	×	✓
	Drop packets	×	×	✓
	Modify packet header	×	×	✓

Evaluation: Performance

Compared to Baseline (unsafe), TrustSketch degrades throughput by 7%.

Evaluation: Accuracy

TrustSketch has the same accuracy as Baseline (Unsafe).

Summary

- Sketches are attractive for resource efficient telemetry in cloud.
- Existing architectures can be insecure if deployed naively.
- Contributions:
 - Formulate trustworthy sketch-based telemetry problem.
 - TrustSketch: based on enclave and SmartNIC.
 - Evaluation shows that TrustSketch is safe with low performance overhead.