
Separation is Good: A Faster Order-Fairness
Byzantine Consensus

Ke Mu†, Bo Yin‡, Alia Asheralieva§, Xuetao Wei†¶∗
†Southern University of Science and Technology, China

‡Changsha University of Science and Technology, China §Loughborough University, UK
¶Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, SUSTech, China

12031136@mail.sustech.edu.cn yinbo@hnu.edu.cn aasheralieva@gmail.com weixt@sustech.edu.cn

Abstract—Order-fairness has been introduced recently as a
new property for Byzantine Fault-Tolerant (BFT) consensus
protocol to prevent unilaterally deciding the final order of
transactions, which allows mitigating the threat of adversarial
transaction order manipulation attacks (e.g., front-running) in
blockchain networks and decentralized finance (DeFi). However,
existing leader-based order-fairness protocols (which do not rely
on synchronized clocks) still suffer from poor performance since
they strongly couple fair ordering with consensus processes. In
this paper, we propose SpeedyFair, a high-performance order-
fairness consensus protocol, which is motivated by our insight
that the ordering of transactions does not rely on the execution
results of transactions in previous proposals (after consensus).
SpeedyFair achieves its efficiency through a decoupled design
that performs fair ordering individually and consecutively, sepa-
rating from consensus. In addition, by decoupling fair ordering
from consensus, SpeedyFair enables parallelizing the order/verify
mode that was originally executed serially in the consensus
process, which further speeds up the performance. We implement
a prototype of SpeedyFair on the top of the Hotstuff protocol.
Extensive experimental results demonstrate that SpeedyFair sig-
nificantly outperforms the state-of-the-art order-fairness protocol
(i.e., Themis), which achieves a throughput of 1.5×-2.45× greater
than Themis while reducing latency by 35%-59%.

I. INTRODUCTION

Decentralized finance (DeFi), as a financial instrument
deployed on the blockchain, allows users to conduct financial
transactions without intermediaries and thus has attracted much
interest in recent years. Although DeFi continues to gain popu-
larity, recent works [5, 11, 12, 17, 33, 44] have shown that DeFi
suffers from adversarial transaction order manipulation attacks,
where the malicious miners (or leaders) have the power to
select transactions sent by users for agreement and determine
the final order of them to maximize their profits. For instance,
consider a victim transaction txv that purchases a particular
asset, the price of which will increase after the execution of
txv . Then a malicious miner can launch the sandwich attack:
(1) front-runs one transaction txa1 before txv to buy the asset
(typically at a low price) to let the victim buy at a higher
price and then (2) back-runs another transaction txa2 after

∗Xuetao Wei is the corresponding author.

txv to sell the assets (typically at a high price) to gain profits.
Such sandwich attacks and other order manipulation attacks
allow attackers to profit at the expense of ordinary users.
The profit gained through adversarial manipulating transactions
within blocks can be measured by Miner extractable value
(MEV) [11] or blockchain extractable value (BEV) [33]. In the
Ethereum network, the amount earned by attackers for BEV
is estimated at more than 540M USD [33].

The core reason why the order of transactions can be
manipulated lies in the consensus protocol. The traditional
Byzantine fault-tolerant (BFT) consensus protocol guarantees
a total order: all correct replicas obtain the same sequence of
transactions (safety), and all valid transactions are eventually
delivered in a reasonable time (liveness). However, these
properties do not constrain how to order the transactions
and which order is chosen. Specifically, existing leader-based
consensus protocols usually have a leader that receives transac-
tions from clients, determines the order of each transaction and
wraps these transactions in a proposal, and then initiates the
agreement on the ordered proposal among all replicas. Thus, an
adversarial leader can fully control the inclusion and ordering
of transactions within the proposal it creates without violating
safety or liveness.

To address this issue, a recent line of work [3, 8, 19, 20,
21, 25, 26, 43] has introduced a new safety property of order-
fairness in the BFT consensus protocol to prevent adversarial
manipulation of transaction ordering. The core idea of order-
fairness is to make the final order of transactions reflect the
wishes of most replicas on the order of transactions rather
than being determined by a single replica. Specifically, in
each round of an order-fairness protocol, each replica collects
transactions from clients and constructs a local order according
to the receive time. Then, all the replicas send the local
orders to a leader. The leader adopts enough local orders
to generate a global fair order of transactions through a fair
ordering algorithm. At last, the leader packages these ordered
transactions into a proposal and initiates a consensus protocol
to agree on this order. Pompe [43], and Wendy [25, 26] tried
to obtain an absolute order of transactions for final ordering
by relying on the synchronized clocks. However, they are
impractical in an asynchronous network. Another series of
work [3, 8, 20, 21] considered relative order of transactions
received by replicas to construct final ordering, which realizes
“stronger” fairness properties [20] than Pompe and Wendy.
However, Aequitas [21] and Quick order-fairness [8] only
ensure weak liveness, which means transactions may have to

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.24693
www.ndss-symposium.org

wait for an indefinite period before getting committed [20].
Themis [20] solves the weak liveness issue and provides the
first implementation of the relative fair ordering protocol (do
not rely on the synchronized clocks). However, Themis has
a considerable performance overhead, making it unsuitable
for real-world applications. Rashnu [3] introduces a data-
dependent order-fairness, which only orders the transactions
that access the same object (dependent transactions) to reduce
the complexity of fair ordering.

Problem. Existing relative order-fairness protocols still suffer
from poor performance due to two issues: (i) expensive fair
ordering: To achieve order-fairness, the fair ordering algorithm
requires the leader to collect local orderings from all replicas.
Since adopting a relative order rather than an indicator (able
to clearly indicate the order relationship, e.g., timestamp) to
describe the sequence of a set of transactions, relative order-
fairness schemes require the leader to build a dependency
graph for all transactions to consider the transaction order
preferences of a sufficient number of replicas. The leader
can then construct the global fair ordering according to this
graph. Since building a dependency graph requires checking
and processing the order of each pair of transactions, the
complexity of graph computation will grow quadratically with
the batch size of local ordering. Thus, achieving a fair order
among all transactions is time-consuming, especially when
the batch size increases. For instance, as shown in Figure
1, we investigate the latency of fair ordering/verification and
the total latency of order-fairness consensus in one round in
Themis under different network sizes (n = 5, 21) and different
batch sizes (50,100,200,400). The latency of fair ordering
and validation accounts for 35%-70% of the overall latency
and the proportion grows with the increase of batch size.
(ii) strongly coupled consensus and ordering: In existing
schemes [3, 8, 20, 21], the consensus and fair ordering pro-
cesses are strongly coupled (shown in Figure 2). Specifically,
to create a new proposal during a consensus round, the leader
must wait until the fair ordering calculation is finished. After
obtaining the proposal from a leader, replicas are required to
verify the correctness of order-fairness by re-computing the
fair ordering algorithm (time-consuming), which delays the
advancement of the subsequent consensus phases. In addition,
executing a new round of fair ordering also needs to wait for
the end of the current consensus. Therefore, mutual waiting
between the consensus protocol and fair ordering hinders
the overall performance. Note that Rashnu [3] alleviates the
first issue by introducing data-dependent order-fairness, which
captures the order for the transactions that access the same
data object rather than for all transactions. Our work mainly
focuses on solving the second issue.

Solution. Fair ordering of transactions is essential since the
order determines the execution results for these transactions.
However, starting a new round of fair ordering does not
rely on the transaction execution result after the consensus
is completed. It only depends on the valid fair ordering result
from the previous round. Based on this observation, a key
insight of our work is that the fair ordering process can be
decoupled from the consensus and performed individually
and consecutively without waiting for consensus. Note that
the fair ordering method (requires complicated dependency
graph calculations when using relative receive order) consid-
ered in our paper is computationally intensive, whereas consen-

50 100 200 400
Batch Size (n=5)

50

100

150

200

250

La
te

nc
y

[m
s]

Fair Ordering
Total

50 100 200 400
Batch Size (n=21)

100

200

300

400

500

La
te

nc
y

[m
s]

Fair Ordering
Total

Fig. 1: Compare the latency of fair ordering and total latency
in Themis (in one round).

sus protocols are usually communication intensive. Adopting
a decoupled paradigm also enables better utilization of
computing and bandwidth resources. Separating transaction
ordering and verification (not strongly related to the consensus)
from the critical path of consensus into a different protocol
enables direct concurrency to enhance overall performance.

Replica 1
(Leader)

Replica 2

Replica 3

Replica 4

Collect Prepare-
Propose

Verify
Tx Order

Verify
Tx Order

Verify
Tx Order

Remaining Phases
of BFT Consensus

Tx Fair
Ordering

Round i i+1

…

Collect

…

Order Verify Consensus

Fig. 2: Execution flow of a round in a leader-based order-
fairness consensus protocol. The protocol proceeds by consec-
utive rounds.

In this paper, we propose SpeedyFair, a high-performance
order-fairness BFT consensus protocol. In SpeedyFair, we
decouple the fair ordering process from the critical path of the
consensus protocol to improve the overall performance (shown
in Figure 3). Specifically, we introduce a new protocol called
optimistic fair ordering (OFO) to perform the fair ordering
process individually and consecutively (shown in Figure 4). As
a result, when the current fair ordering ends, a new round of
order operations can be started immediately without waiting
for consensus. To further accelerate the ordering phase and
reduce latency, OFO enables the virtual leader and replicas
to calculate the expensive fair order in parallel. In a round of
OFO, the virtual leader only broadcasts a notify message to the
replicas to specify the local orderings (received from sufficient
replicas) selected in this round. The virtual leader and replicas
can then take the same local orderings as inputs and compute
a fair ordering simultaneously. In addition, we adopt a quorum
certificate (implemented by the threshold signature) to enable
OFO to prove to the consensus phase that the fair ordering
for a set of transactions has been completed successfully in a
decoupled paradigm. The quorum certificate also ensures that
the valid fair ordering results (called fragments) of OFO can
be eventually picked by consensus, which mitigates censorship
and maintains availability. During the consensus phase, we
introduce a new verification scheme to reduce the overhead
of verifying fairness for replicas when the leader proposes

2

a new proposal. Thus, the consensus protocol can be per-
formed with low latency in SpeedyFair. In addition, we prove
that our decoupled protocol guarantees order-fairness, safety,
and liveness simultaneously. Note that we mainly contribute
a decoupled consensus paradigm, which enables achieving
higher performance by embedding more efficient fair ordering
schemes. To be able to compare the state-of-the-art order-
fairness protocol, i.e., Themis [20], we adopt Hotstuff [39]
(used in Themis) as the underlying consensus protocol and
implement SpeedyFair on the top of it.

The summary of contributions of this paper is shown as
follows:

• We design SpeedyFair, a high-performance order-
fairness BFT protocol that totally decouples the fair
ordering process from the critical path of consensus.
The decoupled paradigm allows for better utilization of
bandwidth and computing resources and avoids the delay
of ordering and consensus processes waiting for each
other.

• We propose optimistic fair ordering (OFO), parallelizing
the serial executed order/verify mode to further improve
the efficiency of the fair ordering process. We design a
quorum certificate using threshold signatures to guarantee
that the valid fair ordering outputs (called fragments) of
OFO can be eventually selected by consensus (ensure
liveness), avoiding censorship and maintaining availabil-
ity in a decoupled paradigm.

• We implement a prototype of SpeedyFair based on
Hotstuff [39] consensus protocol. Extensive experiment
results demonstrate that SpeedyFair significantly out-
performs the state-of-the-art scheme (Themis [20]). Our
solution achieves a throughput of 1.5×-2.45× greater than
Themis while reducing latency by 35%-59%.

II. BACKGROUND AND PRELIMINARIES

Practical BFT protocols [6, 9, 16, 23, 24, 28, 39] have
been studied for a long time, which mainly focus on safety
(consistency, validity) and liveness but do not constrain the
ordering mechanism of values, resulting in the “leader” has
complete control over the inclusion and ordering of transac-
tions in proposals it creates. To address this issue, a line of
recent works [3, 8, 20, 21, 25, 26, 43] have proposed the notion
of order-fairness for BFT protocols to prevent the malicious
transaction reordering attacks caused by the leader. Order-
fairness aims to guarantee that the order of transactions output
by a correct replica matches the order in which the transactions
entered the network. In an order-fairness consensus protocol,
each replica should order received transactions locally and
send its local orderings to the leader to build a fair global
ordering. Replicas have different local ordering methods: (i)
via the specific time of receiving the transaction (using syn-
chronized clocks, e.g., Wendy [25, 26], Pompe [43]), (ii) via
the transaction’s relative receive order (e.g., Aequitas [21],
Themis [20]). Specifically, Wendy adopts the replica’s local
clock to determine transaction receive time. In Pompe, replicas
leverage the timestamp assigned by clients as the transaction
receive time for fair ordering. Due to differences in the local
clocks of different replicas and unknown network delays, it is
hard to accurately obtain the transaction receive time. Further,

timestamps are easily modified by malicious clients or replicas
to manipulate the order of transactions.

The protocols [3, 8, 19, 20, 21] leverage the relative receive
order of transactions consider an ideal notion called receive-
order-fairness, which states that if γ fraction (sufficient many)
of replicas receive a transaction tx1 before another transaction
tx2, all correct replicas must output tx1 (strictly) before tx2.
However, a social choice theory Condorcet paradox [2]
demonstrated that it is impossible to realize the definition
of receive-order-fairness even if all the replicas are correct.
Condorcet paradox states that even if each replica’s local
preferences (local order) are transitive, the collective voting
preference (global order) can be non-transitive. For instance,
consider three correct replicas A,B,C that receive the trans-
actions tx1, tx2, tx3 in the order: OA = [tx1, tx2, tx3], OB =
[tx2, tx3, tx1] and OC = [tx3, tx2, tx1]. Here, a majority of
replicas (2 out of 3 in this scenario) receive the order that
“tx1 before tx2”, “tx2 before tx3”, and “tx3 before tx1”,
resulting in a cycle for the global ordering of these transac-
tions, called Condorcet cycles. This non-transitive global fair
ordering breaks the realization of receive-order-fairness since
it is impossible to strictly order tx1 before tx2 in the cycle.
To circumvent this issue, Aequitas [21] proposes a notion of
batch-order-fairness, which states that if γ fraction of replicas
receive a transaction tx1 before another transaction tx2, then
all correct replicas deliver tx1 no later than tx2 (can deliver
in the same batch). Batch-order-fairness allows outputting the
cyclically ordered transactions in batches to relax the strict
order requirement of receive-order-fairness.

Although batch-order-fairness avoids the Condorcet impos-
sibility, Themis [20] indicates that batch-order-fairness suffers
from weak liveness. This is because the Condorcet cycles
can be “chained” together and might be extended to arbitrary
length (in the worst case). In this case, the transactions input
later may come into the same cycle as earlier entered trans-
actions. The total ordering and output of the transaction need
to wait for the completion of the entire cycle, which may be
infinitely long. Thus, the liveness of a transaction is threatened
as the transaction may not be guaranteed to be output within
a finite time as defined in a partial-synchronous network. To
address weak liveness, Themis [20] proposes a deferred order-
ing technique, enabling replicas to save an incomplete ordering
of transactions within consecutive cycles in the current block
and deliver these transactions to subsequent blocks to defer the
total ordering. Since the total ordering of deferred transactions
does not depend on the chained Condorcet cycle, Themis can
achieve standard liveness. In this paper, we also adopt this
deferred technique to maintain liveness.

A. Process of Leader-based Order-Fairness Consensus

In a leader-based order-fairness consensus protocol (do not
rely on synchronized clocks), a transaction should experience
the following five steps from submission (by clients) to final
output (by replicas). (i) Initiate Transaction: A client initiates
a transaction with the signature signed by its private key and
then broadcasts it to all replicas. (ii) Collect Transactions: In
this step, the replica receives transactions and adds them to
its transaction pool in their receive order. Then, each replica
constructs a local order of transactions and sends it to the
leader. (iii) Fair Ordering: The leader needs to receive enough

3

BFT Consensus BFT Consensus

Consensus: run BFT consensus to decide fragments in each block

Optimistic Fair Ordering

Fragment1

…

Block1 Fragment4Block2 Block3

Block1 Block2

Decide
Block3

Decide

Fragment2

Pre-OrderPre-
Notify

Collect Pre-OrderPre-
Notify

Collect…

…

Pre-OrderPre-
Notify

Collect Pre-OrderPre-
Notify

Collect

Fragment3

BFT ConsensusDecide …

Fragment5

Fig. 3: Overview of SpeedyFair. A sequence of optimistic fair ordering is executed to order input transactions. Replicas
implement a constantly running BFT consensus to decide the transaction order.

local orders from distinct replicas as inputs and trigger the fair
ordering algorithm to generate a global order of transactions.
(iv) Consensus: In the first phase (i.e., prepare phase) of
the consensus protocol, the leader first packs the fair-ordered
transactions into a proposal (i.e., block) and broadcasts it
to other replicas. When a replica receives a new proposal
in a round, it verifies whether the order of transactions in
the proposal meets the definition of fairness by re-executing
the same fair ordering algorithm. If the transaction order
successfully passes verification, replicas perform the remaining
phases of the consensus protocol to agree on this proposal.
(vi) Order Finalization: After completing the consensus on a
proposal, replicas execute the finalization algorithm locally to
finalize the transactions’ order in current and some previous
proposals. This is because the order of some transactions in
Condorcet cycles may be incomplete in the current proposal.
The total order of these transactions needs to be deferred to a
subsequent proposal to guarantee liveness.

Figure 2 illustrates the workflow of a leader-based order-
fairness protocol, where consensus and fair ordering are
strongly coupled. Note that we only show the key steps that
affect the advance of the protocol. We omit the transaction
initialization as it is invoked by the client but not replicas.
The order finalization is computed locally after reaching a
consensus on a proposal and does not affect the progress of
the consensus, which is also omitted.

B. Fair Ordering in Themis

Themis [20], one of the state-of-the-art relative order-
fairness protocols, includes three critical steps for fair ordering.

(i) Construct local ordering: Each replica ri needs to
construct two transaction lists for the local order with the input
of received transactions. (1) Ordered transaction list Ti: the
ordered list of transactions received by the replica ri that have
not appeared in any previous proposal. (2) Updated transaction
list Ui: the ordered list of transactions received by ri that
correspond to vertices with missing edges in some previous
proposals.

(ii) Generate global fair ordering: Themis divides trans-
actions into three categories according to the number of
transactions in n − f local orderings received by the leader.

(1) solid: the transaction occurs more than n − 2f times, (2)
shaded: the transaction occurs more than n(1−γ)+f+1 times
but less than n−2f times, (3) blank: the transaction occurs less
than n(1− γ) + f +1 times. γ is an order-fairness parameter.
After receiving enough local orderings from distinct replicas,
the leader executes two algorithms to order the transactions
fairly. (1) FairPropose(·): with the inputs of n − f Ti, this
function orders new transactions. Specifically, it constructs a
dependency graph G for each pair of non-blank transactions
and outputs G. Note that G deletes all vertices that do not have
incoming edges to solid transactions. (2) FairUpdate(·): with
the input of n − f Ui, this function updates the ordering for
previous proposals. Specifically, for all tx1 and tx2 that are
proposed in a previous proposal but do not have an edge, if
the number of the edge (tx1,tx2) exceeds a threshold and tx1

is a solid transaction, then add this edge into E . FairUpdate(·)
finally outputs a set of missing edges E .

(iii) Finalize fair ordering: with the input of a set of propos-
als [P1 = {G1, E1},. . . ,Pk = {Gk, Ek}], this function outputs
the final ordering of transactions. Specifically, it adds the
missing edge in the previous proposal’s graph G using E from
the subsequent proposal. Then it computes the topological
sort of all graphs and computes a Hamiltonian cycle for each
Condorcet cycle (each cycle can be a vertex in the topological
sort). Then, the algorithm outputs a list of topological sorts as
the final order of transactions.

III. MODEL

A. System / Threat Model

We consider a system with a fixed set of n known nodes
(replicas). Replicas that follow the defined protocol are denoted
correct, whereas Byzantine (malicious) replicas can deviate
from the protocol arbitrarily. During each execution of the pro-
tocol, there are at most f Byzantine replicas and at least n−f
correct replicas. A strong Byzantine replica can act arbitrarily,
such as coordinating other malicious replicas, reordering or
delaying the messages, refusing or interrupting protocols, etc.
However, the Byzantine replica is computationally bound and
cannot subvert standard cryptographic assumptions.

Replicas are connected by point-to-point, authenticated,
and reliable communication channels with each other: (1)

4

messages sent between correct replicas will eventually be
delivered, (2) Byzantine replicas can not tamper a message
from any correct replica. Clients can communicate with any
replica. We assume a partial-synchronous network model [9]
in the system to circumvent the FLP impossibility [13]. In this
model, an unknown global stabilization time (GST) exists, after
which messages between correct replicas are received within
some unknown bound time ∆. Although the adversary may
delay the message, it is still constrained by the ∆-time limit.
We require that the protocols in our system are responsive, i.e.,
their actual performance must depend only on the network’s
actual δ value, not the upper bound ∆.

BFT protocols, like Hotstuff [39], and PBFT [9], typically
require n > 3f + 1 to ensure safety with at most f malicious
replicas. In SpeedyFair, we aim to achieve the γ-batch-order-
fairness (introduced in Sec. II), which requires a higher number
of replicas n. The degree of order-fairness can be adjusted
using an order-fairness parameter γ, which determines the
proportion of replicas receiving transactions in a specific order.
Similar to the partially synchronous order-fairness protocols
[3, 20, 21], SpeedyFair requires that n > 4f

2γ−1 (proved in
Lemma 1), and the order-fairness parameter should satisfy
1
2 + 2f

n < γ ≤ 1. γ = 1 is the case that all the replicas
receive the same specific order.

Lemma 1. Given a network of size n with at most f malicious
replicas. The γ-batch-order-fairness can be achieved only
when n > 4f

2γ−1 , where γ is the proportion of replicas receiving
transactions in a specific order.

Proof. In a network of n replicas, the fair ordering protocol
relies on a quorum of n−f distinct replicas to generate the final
order since there are f malicious replicas. Note that among
these n−f replicas, f malicious replicas may not participate as
expected. As a result, only n− 2f replicas within the quorum
are ensured to be correct. To achieve γ-batch-order-fairness,
the final ordering of transactions should reflect the specific
order in which they were received by γn replicas. Since only
n − 2f replicas are ensured to be correct, the output of fair
ordering protocol should be the same as γn even with γn−2f
replicas holding the same specific order. To guarantee only
one of the different two orders tx1 ≺ tx2, tx2 ≺ tx1 holds
between two distinct transactions tx1 and tx2, the order should
be agreed by a majority of replicas, i.e., γn − 2f > n

2 , and
thus n > 4f

2γ−1 .

B. Cryptography

We assume the existence of a public-key cryptography
scheme where each of the n replicas holds a distinct public-
private key pair. Each replica can use the public key as a unique
identity in the system. The replica j can sign a message m
through its private key and generate a signature of σj . The
public key of j can be used to verify whether the signature
σj was signed by replica j for the message m. Since a single
replica entirely controls the private key, in our protocol, the
signature can prove the originator of a message and prevent
this message from being tampered with.

We assume the existence of a (k, n)-threshold encryption
scheme TSEnc, where all replicas hold a single public key,
and each of the n replicas holds a distinct private key. In

SpeedyFair, we use a threshold of k = n − f , where n is
the total number of replicas in the system and f is the number
of Byzantine replicas. TSEnc consist of a tuple of algorithms:

• σj ← PartSig(j,m): Replica rj creates a partial threshold
signature (i.e., signature share) for the value m.
• {true, false}← PSigVerify(σj ,m): Verify whether the sig-

nature σj is created by the replica rj for the value m.
• Σ ← TSigCombine({σj}j∈J): Combine k=|J | partial

threshold signatures to create a threshold signature Σ for
value m.
• {true, false} ← TSigVerify(Σ,m): Verify whether the

threshold signature Σ is valid for the value m.

We assume the existence of a cryptographic hash function
H (also called message digest function), which maps an
arbitrary-length input to a fixed-length output, like SHA-256.
The hash function must hold the property of collision-resistant
[34], which informally requires the adversary to generate
inputs m1 and m2 such that H(m1) = H(m2) with negligible
probability. Thus, H(m) can be seen as a unique identifier for
an input m in our protocol.

The security of these cryptographic schemes holds in the
presence of a computationally bounded adversary (Byzantine
replica).

IV. SpeedyFair: REALIZING EFFICIENT
ORDER-FAIRNESS

A. Overview

The primary issue of the current leader-based order-fairness
protocol is: the process of fair ordering (including local-order
collection, fair ordering of transactions, and order verification)
executes serially in the critical path of consensus, which
hinders the process of proposing and voting on proposals,
and unavoidably hurts the latency. To deal with the issue,
we propose SpeedyFair to decouple the fair ordering process
from the critical path of consensus to avoid delays caused
by coupled protocols waiting for each other. SpeedyFair is
motivated by the critical observation that the fair ordering of
transactions does not rely on the transaction execution results
of previous proposals (does not need to wait for the consensus
protocol to finish) but only on the dependency graph for the
previous transaction order.

Figure 3 shows the overview of SpeedyFair. In Speedy-
Fair, clients broadcast their transactions to all replicas in the
system. Transactions are processed first in the continuously
executed fair ordering process (i.e., optimistic fair ordering,
OFO). In OFO, each replica collects a batch of transactions,
constructs a local-order message for transactions according to
their received order, and then sends the message to the leader
specified in OFO (called the virtual leader). The virtual leader
collects local-order messages from all replicas, selects n−f of
them packaged in a notify message, and then broadcasts it to all
replicas. Each replica receives the notify message and adopts
the same n− f local-order data to calculate the fair ordering
locally. Then, the replica stores the ordering result and related
proof in a data structure called Fragment. In each round of the
consensus process, the leader packages one or more fragments
(constructed in OFO) in a proposal (i.e., block) and runs the
BFT consensus protocol to get an agreement. To better explain

5

the algorithms, we list the variables and give a brief description
in Table I.

TABLE I: Notation.

FL
v The local-order fragment of virtual view v
Fv The fragment of virtual view v
σr The signature of a replica r

σr,v
The partial threshold signature for FL

v created by
replica r

Σv The threshold signature for FL
v

PCr,v
The partial certificate of virtual view v created by
replica r

QCv The quorum certificate of virtual view v

LOv
A set of local-order data selected by the virtual
leader in virtual view v

Tr

A set of transactions received by replica r that is
not part of any previous fragment, in the order
that they were received

Ur

A set of transactions from previous fragments that
are not fully specified in the order that they were
received (by replica r)

Gv
The transaction dependency graph of virtual view v
output by fair ordering algorithm

Ev
The set of missing edges of the virtual view v
output by fair ordering algorithm

Tv A set of Tr from quorum replicas in virtual view v
Uv A set of Ur from quorum replicas in virtual view v

B. Decoupling Fair Ordering and Consensus

Replica 1
(Virtual
Leader)

Replica 2

Replica 3

Replica 4

Collect

Pre-Order

Pre-Order

…

Pre-Notify

Pre-Order

Pre-Order

Collect

Virtual view v v+1

Fig. 4: Process of Optimistic Fair Ordering.

1) Optimistic fair ordering: The optimistic fair ordering
protocol (OFO) is presented in Algorithm 1, which includes
three phases: (i) Collect, (ii) Pre-Notify, and (iii) Pre-Order.
As shown in Figure 4, the protocol works in a succession of
virtual views numbered with monotonically increasing view
numbers (similar to the round in consensus protocol). Each
virtual view number v has a unique virtual leader (L) known to
all. To distinguish it from the consensus protocol, the replica
in OFO protocol is aliased as a virtual replica (R). In each
virtual view, a replica performs phases in succession based
on its role and generates a succession of fragments, which
describes fair-ordered transactions and related proof.

Collect phase. In virtual view v − 1, each virtual replica
R first calculates the virtual leader L of the next virtual

view v through a leader selection method, which returns a
unique id for L known to all replicas. The R constructs
an ordered transaction list TR using received transactions
Tx that do not belong to any previous fragments. It also
builds an updated transaction list UR, which is an ordered
list of transactions corresponding to vertices with missing
edges in previous fragments. We adopt the same method
as described in Sec. II-B to construct TR and UR. Then,
the virtual replica creates a signed local-order message
⟨Local-Order, ⟨v,R,TR,UR,PCR,v−1⟩σR

⟩ and sends it to the
virtual leader, where PCR,v−1 is a partial certificate (as a vote
of R) for the local-order fragment FL

v−1. When v−1 = 0, FL
0

is initialized to an empty fragment.

Pre-Notify phase. In this phase, when a virtual leader
L receives a correctly signed local-order message from a
virtual replica j, it first verifies the correctness of the partial
threshold signature σj,v−1 (contained in PCj,v−1) to check if
the vote for the local-order fragment FL

v−1 in current virtual
view v − 1 is valid. Then, it caches σj,v−1 into a partial
threshold signature set PS, and caches the data of the local-
order message (⟨v, j,Tj ,Uj ,PCj,v−1⟩σj) into a local-order
set LOv . Since the signature σj can only be generated by j and
verified by anyone. Adding the signed data in LOv guarantees
the virtual leader can not maliciously modify the local-order
data sent by any virtual replicas to manipulate the transaction
order. When the virtual leader receives (n−f) valid local-order
messages from distinct virtual replicas, it combines the partial
threshold signatures into a threshold signature Σv−1 with the
input of PS. Then, it constructs a new quorum certificate
QCv−1={v − 1,H(FL

v−1),Σv−1} as a proof of voting for
FL

v−1. To specify which (n− f) replicas’ local-order are used
for fair ordering in the virtual view v, L creates a new local-
order fragment FL

v ={v, L,QCv−1,LOv}. At the end of this
phase, L broadcast a notify message ⟨Notify, ⟨v, L,FL

v ⟩σL
⟩ to

all replicas.

Pre-Order phase. When a virtual replica R receives a
valid notify message ⟨Notify, ⟨v, L,FL

v ⟩σL
⟩, it first verifies the

threshold signature Σv−1 (contained in QCv−1). If correct, R
stores the local-order fragment FL

v−1 into persistent storage
LOFChain FCL. Then, we adopt the function GetFragment(·)
to obtain a valid fragment Fv−1 locally or from remote
replicas. Since a slow replica may not have completed the
calculation of fair ordering to generate the Fv−1 locally in the
virtual view v−1. GetFragment(·) allows a replica to fetch the
fragment Fv−1 from remote replicas with a valid QCv−1 (de-
tails are shown in Sec. IV-B3). This is because QCv−1 assets
that the previously proposed FL

v−1 was received and signed by
enough correct virtual replicas (at least n− 2f). Since correct
virtual replicas always honestly executed the protocol, with the
same inputs from FL

v−1, the fragment Fv−1 created by these
replicas (through the same fair ordering algorithm) are also the
same. Afterwards, R can store Fv−1 into FChain FC. R keeps
the newly acquired local-order fragment Fv in the memory and
computes a partial threshold signature σR,v of it. Then, we
construct a partial certificate PCR,v = {v,R,H(FL

v), σR,v}
as a vote for FL

v received from notify message. After that,
R adds all the ordered/updated transaction sequence Tj /Uj

(wrapped in LOv in notify message) in the local sets Tv/Uv
respectively. R calculates the transaction dependency graph Gv

and missing edges Ev by graph-based fair ordering algorithm

6

Algorithm 1: SpeedyFair Protocol (Optimistic Fair
Ordering, OFO).
// Process in virtual view v − 1

1 Collect phase
2 as a virtual replica (R) :
3 Input: (1) Tx: a list of transactions sent by clients, (2)
PCR,v−1: a partial certificate for local-order fragment
FL

v−1 in virtual view v − 1:
4 Calculate the next virtual leader L ;
5 Generates ordered transaction list through Tx: TR ;
6 Generates updated transaction list through Tx: UR ;
7 Send ⟨Local-Order, ⟨v,R,TR,UR,PCR,v−1⟩σR⟩ to

virtual leader L;
8 Pre-Notify phase
9 as a virtual leader (L):

10 Wait for (n− f) valid (correctly signed)
⟨Local-Order, ⟨v, j,Tj ,Uj ,PCj,v−1⟩σj ⟩ from other
replicas:

11 Read FL
v−1 from memory;

12 Verify partial threshold signature: θ1 ←
PSigVerify(σj,v−1, FL

v−1) ;
13 if θ1 == false then
14 Continue ;
15 PS.Add(σj,v−1) ;
16 LOv .Add(⟨v, j,Tj ,Uj , σj,v−1⟩σj) ;
17 Compute threshold signature: Σv−1 ←

TSigCombine(PS) ;
18 Construct the quorum certificate:

QCv−1 = {v − 1,H(FL
v−1),Σv−1} ;

19 Construct local-order fragment and save in memory:
FL

v = {v, L,QCv−1,LOv} ;
20 Broadcast ⟨Notify, ⟨v, L,FL

v ⟩σL⟩ to all replicas ;
21 Pre-Order phase
22 as a virtual replica (R):
23 Wait for one valid ⟨Notify, ⟨v, L,FL

v ⟩σL⟩ from virtual
leader L in virtual view v;

24 Read FL
v−1 from memory ;

25 Verify the threshold signature: θ1 ← TSigVerify(Σv−1,
FL

v−1) ;
26 if θ1 == false then
27 Return ;
28 Store the local-order fragment of virtual view v − 1 in

the persistent storage LOFChain: FCL.Add(FL
v−1) ;

29 Fv−1 ← GetFragment(v − 1, QCv−1) ;
30 Store the fragment of virtual view v − 1 in the

persistent storage FChain: FC.Add(Fv−1);
31 Save FL

v in the memory ;
32 Compute partial threshold signature: σR,v ← PartSig(R,

FL
v) ;

33 Construct partial certificate:
PCR,v = {v,R,H(FL

v), σR,v} ;
34 for Tj ,Uj ∈ LOv do
35 Tv .Add(Tj), Uv .Add(Uj) ;
36 Run graph-based fair ordering algorithm:

Gv, Ev ←FairOrder(Tv,Uv) ;
37 Construct the fragment and store in the memory:

Fv = {Gv, Ev,H(Tv),H(Uv)} ;
38 Move to new virtual view v: vcur ← (v − 1) + 1 = v ;
39 Execute Collect phase with inputs (Fv.Ev , PCR,v);

FairOrder(·) with inputs of Tv , Uv (combining FairPropose(·)
and FairUpdate(·) introduced in Sec. II-B into a function
FairOrder(·) for simplicity to express the graph-based fair order
algorithm). The virtual replica then constructs a new fragment
Fv = {Gv, Ev,H(Tv),H(Uv)} and saves it locally in the
memory. Since the local-order fragment FL

v specifies all the
transaction lists for fair ordering in v (wrapped in Tv , Uv), to
reduce storage and message complexity of fragment Fv , we
only save the message digest of Tv , Uv in it through the hash
function H(·). In the end, R moves to the next virtual view v

and processes a new Collect phase with the inputs of missing
edges Ev and the vote PCR,v for the local-order fragment FL

v
in v.

Pacemaker Mechanism. We design a pacemaker mecha-
nism to ensure the progress of our OFO protocol after GST,
which helps to maintain the liveness in implementation. The
detailed protocol is shown in Algorithm 2. Specifically, in
OFO, when a replica enters into a new virtual view v, it starts
a timer with a specified initial timeout value of T . During
the virtual view, if a replica can successfully receive a valid
notify message from the virtual leader, it can complete the Pre-
Order phase and advance to the next virtual view normally.
Then the replica will restart the timer with the same timeout
duration of T . However, if a replica does not receive the
notify message within T (i.e., occurs timeout), it constructs
a new virtual view message ⟨New-VirView,QChigh⟩ with
the newest quorum certificate QChigh and broadcasts it to
inform the timeout event. In addition, in our protocol, we
design that the replica should send the unprocessed local-
order message (in the expired virtual view) to the new virtual
leader of v + 2 instead of constructing a new local-order
message. Resending the same local-order message prevents the
censorship of transactions. This is because the virtual leader
of v+2 will still use the transaction lists constructed in v (by
replicas) for fair ordering, ensuring the transactions proposed
by correct replicas (in v) will not be censored. When receiving
a new virtual view message, the replica updates the highest
quorum certificate if the local quorum certificate has a lower
virtual view than the message. When obtaining a quorum of
new virtual view messages, the replica enters the next virtual
view v + 1 and starts a timer with a duration of T · k,
where k > 1. The timeout duration can be maintained by
an exponential back-off mechanism to avoid switching views
frequently. After receiving a quorum of local-order and new
virtual view messages, the virtual leader of v + 2 processes
the Pre-Notify phase to advance to v + 2. After receiving the
new notify message, replicas will also enter v + 2. Then, our
OFO protocol can progress normally.

Algorithm 2: Pacemaker Mechanism.
1 Function NewVirView()

// Process in virtual view v
2 as a virtual replica R:
3 When occurring a timeout event ;
4 Broadcast new virtual view message

⟨New-VirView,QChigh⟩σR to all other replicas ;
5 Send unprocessed

⟨Local-Order, ⟨v + 2,R,TR,UR,PCR,v⟩σR⟩
constructed in the expired virtual view v to the virtual
leader L of v + 2 ;

6 Function OnNewVirView(⟨New-VirView,QChigh⟩σR)
7 as a virtual replica R′:
8 if QChigh.virV iew > QC′high.virV iew then
9 QC′high ← QChigh ;

2) Consensus: The consensus protocol of SpeedyFair is
shown in Algorithm 3, which only modifies the Prepare phase
of the current consensus.

Prepare Phase. (For Leader): When entering the round
i of consensus, the leader selects a set of fragments {Fj}
have not been proposed from FC. Because when proposing a
new block, the concurrent OFO protocol may have generated

7

multiple fragments. Then, the leader appends each fragment
Fj and related quorum certificate QCj to the data field of
the new block. The QCj ensures that at least n − 2f > f +
1 correct replicas have voted the same local-order fragment
FL

j and have computed the fragment Fj , which proves to the
consensus phase the OFO has successfully completed a round
of fair ordering. After that, the leader constructs a fair-prepare
message ⟨Prepare-Fair, ⟨i, l,Data⟩⟩ for current round i as
the newest block Block(i) and broadcasts it to other replicas.

(For Replica): Upon receiving the Block(i) from the leader,
replica r first determines whether to accept the transaction
order defined in the fragments. For each (Fj ,QCj) in the
data field, a replica first gets the fragment F ′

j for the virtual
view of j through the function GetFragment(·). This function
ensures the replica obtains a valid fragment F ′

j (from local
or remote) for this virtual view j if the QCj is valid (the
details are shown in Sec. IV-B3). However, if the quorum
certificate of QCj is incorrect, the function will not return any
value to r. If the fragment F ′

j exists, a replica r executes a
simple verification function SimpleVerify(·) to determine if the
fragment Fj from block Block(i) matches the obtained F ′

j .
Specifically, if all the data in F ′

j are equal to the data in Fj

respectively, SimpleVerify(·) returns true; otherwise, it returns
false (line 23-24). Function SimpleVerify(·) is fast because it
allows replicas to verify the fairness of transactions in the
proposal by just judging data equality, which is much less
complex than re-executing the expensive ordering algorithm
for verification. We adopt θj to indicate whether fragment Fj

passes simple verification. If it is passed, θj is set as false,
otherwise is set as true. The notion θ represents that if all the
fragments in the block’s data field pass the fair verification.
If any fragment does not pass, r sets θ as false and does not
vote. Otherwise, r sets θ as true and replies with a prepare-vote
message for the proposed block to the leader. Then the replica
performs the remaining phases of the consensus protocol and
computes the final order after committing the current proposal.

3) Data Synchronization: If the replicas follow the protocol
and perform a fair ordering algorithm in time, the confirmation
of requests works properly (e.g., request to confirm a new
proposal in the consensus phase). However, our decoupled
scheme may cause, when receiving a new proposal with a set
of fragments (for virtual views {i, . . . , j}), some slow replicas
may not have completed the expensive fair ordering calculation
for all of these virtual views during OFO. Thus, these replicas
(even correct ones) may need to wait for the local calculation
results and delay the verification of order-fairness, resulting
in delayed voting in the consensus phase. Besides, Byzantine
replicas may delay or not vote for the proposal in consensus.
This leads to insufficient votes for completing the confirmation
of the proposal, thus threatening the liveness. Similarly, the
liveness of OFO is also threatened since the slow replicas
can not vote for the newly received local-order fragment if
they have not completed the fair ordering computation of the
previous virtual view.

Thus, we introduce a data synchronization mechanism
to help the replicas to fetch valid data (i.e., fragments)
when their execution is behind schedule. The detailed al-
gorithm is shown in Algorithm 4. FetchRemoteF(·) func-
tion enables fetching fragments from remote replicas. Specif-
ically, a virtual replica R constructs a fetch message

Algorithm 3: SpeedyFair Protocol (Consensus).
// Consensus Process in round i

1 Prepare phase
2 as a leader (l):
3 Read the fragments stored in FC that not yet proposed

in any block;
4 for Fj ∈ FC do
5 Obtain the related quorum certificate: QCj ;
6 Data.Append(j,Fj ,QCj) ;
7 Broadcast Block(i)=⟨Fair-Prepare, ⟨i, l,Data⟩⟩ to

replicas ;
8 as a replica (r):
9 Wait for a valid proposal block Block(i) from leader ;

10 for (j,Fj ,QCj) ∈ Block(i).Data do
11 Fj = {Gj , Ej ,H(Tj),H(Uj)} ;
12 F ′

j ← GetFragment(j,QCj) ;
13 if F ′

j !=nil then
14 θ1 ← SimpleVerify(F ′

j , j, Gj , Ej ,H(Tj),
H(Uj)) ;

15 else
16 θ1 ← false ;
17 θ ← θ ∨ θ1 ;
18 if θ == false then
19 Return ;
20 Send ⟨Prepare-Vote, ⟨i, r, θ⟩σr ⟩ to leader ;
21 Execute the remaining phases of consensus
22 After committing the Block(i), run the finalization function

to finalize the transaction order in all the fragments in
Block(i) ;
// Building Blocks

23 Function SimpleVerify(Fv , v, g, e, h1, h2)
24 Return (Fv .G==g) ∧ (Fv .E==e) ∧ (Fv .T ==h1) ∧

(Fv .U==h2);

⟨Fetch, [{vl,QCvl}, . . . , {vh,QCvh}]⟩σR
and broadcasts it to

all other replicas. The scheme allows requesting multiple sets
of data from the remote at one time. After obtaining f + 1
matching fragments {Fvl , . . . ,Fvh} from distinct replicas,
the function returns all of them. If the quorum certificate
QCv is valid, R can be guaranteed to fetch valid data since
QCv proves at least n − 2f > f + 1 correct replicas have
voted for the local-order fragment FL

v and have completed
the calculation of fair ordering (have generated Fv in OFO).
FetchReplyF(·) returns fragments when getting a valid fetch
request. Suppose the threshold signature Σvi (contained in
each quorum certificate QCvi) in the fetch message passes
the verification, the replica reads relevant fragment Fvi from
the persistent storage of FC and adds it into Frag. In the
end, the replica sends Frag back to the requested replica R.
The function GetFragment(·) returns a specific fragment Fv

with the inputs of v and QCv . If the replica has stored the
fragment Fv of this virtual view v in the persistent storage
FC or in the memory during the OFO process, it can directly
obtain this fragment locally by GetFragment(·). If the fragment
cannot be found locally, it invokes a FetchRemoteF(·) function
to synchronize the fragment relevant to the valid QCv from
remote replicas.

C. Discussion

Communication costs in implementation. Note that, in
OFO protocol, the Collect phase incurs additional communi-
cation costs since the virtual leader needs to collect at least
n − f different replicas’ transaction lists (including ordered
Ti and updated transaction lists Ui). It costs O(|B|n · stx)
bits to send a list (or batch) of |B| transactions (the average

8

Algorithm 4: Data Synchronization.
1 Function FetchRemoteF([{vl,QCvl}, . . . , {vh,QCvh}])
2 as a virtual replica (R):
3 Broadcast ⟨Fetch, [{vl,QCvl}, . . . , {vh,QCvh}]⟩σR to

all other virtual replicas ;
4 Wait for f + 1 matching {Fvl , . . . ,Fvh} ;
5 Return {Fvl , . . . ,Fvh} ;
6 Function FetchReplyF()
7 When receiving a valid fetch message from R

⟨Fetch, [{vl,QCvl}, . . . , {vh,QCvh}]⟩σR ;
8 for {vi,QCvi}, i ∈ {l, . . . , h} do
9 Read FL

vi from memory or FCL;
10 if TSigVerify(Σvi ,FL

vi) == true then
11 Read Fvi from FC ;
12 Frags.Add(Fvi) ;
13 Send Frags back to the virtual replica R ;
14 Function GetFragment(v, QCv)
15 Read Fv from FC ;
16 if Fv!=nil then
17 Read Fv from memory ;
18 if Fv==nil then
19 Fv ← FetchRemoteF([{v,QCv}]) ;
20 Return Fv ;

size of each transaction is stx). Furthermore, in Pre-Notify
phase, the notify message ⟨Notify, ⟨v, L,FL

v ⟩σL
⟩ broadcasted

by virtual leader L contains 2(n− f) transaction lists (n− f
Ti, and n − f Ui) in the local-order fragment FL

v , which
introduces similar communication cost to the Collect phase. To
optimize the communication cost in our implementation, we
adopt the message digest of the transaction computed by the
hash function H(·) to represent the transactions in the list. This
is reasonable since the transaction list is mainly concerned with
the order of transactions rather than their contents. Our fair
ordering scheme is data-independent; thus, it is unnecessary to
retransmit the transaction itself (included in the transaction list)
in different phases in our protocol. For availability, if a replica
has not received some transactions in the list, it can request the
details of those missing transactions directly from the replica
that sent the list. Then, the communication complexity of our
OFO protocol is O(|B|n · shash), where shash is the size
of the transaction’s hash. As an illustration: a bath of 1000
transactions of 512B each, is 512KB. The batch hash in a
transaction list is small, 32B each, which provides a volume
reduction ratio of 1:16.

Liveness of OFO. Setting a fixed batch size in the OFO
protocol may cause liveness issues. In OFO, the virtual leader
is required to collect transaction lists (batches) from distinct
replicas and then compute the fair ordering. However, the
collection process can be hindered. Since if a replica does not
accumulate enough transactions to fill the transaction list (with
a specified batch size), it will not send the list to the virtual
leader. Then OFO can not start executing because there are not
enough transactions arrived. The liveness of OFO affects the
consensus since the consensus protocol needs to wait for the
fragments F generated by OFO. In addition, the transactions
received by a replica r may be delayed since they will not be
sent for fair ordering until the number of transactions received
by r exceeds the batch size. To solve this problem, we set
an upper bound limit of batch size Bup in our protocol, which
means that the number of actual transactions in the transaction
list sent by the replica in the Collect phase of OFO is at most
Bup. If there are not enough transactions when the previous

round of OFO completes, replicas can add a set of blank
transactions Txblank to the end of the transaction list to meet
the batch size requirement. A blank transaction is only used as
a placeholder and does not need to be included in the ordering
process. However, a malicious replica may send a transaction
list full of blank transactions to try to censor or delay some
actual transactions. To solve this issue, in OFO, the virtual
leader should select n − f transaction lists with more actual
transactions for fair ordering (if there are blank transactions).
In experiments, we ensure that there are enough transactions
to meet the requirements of different batch sizes, thus avoiding
this liveness issue.

Reordering attack during the abnormal view-change.
Themis [20] has shown that the fair ordering algorithm it
introduced can mitigate network-level attacks (e.g., front-
running attacks) in a natural network setting (the network can
not be fully controlled by adversary when input transactions
to replicas). However, we find that malicious replicas still
have the opportunity to launch the transaction reordering
attack when the consensus protocol needs to trigger the view-
change stage to maintain liveness (e.g., timeout). This attack
also influences our OFO protocol when advancing to a new
virtual view when the timeout occurs. Typically, in existing
BFT consensus, when a replica detects the timeout or other
abnormal conditions, it triggers the view-change protocol.
During the view-change phase, the replica first broadcasts a
view-change message to all other replicas. After the view-
change phase has been completed, the replica will directly
enter the next new view. At this time, the leader of the
new view packages its own transactions in the proposal for
consensus. However, in the order-fairness protocol, the new
leader needs to adopt the local-order messages used in the
expired view for fair ordering. If there is no restriction on the
selection of the local-order messages during abnormal view-
change, some transactions proposed during the expired view
can be delayed or censored. However, the front-running attack
can be launched even if all correct replicas follow the protocol
to send the same local-order messages of the expired view. This
is because the malicious replicas can obtain the local-order
messages for the expired view and generate new transaction
sequences in their local-order messages to manipulate the
global ordering. Since a leader only selects n− f local-order
messages as inputs for fair ordering, the different selections
may cause different ordering results. In the worst case, the
f malicious local-order messages are used for fair ordering,
which can definitely influence the order. For example, using
the fair ordering algorithm of Themis, if a transaction tx1 does
not appear enough times (less than n(1−γ)+f+1) in the view
v, it cannot be added to the dependency graph and is deferred
to be ordered in the next few proposals. After the view-change
stage, the f malicious replicas may add additional tx1 (with
higher relative position) in their local-order messages, making
tx1 can be added to the current dependency graph and ordered
in the current proposal, which launches a front-running attack.
This reordering attack can be mitigated by adopting crypto-
graphic schemes (hiding the transaction content) [4, 29, 32, 42]
during the ordering phase. The core reason for the attack’s
success is that malicious replicas can obtain the content of
transactions in other local-order messages before view-change
and specifically affect the order of transactions that are more
beneficial to themselves. However, suppose the transaction is

9

encrypted during the ordering phase. Even if the malicious
replicas obtain the local-order messages of other replicas, they
can not choose which transactions to influence because the
contents of all transactions are unknown. Therefore, at this
time, changing the local-order messages in the new view is
meaningless for the benefit of these malicious replicas. In
addition, in SpeedyFair, if a view-change occurs in OFO,
the pacemaker scheme ensures that the local-order message
of all correct replicas will not be changed and will be sent
to the new virtual leader, which prevents censorship (refer to
Sec. IV-B1 Pacemaker Mechanism). If a view-change occurs
in the consensus phase, since the transaction order has been
determined by OFO (with a quorum certificate as proof), the
new leader can’t modify this result, so it can’t manipulate the
order during the view-change.

The impact of different front-running prevention solu-
tions on user experience. There are two mainstream technical
routes to mitigate front-running attacks at the consensus level.
One is to hide the transaction contents (called Blind-Fairness
[29] here, usually using cryptographic schemes) before the
transaction ordering is committed in the consensus protocol.
However, this type of scheme does not constrain how to order
the transaction and which order is chosen. Order-Fairness
protocol (another technical route adopted in this paper) solves
this issue and is complementary and orthogonal to Blind-
Fairness schemes. We provide a qualitative comparison among
Blind-Fairness, Themis, and SpeedyFair on user experience in
Table II. The latency refers to the delay between the transaction
submission and execution since the execution results affect
the user’s subsequent behavior. Compared to Blind-Fairness
schemes, Themis and SpeedyFair have lower latency since
the transaction can be executed immediately during consensus.
However, the Blind-Fairness schemes usually require that it is
not possible for any party to modify the transaction sequence
before revealing the transaction content, which means the
revealing should be processed after consensus. Transactions
can only be executed after their plaintext has been revealed.
Therefore, Blind-Fairness schemes incur more latency for
users to get execution results and can not execute trans-
actions in time. All the front-running prevention solutions
introduce additional costs for achieving fairness. For Blind-
Fairness schemes, the extra overhead is mainly focused on
computation (encryption and decryption). Both Themis and
SpeedyFair require additional computational (graph-based
fair ordering) and communication (transmission of transaction
list) overhead. We also quantify the average computational
and communication complexities of Themis and SpeedyFair
compared to the basic consensus protocol (i.e., Hotstuff) in
Table III. For computational overhead, we only focus on the
fair ordering algorithm, which requires constructing a graph
G from O(|B|) transactions (|B| is batch size), in general,
processes O(|B|2) edges, resulting in O(|B|2) computational
complexity. According to Themis [20], the proposal message
mainly includes {G, Eupdates, π = {L,Lupdates}}, where G
is the output graph with O(|B|2) edges (with complexity
O(|B|2) · stx, stx is the size of each transaction), E is a set of
missing edges of size Θ(|B|2) (with complexity O(|B|2)·stx),
L is a set of n − f ordered transaction list with batch size
of |B| (with complexity O(n|B| · stx)), Lupdates is a set of
updated transaction list of size (n − f) · Θ(|B|) (with com-
plexity O(n|B| · stx)). Therefore, the average communication

TABLE II: Qualitative Comparison of User Experience.

Scheme /
User Experience Latency Timely

Execution
Specified
Ordering

Additional
Cost

Blind-Fairness High × × Mainly Comp.
Themis Medium ✓ ✓ Comp. & Comm.

SpeedyFair Low ✓ ✓ Comp. & Comm.

TABLE III: Computation and Communication Complexities.

Protocol /
Complexity Avg. Communication Avg. Computation

(Fair Ordering)
Hotstuff O(|B|) -
Themis O((|B|2 + n|B|) · stx) O(|B|2)

SpeedyFair O((|B|2 + n|B|) · shash + shash + sqc) O(|B|2)

complexity of Themis is O((|B|2+n|B|)·stx). In SpeedyFair,
the notify message (local-order fragment) includes n − f
local-order messages containing O(|B|) transaction hashes
(with complexity O(n|B| · shash)), where shash is the size
of the digest computed by the hash function H(·), and a
quorum certificate QC (with complexity O(sqc)), where sqc
is the size of QC. Each fragment of the block (proposal)
message contains {G, E ,H(T),H(U)}. Similar to Themis,
G and E have complexity O(|B|2) · shash, and H(T),H(U)
both have the complexity O(shash). In addition, each fragment
has a quorum certificate QC in block data as proof of valid
ordering, which has the complexity of O(sqc). Therefore,
the average communication complexity of SpeedyFair is
O((|B|2 + n|B|) · shash + shash + sqc).

Liveness of SpeedyFair. In the worst case, OFO is
required to wait for f rounds when there are f consecutive ma-
licious replicas becoming virtual leaders. If the consensus lead-
ers for the next f rounds are also malicious, the transactions
should wait for 2f rounds before being output. This leads to
a weaker liveness than normal BFT consensus, which requires
waiting at most f rounds. There are two promising solutions
(leader election policies) that can alleviate this liveness issue
in SpeedyFair in implementation: (i) blacklist mechanism
[31, 35, 37] and (ii) reputation mechanism [1, 4, 38, 41].
The blacklist mechanism allows participants to maintain a list
of replicas that are not eligible to become the leader. When
triggering the leader election, the replicas on the blacklist
are automatically excluded from consideration. The reputation
mechanism adopts the historical behavior of a replica to build a
reputation value that represents the possibility of the replica’s
correctness. This reputation value determines the probability
of the replica being selected as a new leader. Comparing the
two schemes, the blacklist mechanism provides a simpler and
faster way to exclude unreliable or malicious replicas, but
the reputation mechanism requires more complex algorithms
for evaluating replicas’ behavior and determining reputation
scores. However, a blacklist may be inflexible and unfairly
exclude correct replicas that have been mistakenly added
to the blacklist. On the contrary, the reputation mechanism
considers the replicas’ behavior over time, which allows more
nuanced decision-making when electing a leader and prevents
malicious replicas from gaining power over time. Adopting
these two approaches to address the worst case liveness issue of
SpeedyFair is reasonable. This is because the two processes
(OFO and consensus) in SpeedyFair share the same set of
n replicas and the same knowledge on the detected malicious
replicas (in the blacklist) or the replicas’ reputation scores.

10

Suppose a replica has a high probability of being determined
to be malicious during the OFO or consensus process. In
that case, this replica will have a small probability of being
selected as the leader in either process subsequently. Then,
even if OFO is required to wait for consecutive f rounds
in the worst case, the consensus will not wait for another
f rounds since it will not elect those malicious replicas as
leaders. Then, SpeedyFair can provide similar liveness as
normal BFT consensus.

D. Correctness Argument

This section discusses the order-fairness, safety, and live-
ness of SpeedyFair.

1) Order-Fairness:

Theorem 1. SpeedyFair guarantees batch-order-fairness.

Proof. Since SpeedyFair does not modify any fair ordering
algorithms described in Themis [20] but only changes the
execution flow of the ordering phase (move the fair ordering
process from the prepare phase of consensus to the OFO stage).
We ensure that only transaction lists that have completed a
fair ordering (in OFO) are then allowed to be proposed by
a consensus, which is the same as Themis. Thus, we can
guarantee the same batch-order-fairness as Themis.

2) Safety:

Lemma 2. If one correct replica ri stores a local-order
fragment FL

v in virtual view v, and another correct replica rj
stores another local-order fragment F ′L

v for the same virtual
view, then FL

v = F ′L
v .

Proof. When an correct replica ri stores FL
v in persistent

storage, according to the protocol 1 (line 28), ri has received a
valid ⟨Notify, ⟨v + 1, L,FL

v+1, ⟩σL
⟩ message from the virtual

leader rL for the first time, where the verification method
TSigVerify(Σv,FL

v) = true. The threshold signature Σv of
FL

v can be formed only with n− f ≥ 3f +1 partial threshold
signatures {σk,v} (or say votes, from different n − f local-
order messages) for the virtual view v, where there are at
least n− 2f messages from correct replicas. Suppose there is
another threshold signature Σ′

v constructed in the same virtual
view v, then at least another n− 2f correct replicas votes for
it. Currently, 2n−4f correct votes exist, but only n−f correct
replicas are in total. Since (2n− 4f)− (n− f) = n− 3f and
f ≤ n−1

4 , then n − 3f ≥ 1, which means there must be one
correct replica who voted twice for the same virtual view of
v. This is impossible because our protocol allows each correct
replica to send only one local-order message (voting only once
for a FL

v) in each virtual view v. Therefore, Σv = Σ′
v , so if any

two correct replicas ri and rj store FL
v and F ′L

v respectively,
FL

v = F ′L
v .

Lemma 3. If one correct replica ri stores a fragment Fv in
virtual view v, and another correct replica rj stores a fragment
F ′

v for the same virtual view, then Fv = F ′
v .

Proof. Since any two correct replicas ri and rj stores same
FL

v ={v, L,QCv−1,LOv} and F ′L
v ={v, L,QC′v−1,LO

′
v} in the

same virtual view v (Lemma 2), then LOv = LO′
v , which

means Tv = T ′
v and Uv = U ′

v . We also have H(Tv) = H(T ′
v)

and H(Uv) = H(U ′
v), where H(·) is the hash function. The

fair ordering algorithm used in this paper (from Themis [20])
has deterministic outputs. And correct replicas are assumed
to be able to execute the protocol and this fair ordering
algorithm honestly. Thus, according to protocol 1 (line 37),
the outputs of FairOrder(·) computed by ri (Gv, Ev) and rj
(G′

v, E ′v) are equal to each other, Gv = G′
v , Ev = E ′v . Thus,

the fragment constructed by ri and rj in the same virtual
view v are equal, Fv = {Gv, Ev,H(Tv),H(Uv)} = F ′

v =
{G′

v, E ′v,H(T ′
v),H(U ′

v)}. So, if any two correct replicas ri
and rj store Fv and F ′

v respectively, Fv = F ′
v .

Theorem 2. SpeedyFair guarantees safety.

Proof. In SpeedyFair, if a leader proposes a new
proposal Block(i)={Fl, . . . ,Fh}, according to the protocol
3, the leader has received the related quorum certificates
{QCl, . . . ,QCh} for the virtual views of {l, . . . , h} and has
stored all the fragments {Fl, . . . ,Fh} in the persistent storage
FC. When any correct replica receives Block(i), if it has
stored fragments {F ′

l , . . . ,F ′
h}, it can verify the validity

(order-fairness) of all the fragments in Block(i) since any
two correct replicas store same fragment for the same virtual
view at this time (Lemma 3). Thus, if the leader maliciously
modifies any fragments in Block(i), correct replicas can detect
that and do not accept the proposed Block(i). If a replica
has not stored some fragments with the same virtual view
{l, . . . , h} as the fragments contained in Block(i), it can fetch
the fragment from remote replicas through related quorum
certificates {QCl, . . . ,QCh} (Lemma 4). Since SpeedyFair
does not modify any phases of the underlying agreement
protocol of Hotstuff except for the validity condition, all
correct replicas will output the same values if the proposal
satisfies the validity requirement in SpeedyFair (Protocol 3,
line 14). Therefore, SpeedyFair guarantees safety.

3) Liveness:

Lemma 4. If at least n−2f correct replicas store the fragment
Fv , if replica ri does not store it and tries to fetch it via
function FetchRemoteF(·), then the function will return Fv .

Proof. Since at least n−2f correct replicas have stored the
fragment Fv , these correct replicas should have received the
same valid quorum certificate QCv for the related local-order
fragment FL

v . Following the Lemma 3, any correct replica who
stores Fv has the same value, so it is impossible for ri to
receive f + 1 valid fragment F ′

v from distinct replicas that
different from Fv . So after receiving f+1 matching fragments,
ri can obtain Fv .

Lemma 5. Suppose a transaction tx appears in at least n−2f
local-order messages (i.e., solid transaction) in virtual view v,
and the virtual leader is correct, then tx is included in the
fragment Fv by any correct replicas.

Proof. The correct virtual leader sends n − f local-order
messages (at least n− 2f messages are from correct replicas)
to replicas (in the notify message) as proof of the correct con-
struction of the fragment. Note that each local-order message is
signed by the sending replica, making it verifiable by anyone
and thus impossible to be maliciously modified (to exclude
some solid transactions) by the virtual leader. According to
the partial-synchronous network assumption in SpeedyFair,

11

correct replicas will eventually receive a valid notify message
and accept n− f local-order messages selected by the correct
virtual leader in virtual view v (at least n − 2f local-order
messages from correct replicas). According to the fair ordering
algorithm (i.e., FairOrder(·)), correct replicas include all solid
and shaded transactions in the dependency graph G′ and only
remove shaded vertices (with no outgoing path to a solid
vertex) from the condensation graph of G′. Since a vertex in
the condensation graph is shaded if it does not contain solid
transactions, in any correct replica, solid transactions will be
included in the output graph G of FairOrder(·) and thus are
always included in the fragment Fv .

Theorem 3. SpeedyFair guarantees liveness.

Proof. SpeedyFair considers a partial-synchronous net-
work model where a valid transaction tx will eventually be
received by all replicas. As a result, tx will appear in at least
n − 2f local-order messages sent to the virtual leader (either
in the same virtual view or different virtual views), becomes a
solid transaction, and be included in the fragment by any cor-
rect replicas (Lemma 5). After constructing a related quorum
certificate for this fragment, tx can be ensured to be proposed
by the leader, passed the verification and eventually be output
by consensus. According to the fair ordering algorithm, the
final ordering of tx only depends on shaded transactions
proposed by the current or an earlier fragment, which causes
missing edges between previously proposed transactions. And
the order of transaction tx does not depend on any transaction
that has not been proposed. Once such edges are added, tx can
finally be ordered. Note that adding missing edges happens
when the shaded transactions are received by enough replicas,
which only depends on the network delay. Then, the total
ordering for deferred transactions (i.e., shaded transactions)
does not depend on the chaining of Condorcet cycles and can
be eventually output by consensus. Consequently, SpeedyFair
guarantees standard liveness.

Optimistic liveness of OFO. Note that our decoupled
optimistic fair ordering (OFO) protocol maintains optimistic
liveness. If the virtual leader is correct, it can broadcast the
valid notify message to all replicas to advance OFO to the new
virtual view. Then all replicas can receive a new local-order
fragment FL

v to conduct the fair ordering process locally and
progress to the next virtual view successfully. However, if the
virtual leader is a Byzantine replica, it can delay the broadcast
of the notify message or not respond to the protocol, hurting
the liveness. Even with the pacemaker mechanism that enables
to switch to a new virtual leader if OFO is not advanced in
time, the new virtual leader may still be a malicious replica.
In the worst case, OFO is required to wait for f rounds to
output a new valid fair order for received transactions (in the
fragment).

V. EVALUATION

A. Implementation and Setup

We implement SpeedyFair on the top of an open-source
Hotstuff consensus protocol codebase 1 using the Go 2 lan-
guage. SpeedyFair is implemented as a two-process go pro-

1https://github.com/relab/hotstuff
2https://golang.org/

gram. Specifically, SpeedyFair uses one process to deal with
the decoupled optimistic fair ordering (OFO) and another
to conduct consensus protocol. For the part of the Hotstuff
consensus code, we only modified the way the leader obtains
transaction data when constructing a proposal and the fair
ordering verification process after the replicas receive the pro-
posal. Other phases of consensus protocol are untouched. The
threshold signature used in the OFO process is implemented
by concatenating ECDSA signatures [18]. Since SpeedyFair
adopts the fair ordering algorithm proposed in Themis [20],
we also implement the protocol of Themis on top of Hotstuff
for a fair comparison.

SpeedyFair mainly includes five modules in implementa-
tion: (i) client, (ii) OFO, (iii) consensus, (iv) storage, and (v)
network. We adopt multiple clients to connect to all replicas
to achieve saturated, non-duplicate transaction input. To enable
the consensus protocol to pack fair-ordered transactions con-
currently, we implement another process to handle OFO, which
does not block the execution of the consensus process. To
ensure the validity of fragments, we adopt a carefully designed
quorum certificate as proof. In addition, we implement a
pacemaker to help proactively advance views of OFO, which
maintain liveness when meeting time-out and prevent censor-
ship attack in view-change. A data synchronization module
is implemented in OFO to prevent high latency and liveness
issues caused by slow replicas. Then, when the slow replicas
receive “future” messages, they can directly pull the missing
data (through data synchronization) but not wait for local
fair ordering computation. Implementation has two main chal-
lenges: (i) view control and (ii) transaction pool management.
Controlling the view among replicas in SpeedyFair (OFO,
pacemaker) is challenging since it is hard to guarantee the view
update correctness and data consistency of replicas, which
includes: (1) Advance view and view synchronization: since
different replicas may have different views, when obtaining
a protocol message (related to changing view), checking out
which view to synchronous is complicated since we must
respond differently to different situations (e.g., normal case,
ahead or behind case, time-out case, etc.). (2) View time-out:
Since the time-out can happen at any time in the protocol
process, the failure handling, rolling back the replica, and
advancing to a new consistent view among replicas are non-
trivial. Managing the transaction pool of a replica is challeng-
ing since the pool is updated concurrently by multiple modules
in SpeedyFair. The non-duplicate transactions from clients
add new data to the pool. OFO extracts the transaction list
and updated transaction list from the pool in the Collect phase
and pushes back the blank transactions (with the original order)
to the pool after fair ordering in the Pre-Order phase. Only
after the consensus protocol is completed, the transactions in
the proposal can be removed from the pool. Otherwise, the
transactions should be stored in temporary storage to deal with
errors (e.g., rollback caused by view-change). In addition, data
synchronization in OFO and consensus also updates the pool
of slow replicas. Therefore, it is challenging in our system to
correctly and concurrently read, write, and update the data in
the transaction pool.

We run our experiment on a set of physical machines,
each equipped with Intel Xeon Silver 4210 2.2 GHz CPUs
(20 cores), 128 GB RAM, and a 10 TB hard drive. All the
machines are connected with a 10 Gbps network link. Replicas

12

run in virtual machine instances, each assigned 2 virtual CPUs
and 12 GB RAM. In our experiments, the transaction contains
unique 256-byte data, and each transaction issued by the client
indicates the specific order of the transaction in the client. To
reduce the size of the local-order messages and the notify mes-
sage, we only transmit the hash value of the transactions for
fair ordering (32-byte each). The experiment mainly measures
the throughput and latency of the system. When a replica takes
a transaction out of the transaction pool to start processing, we
attach a timestamp to this transaction. Then, all the replicas
can calculate the latency of all transactions by tracking this
timestamp when they are submitted at the end of the consensus
process. The evaluated throughput and latency are all from
replicas. We integrate all the test results to calculate the average
transaction throughput and latency. Unless otherwise stated,
the experimental results are the average of 5 executions, each
lasting until the measurement is stable.

B. Performance with Different Batch Sizes

We first measure the impact of batch size on the per-
formance of three different protocols (Hotstuff, Themis, and
SpeedyFair). In this experiment, we set the order-fairness
parameter as γ = 1 and the number of replicas as n = 5, 21
with fault replicas of f = 1, 5, respectively. The transaction
batch size changes within 25, 50, 100, 200, and 400. As we
mentioned before, the computational complexity of fair order-
ing grows exponentially with the batch size. Similar to Themis,
our experiment does not choose a larger batch size because it is
not practical in consensus. As seen in Figure 5, when the batch
size is relatively small (e.g., when batch-size<50), the order-
fairness protocols (Themis and SpeedyFair) usually achieve
better performance, which has the smallest performance gap
compared to the Hotstuff (for both n = 5, 20). This is because
the cost of fair ordering (handling a small dependency graph)
is relatively small compared to conducting consensus among
replicas. For instance, when n = 5 and the batch size is 50,
our protocol (SpeedyFair) achieves 230% higher throughput
and 57% lower latency compared to Themis. Additionally,
compared to Hotstuff, SpeedyFair only experiences a slight
reduction in throughput (10%), demonstrating its efficiency.
However, the performance of SpeedyFair and Themis de-
grades as the transaction batch size increases. This is because
the fair ordering algorithm needs to build a larger transaction
dependency graph when the batch size increases, which in-
creases the overhead of graph calculations. Then, the latency
of fair ordering computation can not be ignored compared to
processing consensus protocol among replicas, which turns
into the main latency, resulting in a gradual decline in the
performance of both SpeedyFair and Themis. Hotstuff, on the
other hand, does not have any ordering overhead, which can
utilize batch processing to improve its performance. Despite
overall performance degradation with batch size, SpeedyFair
still promises 155%-230% (n = 5), 178%-208% (n = 21)
throughput boosts, and 35%-57% (n = 5), 44%-52% (n = 21)
reductions in latency compared to Themis. This is mainly
because the decoupled design enables SpeedyFair to execute
the fair ordering among the leader and the replicas in parallel,
which reduces the latency caused by the serial execution of
order/verify in Themis. Compared to n = 5, the performance
degrades with a larger network size (n = 20) due to a higher
communication cost of underlying consensus.

2550 100 200 400
Batch Size

0.4

0.8

1.2

1.6

2.0

Th
ro

ug
hp

ut
 [t

xs
/s

ec
]

1e4

Hotstuff
Themis
SpeedyFair

(a) n = 5

2550 100 200 400
Batch Size

1.5

3.0

4.5

6.0

7.5

La
te

nc
y

[m
s]

1e2

Hotstuff
Themis
SpeedyFair

25 50
5

10
15
20
25

(b) n = 5

2550 100 200 400
Batch Size

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 [t

xs
/s

ec
]

1e4

Hotstuff
Themis
SpeedyFair

(c) n = 21

2550 100 200 400
Batch Size

0.4

0.8

1.2

1.6

2.0

La
te

nc
y

[m
s]

1e3

Hotstuff
Themis
SpeedyFair

25 50
15
30
45
60
75

(d) n = 21

Fig. 5: Performance on different batch sizes.

C. Performance with Different Network Sizes

In this experiment, we measure the performance of differ-
ent protocols with different network sizes, i.e., 5, 9, 21, 41, 60,
and 80. We fixed the batch size as 50 and the order-fairness
parameter as γ = 1. Figure 6 shows the throughput and latency
results with varying the number of replicas (network size).
When the number of replicas is increased, the performance
of all protocols decreases significantly. This can be expected
since reaching a consensus across a large number of replicas is
expensive due to high communication costs. Both SpeedyFair
and Themis have a similar performance as Hotstuff when the
network size is larger than 40. This can be attributed to the
fact that in a large network, the overhead of fair ordering is
much lower than the consensus cost incurred by HotStuff. The
performance degradation for all protocols in large networks
is due to the poor scalability of Hotstuff. This is because
Hotstuff relies on a single leader to propose and verify the
message. When the network size increases (more replicas in
the system), the communication cost increases since more
network transmissions occur among replicas and the leader
(usually multiple rounds), causing higher latency. The leader’s
computational overhead also increases due to validating mes-
sages from more replicas. Therefore, the overall performance
of Hotstuff degrades as the network size increases. We can
obtain better performance by adopting scalable underlying
protocols. In addition, we observed that as the number of
replicas increased, SpeedyFair showed fewer performance
improvements compared to Themis. Specifically, when n = 5,
SpeedyFair’s throughput increased by 230% and latency
reduced by 57%. However, when n = 80, the increase in
throughput is only 169%, and the reduction in latency is only
41%. This is mainly because as the number of nodes increases,
the overhead of computing and verifying threshold signatures
in OFO becomes non-negligible compared to fair ordering. The
increase in latency of OFO will reduce the parallel efficiency.

13

This is because if the execution time of OFO exceeds the
consensus, it requires consensus to wait for the completion
of fair ordering.

20 40 60 80
Number of Replicas

0.4

0.8

1.2

1.6

Th
ro

ug
hp

ut
 [t

xs
/s

ec
]

1e4

Hotstuff
Themis
SpeedyFair

20 40 60 80
Number of Replicas

0.8

1.6

2.4

3.2

4.0

La
te

nc
y

[m
s]

1e2

Hotstuff
Themis
RapidFair

5 9
10
20
30
40

Fig. 6: Performance on different network sizes.

D. Performance with different Order-fairness Parameters

This experiment measures the performance of SpeedyFair
and Themis using different order-fairness parameters γ. As
explained in our model (Sec. III-A), the relationship of the
network size n and γ is n > 4f/(2γ − 1). Thus, when
selecting smaller γ for a stronger order-fairness property, we
should choose a larger size of replicas n. Specifically, with
the same number of byzantine replicas (f = 1), we evaluate
protocols with γ = 1 (n = 5), γ = 0.9 (n = 6), γ = 0.75
(n = 9), γ = 0.6 (n = 21), and γ = 0.55 (n = 41). The batch
size is set as 50 in this experiment. As depicted in Figure 7,
the overall performance of both protocols degrades when the
order-fairness parameter is decreased. This happens because
an increase in the number of replicas leads to reduced perfor-
mance. When γ = 0.55, SpeedyFair outperforms Themis by
the greatest margin (increase 245% of throughput, reduce 59%
of latency). This is because the time required for a round of
optimistic fair ordering (OFO) is lower compared to the time
for a round of proposing and voting in the consensus protocol.
Resulting in higher parallel efficiency and less waiting delay
(because OFO can execute faster) for the decoupled OFO and
consensus.

1 0.9 0.75 0.6 0.55
Order-fairness Parameter

0.0

0.3

0.6

0.9

1.2

1.5

Th
ro

ug
hp

ut
 [t

xs
/s

ec
]

1e4

Themis
SpeedyFair

1 0.9 0.75 0.6 0.55
Order-fairness Parameter

0.5

1.0

1.5

2.0

2.5

La
te

nc
y

[m
s]

1e2

Themis
SpeedyFair

Fig. 7: Performance on different order-fairness parameters.

E. Performance under the Geo-distributed Setting

In this experiment, we aim to measure the performance
of all the protocols under an emulated geo-distributed set-
ting. Specifically, we add an additional 50 ms of latency
(via Linux netem) for the communication channel between
replicas. Similar to the first experiment, we set the number of

replicas as n = 5 and the order-fairness parameter as γ = 1.
Figure 8 shows the performance results of all protocols with
varying batch sizes (50, 100, 200, 400, 800). As expected, the
addition of network latency results in a decline in the overall
performance of all protocols. However, compared to Figure
5, SpeedyFair and Themis attain their maximum throughput
with a larger batch size. Specifically, SpeedyFair shows its
best throughput with a batch size of 50 in the local setting,
but it obtains the highest throughput with a batch size of 400
in the geo-distributed setting. Similarly, Themis achieves the
optimal throughput with a batch size of 200 in this experiment
(25 in the local setting experiment), indicating the trade-
off between fair ordering and communication latency. When
communication latency is low, the overhead of fair ordering is
relatively higher, leading to better performance with smaller
batch sizes. However, higher latency increases the cost of
communication among replicas (in consensus) compared to fair
ordering. Therefore, large batch sizes offer greater performance
gains. With the batch size of 400, despite experiencing a 38%
decrease in throughput compared to Hotstuff, SpeedyFair still
achieves a 228% increase in throughput and reduces latency
by 56% compared to Themis.

50100 200 400 800
Batch Size

0.5

1.0

1.5

2.0

2.5

3.0

Th
ro

ug
hp

ut
 [t

xs
/s

ec
]

1e3

Hotstuff
Themis
SpeedyFair

50100 200 400 800
Batch Size

1

2

3

4

5

La
te

nc
y

[m
s]

1e3

Hotstuff
Themis
SpeedyFair

50 100 200
320
340
360
380
400

Fig. 8: Performance in the geo-distributed setting under differ-
ent batch sizes.

F. Performance with Different Ratios of Malicious Replicas

This experiment measures the performance of all protocols
under different ratios of malicious (byzantine) replicas. We fix
the network size as n = 21, the batch size as 50, and the
order-fairness parameter as γ = 1. The ratio of malicious
replicas changes within 0% (f = 0), 5% (f = 1), 14%
(f = 3), 24% (f = 5), where f is the number of malicious
replica. According to our threat model (described in Sec.
III-A), SpeedyFair requires n > 4f

2γ−1 to achieve order-
fairness. Thus, in our experiment, we have n ≥ 4f + 1,
and f ≤ n−1

4 . When n = 21, SpeedyFair tolerates at most
f = 21−1

4 = 5 malicious replicas. For malicious behaviors,
we mainly consider malicious replicas sending conflicting,
invalid, or reordered messages without introducing arbitrary
delays. This is reasonable since when introducing arbitrary
delays, the average performance of the system may be signifi-
cantly reduced (e.g., time-out view-change, delayed proposing
proposals), making it difficult to reflect the impact of other
malicious behaviors (especially for those affecting order) on
performance. Figure 9 shows the performance results of all
protocols under different ratios of malicious replicas. We find
that the performance degrades as the ratio of malicious replicas
increases for all protocols. This is because the protocols need
to additionally handle invalid and conflicting messages sent by

14

malicious nodes during verification (e.g., verifying the local-
order, notify, and proposal block messages). We provide the
proportion of throughput reduction in Table IV and latency
increase in Table V. We observe that the malicious behaviors
we have adopted as potential threats to order-fairness in
this experiment have little impact on the performance. Even
with 24% malicious replicas, compared to the case without
malicious replicas, the throughput is only reduced by 6.1%-
6.7%, and the latency is increased by 6.5%-7.2%.

0% 5% 14% 24%
Ratio of Malicious Replicas (n=21)

1

2

3

4

5

6

7

Th
ro

ug
hp

ut
 [t

xs
/s

ec
]

1e3

Hotstuff
Themis
SpeedyFair

0% 5% 14% 24%
Ratio of Malicious Replicas (n=21)

20

40

60

80
La

te
nc

y
[m

s]

Hotstuff
Themis
SpeedyFair

Fig. 9: Performance on different ratios of malicious replicas.

TABLE IV: Throughput Reduction Proportion.

Protocol / Malicious Ratio 5% 14% 24%
Hotstuff 0.9% 3.8% 6.2%
Themis 0.7% 3.1% 6.7%

SpeedyFair 0.5% 2.2% 6.1%

TABLE V: Latency Increase Proportion.

Protocol / Malicious Ratio 5% 14% 24%
Hotstuff 0.8% 4.1% 6.5%
Themis 0.7% 3.2% 7.2%

SpeedyFair 0.5% 2.3% 6.5%

VI. RELATED WORK

To mitigate the malicious transaction order manipulation
issue that occurred in existing BFT consensus protocols [6, 9,
16, 23, 24, 28, 39], several works have studied transaction
order-fairness recently, e.g., Pompe [43], Wendy [25, 26],
Aequitas [21], Themis [20], Quick order-fairness [8], Rashnu
[3], Lyra [40]. Both Pompe and Wendy rely on synchronized
clocks among replicas to indicate the order of transactions and
thus are impractical in asynchronous networks. Pompe uses an
ordering phase and determines the fair ordering of transactions
according to the median value of the timestamps replicas
assigned to transactions during the ordering phase. However,
malicious replicas can easily manipulate the median timestamp
(e.g., by assigning large timestamps). In addition, Pompe suf-
fers from censorship issues [20]. Differently, Wendy allows all
the replicas to access synchronized local clocks to order trans-
actions. If all the correct replicas receive the transaction tx1

before another transaction tx2, then tx1 is ordered before tx2.
Aequitas [21] proposed a notion of batch-order-fairness where
all transactions involved in a Condorcet Cycle will be delivered
to replicas in the same bath. Although Aequitas solves the
Condorcet paradox of receive-order-fairness (explained in Sec.
II), it still suffers from a weak liveness problem since the
Condorcet Cycle may be chained and extended infinitely.
Later, Kelkar et al. [19] further realize the batch-order-fairness

property of Aequitas in the permissionless setting. Quick order-
fairness [8] came up with a notion of differential order-fairness:
when the number of correct replicas that broadcast tx1 before
tx2 exceeds the number that broadcast tx2 before tx1 by
more than 2f + κ (for some order-fairness parameter κ ≥ 0),
then the protocol must not deliver tx2 before tx1. However,
Kelkar et al. [20] have stated that the differential order-
fairness is simply a reparameterization of batch-order-fairness
and is also vulnerable to weak liveness. Lyra [40] proposed
a leaderless Byzantine Ordered Consensus (BOC) to allow
all replicas (rather than just the leader) to order transactions
and combined with a commit-reveal protocol to obfuscate
transaction payloads to prevent reordering in the blockchain.
Themis [20] is one of the few implementations of the leader-
based fair ordering protocol with no synchronized clocks
assumption. It solved the weak liveness issue by providing a
transaction deferring technique on Aequitas, where the actual
order of transactions can be deferred to be submitted to replicas
in subsequent proposals. However, Themis suffers from huge
performance issues due to its complex fair ordering algorithm
and serial execution flow. Rashnu [3] proposed the notion of
data-dependent order-fairness, which extends the batch-order-
fairness and considers just ordering transactions that access the
same data object. As a result, Rashnu reduced the computation
complexity of fair ordering and improved the performance
in the implementation since it only needs to generate and
process the dependency graph for data-dependent transactions
rather than all transactions. However, Rashnu exposes the
correlation of the data (transactions), which increases the attack
opportunity for malicious replicas to reorder transactions after
seeing their contents. Our scheme achieves data-independent
fair ordering of transactions, which enables the ordering of
encrypted transactions (privacy protection) and enhances the
ability to resist reordering attacks. In addition, as discussed in
Sec. I, the bottleneck of the current leader-based order-fairness
protocol includes the computation complexity of fair ordering
and the strongly coupled ordering/consensus execution mode.
Thus, our work is orthogonal to Rashnu. Compared to the
state-of-the-art leader-based fair ordering implementations (do
not rely on synchronized clocks), our scheme decouples the
fair ordering process from the critical path of consensus and
parallelizes the serial executed order/verify mode to enhance
the performance.

Different fairness notions have also been studied in dif-
ferent consensus scenarios. To mitigate the transaction order
manipulation attacks, a line of works focuses on hiding the
transaction contents during the ordering phase by adopt-
ing threshold encryption [4, 7, 30, 42], secret sharing [29],
identity-based encryption (IBE) [32], trusted execution envi-
ronment (TEE) [36]. A different fairness notion aims to ensure
censorship resistance. Some censorship resistance schemes
[14, 30] have been studied to guarantee the transaction (or
order) proposed by correct replicas can be eventually delivered
by all correct replicas. Furthermore, some reputation-based
methods [4, 10, 22] are also proposed to help detect unfair
censorship. In some situations, fairness is defined as giving
each replica a fair opportunity to propose its requests using
fair leader election or fair committee election [4, 15, 27, 38].
These solutions, however, only partially offer order-fairness for
transactions and are still vulnerable to various attacks. When
using the transaction content hiding method (especially for

15

threshold encryption), it is possible to suffer collusion attacks
(between the client and the replicas), censorship attacks, or
blind reordering attacks [20, 21]. In addition, none of the
censorship resistance schemes, reputation-based schemes, and
fair election schemes can prevent malicious leaders from
manipulating the order of transactions in their rounds. Thus,
we do not directly compare performance with these schemes.

VII. CONCLUSION

In this paper, we have proposed a high-performance order-
fairness BFT consensus protocol SpeedyFair. To improve
performance, we have separated the fair ordering process
from the critical path of the consensus protocol to avoid
delays caused by ordering and consensus waiting for each
other. Then, we have proposed an optimistic fair ordering
scheme to parallelize the serial executed order/verify process
to further reduce the execution latency of fair ordering. We
have implemented a prototype of SpeedyFair on top of the
Hotstuff protocol. The evaluation results in our experiments
have demonstrated that SpeedyFair outperformed the state-of-
the-art order-fairness protocol (i.e., Themis) in terms of both
throughput and latency in various scenarios.

ACKNOWLEDGMENT

This work was supported in part by National Key R&D
Program of China under Grant 2021YFF0900300, in part by
Key Talent Programs of Guangdong Province under Grant
2021QN02X166, and in part by the National Natural Science
Foundation of China (Project No. 72031003). Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily
reflect the views of the funding parties.

REFERENCES

[1] “Diembft v4: State machine replication
in the diem blockchain.” 2021. [Online].
Available: https://developers.diem.com/docs/technical-
papers/statemachine-replication-paper

[2] “Condorcet paradox,” 2023. [Online]. Available:
https://en.wikipedia.org/wiki/Condorcet paradox

[3] M. J. Amiri, H. Nagda, S. P. Singhal, and B. T.
Loo, “Rashnu: Data-dependent order-fairness,” Cryptol-
ogy ePrint Archive, 2022.

[4] A. Asayag, G. Cohen, I. Grayevsky, M. Leshkowitz,
O. Rottenstreich, R. Tamari, and D. Yakira, “A fair
consensus protocol for transaction ordering,” in IEEE
ICNP, 2018, pp. 55–65.

[5] C. Baum, J. H.-y. Chiang, B. David, T. K. Frederiksen,
and L. Gentile, “Sok: Mitigation of front-running in
decentralized finance,” Cryptology ePrint Archive, 2021.

[6] J. Behl, T. Distler, and R. Kapitza, “Hybrids on steroids:
Sgx-based high performance bft,” in EuroSys, 2017, pp.
222–237.

[7] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup, “Se-
cure and efficient asynchronous broadcast protocols,” in
CRYPTO. Springer, 2001, pp. 524–541.

[8] C. Cachin, J. Mićić, N. Steinhauer, and L. Zanolini,
“Quick order fairness,” in FC. Springer, 2022, pp. 316–
333.

[9] M. Castro, B. Liskov et al., “Practical byzantine fault
tolerance,” in USENIX OSDI, vol. 99, no. 1999, 1999,
pp. 173–186.

[10] T. Crain, C. Natoli, and V. Gramoli, “Red belly: A secure,
fair and scalable open blockchain,” in IEEE S&P, 2021,
pp. 466–483.

[11] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov,
L. Breidenbach, and A. Juels, “Flash boys 2.0: Frontrun-
ning in decentralized exchanges, miner extractable value,
and consensus instability,” in IEEE S&P, 2020, pp. 910–
927.

[12] S. Eskandari, S. Moosavi, and J. Clark, “Sok: Transparent
dishonesty: front-running attacks on blockchain,” in FC.
Springer, 2020, pp. 170–189.

[13] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impos-
sibility of distributed consensus with one faulty process,”
Journal of the ACM (JACM), vol. 32, no. 2, pp. 374–382,
1985.

[14] Y. Gao, Y. Lu, Z. Lu, Q. Tang, J. Xu, and Z. Zhang,
“Dumbo-ng: Fast asynchronous bft consensus with
throughput-oblivious latency,” in ACM CCS, 2022, pp.
1187–1201.

[15] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zel-
dovich, “Algorand: Scaling byzantine agreements for
cryptocurrencies,” in ACM SOSP, 2017, pp. 51–68.

[16] G. G. Gueta, I. Abraham, S. Grossman, D. Malkhi,
B. Pinkas, M. Reiter, D.-A. Seredinschi, O. Tamir, and
A. Tomescu, “Sbft: a scalable and decentralized trust
infrastructure,” in IEEE DSN, 2019, pp. 568–580.

[17] L. Heimbach and R. Wattenhofer, “Sok: Preventing trans-
action reordering manipulations in decentralized finance,”
in ACM AFT, 2022, pp. 1–14.

[18] D. Johnson, A. Menezes, and S. Vanstone, “The elliptic
curve digital signature algorithm (ecdsa),” International
journal of information security, vol. 1, pp. 36–63, 2001.

[19] M. Kelkar, S. Deb, and S. Kannan, “Order-fair consensus
in the permissionless setting,” in ACM ASIA-PKCW,
2022, pp. 3–14.

[20] M. Kelkar, S. Deb, S. Long, A. Juels, and S. Kannan,
“Themis: Fast, strong order-fairness in byzantine consen-
sus,” Cryptology ePrint Archive, 2021.

[21] M. Kelkar, F. Zhang, S. Goldfeder, and A. Juels, “Order-
fairness for byzantine consensus,” in CRYPTO. Springer,
2020, pp. 451–480.

[22] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly,
E. Syta, and B. Ford, “Omniledger: A secure, scale-out,
decentralized ledger via sharding,” in IEEE S&P, 2018,
pp. 583–598.

[23] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong,
“Zyzzyva: Speculative byzantine fault tolerance,” ACM
TOCS, vol. 27, no. 4, pp. 1–39, 2010.

[24] R. Kotla and M. Dahlin, “High throughput byzantine fault
tolerance,” in IEEE DSN, 2004, pp. 575–584.

[25] K. Kursawe, “Wendy, the good little fairness widget:
Achieving order fairness for blockchains,” in ACM AFT,
2020, pp. 25–36.

[26] ——, “Wendy grows up: More order fairness,” in FC.
Springer, 2021, pp. 191–196.

[27] K. Lev-Ari, A. Spiegelman, I. Keidar, and D. Malkhi,
“Fairledger: A fair blockchain protocol for financial in-
stitutions,” in OPODIS, vol. 153, 2019, p. 4.

[28] S. Liu, P. Viotti, C. Cachin, V. Quéma, and M. Vukolic,

16

“Xft: Practical fault tolerance beyond crashes.” in
USENIX OSDI, 2016, pp. 485–500.

[29] D. Malkhi and P. Szalachowski, “Maximal extractable
value (mev) protection on a dag,” arXiv preprint
arXiv:2208.00940, 2022.

[30] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The
honey badger of bft protocols,” in ACM CCS, 2016, pp.
31–42.

[31] Z. Milosevic, M. Biely, and A. Schiper, “Bounded delay
in byzantine-tolerant state machine replication,” in IEEE
SRDS, 2013, pp. 61–70.

[32] P. Momeni, S. Gorbunov, and B. Zhang, “Fairblock:
Preventing blockchain front-running with minimal over-
heads,” in SecureComm. Springer, 2023, pp. 250–271.

[33] K. Qin, L. Zhou, and A. Gervais, “Quantifying
blockchain extractable value: How dark is the forest?”
in IEEE S&P, 2022, pp. 198–214.

[34] P. Rogaway and T. Shrimpton, “Cryptographic hash-
function basics: Definitions, implications, and separations
for preimage resistance, second-preimage resistance, and
collision resistance,” in ACM FSE, vol. 3017, 2004, pp.
371–388.

[35] C. Stathakopoulou, M. Pavlovic, and M. Vukolić, “State
machine replication scalability made simple,” in EuroSys,
2022, pp. 17–33.

[36] C. Stathakopoulou, S. Rüsch, M. Brandenburger, and
M. Vukolić, “Adding fairness to order: Preventing front-
running attacks in bft protocols using tees,” in IEEE
SRDS, 2021, pp. 34–45.

[37] G. S. Veronese, M. Correia, A. N. Bessani, and L. C.
Lung, “Spin one’s wheels? byzantine fault tolerance with
a spinning primary,” in IEEE SRDS, 2009, pp. 135–144.

[38] D. Yakira, A. Asayag, G. Cohen, I. Grayevsky,
M. Leshkowitz, O. Rottenstreich, and R. Tamari, “Helix:
A fair blockchain consensus protocol resistant to ordering
manipulation,” IEEE Transactions on Network and Ser-
vice Management, vol. 18, no. 2, pp. 1584–1597, 2021.

[39] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and
I. Abraham, “Hotstuff: Bft consensus with linearity and
responsiveness,” in ACM PODC, 2019, pp. 347–356.

[40] P. Zarbafian and V. Gramoli, “Lyra: Fast and scalable
resilience to reordering attacks in blockchains,” in IEEE
IPDPS, 2023.

[41] G. Zhang, F. Pan, S. Tijanic, and H.-A. Jacobsen, “Pres-
tigebft: Revolutionizing view changes in bft consensus
algorithms with reputation mechanisms,” arXiv preprint
arXiv:2307.08154, 2023.

[42] H. Zhang, L.-H. Merino, V. Estrada-Galinanes, and
B. Ford, “Flash freezing flash boys: Countering
blockchain front-running,” in IEEE ICDCSW, 2022, pp.
90–95.

[43] Y. Zhang, S. Setty, Q. Chen, L. Zhou, and L. Alvisi,
“Byzantine ordered consensus without byzantine oli-
garchy,” in USENIX OSDI, 2020, pp. 633–649.

[44] L. Zhou, K. Qin, C. F. Torres, D. V. Le, and A. Ger-
vais, “High-frequency trading on decentralized on-chain
exchanges,” in IEEE S&P, 2021, pp. 428–445.

17

