Separation is Good: A Faster Order-Fairness
Byzantine Consensus

Ke Mu Bo Yin Alia Asheralieva Xuetao Wel*
Southern University of Changsha University of Loughborough University Southern University of
Science and Technology Science and Technology Science and Technology

OF SCIg
o T e,

S <

\ A

S £y @
2
z
Z
o 7
S
S

SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY

NDSS 2024
B

Outline

» Background
» Motivation
» Our Solution: SpeedyFair

> Performance Results

» Conclusion

NDSS 2024
B

Background

Byzantine Fault Tolerant (BFT) Consensus

Byzantine

1 —o| il —0]

1 —o| il —0]

=0 i —0
Transactions |:> a Agree on a
from Clients QL |:> consistently ordered

T —o] il —o] transaction log

1 —o 1 —o

1 —o| 1n_—o|

Consensus Replicas
(Nodes

N

NDSS 2024

Background

Byzantine

N
N\

BFT Consensus

Safety or Consistency
Correct replicas output the same sequence of transactions

Liveness
Valid transactions are eventually delivered in a reasonable time

However

No restrictions on how to order or which
order is chosen

¥

Transaction Order Manipulation Problem

NDSS 2024

Background

B Transaction ordering is crucial in decentralized finance (DeFi)
« Adversarial transaction ordering can cause unexpected financial losses for users,
systematic bribery, or even protocol instability

B Currently, most permissioned BFT consensus protocols are leader-based:
 PBFT, Hotstuff, etc.

B | eader node can easily control the transaction ordering:
« Adversarial leaders can arbitrarily manipulate ordering without violating safety or liveness

« Lack of scheme checking fairness in consensus protocol

B Recent works introduce a new property called order-fairness in BFT consensus to
prevent adversarial order manipulation
[Kelkar et al, Crypto, 2020; Kursawe et al, AFT, 2020; Cachin et al, FC, 2022, Kelkar et al, CCS, 2023]

NDSS 2024
B

Motivation

Leader-based order-fairness consensus

111 —o] =0
1 —o T —o]
=0 (i) Collect Local Ordering
[—0] * Replicas send local orderings to the

= leader

= — B

NDSS 2024

Motivation

Leader-based order-fairness consensus

=0 =0 (ii) Fair Ordering & Propose
Ll o) i =0] Leader computes a fair global ordering as
- a new fair proposal through local orderings
@ » Leader proposes fair proposal

1111 —o|

1 —o|

T —o = N\
1 —o])
11 —o] 1 —o

\= -/
Fair Ordering Algorithm

NDSS 2024

Motivation

Leader-based order-fairness consensus

n__—o 11 —o
=0 i —o]
(iii) Verify & Consensus
=0 * Replicas verify the fairness of the
T —o prop9§al by repalculating fair orderin.g.
Q If verified, replicas perform the remaining
phases of the consensus protocol
111 —o] =0
1 —o])
T —o] 1111 —o|

NDSS 2024

Motivation

Current leader-based order-fairness protocols are not ideal

B (i) Strongly Coupled Consensus and Fair Ordering
« Mutual waiting between consensus and ordering

" Round i > < i1
| | |
Replica 1 Tx Fair % .
(Leader) | Ordering |} I I
I | I | |
I [. I | |
Replica 2 | | Verify : |
' I Tx Order | o : I
| I veo || Remaining Phases | |
Replica 3 ! : Verify : of BFT Consensus | | !
i ' I Tx Order | | |
Verify
Repli 4 f]] ! | |
o : I ! \ Tx Order 8 J |
M | A AN | g | pe
Collect Order ErePare verify Consensus Collect
Propose

Execution flow of a round in a leader-based order-fairness consensus protocol
NDSS 2024

Motivation

H (ii) Expensive Fair Ordering
Fair ordering and verifying accounts for 35%-70% latency (increase with batch size)

B Fair Ordering Bl Fair Ordering
2501 Total 500 Total

— 2001 — 400+
g g
> 150 > 300
Q Q
= =
2 2
= 1001 = 2001

50+ 100+

50 100 200 400 50 100 200 400

Batch Size (n=5) Batch Size (n=21)

Compare the latency of fair ordering and total
consensus in Themis [Kelkar et al, CCS, 2023]

NDSS 2024

Our Solution: SpeedyFair

Key Observations

M (i) Fair ordering does not rely on the transaction execution results of the previous proposal
after the consensus, but only relies on the previous transaction order
B (i) Ordering is computationally intensive. Consensus is communication intensive.

Main ldea

B Separate fair ordering and verification from the critical path of consensus
B Optimistic Fair Ordering (OFO): execute fair ordering independently and continuously
B Minimal modification in BFT consensus: agree on valid ordering results from OFO

NDSS 2024
B

A M LY

F> w % SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY
S’

Our Solution: SpeedyFair

SpeedyFair Architecture

B Optimistic Fair Ordering (OFQO)
« Fair ordering performs individually and consecutively without waiting for consensus

« Saving valid fair ordering outputs in fragments
B Modified BFT Consensus

Optimistic Fair Ordering

»e T) Collect le)licei;’y Pre-Order——»Collect Nf;rg;y Pre-Order l » Collect NI:E;Y Pre-Order T Collect NI;I:;y Pre-Order T) see
__________ .. IR, TP TORPT, e . [E—
. Fragment; | Block, . Fragment, | Block; . Fragment; Fragmenty . Blockj . Fragments |
v , v . V. |
e 4 BFT Consensus gl%cllde) BFT Consensus ??—leje) BFT Consensus gﬁf‘:ﬂe N
{1 DI10C K2 {3

Consensus: run BFT consensus to decide fragments in each block

NDSS 2024

Our Solution: SpeedyFair
Optimistic Fair ordering (OFO)

B Parallelize fair ordering and verification in Pre-Order

B Design a quorum certificate using threshold signatures to guarantee that the valid fair
ordering outputs (fragment) of OFO can be eventually selected by consensus

& Virtual view v S v+l
Replica 1 I I

|
(Virtual | Pre Order
Leader) :
|
Replica 2 Pre-Order |
|
|

Pre-Order

Replica 3

1

1

|

|

|

[

|

l

|

1
: l - Pre-Order ;
D U __
Collect Pre-Notify Collect

 ETH SR N

Replica 4

NDSS 2024

Our Solution: SpeedyFair
Modified BFT Consensus

B Minimal Modification on prepare phase in consensus

B Prepare Proposal
« Leader appends valid fragments (with quorum certificate) generated by OFO into the
newest fair proposal

m Verify Proposal
« Replicas verify the proposal with a simple verification function
« The simple verification function only checks if the fragment in the proposal is the same
as the fragment calculated by OFO (no need to recalculate the fair ordering)

NDSS 2024
B

Our Solution: SpeedyFair

Getting rid of the liveness and data availability problem

B Liveness problem (in OFO):

 OFO process can be blocked by malicious leaders or long network latency (timeout)
B Pacemaker Mechanism

« Advance the view in OFO when a timeout occurs

B Data availability problem:

« Slow replicas may not completely compute expensive fair ordering in OFQO locally,
causing delays in both OFO and verification in consensus
B Data Synchronization Mechanism

« Synchronous valid fragments through quorum certificate (QC)
« QC proves at least f+17 replicas have computed the same fair-ordered fragments

NDSS 2024

Performance Results

B SpeedyFair outperforms Themis
B Comparable performance with Hotstuff baseline when batch size is relatively small

led

le2

1.0
7.51 —®— Hotstuff
2.0 —— Themis
— SpeedyFair —0.8
g 164 H6.0‘ E
72} 72} 17}
‘é 1.2 —#— Hotstuff -24_54 %g £0,6'
5 —e— Themis 5 151 =
j% SpeedyFair % 104 ,g‘
el 230l sl — $0.4/
2 0.81] 3.0 5% .]
Eo — 25 50 S
= =
041 \\ 1.5 02
2550 100 200 400 2550 100 200 400
Batch Size Batch Size
n=5
15 le4 25 le2
BN Themis s Themis 3.0
SpeedyFair SpeedyFair
o' 1.21 2.0 —2.5
2 3
@) g 20
£0.91 E15 e
E & 215
=]] Q <
= < =
<} — 2 1.0
]]
E 0.3 0.5 =
’ . 0.5
00/ - B
1 09 O 75 0. 55 1 0. 75 0.6 055

Order-fairness Parameter

Order-falrness Parameter

NDSS 2024

led

400
Batch Size

5000 200

le3

—m— Hotstuff 2.01 —=— Hotstuff
—e— Themis —e— Themis
SpeedyFair SpeedyFair
1.61
B 1.21
>
5
=]
£ 0.8
3 X
2550 100 200 400 2550 100 200 400
Batch Size Batch Size
n=21
le3 5 le3
—#— Hotstuff = —#— Hotstuff
—e— Themis — —e— Themis
SpeedyFa/ 4 SpeedyFair

400 800

Batch Size

50100 200

A M LY

SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY

Conclusion

B Design SpeedyFair, a high-performance order-fairness BFT protocol.

B Decouples fair ordering from consensus to reduce delays waiting for each
other.

B Supports parallel ordering and verifying.

B Prevents liveness, data availability issues in decoupled paradigm.

NDSS 2024

>
I}
S
<]
2
E
=
=
o
]
E
o
o]
=
&
S
3
S
2
&
=
H
5
=
]
]
£
g
5
=]
2

B v

YYYYYYvyy
YYYYyvy
/11141(16
YYVyvyy
441141«1
YYYYYyyy
YYVvyyy
YYYYyyy
Y¥¥rvy
YYYYYYyy
YYYVYryy
'Y rvyyy,
YYVryvyy

&......“.“"..."...u_m

