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Background

Byzantine Fault Tolerant (BFT) Consensus
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Background

Byzantine
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BFT Consensus

Safety or Consistency
Correct replicas output the same sequence of transactions

Liveness
Valid transactions are eventually delivered in a reasonable time

However

No restrictions on how to order or which
order is chosen

¥

Transaction Order Manipulation Problem
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Background

B Transaction ordering is crucial in decentralized finance (DeFi)
« Adversarial transaction ordering can cause unexpected financial losses for users,
systematic bribery, or even protocol instability

B Currently, most permissioned BFT consensus protocols are leader-based:
 PBFT, Hotstuff, etc.

B | eader node can easily control the transaction ordering:
« Adversarial leaders can arbitrarily manipulate ordering without violating safety or liveness

« Lack of scheme checking fairness in consensus protocol

B Recent works introduce a new property called order-fairness in BFT consensus to
prevent adversarial order manipulation
[Kelkar et al, Crypto, 2020; Kursawe et al, AFT, 2020; Cachin et al, FC, 2022, Kelkar et al, CCS, 2023]

NDSS 2024
B



Motivation

Leader-based order-fairness consensus
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Motivation

Leader-based order-fairness consensus

=0 =0 (ii) Fair Ordering & Propose
Ll o) i =0]  Leader computes a fair global ordering as
- a new fair proposal through local orderings
@ » Leader proposes fair proposal
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Motivation

Leader-based order-fairness consensus
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Motivation

Current leader-based order-fairness protocols are not ideal

B (i) Strongly Coupled Consensus and Fair Ordering
« Mutual waiting between consensus and ordering
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Execution flow of a round in a leader-based order-fairness consensus protocol
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Motivation

H (ii) Expensive Fair Ordering
Fair ordering and verifying accounts for 35%-70% latency (increase with batch size)

B Fair Ordering Bl Fair Ordering
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Compare the latency of fair ordering and total
consensus in Themis [Kelkar et al, CCS, 2023]
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Our Solution: SpeedyFair

Key Observations

M (i) Fair ordering does not rely on the transaction execution results of the previous proposal
after the consensus, but only relies on the previous transaction order
B (i) Ordering is computationally intensive. Consensus is communication intensive.

Main ldea

B Separate fair ordering and verification from the critical path of consensus
B Optimistic Fair Ordering (OFO): execute fair ordering independently and continuously
B Minimal modification in BFT consensus: agree on valid ordering results from OFO
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Our Solution: SpeedyFair

SpeedyFair Architecture

B Optimistic Fair Ordering (OFQO)
« Fair ordering performs individually and consecutively without waiting for consensus

« Saving valid fair ordering outputs in fragments
B Modified BFT Consensus

Optimistic Fair Ordering
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Consensus: run BFT consensus to decide fragments in each block
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Our Solution: SpeedyFair
Optimistic Fair ordering (OFO)

B Parallelize fair ordering and verification in Pre-Order

B Design a quorum certificate using threshold signatures to guarantee that the valid fair
ordering outputs (fragment) of OFO can be eventually selected by consensus
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Our Solution: SpeedyFair
Modified BFT Consensus

B Minimal Modification on prepare phase in consensus

B Prepare Proposal
« Leader appends valid fragments (with quorum certificate) generated by OFO into the
newest fair proposal

m Verify Proposal
« Replicas verify the proposal with a simple verification function
« The simple verification function only checks if the fragment in the proposal is the same
as the fragment calculated by OFO (no need to recalculate the fair ordering)
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Our Solution: SpeedyFair

Getting rid of the liveness and data availability problem

B Liveness problem (in OFO):

 OFO process can be blocked by malicious leaders or long network latency (timeout)
B Pacemaker Mechanism

« Advance the view in OFO when a timeout occurs

B Data availability problem:

« Slow replicas may not completely compute expensive fair ordering in OFQO locally,
causing delays in both OFO and verification in consensus
B Data Synchronization Mechanism

« Synchronous valid fragments through quorum certificate (QC)
« QC proves at least f+17 replicas have computed the same fair-ordered fragments
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Performance Results

B SpeedyFair outperforms Themis
B Comparable performance with Hotstuff baseline when batch size is relatively small
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Conclusion

B Design SpeedyFair, a high-performance order-fairness BFT protocol.

B Decouples fair ordering from consensus to reduce delays waiting for each
other.

B Supports parallel ordering and verifying.

B Prevents liveness, data availability issues in decoupled paradigm.
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