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Abstract—Smart Televisions (TVs) are internet-connected TVs
that support video streaming applications and web browsers.
Users enter information into Smart TVs through on-screen
virtual keyboards. These keyboards require users to navigate
between keys with directional commands from a remote con-
troller. Given the extensive functionality of Smart TVs, users
type sensitive information (e.g., passwords) into these devices,
making keystroke privacy necessary. This work develops and
demonstrates a new side-channel attack that exposes keystrokes
from the audio of two popular Smart TVs: Apple and Samsung.
This side-channel attack exploits how Smart TVs make different
sounds when selecting a key, moving the cursor, and deleting
a character. These properties allow an attacker to extract the
number of cursor movements between selections from the TV’s
audio. Our attack uses this extracted information to identify
the likeliest typed strings. Against realistic users, the attack
finds up to 33.33% of credit card details and 60.19% of
common passwords within 100 guesses. This vulnerability has
been acknowledged by Samsung and highlights how Smart TVs
must better protect sensitive data.

I. INTRODUCTION

Internet-connected television (TV) devices have experienced
massive growth over the last decade. These devices, called
“Smart TVs”, are expected to reach over 266 million units sold
globally by 2025 [36]. Unlike their traditional counterparts,
Smart TVs allow users to browse the Web, access video
streaming applications (e.g., Hulu), and purchase products.
This increased functionality brings about new security risks
[1], [21], [35], [40], [42], [69].

Users typically enter information into Smart TVs through
on-screen virtual keyboards. Common platforms, such as Ap-
pleTVs [4] and Samsung Smart TVs [55], allow users to
navigate these keyboards with a hardware remote controller
containing a direction pad (Figure 1). Users type by issuing
directional commands to sequentially move a cursor between
desired keys. Given the wide-ranging capabilities of Smart

TVs, users enter sensitive information, such as passwords and
credit card details, with these virtual keyboards [21]. Thus,
Smart TVs must ensure the privacy of user keystrokes. On
popular Smart TV platforms, such as Samsung’s Tizen [55],
the default keyboard makes sounds as users type.

This work presents a new side-channel attack against Smart
TV keyboards that uses the TV’s audio to discover typed
strings. In this attack, audio forms a side-channel because
the TV does not intend to convey the user’s exact keystrokes
through its acoustic feedback. Developing this attack requires
answering four key questions:

(Q1) How can the attack identify sounds made by the Smart
TV that contain valuable information about keystrokes?

(Q2) How can the attack use these sounds to discover when a
user is typing and how they navigate the virtual keyboard?

(Q3) How can the attack use the extracted movement informa-
tion to recover user-typed strings?

(Q4) How can the attack overcome real-world challenges, such
as discovering the type of entered information (e.g.,
passwords, credit cards, etc.) and accounting for user
typing behavior?

Our attack addresses the first question (Q1) by exploiting
how different Smart TV platforms make distinct sounds.
Further, platforms use a small number of sounds, and each
sound is consistent because it comes from the platform itself.
These properties allow the attack to identify important sounds
by pre-recording sounds from common Smart TVs and using
Fourier analysis to match these references against the sounds
observed at runtime. This method augments standard signal
processing techniques to handle distinct features of Smart
TVs, such as the conflation of adjacent sounds due to rapid
movements on the keyboard.

We answer the second question (Q2) by drawing on the
insight that multiple popular Smart TVs make different sounds
for the following actions: (1) moving the keyboard cursor,
(2) selecting a key, and (3) deleting a character. Furthermore,
compared to other actions on the TV, the key selection sound
is unique to the keyboard. Thus, an adversary with auditory
access can learn three critical pieces of information about user
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Fig. 1. Remote controllers for AppleTVs (left) and Samsung Smart TVs
(right) annotated with the direction pad.

keystrokes.
• When a user is typing, due to sounds unique to the

keyboard.
• The length of the entered string, by tracking the number

of selections and deletions.
• The number of cursor movements between selections.

The TV’s audio, however, does not reveal the direction of user
movements on the virtual keyboard (Q3). This lack of direc-
tionality means that many possible strings may correspond to
the audio for a given sequence of keyboard movements. We
address this challenge by using a prior dictionary to measure
the probability of typing each possible string. This design
allows the attack to construct a ranked list of the likeliest
results across all possible movement directions. We further
leverage user typing patterns and string-length properties to
infer the class of entered information, such as passwords or
credit cards (Q4). This feature allows the attack to customize
the prior without making additional assumptions.

Smart TV keyboards do not require users to take the shortest
path between keys, so the extracted movement counts only
provide an upper bound on the distance between selections
(Q4). Accounting for suboptimal paths that users may traverse
increases the search space and complicates keystroke recovery.
We tackle this problem by exploiting user behavior through
keystroke timing: we observe that users tend to pause when
correcting suboptimal paths. By identifying such pauses, the
attack only accounts for suboptimal paths when needed.

We evaluate this attack against two popular Smart TV
brands: Apple [4] and Samsung [55]. These brands account for
about 15.4% of the global Smart TV market, with Samsung
being the most popular platform [66]. Importantly, the audio
profiles of both TVs exactly match the properties enabling
our attack. When assuming optimal typing behavior in an
emulated environment, our attack recovers 99.95% of credit
card numbers (CCNs), 97.65% of full credit card details
(CCN, security code, ZIP code, and expiration date), and up
to 99.10% of common passwords [41] within 100 guesses. We
extend these results to a realistic setting through a user study1.
For ten subjects typing into real applications on a Samsung
TV, the attack recovers 53.33% of CCNs, 33.33% of full credit
card details, and up to 60.19% of common passwords [41]
within 100 guesses. We further investigate this attack against
users typing passwords on an AppleTV. On this platform, the

1Our university’s institutional review board (IRB) approved this study.

attack has a top-100 password recovery accuracy of 31.00%;
this lower result occurs because users take more suboptimal
paths on this device. These top-100 recovery rates mean our
attack can verify the extracted information against rate-limited
online services [32].

Prior work has studied side-channels on user keystrokes
from two angles with similar elements. First, multiple attacks
use the audio from mechanical keyboards to infer keystrokes
[6], [10], [14], [70]. These attacks, however, do not work
on Smart TVs due to the differences in keyboard types.
Mechanical keyboards allow users to jump between keys
instantaneously. In contrast, Smart TVs require users to scroll
across the virtual keyboard through directional commands.
This difference in dynamics necessitates a new method for
string recovery. Second, HomeSpy sniffs unencrypted infrared
(IR) signals between Smart TVs and their remote controllers,
enabling keystroke recovery [21]. Recent Smart TVs, however,
have remotes that do not use IR [35], [69], and the HomeSpy
attack does not succeed on such devices. Our acoustic attack
is agnostic to the TV remote’s communication medium.

We disclosed this issue to Apple and Samsung. Apple
responded, “while we do not see any security implications,
we have forwarded your report to the appropriate team to
investigate as a potential enhancement request to take action.”
The reply provides no further details. We followed up on the
enhancement request to confirm our suggestion to mute the
TV when typing sensitive information. We have not heard
back. Samsung acknowledged the presented security problem
and paid a bounty for finding this vulnerability. They further
confirmed they have “multiple teams discussing the issue” to
implement a long-term fix.

Overall, we make the following contributions:
1) We identify a new side-channel attack against Smart TVs

that uses audio to learn about user keystrokes.
2) We build an attack framework that uses acoustic informa-

tion to identify instances of keyboard activity and extract
cursor move counts between keyboard selections.

3) We create a recovery module that infers user-typed strings
from the information extracted from Smart TV audio.

4) We identify and exploit common human typing behaviors
on Smart TVs to improve the attack in practice.

This work identifies a novel side-channel on Smart TVs that
leaks sensitive user information. This result displays another
example of how Internet-connected, everyday devices must
pay more attention to security [2], [16], [19], [20].

II. BACKGROUND

This section provides background on Smart TVs and virtual
keyboards (§II-A) before describing the notation we use in
the rest of the paper (§II-B). We then discuss details of credit
card transactions (§II-C) and present an example of acoustic
keystroke leakage (§II-D).

A. Smart TVs and Virtual Keyboards

Smart TVs are Internet-connected televisions that support
web browsers and third-party applications. Users control Smart
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Fig. 2. The default AppleTV keyboard for passwords. The background shows
the key’s sound when pressed. The only exception is Done, which makes the
sound when scrolling onto the key; selecting Done makes no sound.
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Fig. 3. The default keyboard on the Samsung Smart TV. The background
denotes the key’s sound when pressed.

TVs with wireless remotes that communicate over Bluetooth
or infrared [35]. For common platforms [4], [55], these remote
controllers contain direction pads that allow users to navigate
the TV (Figure 1).

Users enter information into Smart TVs using an on-
screen virtual keyboard. These keyboards handle sensitive
information, such as passwords and credit cards, as users log
into accounts and purchase products (e.g., subscriptions). The
keyboard layout depends on the Smart TV operating system
(OS) and, if applicable, the current application. We focus on
the default keyboards from two Smart TVs: AppleTVs (tvOS)
[4] and Samsung Smart TVs (Tizen OS) [55]. AppleTVs
use an alphabetical design (Figure 2), and Samsung TVs
use a QWERTY layout (Figure 3). On these platforms, users
type by moving a cursor to the desired characters with the
remote’s directional pad. For instance, to reach j from q,
users can press the ‘right’ button six times and ‘down’ once.
Users may rapidly scroll through system-dependent actions.
AppleTV remotes have a directional touchpad, allowing rapid
traversal by swiping. On Samsung TVs, users can quickly
scroll by holding down a direction button. Finally, Samsung
TVs support horizontal wraparound; for example, moving left
from CAPS places the cursor on CLEAR. There is no vertical
wraparound. AppleTV supports no wraparound of any kind.

Virtual keyboards have multiple views, each containing a
different character set. Users can switch views by selecting a
“view-change” key, e.g., ABC in Figure 2 or #@! in Figure 3.

We observe a crucial property of both TVs:

(P1) Upon opening the keyboard, the cursor always starts on
the same key in the same view. For AppleTVs, the starting
view is the lowercase letters (Figure 2) with the cursor on
a. On Samsung Smart TVs, the cursor starts on q within
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Fig. 4. Example of dynamic key suggestions on the Samsung Smart TV upon
selecting the character d.

the lowercase QWERTY keyboard (Figure 3).
1) Acoustic Properties: A critical property of popular

Smart TVs is that their default keyboards make sounds during
user interaction. In particular, both AppleTVs and Samsung
Smart TVs have audio profiles with the following properties:
(P2) The sound of moving the cursor, called KeyMovement,

differs from that of selecting a key, called KeySelect.
(P3) The BACK and CLEAR keys make different sounds than

that of other keys. We call this sound Delete.
(P4) The KeySelect sound is unique to the keyboard. When

making selections outside the keyboard (e.g., choosing a
video to play), the TV makes a different sound, which
we call SystemSelect. The keyboard can make the
SystemSelect sound on special keys (Figure 3).

Unlike the acoustic emanations from mechanical key-
boards [6], [70], these sounds originate from the TV OS. Thus,
the sounds are consistent and user-independent. Further, each
platform has its own version of each sound; the KeySelect
sound on the AppleTV is not the same as KeySelect on the
Samsung Smart TV.

Both TVs have inaudible shortcuts by pressing buttons on
the remote. On AppleTVs, users can change the keyboard
view. The Samsung TV allows users to capitalize characters.
These actions move the cursor deterministically; e.g., if the
cursor is on d, it moves to D after the capitalization shortcut.

2) Dynamic Keyboards: Samsung keyboards sometimes
provide inline suggestions by populating neighboring locations
with new characters (Figure 4). This design aims to reduce the
user’s movement on the keyboard. Moving twice in the same
direction clears the suggestions. The keyboard always starts
with no suggested keys. These suggestions only occur when
users enter “predictable” information such as web searches.
There are no suggestions when entering passwords. For pass-
words, the only dynamic behavior occurs when the keyboard
suggests Done after the user reaches eight characters. Ap-
pleTV keyboards have no dynamic behavior.

B. Notation

Our attack uses move count sequences to recover strings
typed on a Smart TV virtual keyboard. A move count se-
quence is an ordered list S = [M (n) = (k(n), s(n), t(n))]Nn=1

where M (n) is the the nth move. Each move has three
items. The first, k(n), is the number of cursor movements
to navigate from the (n − 1)th key to the nth key. Second,
s(n) ∈ Q = {KeySelect, SystemSelect, Delete} is the
sound made upon selecting the nth key where Q denotes
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the set of end sounds. Finally, t(n) ∈ Rk(n)

holds the times
of the individual movements.2 We infer user behavior from
t(n) (§IV-C). We denote strings as w where wℓ is the ℓth

character and wℓ:r is the substring from position ℓ to r
inclusive. We define a keyboard instance as a contiguous
episode starting with opening the keyboard and ending with
the string’s submission (e.g., by clicking Done). A move count
sequence S can have zero or more keyboard instances.

As an example, consider typing the string test on the Sam-
sung Smart TV keyboard (Figure 3). With timing information
omitted, one possible move count sequence S for this string
is below. The last move comes from navigating to Done.

S = [(k(0) = 4, s(0) = KeySelect), (k(1) = 2, s(1) = KeySelect),

(k(2) = 2, s(2) = KeySelect), (k(3) = 4, s(3) = KeySelect),

(k(4) = 9, s(4) = SystemSelect)]

There are an infinite number move count sequences for
a single string because users can traverse suboptimal paths
between keys. Similarly, one move count sequence can corre-
spond to many strings.

We use S as an intermediate representation for the TV’s
audio. Our attack works by converting audio into a move
count sequence S and then finding strings that match S in
the keyboard layout.

C. Credit Card Details

Users type credit card details into Smart TVs when pur-
chasing products (e.g., movies or subscriptions). For example,
users must enter their payment information into the Hulu
application when creating a new account on Samsung Smart
TVs. These purchases are “card-not-present” transactions.
Users must provide sufficient payment details to validate the
transaction with a card payment network. These details often
include the credit card number (CCN), expiration date, security
code (CVV), and billing address. The CVV is a 3- or 4-
digit sequence of pseudo-random numbers. Popular Smart
TV applications, such as Hulu, validate the billing address
through a 5-digit ZIP code. Therefore, the 5-tuple of (CCN,
expire month, expire year, CVV, ZIP) is sufficient to purchase
products, making this information financially valuable to an
attacker. We call this 5-tuple the full credit card details. We
focus on payments in the United States, though the formats of
other countries are conceptually similar.

CCNs are generally 15- or 16-digit strings where the first
digit identifies the card issuer. We focus on three popular
issuers: American Express (AMEX), Visa, and Mastercard.
Apart from the last digit, the remaining numbers identify the
issuing institution and user account. The final digit ensures
the entire CCN satisfies a checksum under Luhn’s algorithm.
This checksum is essential to our attack’s performance when
recovering CCNs (§V-B, §VI-B).

To verify stolen credit card information, an attacker must
execute a transaction against a card payment service. If the

2We denote vectors in boldface and scalars in plain text.
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Fig. 5. Example audio from the Samsung TV when typing the string test.

service accepts the transaction, the attacker has valid payment
details. Upon rejection, we assume the attacker only knows
that at least one field is incorrect. Further, we assume all five
fields must be correct for a valid transaction. This assumption
is conservative, as some services may only validate a subset
of fields [56].

D. Example of Acoustic Keystroke Leakage

We provide an example of acoustic keystroke leakage by
typing the string test on the Samsung TV (Figure 3) and
recording the audio. Figure 5 shows the audio produced by
the TV (§VI-A describes the experimental setup). With prior
knowledge of the TV’s sounds, we identify the user’s keyboard
actions from the raw audio (P2). This identification yields the
move count sequence S from §II-B. Visually, this example
highlights the distinctive nature of Smart TV sounds.

To recover the typed string, an attacker can combine the
keyboard layout (Figure 3) with S. Assuming the user takes
shortest paths, the first character is w0 ∈ {t, 4, f, c, ˆ, !}
because the cursor starts on q (P1). Then, the attacker con-
siders keys at a distance of k(1) = 2 from each possible w0.
Iteratively continuing this process yields possible strings such
as ft6f, test, tukt, and so forth. The attack can identify
the most likely result using a prior dictionary over all possible
strings. For instance, the attacker can correctly recover test
under an English prior. This general method allows an attacker
to recover keystrokes from a Smart TV’s audio.

III. THREAT MODEL

We consider an attacker with passive audio access to a Smart
TV running Samsung’s Tizen OS [55] or AppleTV’s tvOS [4].
We assume there is only one TV in the target location. An
attacker can gain this access to the TV in one of two ways:

1) The adversary can hijack an adjacent device containing
a microphone. Such devices are prevalent due to the
growth of smart speakers (e.g., Amazon Echo) [22]. It
is reasonable to assume that these devices have vulner-
abilities exposing their microphone feed; prior attacks
have both turned such speakers into wiretaps [9], [29]
and compromised other smart devices [2], [3], [16], [20],
[54]. Depending on the vulnerability, an adversary can
exploit these nearby devices remotely, launching our
attack even without physical access to the target TV.
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These assumptions correspond to the threat model of
previous keystroke attacks on Smart TVs [21].

2) The attacker can place a malicious microphone near the
target TV. This method requires stronger capabilities, as
this adversary generally needs physical access to place the
microphone. We consider this threat despite this stronger
assumption because it remains reasonable for venues
with transient populations, such as hotel rooms, vacation
homes, and other short-term rental facilities. This vector
may be possible without physical access if the TV is
audible in an adjacent space (e.g., through the wall of an
apartment) or if the attacker leverages long-range (e.g.,
laser) microphones [43], [54].

We emphasize what the adversary does not assume. The
attacker makes no assumptions about the type of information
(e.g., passwords, credit card details, etc.) or even that the
user is typing at all. The attacker must determine when the
user is typing and the class of entered information. When the
user is typing, the attacker does not assume the user takes an
optimal path between keys. Further, the adversary has no other
knowledge about the user. This assumption is conservative; for
example, knowing personal information improves password
guessing [62]. Finally, the attacker must validate inferred
keystrokes against online services (e.g., by directly entering
a password guess into an online site). The adversary cannot
access leaked information on which to validate results offline.
This setting mirrors online password guessing and is more
challenging due to rate limits and service lockouts [62].

We compare this threat to four related attacks: video-based
attacks, attacks on voice inputs, attacks on infrared remotes,
and attacks on virtual remotes.

a) Video: Similar to shoulder surfing [65], an adver-
sary with video access to the Smart TV’s screen can read
keystrokes. Gaining reliable video access, however, is harder
than capturing only audio because the attacker needs an
unobstructed view of the TV. Therefore, video access is
sensitive to the malicious device’s location. The audio threat is
stealthier because it can operate anywhere near the TV within
audible range, allowing the recording device to occupy less
conspicuous places. Finally, the audio attack is not sensitive
to small changes in the location of the TV or microphone.

b) Voice Inputs: Some Smart TVs support voice inputs.
This method replaces virtual keyboards by allowing users to
speak their desired string into the remote controller. Voice
inputs leak information through acoustic signals, as attackers
with audio access to the target TV can use speech recognition
[18] to discover the entered string. Smart TVs, however, do not
support voice inputs for all information types. For example,
Samsung Smart TVs block voice inputs for password fields;
instead, the TV forces users to enter passwords with the virtual
keyboard. Thus, an attacker who only targets voice inputs
cannot steal all forms of highly sensitive information. Our
attack targets the virtual keyboard’s audio and can discover
private information such as passwords.

Smart TV
Audio

Select TV

Type (§IV-A1)

Extract Move Count

Seq (§IV-A2)

Split Keyboard

Instances (§IV-A3)

Audio Extraction (§IV-A)

Infer Entry

Type (§IV-B1)

Choose String

Prior (§IV-B2)

Keyboard Graph

Search (§IV-B3)

Ranked List
of Guesses

String Recovery
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Fig. 6. The keystroke acoustic attack framework.

c) Infrared Remotes: HomeSpy steals user keystrokes
by sniffing infrared (IR) signals between Smart TVs and
remote controllers [21]. However, this attack only works for
IR remotes. Newer remotes communicate over Bluetooth [35],
[69], and HomeSpy does not succeed on Bluetooth remotes.
In contrast, the audio attack is agnostic to the remote control
communication protocol.

d) Virtual Remotes: SPOOK exploits vulnerabilities
when pairing virtual remotes to steal Smart TV keystrokes
[35]. Enforcing human attestation during the pairing process
stops this attack. This patch, however, does not thwart the
considered audio threat.

IV. ACOUSTIC ATTACK FRAMEWORK

This section describes our acoustic attack against Smart TV
keyboards. The attack consists of two core modules (Figure
6). The first component (§IV-A) uses the Smart TV’s audio
to identify the platform (§IV-A1) and extract move count
sequences (§IV-A2). The module then isolates instances of
a user typing (§IV-A3). The second module uses each isolated
move count sequence to recover the typed string (§IV-B). This
module first infers the type of entered information (e.g., pass-
words, credit card details, etc.) (§IV-B1). From this inference,
the attack customizes a prior dictionary over possible strings
(§IV-B2). We combine this prior with the keyboard layout to
guess the likely typed strings (§IV-B3). This section concludes
by discussing improvements based on timing patterns (§IV-C).

The attack acts on fixed-length audio recordings. This
property is necessary to identify the platform (§IV-A1) and
information (§IV-B1) types. The attacker can obtain such
recordings by splitting the microphone feed during prolonged
silence (e.g., at night). The attack automatically identifies
and isolates the instances of users typing within the larger
recording. This property implies the adversary cannot launch
the attack in real-time. However, this limitation is manageable
as it enables the attacker to make minimal assumptions.
Further, the value of sensitive information, such as passwords
and credit cards, does not significantly diminish over these
delays.

A. Audio Extraction

1) TV Type Selection: The first step in the attack pipeline
uses acoustic properties to identify the Smart TV platform.

5



Different Smart TVs use unique audio profiles, so the TV’s
sounds fingerprint the system. On the AppleTV and Sam-
sung Smart TV, the KeySelect sounds uniquely identify
keyboard usage (P4). Thus, for a given recording, we match
instances of the KeySelect sound for each platform (§IV-A2
describes this matching). We classify the TV type as the
platform with the most matching KeySelect sounds over
the recording’s duration. When no matches exist, the platform
type is unknown, and we abort the attack. Such cases indicate
background noise, an unsupported TV, or no keyboard use.

2) Extracting Move Count Sequences: Smart TVs make
distinctive sounds (P2), (P3), leading to keyboard interac-
tions with audio such as that of Figure 5. This section
describes a procedure to separate and classify the TV’s relevant
sounds (Q1). This process extracts a move count sequence, S,
from raw audio (Q2).

From Figure 5, the Smart TV’s sounds appear as regions
with high amplitude. Thus, the module finds each amplitude
peak and identifies the surrounding region as a candidate
sound. This process follows prior acoustic attacks against
mechanical keyboards [10].

The module must then classify each candidate sound
as one of KeySelect, SystemSelect, KeyMovement,
Delete, or Unknown. We use a nearest-neighbor classifier
due to the consistency of Smart TV sounds over time. We
pre-collect recordings for each sound on the target Smart TV
platforms. We call these recordings the reference sounds. At
runtime, the framework creates the spectrogram of the can-
didate and reference sounds using a Fourier transform length
of 1,024, a segment length of 256, and 32 points overlapping
between segments. We then compute the L1 distance between
the candidate and reference spectrograms. We select the proper
reference sounds using the inferred TV type (§IV-A1). The
module classifies the candidate based on the lowest distance.
If the best distance exceeds a threshold, the sound is Unknown
and therefore unrelated to the TV. We empirically determine
these thresholds for each reference sound to filter out false
positives on a set of training examples.

Three challenges arise with this nearest-neighbor approach.
(a) Dimension Mismatch: The candidate and reference spec-

trograms may have a different number of timesteps.
This dimensionality mismatch prevents computing the L1
distance directly. We solve this issue by instead sliding
the smaller spectrogram over the larger one. We return
the minimum sliding window distance.

(b) Background Noise: The L1 distance is sensitive to back-
ground noise. We mitigate this problem by limiting the
comparison to the frequency bands which contain each
reference sound. Further, we min-max normalize each
spectrogram and mask out normalized values below a
threshold τ . We empirically set τ = 0.7 based on our
training examples. This masking avoids comparing low-
amplitude noise in the target frequency bands.

(c) Rapid Scrolling: Users can quickly scroll across keys
(§II-A). This action generally creates unique sounds for
each movement. These movements, however, occur in

rapid succession and get clipped as a single candidate.
We deduplicate these movements by finding the spectro-
gram peaks [61] and counting the number of peaks at
frequencies tuned for the KeyMovement sound. We use
the number of peaks to identify the number of individual
movements.

After classifying each sound, the framework builds the move
count sequence S. The nth move M (n) completes with s(n),
the nth instance of an end sound (§II-B). Upon observing
s(n), we count the number of cursor movements between the
s(n−1) and s(n); this count is k(n). Finally, we set the times
t(n) using the amplitude peak times for each detected cursor
movement in M (n). These extracted moves M (n) form the
move count sequence for the full recording.

This method produces accurate results. For users typing
credit card details (§VI-A), the module identifies the correct
number of movements on 98.95% of instances and misses
only a single selection. This algorithmic approach shows an
adversary can automate the extraction and launch the attack
at scale.

3) Splitting Keyboard Instances: The move count sequence
S (§IV-A2) encodes the user’s behavior over an entire record-
ing. Each recording can have zero or more keyboard uses. The
attack must isolate each keyboard instance (§II-B) to recover
the individual user-typed strings. This phase produces disjoint
sequences S1, . . . , Sℓ such that

⋃ℓ
r=1 Sr ⊆ S where each Sr

holds a single keyboard instance. We perform this splitting
using both acoustic and timing information. The details depend
on the platform, as discussed below.

a) Apple: The AppleTV keyboard has no dynamic be-
havior (§II-A2) and requires users to select Done upon
completion (Figure 2). Done is the only key to make the
SystemSelect sound. We can thus split S using moves
with an ending sound of SystemSelect. We only retain
splits Sr with at least one move ending in a KeySelect;
otherwise, the user did not interact with the keyboard (P4).

b) Samsung: This platform is more complicated for
two reasons. First, Done is not the only key to make the
SystemSelect sound (Figure 3). Second, the keyboard
can dynamically suggest Done (§II-A2), and this sugges-
tion makes the KeySelect sound. Therefore, splitting the
move count sequence using SystemSelect sounds is in-
correct. Instead, we use timing information based on the
insight that applications incur noticeable latency upon sub-
mitting a string (e.g., executing a search query). We iden-
tify these delays as outliers in the times between adjacent
moves. In particular, the cutoff of avg(move_diffs)+1.5 ·
stddev(move_diffs) creates the proper splits in almost
all cases (§VI-C) where move_diffs is the array below for
all n ∈ {1, 2, . . . , len(S)− 1}.

move_diffs[n] = t
(n+1)
1 − t

(n)

k(n) (1)

This method can make mistakes. For example, the attacker
will incorrectly split keyboard instances if a user takes a
long pause. However, such failure cases rarely occur in prac-
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tice (§VI-C). We omit splits without any moves ending in
KeySelect.

Credit cards are an exception to this time-based approach.
Credit card information is entirely numeric, so Done is the
only required key that makes the SystemSelect sound
(Figure 3). Further, when selecting numbers, the keyboard
never dynamically suggests Done. Thus, we can split credit
card sequences using the SystemSelect sound. The chal-
lenge, however, is the attack has no prior knowledge that a
user is entering credit card details. We address this prob-
lem by combining both methods. We first split S using
SystemSelect sounds and identify any credit card entries
(§IV-B1 explains this identification). We then remove the
credit card sequences and re-split the remainder using timing.
This combined approach addresses the dynamic behavior of
Samsung Smart TV virtual keyboards.

B. String Recovery

1) Inferring Entry Types: Users enter various classes of
information into Smart TVs; we focus on three types: pass-
words, credit cards, and English words. The first two classes
are highly sensitive, and the last class encapsulates inputs
such as web searches. These information types have unique
details, and the attack should customize the string recovery to
each class to optimize performance (§IV-B2). The attack infers
the information type to make these customizations without
introducing additional assumptions.

We detect credit card information on the Samsung TV
by counting the string lengths (P3) of consecutive keyboard
instances. Forms accepting credit card details collect five
pieces of information with distinctive lengths (§II-C). We
use these lengths to fingerprint credit card details and look
for consecutive instances matching the sizes of each field.
We assume the CCN comes first, and the year follows the
month; otherwise, this matching is order-insensitive. For a
given match, we identify each field by its length and position.

If a keyboard instance is not in a credit card field, we
must distinguish whether it is a password or an English word.
To make this distinction, we leverage how the Samsung TV
employs dynamic suggestions when expecting English words
(§II-A). These suggestions are not present for passwords,
allowing the attack to identify the information type from
this discrepancy. We use a Random Forest classifier [12] to
determine the presence of dynamic keyboard behavior for each
instance Sr. The Random Forest provided better results than
other considered models, such as gradient-boosted decision
trees. The input features are a histogram of movement counts
in Sr, which are valuable because suggestions reduce the
average distance between selections. We train this model on
generated move count sequences for passwords and English
words on the Samsung keyboard (Figure 3). We mimic sugges-
tions by manually recording the TV’s suggestions after the first
selection; after, we use the likeliest characters from an English
dictionary [57]. We bias this classifier toward passwords due to
their greater value for an attacker. We classify Sr as an English
word if the model’s prediction probability exceeds 0.6. We set

this cutoff empirically to reach over 99% recall on passwords
in our validation set.

We limit our analysis of AppleTVs to passwords. AppleTVs
have no browser, so the only English inputs are video titles
or application-specific searches. These searches are far less
valuable than passwords. Further, there is no location to enter
credit card details, as all payments occur through the user’s
Apple account. Thus, on AppleTV, the framework assumes all
keyboard inputs are passwords.

2) Choosing the Prior String Dictionary: Smart TV audio
does not provide the direction of keyboard movements. Thus,
a move count sequence corresponds to many possible strings,
and the attack must distinguish these possibilities. We make
these determinations using a prior dictionary over possible
strings. The prior depends on the information type. For exam-
ple, credit card numbers (CCNs) are numeric, while passwords
have larger character sets. The attack customizes the prior
using the inferred information type (§IV-B1).

We design priors for each string type. The CCN prior
enforces the prefixes of AMEX, Visa, and Mastercard (§II-C);
the remaining digits appear uniformly at random. The security
code (CVV) prior consists of digits occurring at random. For
efficiency reasons, we do not materialize the full CCN and
CVV priors. The expiration month and year priors enforce
valid dates up to 2035. We construct the ZIP prior using the
33,120 United States ZIP codes from 2019 and weigh ZIPs
by population. We follow previous work by building an N-
gram model [33] for passwords from leaked datasets [41]. The
English prior uses word prefixes from the Wikipedia corpus
[57]. We weigh prefixes by frequency and only keep words
with at least 100 appearances. This prior has 95,892 words.

These string priors represent options that work well in prac-
tice (§VI). We emphasize that an adversary can change these
priors without fundamentally altering the attack framework.

3) Keyboard Graph Search: The attack recovers strings
from move count sequences Sr by performing a variant of
Dijkstra’s algorithm on the Smart TV’s keyboard graph (Q3).
This keyboard layout is known from the inferred TV type
(§IV-A1). Within Dijkstra’s algorithm, we use search states of
the form below.

z = (key, str, move num, keyboard view) (2)

When expanding the state z, we use the move M (n) (§II-B)
from Sr where n = z.move num. We then find the set of
neighbors V by retrieving the keys in the current keyboard
view at a distance k(n) from z.key which make the sound
s(n). We consider neighbors at the distance k(n) both with
and without wraparound, as users often ignore this feature.
We create the candidate string for each neighbor v ∈ V by
appending v to z.str and accounting for the key’s action.
This process is often concatenation, though special keys (e.g.,
BACK) have different behavior. We compute the edge weight
for this neighbor using the string prior (§IV-B2).

weight = − log(
Count(candidate str, Prior)

Count(z.str, Prior)
) (3)
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We give special keys (e.g., CAPS) a weight of zero and ignore
neighboring keys with zero count. We use Dijkstra’s algorithm
with these weights to find the maximal path. With this method,
the score for each string w is logically equivalent to the
following probability under the prior.

p(w) = p(w1) ·
len(w)∏
ℓ=2

p(wℓ|w1:(ℓ−1)) (4)

We construct guesses upon exhausting the available moves
in Sr, i.e., when z.move num = len(Sr). Before producing
a guess, we validate the string based on the information
type. This validation is crucial for credit cards, as each CCN
must pass a checksum (§II-C). We continue searching until
producing a ranked list of L guesses. The search always starts
from the keyboard’s fixed start key (P1).

This graph search forms the backbone of the string recovery
process. However, to achieve a useful attack, the procedure
must also overcome the following four challenges: (1) subopti-
mal paths, (2) errors in audio extraction, (3) multiple keyboard
views, and (4) dynamic suggestions. We discuss each of these
challenges below.

a) Suboptimal Paths: As presented, the search assumes
that users take an optimal (i.e., shortest) path between keys.
This assumption manifests by finding neighboring keys at a
distance k(n). Users, however, may not take optimal paths
(Figure 7), and considering only optimal paths can cause the
recovery to miss the true string (Q4). We handle suboptimal
movements by expanding the search at move M (n) to find
keys within a distance range of I = [k(n) − d(n), k(n) + d(n)]
(§IV-C1 describes how to set d(n)). We discount suboptimal
paths using the factor γ|d−k(n)| where d ∈ I is the considered
number of movements. We multiply this discount factor with
the string probability before applying the logarithm in Equa-
tion 3. This procedure allows the search to consider suboptimal
movements without penalizing optimal paths.

b) Audio Extraction Errors: The audio extraction can
make mistakes, and these errors generally occur when con-
flating adjacent movements (§IV-A2). We handle these errors
as suboptimal paths by setting the tolerance d(n) to be at
least the number of rapid scrolls (§IV-C2). With this tolerance,
the search can still consider the correct neighbor even when
miscounting the number of movements.

c) Keyboard Views: Virtual keyboards have multiple
views, and users can inaudibly change views with the remote
controller (§II-A). Such changes are not present in Sr. We
handle these view changes using an exhaustive search. When
adding a state to the search queue, we also add all states reach-
able through an inaudible view change. For example, the Sam-
sung TV allows users to capitalize keys with the remote. When
adding the state (d, ‘str‘||d, move num, lower), we also push
(D, ‘str‘||D, move num, upper) onto the search queue where ||
is concatenation. This method works because the cursor moves
deterministically across view changes (§II-A).

d) Dynamic Suggestions: The Samsung TV contains a
final complication: dynamic suggestions (§II-A2). The sug-
gestions are unknown beforehand, making them a quantity

q w e r t y

a s d f g h
z x c v b n

Optimal
Suboptimal

Fig. 7. Optimal and suboptimal paths between w and t.

the attacker must predict. We perform this prediction using
the most common characters in the English dictionary that
follow the current state’s string. The keyboard suggests up to
four characters (Figure 4). Since our predictor does not exactly
match the Smart TV, we use the top six guessed characters.
We add these keys to the neighbor set V when the number
of movements is at most four, as the suggestions are adjacent
to the cursor (Figure 4). Finally, with dynamic suggestions,
we always use a tolerance d(n) ≥ 1 because users make an
additional movement to clear the suggested keys (§II-A2).

C. User Timing Patterns

Through a user study (§VI), we observe that people exhibit
consistent timing patterns when typing on Smart TVs. This
section highlights two beneficial aspects of keystroke timing.
The attack first leverages timing to detect suboptimal paths
(§IV-C1). Second, keystroke timing can provide information
on movement directions (§IV-C2).

1) Suboptimal Paths: Virtual keyboards do not enforce
that users take an optimal path between keys (Figure 7). As
described, the string recovery module supports suboptimal
paths by expanding the set of considered neighbors using the
tolerance terms d(n) (§IV-B3). The attack must determine how
to set each d(n).

One possible method is to set d(n) to a fixed D > 0 for every
move M (n). However, this approach leads to low recovery
performance when the information type has no strong prior.
For example, CCNs and CVVs place near-uniform priors over
all digits (§IV-B2). Under this strategy, the procedure scores
strings equally if they use the same number of suboptimal
paths. This equality occurs independent of when the subop-
timal moves happen due to the uniform prior. Therefore, the
order of guesses depends on the arbitrary tie-breaking scheme
between equal priorities on the search queue.

We create a better method based on typing behavior.
Through a user study (§VI-A), we find that people tend
to pause when correcting a suboptimal path. This indica-
tor, however, is noisy, and we address this noise using an
iterative solution. For each M (n), we compute u(n), the
largest time difference between adjacent movements for all
n ∈ {1, 2, . . . , len(S)}

u(n) = max
q∈{2,...,k(n)}

(t(n)q − t
(n)
q−1) (5)

We sort the moves in decreasing order of their maximal delays
u(n). We use this ordering to consider increasingly more
moves with suboptimal paths. This process works as follows.
We begin the search (§IV-B3) with d(n) = 0 ∀n. If this search
ends with fewer than L guesses, we expand it by selecting
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the move index n′ = argmaxn u
(n). We set d(n

′) = D and
the remaining d(n) to 0. We re-execute the search with these
parameters. If this process again produces fewer than L results,
we expand the candidate suboptimal paths by selecting the top
two highest-delay moves. We continue this expansion until
reaching L results. An individual search may produce less
than L results because (1) strings can have a zero count in
the prior, and (2) results may not pass the information type’s
validity check (e.g., CCN checksums). Note that we continue
to account for rapid scrolls and dynamic suggestions (§IV-B3)
on the remaining d(n) at each step. Overall, this timing-based
design better identifies where suboptimal paths occur (§VI-E).

2) Direction Inference: Users can rapidly scroll across keys
using the TV’s remote (§II-A). Each scroll constitutes move-
ments in a single direction; to change direction, users pause
to switch buttons on the remote. Further, neither AppleTV nor
Samsung keyboards support vertical wraparound. Therefore, if
the user rapidly scrolls across at least four keys, the user moves
horizontally with high probability. This cutoff follows from the
number of keyboard rows (Figures 2, 3). Inferring horizontal
directions allows the attack to reduce the search space. For
example, if we detect four horizontal movements from q on the
keyboard in Figure 3, then the neighbor set is Vdir = {t, ˆ}.
Without directions, the neighbor set is V = {t, 4, f, c, ˆ, !}.

The attack infers these directions by identifying rapid
scrolls through movement timing. Consider the nth move
with times t(n) (§II-B). We compute the time differences
between adjacent movements, α(n), and create the cutoff
c(n) = median(α(n)). We assign directions by observing
windows of four adjacent movements. If all time differences
in a window are at most c(n), these movements are considered
part of a rapid scroll and given a direction of “horizontal.” The
remaining movements are in “any” direction. We ignore the
inferred directions for suboptimal paths because we do not
know where the suboptimal movement occurs. We find that
direction inference never harms the recovery (§VI-E).

V. ATTACK RESULTS IN EMULATION

We first assess the efficacy of the string recovery module
(§IV-B) under ideal conditions. This recovery is nontrivial be-
cause a single move count sequence can refer to many strings
(§II-B, §IV-B3). This section first describes the emulation
setup (§V-A) before presenting the results for recovering credit
cards (§V-B) and passwords (§V-C).

A. Setup

The emulation environment evaluates string recovery
(§IV-B). We algorithmically generate move count sequences
using the Smart TV’s keyboard graph. This sequence uses
optimal paths apart from randomly choosing when to use
available wraparound. We focus on two types of private
information: credit cards and passwords.

1) Credit Card Recovery: We use credit card details
with five fields: credit card number (CCN), expiration date
(mm/yy), security code (CVV), and ZIP code (§II-C). When
entering these details into existing applications, the Samsung

Smart TV provides users with the full QWERTY keyboard
(Figure 3). We randomly generate semantically valid fake Visa,
Mastercard, and AMEX CCNs. We select random expiration
months and choose arbitrary years between 2023 and 2033.
We generate CVVs as three (Visa and Mastercard) or four
(AMEX) digit random numbers. Finally, we randomly select
valid ZIP codes weighted by population. We create 6,000
entries, with 2,000 for each provider.

The search outputs a list of guesses for each field. The
adversary, however, can only validate the full details by getting
every field correct (§II-C). We compute the rank for the full
details by first exhaustively searching over the top 10 CCNs,
three CVVs, three ZIPs, two months, and two years in this
order. If we find no complete match, we iteratively expand the
search using the following cutoffs: (CCN: 30, CVV: 5,
ZIP: 5, Month: 2, Year: 2), (CCN: 100, CVV:
12, ZIP: 12, Month: 3, Year: 3). We select this
order of fields based on our uncertainty in the corresponding
information. For example, CCNs are the most uncertain as
they are long, nearly-random numeric strings.

We compute the attack’s results up to 250 CCN guesses
and 5,000 guesses for the full details. These cutoffs yield
a top-K accuracy which is the rate at which the correct
result is in the first K guesses. In this notation, K denotes
the guess cutoff i.e., the number of guesses allowed by the
adversary. We display K ∈ {1, 5, 10, 50, 100, 250} for CCNs
and K ∈ {1, 10, 100, 1000, 2500, 5000} for the full details.
In practice, attackers validate the results against rate-limited
online services (§III). From prior work on password guessing,
an attacker can make at least 100 guesses against a single
service with a sufficient delay between trials [32]. Unlike
passwords, payment details are global, and an attacker can
circumvent the limits of an individual site by simultaneously
testing against different services. Thus, we focus on the top-
1000 accuracy for the full details.

2) Password Recovery: We evaluate the recovery of pass-
words from the 2014 PhpBB password leak [41]. To make this
set realistic, we follow NIST guidelines [17] and only include
passwords with at least eight characters. We purposefully
select diverse strings by enforcing that 25% of the passwords
have at least one special character, number, uppercase letter,
or lowercase letter. We match the credit card benchmark by
selecting 6,000 passwords. We experiment with two different
5-gram language models [33] using: (1) the same PhpBB set
and (2) the RockYou password leak [41].

We measure the performance for the guess cutoffs K ∈
{1, 5, 10, 50, 100, 250} and focus on the top-100 accuracy.
This latter cutoff makes our attack applicable to online set-
tings [62]; from prior work, attackers can make at least 100
password guesses against a majority of popular websites [32].

B. Credit Card Recovery

We attack credit card details on the Samsung TV. Figure 8
shows the Top-K accuracy on the CCN and the full details.
The CCN alone can be valuable for attackers, especially when
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Fig. 8. Accuracy on CCNs (left) and full credit card details (right) in
emulation on the Samsung Smart TV.

0 50 100 150 200 250
Guess Cutoff

0

25

50

75

100

A
cc

ur
ac

y 
(%

) 88.97%

100.00% 100.00% 100.00%

24.27%

47.73% 52.80% 53.12%

84.67%

99.03% 99.10% 99.10%

10.73%

27.25%
40.80% 44.78%

0.14%

Password Accuracy in Emulation

AppleTV, Audio + PhpBB
AppleTV, Audio + RockYou
Samsung, Audio + PhpBB
Samsung, Audio + RockYou
Random Guess

Fig. 9. Password recovery in emulation. The data labels show the Top-K
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vendors do not validate all payment information [56]. The at-
tack discovers both CCNs and full payment details. For CCNs,
the attacker reaches an 80.95% top-10 and 99.95% top-100
accuracy. On the full details, the attacker finds 63.93% (top-
10) and 99.95% (top-1000) of the full payment information.
This top-1000 accuracy means the attack can use optimal
move count sequences to find and validate 99.95% of payment
details against rate-limited services (§V-A1).

We highlight two aspects of these results. First, the attack
succeeds on all three providers. On the full details, the top-10
accuracy is 61.55% (Visa), 57.00% (Mastercard), and 73.25%
(AMEX). The AMEX results are better because the CCN
has only 15 digits. The top-1000 accuracy is above 99.90%
for all providers. Second, on average, only 16.26% of the
potential CCN guesses satisfy the checksum (§II-C). This
result highlights the importance of the checksum; without this
validation, the CCN ranks would be roughly 6× larger.

C. Password Recovery

We further recover passwords on both platforms. Figure
9 shows the results. The baseline accuracy is the expected
result of randomly guessing from the set of 184,388 PhpBB
passwords. We discuss four takeaways.

First, with the PhpBB prior, the attacker reaches at least
84.67% top-1 and 99.03% top-10 accuracy on both TVs.
These results vastly exceed random guessing, confirming the
value of optimal move count sequences. With these results,
the adversary can reliably verify the discovered passwords in
rate-limited contexts [32].

Second, the string prior plays a significant role in the
attack’s efficacy. Under the RockYou prior, the top-10 accuracy
drops to 47.73% (AppleTV) and 27.25% (Samsung). These
results occur due to less string overlap between the PhpBB

and RockYou lists. Nevertheless, knowing the move count
sequence allows the attack to consistently outperform random
guessing by over 330× even when the target password may
not be in the string prior.

Third, the attack performs better on the AppleTV for two
reasons. First, the AppleTV keyboard (Figure 2) limits the
number of movement directions compared to the Samsung
keyboard (Figure 3). Thus, the attack has fewer neighbors to
consider for each move. Second, on Samsung instances, we
must infer whether the keyboard uses dynamic suggestions
(§IV-B1). This inference has a 99.23% recall on passwords.
The misclassified cases lead to incorrect guesses, as the attack
wrongly uses the English prior on a keyboard with sugges-
tions. Nevertheless, the attack still displays high accuracy on
Samsung systems. Appendix A-A contains further experiments
measuring the keyboard layout’s impact on string recovery.

Finally, the attack finds passwords with diverse character
sets. On the AppleTV under the PhpBB prior, the top-1
accuracy is 92.33% (special), 92.80% (numeric), and 76.64%
(uppercase). For the Samsung Smart TV, these figures are
88.60% (special), 89.93% (numbers), and 73.68% (uppercase).
The uppercase accuracy is lower due to inaudible case changes
(§II-A); the lowercase version of the password has the same
move count sequence and often a higher score.

In total, the attack reliably discovers user keystrokes when
given optimal move count sequences.

VI. ATTACK RESULTS ON USERS

We evaluate the full attack on human users typing credit
card details (§VI-B), passwords (§VI-C), and web searches
(§VI-D) into Smart TVs. Finally, we quantify the benefits of
keystroke timing (§VI-E).

A. Setup

We conduct a user study with ten subjects (Appendix A-B).
Our university’s institutional review board (IRB) approved this
study, and subjects were compensated $25 for an hour. Each
subject types three sets of credit card details, ten passwords,
and ten web searches. Users type credit card details into the
Hulu application on the Samsung TV as a part of the account
creation flow. Subjects enter passwords on the Samsung TV
as if connecting to a WiFi network. Users type passwords into
the AppleTV as if logging into their Apple account. Subjects
type web searches using the Samsung TV’s browser. To not
bias behavior, we do not inform the subjects of the attack
beforehand; we only state that we were studying how users
type on Smart TVs. The attack’s efficacy strongly suggests
that ten users are sufficient to show this vulnerability (§VI-C).

We construct lists of passwords and credit cards using the
same method as in emulation (§V-A). Half of the passwords
contain at least one special character. We select web searches
by sampling words with at least five characters from news
headlines [28]. We assign the same lists to subjects A/F, B/G,
C/H, D/I, and E/J, enabling a comparison of how different
users type the same strings. We use the same passwords
on both platforms. Users did not enter their own personal
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Fig. 10. Accuracy for credit card numbers (left) and full credit card details
(right) on the Samsung Smart TV.

information; we provided the strings to type. Although having
users type their own details would constitute a more realistic
experiment, doing so would be a clear ethical violation.
For each information type, users iteratively interacted with
the relevant workflow, entering new strings each time. We
recorded each experiment in its entirety. The attacker has no
prior knowledge of the number of entered strings and must
identify the individual keyboard instances. We measure the
attack’s performance using the same guess cutoffs as in §V-A.

We use an A1625 AppleTV with tvOS version 16.3.2 [4]
and a model UN55MU6300 Samsung Smart TV running Tizen
software version T-KTMAKUC-1310.1 [55]. These TVs have
different remote controllers (Figure 1). The recording device
was a commodity Fifine K699B microphone placed about 5.5
feet from the TV. We set the TV volume to 100. Users did
not speak during the experiment. There was some background
noise from servers running in the same room, but it did not
interfere with the users’ ability to hear the television audio.

We use a discount factor of γ = 0.5 on the AppleTV and
γ = 10−2 on the Samsung Smart TV. This discrepancy exists
because users take more suboptimal paths on the AppleTV
(§VI-C). We further account for this difference in suboptimal
paths by setting the suboptimal tolerance to D = 6 on the
AppleTV and D = 4 on the Samsung platform. Beyond these
tolerances, the discount factors become so small that they
effectively eliminate exploration.

B. Credit Card Recovery

The subjects enter 30 total credit card details on the
Samsung Smart TV into the signup flow for Hulu, a popular
video streaming application. This application uses the system’s
provided keyboard (Figure 3). Each user completes the signup
flow three times, and the attacker identifies the credit card
details within this larger interaction.

The attack successfully identifies that the user enters credit
card details in 29 of the 30 total interactions. The one failure
occurs because the subject returns and edits a previous field,
breaking the length-based matching (§IV-B1). After identi-
fying the presence of credit cards, the attacker extracts the
entered values (§IV-B3). Figure 10 shows the accuracy on
CCNs and full payment details. The attack reaches a top-
100 accuracy of 53.33% (16 / 30) on CCNs and a top-1000
accuracy of 43.33% (13 / 30) on the full details. These values
mean the attacker can confirm payment details against rate-
limited services 43.33% of the time (§V-A). This leakage
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Fig. 11. Password recovery accuracy for human users. The data labels show
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is significant due to the value of credit card details; the
discovered information is sufficient to make online payments
on behalf of the target.

These results highlight how the attack works across users
and providers. The attack successfully finds at least one CCN
in the top 15 guesses for every user. We further recover three
pairs of the same details typed by different users. Nevertheless,
human behavior impacts the recovery, as we always observe
different results across distinct users typing the same CCN.
Finally, the attack is successful on the three considered credit
card providers, finding 6 / 12 AMEX, 3 / 6 Mastercard, and
4 / 12 Visa details within 1,000 guesses.

Compared to emulation (§V-B), the attack performs worse
against human users. This trend occurs because users take
suboptimal paths. When typing CCNs, users take the optimal
path between keys only 89.35% of the time. The framework
considers these suboptimal paths with a discounted score
(§IV-B3), causing guesses that use suboptimal paths to have a
lower rank. Despite this phenomenon, the attack still success-
fully discovers payment information typed by human users.

C. Password Recovery

Users enter passwords from the PhpBB leak [41] into
both TVs. Figure 11 displays the attack’s results. With the
PhpBB prior, the attack reaches a 33.00% (AppleTV) and
60.19% (Samsung) top-100 accuracy. These results far exceed
random guessing from the set of 184,388 PhpBB passwords.
Thus, both platforms leak user-typed passwords through audio.
The choice of prior is significant; the top-100 accuracy on
Samsung drops by over 3.4× when the attacker instead uses
the RockYou prior. Nevertheless, under the RockYou prior, the
attack still finds passwords over 100× more often than random
guessing on the Samsung TV. Thus, the TV’s audio provides
significant information to discover passwords in practical
settings.

The attack performs worse on the AppleTV because users
take more suboptimal paths on this system. On AppleTV, users
traverse the optimal path between keys only about 45.35%
of the time; this rate is 85.94% on the Samsung TV. We
hypothesize that this discrepancy occurs due to the sensitivity
of the AppleTV remote’s navigation touchpad (Figure 1).
These suboptimal path rates also explain the dropoff between
these results and those in emulation (§V-C).
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The attack handles the challenges of distinct users and
diverse passwords. On the Samsung TV, the attack finds at
least two passwords in the top 10 guesses for every user with
the PhpBB prior. Further, when considering unique passwords,
the attack has a top-100 accuracy of 42% (21 / 50) for both
typing users. Thus, the attack is successful across users even
after controlling for the typed string. We also observe the
ability to recover passwords with various characters, achieving
top-100 accuracies of 59.62% (special), 63.79% (numeric),
and 43.75% (uppercase) with the PhpBB prior on the Samsung
TV. These top-100 figures are 9.62 % (special), 18.97%
(numeric), and 12.50% (uppercase) with the RockYou prior.

The attack splits Samsung keyboard instances using timing
(§IV-A3). This method correctly identifies 98 / 100 passwords,
where the two failures result from long pauses while typing.
Further, we infer when a subject types a password (§IV-B1),
and this classifier has an accuracy of 99.02% on this set.
The only misclassification occurs on the password naarf666
due to the suffix with repeated characters. This typing pattern
matches that of dynamic keyboards, which produce better
suggestions toward the string’s end. These failures, however,
represent a vast minority of cases, showing how the attack
correctly handles instance splitting and keyboard classification.

This performance matches similar keystroke side-channel
attacks in other contexts. For example, the MoLe attack uses
smartwatch accelerometers to infer keystrokes on mechanical
keyboards [63]. MoLe involves similar dynamics to Smart
TVs, as it recovers strings from keyboard movements. For
English words from a known set, the MoLe attack achieves
50% accuracy within 24 guesses. Our attack has a top-5
accuracy of up to 51.46% on the Samsung TV. Note that our
setting is more challenging, as the PhpBB set is over 35×
larger than the English dictionary used in this prior work.

Overall, these results provide strong evidence that ten users
are sufficient to demonstrate this vulnerability. Under normal-
ity assumptions, the 95% confidence interval for the attack’s
top-100 accuracy on the Samsung TV is 61.48±1.97 ·26.84/√
10 = (44.76%, 78.21%) with the PhpBB prior.3 For the

RockYou prior, the confidence interval is (8.49%, 26.99%).
The lower bounds of these intervals exceed random guessing
by at least 150×. Thus, a larger study would likely not alter
the main conclusion: Smart TV audio provides a useful signal
for discovering user keystrokes.

D. Web Search Recovery

We apply the attack against web searches on the Samsung
Smart TV. This scenario is unique because the attack must
overcome dynamic keyboard suggestions (Figure 4).

Figure 12 displays the attack’s accuracy. The attack finds
15% of words within 100 guesses. This result is lower than that
of passwords (§VI-C) for two reasons. First, the attacker must
predict the suggested key values (§IV-B3). Second, the attack
infers that the user is typing an English word (§IV-B1), and

3This mean across users does not exactly match Figure 11 because the
attack sometimes detects more than ten password entries for a subject.
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suboptimal paths.

this classifier is only 42.71% accurate in identifying keyboards
with dynamic suggestions. This low accuracy results from the
classifier’s designed bias toward passwords, as passwords are
more sensitive. Thus, on 57.29% of the entries, the attack
cannot recover the target string because it uses a keyboard
without suggestions. If we force the pipeline to use keyboards
with suggestions, the attack reaches 12.00% (top-10) and
27.00% (top-100) accuracy. These rates nearly double what
we observe when inferring the keyboard type. Overall, the
attack still vastly outperforms random guessing from the set
of 95,892 English words, showing how an attacker can learn
about user keystrokes on dynamic keyboards from the TV’s
audio.

E. Impact of Keystroke Timing

The attack leverages two timing properties to infer user
behavior (§IV-C). This section evaluates these features.

The string recovery module infers the presence of subopti-
mal paths using timing (§IV-C1). We evaluate this feature by
comparing the recovery of user-typed credit cards with and
without timing-based identification. The baseline considers
suboptimal paths at every move. As shown in Figure 13,
keystroke timing improves the attack. The baseline reaches
a 40.00% top-100 accuracy on CCNs and a 36.67% top-1000
accuracy on the full details. Under these cutoffs, the timing-
based feature shows recovery rates of 53.33% (CCNs) and
43.33% (full details). This improved performance displays the
benefits of using timing to identify suboptimal paths.

The attack infers movement directions during rapid scrolls
(§IV-C2). We evaluate this feature by executing password
recovery with and without direction inference. We focus on the
Samsung TV, as this keyboard supports navigation in all four
directions (Figure 3). For both priors, direction inference never
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hurts recovery rates. However, the benefits are modest. With
the RockYou prior, only 3 of the 19 recovered passwords have
a strictly better rank with direction inference. Nevertheless, we
include this feature due these benefits.

We emphasize that the attack uses the same timing metrics
for all ten users. The attack’s success across different individ-
uals highlights the generality of these features.

VII. DISCUSSION

Improvements: The results from extracting passwords
(§VI-C) underscore the language prior’s significance. Thus,
improving the language model is a promising method to
improve this attack. Previous work shows that neural networks
can learn effective language models over passwords [38].
We did not pursue these methods due to their computational
demands. However, it may be possible to adapt the technique
of [13] to make this neural network method more efficient,
and we aim to explore this approach in the future.

We assume the attacker does not know personal information
about the target user (§III). If we relax this assumption,
an adversary with user-specific knowledge can improve our
audio attack using a customized string prior. Furthermore, with
access to personal information, the adversary may already
know valuable details such as ZIP codes. These insights
suggest that combining user-specific knowledge and Smart TV
audio will result in a more effective attack.

Limitations: The presented attack only works against
AppleTVs and Samsung Smart TVs. The attack does not
directly apply to platforms that do not exhibit the acoustic
properties in (P2) - (P4). For example, Roku devices do not
make a distinct sound when deleting a character (P3), do
not have sounds unique to the keyboard (P4), and mute the
keyboard when rapidly scrolling. However, the incompatibility
of our attack with these platforms does not guarantee the
security of these other systems. Our work only shows these
audio properties are sufficient for keystroke leakage; it does
not prove these properties are necessary. In fact, prior work
indicates that these properties are not all required. For instance,
previous attacks infer when a user is typing on a Smart TV
through movement timing [21], removing the need for (P4).
We emphasize that our attack’s success against Samsung Smart
TVs constitutes a significant threat, as Samsung is the single
most popular TV platform [66]. Extending this attack to other
Smart TVs is a promising source of future work.

Our attack does not apply to every keyboard on the consid-
ered platforms. Some applications customize their keyboards
and mute the audio, eliminating the acoustic side-channel.
However, we show that the default system keyboards are
insecure. Thus, applications that use the system defaults, such
as the Samsung TV’s browser, are vulnerable. Further, both
TVs have areas (e.g., connecting to WiFi) where users enter
sensitive information into the default keyboard.

Finally, some applications allow users to enter credentials
over the Internet through an external device. This option
bypasses our attack by avoiding the TV’s keyboard. How-
ever, applications (e.g., Hulu) may not enforce that users

take this option, and the alternative involves typing sensitive
information (e.g., payment details) into an insecure Smart
TV keyboard. Further, there are cases where users must type
sensitive information into a virtual keyboard. For example,
on the Samsung TV used in our evaluation (§VI-A), users
must type their WiFi password with the TV’s default keyboard.
There is no option to enter the credentials through an external
device. Thus, Smart TVs contain numerous practical settings
vulnerable to our acoustic keystroke attack.

Defenses: A complete defense is to mute the Smart TV’s
audio when typing, especially for sensitive fields. However,
this defense can harm the user experience. We describe three
possible alternatives.

First, prior work randomizes the layout of virtual keyboards
in a structured manner to eliminate knowledge of the keyboard
design [47]. This approach limits the negative impact on user
experience by only adding gaps and swapping rows. While
our attack can model this randomization under the framework
of suboptimal paths, we can no longer use timing to detect
such paths (§IV-C1). We estimate the impact of this defense
by randomly adding movements to generated move count
sequences for credit card security codes (CVVs). The top-100
recovery rate falls to 30.32% in emulation, compared to the
100% rate achieved under current conditions. These figures
suggest this defense reduces, but does not eliminate leakage.

Second, our attack leverages how Smart TVs initialize
the cursor to the same key (P1). Thus, a possible defense
involves randomizing the start position. This strategy, however,
is flawed because some fields (e.g., CCNs) require users to
finish on Done. We can use this property to search strings in
reverse, starting with Done. In emulation, we recover 99.88%
(top-100) of CCNs even when randomizing the start position.

Finally, Smart TVs could use the same sound for all key-
board actions. This design thwarts our attack, as it breaks (P2)
- (P4). Security, however, is not guaranteed. For example, it
may be possible to discern keyboard movements and selections
using timing, even if both make the same sound. Further study
is required to prove the security properties of this technique.

VIII. RELATED WORK

A. Keystroke Side-Channel Attacks

Prior work uses side-channels such as electromagnetic em-
anations [24], [60], reflections [7], smartphone accelerometers
[37], [45], timing [58], and performance counters [67] to infer
keystrokes on personal computers and mobile devices.

Three types of prior attacks deserve closer comparison
to our work. First, previous methods infer keystrokes using
acoustics from mechanical keyboards [6], [10], [14], [70], [71].
Our attack also uses audio, but we target Smart TVs. This
setting differs from prior work because Smart TVs make a
small number of distinct sounds and use virtual keyboards
with a dedicated cursor. Thus, our attack must estimate the
cursor’s position, and errors in this tracking cascade to the
remainder of the string. Mechanical keyboards have no cursor,
and errors in identifying a single keystroke do not propagate.
These differences require new string recovery methods.
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Second, existing work discovers keystrokes on mechanical
keyboards using smartwatch accelerometers [31], [34], [39],
[63]. Similar to Smart TVs, these attacks track the user’s
keyboard position, and tracking errors will cascade. Unlike our
work, these attacks use a different side-channel and can only
measure the movement of one hand. This limited information
leads to lower efficacy than observed in our work (§VI-C).

Third, and finally, HomeSpy steals user keystrokes by sniff-
ing unencrypted infrared signals between Smart TVs and their
remotes [21]. However, many Smart TVs support remotes that
communicate over Bluetooth [35], [69], and HomeSpy cannot
view such signals. Our attack works with any communication
medium employed by the remote controller.

B. Security of Smart Devices

Previous work highlights the need for increased security
on smart devices [19], [25], [46], compromising smart lights
[52], device software platforms [16], [23], smart locks [20],
and smart speakers [9], [29], [68]. Acar et al. [2] use DNS
rebinding to remotely access devices. Other work uses the
communication patterns of smart devices to infer user behavior
[5], [59]. Unlike these systems, our attack targets Smart TVs.

Previous studies analyze the security of Smart TVs, finding
that platforms contain privacy violations [42]. SPOOK gains
root access to Smart TVs through a weakness when pairing
virtual remotes [35]. EvilScreen compromises Smart TVs us-
ing issues supporting multiple communication protocols [69].
Other work exploits software vulnerabilities to control Smart
TVs [1], [40]. Enev et al. [15] use energy consumption to infer
the TV’s content. Unlike this prior work, our attack leverages
the audio from Smart TVs to discover user keystrokes.

C. Attacks on Passwords and Payment Details

Prior work guesses passwords in offline settings with lan-
guage models [33], [38], [44], [64] and text transformations
[30]. Our attack also applies language models to measure pass-
word likelihood. However, we use these models to complement
Smart TV audio. Wang et al. [62] use personal information
to guess passwords under rate limits. This work improves
our attack, as personalizing the language prior would increase
string recovery from Smart TV audio.

Existing attacks compromise credit cards through skimming
[50], [56] and relay attacks [26], [51]. Bond et al. [11] attack
ATMs by exploiting weak random number generation. Our
work also targets credit card details, although our attack steals
this information from card-not-present transactions on Smart
TVs. Further, our attack complements previous vulnerabilities
on physical cards. For example, the credit card’s magnetic
stripe does not contain the printed CVV [56]. Our attack steals
the CVV from Smart TV forms. Thus, adversaries launching
attacks on physical cards can gain valuable information by
also exploiting Smart TV virtual keyboards.

D. Audio Identification

Existing systems propose methods for audio analysis.
Shazam uses spectrogram peaks for music identification [61].

Other work uses neural networks to analyze human speech
[8], [27], [49] and environmental sounds [48], [53]. Our attack
uses a nearest-neighbor classifier to detect sounds from Smart
TVs. Our contribution with this approach is not in developing
new signal processing techniques. Indeed, prior work on audio
processing may exhibit more advantageous properties (e.g.,
resistance to background noise). Through our procedure, we
instead show that it is possible to identify Smart TV sounds
algorithmically. An attacker can then leverage this information
to recover keystrokes (§VI). Note that our framework supports
any accurate audio identification procedure; changing the
audio extraction method does not alter the essence of the
attack.

IX. CONCLUSION

Smart TVs allow users to enter information through on-
screen virtual keyboards. Users interact with these keyboards
by sequentially scrolling across keys via directional commands
on a remote controller. Popular Smart TVs, such as Apple’s
tvOS [4] and Samsung’s Tizen [55], make sounds as users
type. This work develops and demonstrates a new side-channel
attack against Smart TVs that uses these sounds to expose
user keystrokes. Our attack is based on how the AppleTV
and the Samsung TV produce different sounds when the user
(1) moves between keys, (2) selects a key, and (3) deletes
a character. Using these sounds as input signals, an attacker
can extract the number of movements between keyboard
selections. Our attack combines this extracted information
with a prior over possible strings to identify likely keystrokes.
Under ideal conditions in an emulated environment, the attack
recovers 99.95% of credit card details within 1,000 guesses
and up to 99.10% of common passwords within 100 guesses.
On ten realistic users, the attack achieves a top-1000 accuracy
of 43.33% on credit card details and a top-100 accuracy of up
to 60.19% on common passwords when typing on a popular
Samsung Smart TV. This attack was acknowledged by Sam-
sung, and it demonstrates how Smart TVs must consider the
privacy implications of all features interacting with sensitive
user data.
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APPENDIX A
SUPPLEMENTARY INFORMATION

A. Keyboard Layouts

We extend our evaluation by considering the efficacy of
string recovery on different keyboard layouts. In addition to
the default keyboards on AppleTV (Figure 2) and Samsung
(Figure 3) devices, we study a third keyboard shown in Figure
14. This design resembles that of the YouTube application on
Samsung Smart TVs. This keyboard does not have dynamic
suggestions. We emphasize that the YouTube application
mutes the keyboard and is not susceptible to the presented
attack. Nevertheless, we include this layout to evaluate whether
any popular keyboard designs form an effective defense in
isolation. In all cases, we assume the keyboard layout remains
fixed and is known to the attacker (§III).

Table I shows the top-K accuracy (K ∈ {1, 5, 10}) against
common passwords under the PhpBB prior. We perform this
evaluation in emulation and use the same password list as in
§V-C. We observe that the keyboard layout has only a small
impact on the attack’s accuracy. For all three keyboard designs,
the attack yields a top-1 accuracy above 84%; this figure is
orders of magnitude higher than random guessing. We note
that the AppleTV layout shows the highest recovery accuracy.
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We hypothesize this trend stems from the linear keyboard
design in which users only move in three directions to navigate
between characters (Figure 2); e.g., when the cursor is on a,
the user can only move ”left”, ”right,” or ”down.” In contrast,
the other two layouts allow movements in four directions;
this design means the attacker’s search must consider larger
neighbor sets. Nonetheless, the attacker still exhibits high
recovery rates when targeting these two keyboards. These
results suggest that the layout of a fixed keyboard does not
constitute an effective defense against this attack.

B. User Information

The users in our study were aged 22 through 29 (mean 24.3).
All ten users were either undergraduate or graduate students at
our university. Six subjects identified as male, three as female,
and one as non-binary. To the best of our knowledge, none of
the users were cybersecurity experts. Every subject had previ-
ously used a Smart TV. Three users owned a Samsung device,
and one owned an AppleTV. Our goal was to corroborate the
feasibility of the attack as seen in emulation by collecting data
from users who have some experience with Smart TVs. Thus,
we did not record additional information about the subjects,
as further details were not essential to this goal. We do not
claim to provide a demographic or socioeconomic breakdown
of typing patterns on Smart TVs.

APPENDIX B
ARTIFACT APPENDIX

A. Description & Requirements

1) How to access: The code for this project is available
in a public GitHub repository: https://github.com/tejaskannan/
smart-tv-keyboard-leakage. The included README file de-
scribes the setup and execution process. We provide links
to the data and intermediate results in the “Benchmarks”
section. The artifact is also registered under the Digital Object
Identifier (DOI) 10.5281/zenodo.10151215.

2) Hardware dependencies: There are no required hard-
ware dependencies. However, if you have a Samsung Smart
TV or Apple TV, you can use these devices to record new
videos of typing on each system’s virtual keyboard. You may
then process these recordings with the provided code. Note
that the code requires video for debugging purposes; the attack
immediately isolates the audio and only uses acoustic informa-
tion. We verified our implementation on an A1625 AppleTV
with tvOS version 16.3.2 and a model UN55MU6300 Sam-
sung Smart TV running Tizen software version T-KTMAKUC-
1310.1. Other devices may exhibit differences.

3) Software dependencies: We have tested our code on
a Ubuntu 20.04 system. The code requires Python 3.8 with
Anaconda 23.0.1 and Java (openjdk version 17.05). We in-
clude the remaining dependencies (Python packages and Java
libraries) in the GitHub repository. See the setup instructions
in the repository’s README for more details.

4) Benchmarks: We include two sources of data with this
artifact.

(Source 1) Contains the dictionary priors, word lists, and
results for every experiment.

(Source 2) Holds the recordings of subjects in our user
study typing on Smart TV keyboards.

Refer to the GitHub README for the links to these data
sources.

B. Artifact Installation & Configuration

We implement the attack using both Python and Java. The
Python portion implements audio extraction, and the Java code
implements string recovery. We include detailed installation
instructions in the GitHub README.

The Python project is best managed using an Anaconda
virtual environment. The file environment.yml contains
the virtual environment configuration. Once you create the
virtual environment with these dependencies, you can install
the local package using pip.

The Java code uses openjdk version 17.05. The code
relies on SQL, JUNIT, and JSON parsing libraries. The GitHub
repository contains the JAR files for these repositories. To
execute the Java code, reference these JAR files in your
CLASSPATH environment variable.

The final piece of installation involves downloading the
required data. You should fetch the entire folder containing
the dictionary priors and precomputed results (Source 1); the
directory is about 385 MB compressed and 1.1 GB uncom-
pressed. To execute end-to-end experiments on real data, you
will also need the video recordings from the user study (Source
2). Each video is large (e.g., roughly 1 GB), so we recommend
starting with a single subject (e.g., Subject A).

C. Major Claims

• (C1): In emulation, our attack discovers over 99% (top-
1000) of full credit card details and up to 84% (top-
1) of common passwords. Experiment (E1) proves these
results, as reported in Figures 8-10.

• (C2): Against real users, the attack infers over 50% (top-
1000) of full credit card details, up to 42% (top-1) of
common passwords, and 15% (top-100) of web searches.
We prove these values in experiment (E2). Figures 11-14
contain the results validating this claim.

D. Evaluation

1) Experiment (E1): [60 human-minutes + 1 compute-
hour]: This experiment generates new benchmarks on which
to evaluate the attack in emulation. We then execute the attack
on these benchmarks and analyze its performance.

[How to] The detailed execution steps are in the README
under the sections AUDIO EXTRACTION → EMULATION,
STRING RECOVERY, and ANALYSIS → ATTACK RESULTS
IN EMULATION. We summarize this information below.

[Preparation] This experiment requires the dictionary priors
and word lists (Source 1). There is no additional setup.
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[Execution] There are two main steps to running this
experiment: (1) generating benchmarks and (2) executing the
string recovery.

1) The scripts generate_[*]_benchmark.py create
move count sequences for lists of common passwords
and credit cards. These move count sequences feed into
the string recovery phase.

2) The Java program SearchRunner.java (in
search/smarttvsearch) executes the string
recovery on a single benchmark file. We provide shell
scripts (run_[*]_bechmark.sh) to execute the
recovery on multiple files.

[Results] The files benchmark_[*]_recovery.py (in the
analysis folder) generate plots displaying the attack’s per-
formance on passwords and credit card details, respectively.
The resulting plots should match Figures 8 (credit cards) and 9
(passwords). Even with changes to the exact benchmark data, it
should be evident that the attack outperforms random guessing
by orders of magnitude.

2) Experiment (E2): [60 human-minutes + 2 compute-
hours]: This experiment processes recordings from our user
study and executes the attack on this realistic data.

[How to] We provide detailed steps in the README under
the sections AUDIO EXTRACTION → REAL RECORDINGS,
STRING RECOVERY, and ANALYSIS → ATTACK RESULTS
ON USERS. We summarize the instructions below.

[Preparation] This experiment requires the dictionary pri-
ors, word lists (Source 1), and user video recordings (Source
2). The individual videos are large, and we suggest running
the experiments end-to-end on a single user first (e.g., Subject
A). For convenience, we provide the move count sequences
and final results for all users (Source 1).

[Execution] There are two main steps to running this
experiment: (1) processing recordings and (2) executing the
string recovery.

1) The scripts make_spectrogram.py and
split_keyboard_instances.py extract move
count sequences from recordings of Smart TVs. The first
script isolates the audio. The second program identifies
key sounds, finds instances of using the keyboard, and
creates the move count sequences. The output from
this step is a file of move count sequences in the same
format as the benchmarks from (E1).

2) The search process mirrors that of the previous ex-
periment. To execute the search on all users, we pro-
vide the shell scripts run_user_[*].sh (in the folder
search/smarttvsearch). We note that the attack
must consider suboptimal paths against realistic users.
This behavior slows down the attack, and the string recov-
ery can take upwards of 30 minutes for each information
type.

[Results] The files user_[*]_recovery.py (in the
analysis folder) display the attack’s results on each infor-
mation type for real users. The created plots should match Fig-
ures 10 (credit cards), 11 (passwords), and 12 (web searches).
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