
UntrustIDE: Exploiting Weaknesses in
VS Code Extensions

Elizabeth Lin, Igibek Koishybayev, Trevor Dunlap, William Enck, and Alexandros Kapravelos
North Carolina State University

{etlin, ikoishy, tdunlap, whenck, akaprav}@ncsu.edu

Abstract—With the rise in threats against the software supply
chain, developer integrated development environments (IDEs)
present an attractive target for attackers. For example, re-
searchers have found extensions for Visual Studio Code (VS
Code) that start web servers and can be exploited via JavaScript
executing in a web browser on the developer’s host. This paper
seeks to systematically understand the landscape of vulnerabilities
in VS Code’s extension marketplace. We identify a set of four
sources of untrusted input and three code targets that can be used
for code injection and file integrity attacks and use them to design
taint analysis rules in CodeQL. We then perform an ecosystem-
level analysis of the VS Code extension marketplace, studying
25,402 extensions that contain code. Our results show that while
vulnerabilities are not pervasive, they exist and impact millions
of users. Specifically, we find 21 extensions with verified proof
of concept exploits of code injection attacks impacting a total of
over 6 million installations. Through this study, we demonstrate
the need for greater attention to the security of IDE extensions.

I. INTRODUCTION

Software developer workstations are a classic [12] and
continuing [20] target for software supply chain attacks. Unlike
typical enterprise hosts, developer hosts commonly require a
range of tools and applications for developers to be effective at
their jobs. One such application is the integrated development
environment (IDE). According to the 2022 Stack Overflow
developer survey [34] with more than 70 thousand responses,
the Visual Studio Code (VS Code) IDE is used by more than
74% of developers. One factor contributing to VS Code’s
popularity is its vibrant marketplace [39] containing a wide-
range of extensions for users to customize their environment.
Extensions can be developed and published by anyone, leading
to a rapid growth in the number of extensions. Over the nine
month period of September 2022 to May 2023, the VS Code
marketplace grew from 39 thousand to more than 47 thousand
extensions.

VS Code is built on Electron, a framework that embeds
Chromium and Node.js into a standalone application. There-
fore, VS Code extensions are similar to Node.js applications.
The extensions can import dependencies from the node pack-
age manager (npm), which contains over a million packages.
Unlike web browser extensions, VS Code extensions are not
sandboxed. Extensions have full access to view and modify

the VS Code user interface. They also execute with the same
privileges as the VS Code application and have the ability to
execute shell commands, read and write user files, establish
network connections, and create network servers that listen
for incoming connections.

While prior work has extensively studied vulnerabilities in
Node.js, npm, JavaScript, and Electron [7], [16], [19], [23],
[29], [43], [44], vulnerabilities in VS Code extensions have
been largely unstudied. Only a few blog posts [38], [11], [26]
have discussed VS Code extension vulnerabilities, identifying
vulnerabilities in only a handful of extensions.

VS Code extensions have a different threat model than
traditional JavaScript and Node.js applications. Many of the
existing rules in static application security testing (SAST) tools
do not apply. For example, input from the user is inherently
trusted. Cross-site scripting (XSS) and similar detection rules
that perform taint analysis from user interface fields will only
produce false positives. In contrast, VS Code extensions read
files in potentially untrusted code repositories. Some VS Code
extensions also create web servers that listen to network ports
on localhost. If the user visits a malicious website in their
browser, the website JavaScript can connect to the VS Code
extension. From an attacker goal perspective, we primarily
consider code injection attacks leading to arbitrary code ex-
ecution, e.g., via a shell command, a JavaScript eval(), or
writing to a file such as .bashrc that is executed. We also
consider attacks that impact file integrity, e.g., writing arbitrary
content to arbitrary files, which may or may not be in a code
repository.

In this paper, we perform a systematic study of vulnerabili-
ties of extensions in the VS Code marketplace. To perform our
analysis, we implemented 12 custom SAST rules for CodeQL
that are tailored to the VS Code extension threat model.
Specifically, we identify four attack vectors (taint sources)
and three attack targets (taint sinks). The sources and sinks
are not always single method calls and require additional
program context to identify. We used our custom SAST rules
to perform an ecosystem-wide study of 43,436 VS Code
extensions collected during January 2023. We note that our
snapshot included 43,436 extensions, but only 25,402 included
JavaScript. The remaining extensions only modified the VS
Code user interface.

We make the following contributions in this paper.

• We identify a threat model for VS Code extension
vulnerabilities. We encoded the threat model as a
series of 12 CodeQL taint analysis rules, consisting
of four taint sources and three taint sinks.

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.24073
www.ndss-symposium.org

• We identified and verified code execution vulnerabil-
ities in 21 extensions that amount to over 6 million
installations. Data read from VS Code workspace
settings and files are the most common source of code
injection vulnerabilities in VS Code extensions.

• We show the impact of the Node.js ecosystem on VS
Code extensions. We discovered 13,655 VS Code ex-
tensions where each one has more than 100 npm tran-
sitive dependencies. Furthermore, 9,710 extensions
depend on vulnerable npm packages with a critical-
level advisory.

The remainder of this paper proceeds as follows. Section II
provides background on VS Code extensions. Section IV
describes our analysis rules. Section V characterizes our
dataset. Section VI evaluates our results. Section VII discusses
additional considerations. Section VIII describes related work.
Section IX concludes.

Availability: Our CodeQL rules are publicly available at https:
//github.com/s3c2/UntrustIDE. More details are available in
the appendix.

II. BACKGROUND AND MOTIVATION

Visual Studio Code: The VS Code IDE is built using the
Electron framework [33], which uses Chromium and Node.js
to create desktop applications using JavaScript, HTML, and
CSS. Much of VS Code’s popularity can be attributed to its
vibrant marketplace of extensions. Not all VS Code extensions
contain code. For example, many theme and snippet extensions
use values in the extension manifest file to customize VS Code.
For example, the Dracula Official1 extension does not include
JavaScript code, but includes JSON files that specify the colors
for its color theme.

However, many extensions include code that is executed
as child processes of the main VS Code application process.
VS Code extensions are written in JavaScript or TypeScript.
They can use the built-in Node.js modules as well as import
any npm package. VS Code also provides a vscode.comm-
ands interface that allows extensions to manipulate VS Code
itself (e.g., selecting windows and adding comments to code).
Similar to Node.js applications, VS Code extensions define
a package.json manifest file [9]. We discuss two config-
uration settings relevant to our discussion. The dependencies
configuration specifies the name and version of imported npm
packages. The activationEvents configuration specifies an array
of events that cause the extension to execute. Developers can
define a range of different activation events, including onLa-
nguage, onCommand, and workspaceContains, which can
be parameterized for more fine-grained control. The manifest
also includes triggers for VS Code startup (wildcard (*)), or
some time after startup (onStartupFinished). When any
activation event is triggered, VS Code calls the activate()
function for the extension, which must demultiplex the event.

VS Code workspaces define the build environment for
projects. Users can define per-workspace configuration of VS
Code via a settings.json file placed in the root of the

1https://marketplace.visualstudio.com/items?itemNa-
me=dracula-theme.theme-dracula

1 function exploit(port) {
2 const socket = new WebSocket(`ws://127.0.0.1:${

port}`);
3 socket.addEventListener('open', () => {
4 socket.send(JSON.stringify({
5 type: 'external_link',
6 url: 'file://${path}/$Contents/MacOS/

Calculator',}));
7 });}

Listing 1. Synk’s proof-of-concept exploit for the LaTeX Workshop VS Code
Extension [26]

workspace directory. Adding a settings.json file to a
project’s Git repository is a common way to manage per-
project configuration. VS Code extensions also leverage the
settings.json file. Extensions can programmatically access
the settings via the workspace object.

Finally, workspace trust is a functionality provided by
VS Code that allows the user to decide whether to allow
code to be executed [42]. A workspace can be in trusted
mode or restricted mode. A prompt appears when the user
opens a folder in VS Code, asking if the user trusts the
authors of the folder. Two options are given. Clicking “Yes,
I trust the authors” goes into trusted mode and allows all
features of VS Code to run, including extensions, debugging,
tasks, etc. Selecting “No, I don’t trust the authors” makes VS
Code go into restricted mode and limit extension functionality
and disables debugging and tasks. Developers of VS Code
extensions can specify whether they support workspace trust
and how their extension behaves in restricted mode. If a
developer does not specify, the extension does not support
restricted mode by default and is disabled. Using restricted
mode could prevent malicious actors from targeting extensions
and performing code injection; however, entering restricted
mode removes extension functionality and impacts a devel-
oper’s normal workflow and defeats the purpose of installing
extensions in VS Code in the first place.

Motivating Example: In 2021, Snyk [26] identified a vul-
nerability in the popular LaTeX Workshop extension for VS
Code. The extension starts a local web server and opens a
port whenever the user opens a .tex file. Users commonly
have web browsers open at the same time as VS Code, which
allows any open website to make a connection to the LaTeX
Workshop extension. Listing 1 shows the proof-of-concept
exploit developed by Snyk. As shown in the listing, by passing
a JSON object to the socket, an attacker is able to start the
calculator application.

III. THREAT MODEL

The goal of the adversary is to steal secrets from or
modify source code on a developer workstation as part of a
software supply chain attack. For the purposes of this paper,
we consider achieving arbitrary code execution within a VS
Code extension as a sufficient precondition to execute such
an attack. Modifying files can also achieve this goal, either
by modifying a file that is later executed (e.g., .bashrc) or
modifying the target source code directly.

Figure 1 depicts four entry points that adversaries can use
for their attacks. First, the attacker has control of the code

2

https://github.com/s3c2/UntrustIDE
https://github.com/s3c2/UntrustIDE

Fig. 1. VS Code extension threat model with assets and actors

repository for the active VS Code workspace (i.e., repo 1
in Figure 1). From this position, the attacker can control the
workspace settings or other files to inject malicious strings
into the VS Code extension. Second, the attacker is executing
JavaScript in the web browser. As seen in the motivating
example in Section II, some VS Code extensions run web
servers, which can be attacked from any process executing on
the developer’s workstation (i.e., the web browser in Figure 1).
Third, the attacker is situated on-path to the web server of a
network connection made by the VS Code extension. While
ideally VS Code extensions should always use HTTPS, a VS
Code extension developer may insecurely use HTTP. Finally,
the attacker is on the web server itself. While we trust the
web for URLs defined by the VS Code extension developer,
an attack may influence the URL used for the web request to
redirect the extension to a malicious web server.

An attacker can be present in multiple locations and
construct a multi-stage attack by linking multiple modifiable
values passed to the extension. We demonstrate an example
of such an attack that follows the red arrows in Figure 1. An
extension first reads configuration files from repo 1, which
includes malformed values from the attacker. The configuration
values are then used to determine a URL, causing the extension
to connect to a malicious server. Depending on the use case
of the extension, the web response may allow for further
malicious actions (e.g., download of malicious .bashrc).

Assumptions: For our work, we make the following assump-
tions: (1) Trusted Extensions: VS Code extension developers
do not intentionally develop malicious extensions.2 (2) Trusted
User: VS Code users are not intentionally attacking their own
system. (3) Disabled Restricted Mode: The user explicitly
disabled the restricted mode after cloning a potentially un-
trusted repository. (4) Trusted Filesystem: Files outside VS
Code workspace (e.g., local user files) are also considered
trusted.

IV. ANALYSIS

The goal of this paper is to systematically identify code in-
jection and file integrity vulnerabilities in VS Code extensions.
Both types of vulnerabilities are classically detected using taint
analysis. Taint sources are the locations in code where attackers
can introduce malformed data. Taint sinks are the places in the

2We encourage future work to investigate the VS Code marketplace for
malicious extensions.

TABLE I. TAINT SOURCES AND THEIR COMMON APIS

Source Description APIs / Function Calls

Workspace
Settings

Data from vscode workspace
settings flowing through exten-
sion application

vscode.workspace.getConfiguration

File Read Extension reading file contents fs.readFile()
fs.readFileSync()
...

Network
Response

Requesting data from the net-
work and accepting responses

http.get(options)
http.request(options)
axios.get(options)
request.get(options)
...

Web
Server

Spawning a local web server
that accepts incoming network
requests

server.listen()
express.get()
...

code where the code execution or file write operations occur.
A taint analysis algorithm determines if information can flow
from a taint source to a taint sink.

We built our VS Code analysis rules on top of CodeQL [4],
an emerging static program analysis tool that transforms a pro-
gram into a database and provides a specialized programming
language for specifying queries of the database. Conceptually,
CodeQL uses classes to define criteria that match a specific
instruction or part of an instruction (e.g., function parameter).
Classes can build upon one another to create complex queries
that further refine the specific match criteria. CodeQL’s taint
analysis rules define the criteria to select the taint source
and the taint sink. The taint source and sink queries can
use a combination of classes and logic on the properties of
those classes. CodeQL already has a large number of built-in
classes such as Http::RouteHandler, DomBasedXssQuery,
and RemotePropertyInjectionQuery, which are used to
identify sources and sinks for classic JavaScript injection
vulnerabilities in web applications. We leverage these built-in
classes whenever possible. However, as motivated in Section I,
existing CodeQL JavaScript vulnerability rules do not capture
vulnerabilities in VS Code extensions.

The remainder of this section describes the taint sources
and sinks used by our VS Code extension vulnerability rules.
For each source and sink, we describe the rationale for includ-
ing it. We then describe how we constructed the corresponding
CodeQL query, providing short snippets in listings when
appropriate. A summary of our taint sources and sinks is
provided in Tables I and II.

A. Taint Sources

Taint sources are an entry point where an attacker can
introduce malformed data into a system. In addition to using
VS Code APIs to retrieve information, extensions can use
Node.js modules and npm packages. We consider four taint
sources: (1) workspace settings, (2) file read, (3) network
response, and (4) web server input. Table I overviews the four
taint sources and lists common APIs used by developers.

1) Workspace Settings: VS Code allows users to customize
the editor, user interface, and other behavior in the editor via
JSON files. While these settings are stored in files, VS Code
extensions use a special API to access their configuration.
Therefore, we treat the settings as a dedicated taint source.

3

1 class VSCodeWorkspaceConfig extends DataFlow::Node{
2 VSCodeWorkspaceConfig(){
3 exists(
4 DataFlow::ModuleImportNode mod, DataFlow::Node

node, AstNode ast, Token ast_parent_token |
5 mod.getPath() = "vscode" and
6 mod.flowsTo(node) and
7 ast = node.getAstNode().getParent() and
8 ast_parent_token = ast.getParent().getAToken()
9 and ast_parent_token.toString().matches("%

getConfiguration%") |
10 this = node)
11 }}

Listing 2. Simplified CodeQL class for identifying workspace setting values

There are two scopes for the settings: user settings and
workspace settings.

A workspace is the collection of folders opened in a
VS Code window. A workspace can contain one or multiple
folders. User settings apply to all VS Code windows, regardless
of the folder or workspace the user opens. Workspace settings
are specific to the workspace and override user settings. A
user can modify the settings through the settings editor in VS
Code or directly edit the settings.json file, which stores
settings as key-value pairs. Depending on the OS platform,
the JSON file for user settings is typically stored in the user’s
home directory, which we assume cannot be controlled by the
adversary. In contrast, the JSON file for workspace settings is
stored in the .vscode directory in the root workspace folder,
which may be controlled by an adversary (see Section II).
Therefore, our analysis only considers workspace settings as
a taint source.

VS Code extensions can declare extension-specific settings
via its package.json manifest file. The fields listed under
contributes.configuration are visible and can be modi-
fied by the user. These settings provide users better customiza-
tion of VS Code for installed extensions. An extension retrieves
the values via the workspace.getConfiguration VS Code
API. If the user downloads an untrusted workspace (e.g.,
clones a Git repository), an adversary can use the workspace
settings JSON file to introduce malformed data.

As the CodeQL JavaScript library does not include pre-
defined classes for VS Code APIs, we defined our own
class called VSCodeWorkspaceConfig. First, we identify the
vscode module that is imported into the application, then we
track flows from the module. We use CodeQL’s AST module
to get syntactic structure of the flows, checking for calls to
the getConfiguration API. Simplified code for this class
is shown in listing 2.

2) Files: VS Code extensions commonly read files for
reading JSON configuration, file templates, and user interface
configuration. Extensions use Node.js’s built-in node:fs mod-
ule to interact with the file system. The module includes the
readFile and readFileSync APIs. VS Code also provides
file read APIs such as vscode.workspace.fs.readFile,
which is similar to Node.js’s readFile.

Similar to the attack via workspace settings, an adversary
can distribute malformed data in other files in the repository.
Anecdotally, we observed VS Code extensions that obtain file
paths from the workspace settings and then read those files

for additional configuration. Since it is nontrivial to statically
track data flow through multiple files, we simply use the file
read APIs as taint sources.

Automated Filtering: While the node:fs module allows
extensions to access all files, we consider files within the
extension directory as trusted. As per our threat model, ex-
tension developers are not malicious. We used the FileSy-
stemReadAccess CodeQL class to identify data nodes that
read data from files. To filter out trusted files, we combine the
FileSystemReadAccess CodeQL class with another query
that sets the file path of the file read as a sink and identifies
sources flowing to the sink.

Filtering Limitations: Filtering the results from the combined
queries sometimes required manual inspection of the taint
sources. For example, the file path could be coded as path-
.join(user_dir(),‘settings.json’), which combines
the path returned from user_dir() with the string ‘sett-
ings.json’. The value from user_dir() also needs to be
resolved. Unfortunately, CodeQL does not have good support
for constant propagation to automatically resolve complex file
path strings. Therefore, it is nontrivial to identify a compre-
hensive set of patterns to filter the file path.

The CodeQL VS Code extension provides a simple way
to manually inspect all nodes on the data flow path from the
taint source to the taint sink. Each node (e.g., a variable or
function identified by CodeQL) is hyperlinked to its location
in the source code. By scanning through the lines of code
around the node and combining the information from multiple
nodes, it is typically easy to determine if the file path for
the file read is within the workspace. That is, nodes for file
reads within the workspace commonly have some hard-coded
string or a variable that would represent the workspace path.
Therefore, on average, we were able to determine the file path
by looking at context in source code files of 3 to 4 nodes
that are on the data flow path. Inspecting each node and the
surrounding source code typically took less than a minute. This
manual inspection allows us to quickly acquire context for each
node and determine whether the file is in a trusted directory.
Section VI details the extent to which manual filtering was
required for our dataset.

3) Network responses: VS Code extensions commonly
make network requests to hosts on the Internet. If the extension
uses an insecure protocol (e.g., HTTP), an on-path adversary
can modify the server’s response to introduce malformed data.
Even if the extension uses a secure protocol (e.g., HTTPS), the
adversary may be able to influence the network destination,
e.g., via an untrusted workspace setting. Our analysis rules
consider both cases.

Node.js provides multiple built-in modules for making
network requests and receiving responses, e.g., node:http
and node:net. VS Code extensions can also use web focused
packages from npm, e.g., axios and request-promise.
Each API specifies URLs in different ways. For example, the
built-in http.request API is passed an object specifying
hostname, method, and additional options. The API also has
an optional callback parameter, which listens for the response
from the network request and performs further actions.

Automated Filtering: We restrict our definition of network

4

1 class UntrustedURL extends TaintTracking::
Configuration{

2 override predicate isSource(DataFlow::Node source)
{

3 exists(FileSystemReadAccess src | source = src.
getADataNode().getALocalSource()) or

4 exists(ClientRequest r | source = r.
getAResponseDataNode()) or

5 exists(Http::RouteHandler rh | source = rh.
getARequestNode()) or

6 exists(VSCodeWorkspaceConfig config, DataFlow::
SourceNode src |

7 src.getFile() = config.getFile() and src.
getStartLine() = config.getStartLine() |

8 source = src)
9 }}

10 class HttpURL extends TaintTracking::Configuration{
11 override predicate isSource(DataFlow::Node source)

{
12 exists(StringLiteral str| str.getStringValue().

matches("%http://%") |source = str.flow()) or
13 exists(StringOps::Concatenation str | str.

getAnOperand().getStringValue().matches("%http
://%") | source = str)

14 }}

Listing 3. Simplified CodeQL filter for the network response taint source

response taint sources to URLs from untrusted sources and all
HTTP URLs. CodeQL’s built-in Http::ResponseNode class
can be used to identify network responses; however, additional
filtering is required to determine whether the response is
untrusted. We define a new class called UntrustedURL, which
determines if the URL comes from (a) a workspace setting,
(b) a file read, (c) a network response, or (d) an input from
a web server interface. For HTTP URLs, we define a new
class called HttpURL, which determines if the string begins
with “http://”. Simplified code for these classes is shown in
Listing 3.

4) Local web servers: Recall from our motivating example
in Section II that VS Code extensions sometimes spawn a web
server and listen for incoming connections. This functionality
is provided by Node.js’s built-in node:http module, as well
as third-party modules such as express. If the adversary is
able to execute JavaScript in a web browser running on the
same host as VS Code, they can send malformed data to
any listening VS Code extensions, as demonstrated by the
motivating example.

We identify local web server taint sources using CodeQL’s
built-in Http::RouteHandler class. This class identifies the
callback functions that handle requests sent to a web server
API endpoint. For example, with the express framework,
“app” is often used to handle HTTP methods with app.g-
et(). The app.get(’route’,callback) matches for the
specified route from the incoming request and performs further
actions in the callback function. The Http::RouteHandler
class identifies these functions that handle web server end-
points.

B. Sinks

Taint analysis determines if malformed data from an un-
trusted taint source can flow to a security-sensitive taint sink.
We consider three taint sinks: (1) execution of shell commands,
(2) evaluation of JavaScript code (i.e., eval()), and (3) writes

TABLE II. TAINT SINKS AND THEIR COMMON APIS

Sink Description APIs / Function Calls

Shell
Command

Built-in Node.js modules and
third-party npm packages al-
low for executing shell com-
mands

child process.exec()
child process.spawn()
shell.exec()
...

Evaluate String
as Code

Strings passed in will be
evaluated as JavasScript
statements or expressions

eval()

File Write Writing content to files fs.writeFile(filepath, content)
fs.appendFile(filepath, content)
...

1 from
2 Configuration cfg, DataFlow::PathNode source,

DataFlow::PathNode sink, StringOps::
Concatenation concat_string

3 where
4 cfg.hasFlowPath(source, sink) and concat_string =

sink.getNode() and
5 (concat_string.getFirstLeaf().toString() = "\"(\""

or concat_string.getFirstLeaf().toString() =
"'('")

6 and
7 (concat_string.getLastLeaf().toString() = "\")\""

or concat_string.getLastLeaf().toString() = "')
'")

Listing 4. Simplified CodeQL filter for eval() taint sink

to files. Table II overviews the four taint sinks and lists
common APIs used by developers.

1) Shell Commands: Node.js’s built-in child_process
module allows an application to spawn subprocesses. The
module provides a collection of different functions. We discuss
the two most commonly used. child_process.exec() takes
in a command string and an optional object with options such
as the directory of the process or the shell to execute the
command with. It spawns a shell and passes the command
string directly to the shell to execute. child_process.sp-
awn() takes in a command string, a list of string arguments,
and an optional options object. It runs a new process with the
command string, and passes in the list of arguments.

To perform a shell injection, the adversary must control
strings passed as the command argument. While VS Code
extensions often hard code parts of the command string,
they frequently use variables for other parts. Therefore, the
adversary can use symbols such as &, ;, | to append additional
commands. As CodeQL’s existing SystemCommandExecut-
ion class for JavaScript sufficiently captures shell commands
as a taint sink, we used it directly.

2) Evaluate string as code: The eval() function evaluates
strings passed in as JavaScript code and returns the completed
value of the JavaScript execution. Data flows from untrusted
sources to this sink can embed arbitrary JavaScript to achieve
code injection. However, if brackets are added to the beginning
and end of the string passed to eval(), the string is evaluated
as an expression rather than as statements. This use of brackets
is often used to evaluate JSON objects. Note that while the
adversary can abuse eval() to perform shell injection and
write to files, we do not attempt to differentiate these attacks
with our tool.

5

1 class FlowToWritePath extends TaintTracking::
Configuration {

2 override predicate isSource(DataFlow::Node source)
{

3 exists(VSCodeWorkspaceConfig config, DataFlow::
SourceNode src | src.getFile() = config.getFile
() and src.getStartLine() = config.getStartLine
() | source = src) }

4 override predicate isSink(DataFlow::Node sink) {
5 exists(FileSystemWriteAccess write | sink =

write.getAPathArgument()) }}
6 class FlowToWriteContent extends TaintTracking::

Configuration {
7 override predicate isSource(DataFlow::Node source)

{
8 exists(VSCodeWorkspaceConfig config, DataFlow::

SourceNode src | src.getFile() = config.getFile
() and src.getStartLine() = config.getStartLine
() | source = src) }

9 override predicate isSink(DataFlow::Node sink) {
10 exists(FileSystemWriteAccess write | sink =

write.getADataNode()) }}
11 where
12 writepath.hasFlowPath(source_path, sink_path) and
13 writecontent.hasFlowPath(source_content,

sink_content) and
14 filewrite_func.getADataNode() = sink_content.getNode

() and
15 filewrite_func.getAPathArgument() = sink_path.

getNode()

Listing 5. Simplified example of combining two data flows to filter file write
flows. This example shows workspace settings as the source.

Automated Filtering: The CodeQL library includes the D-
irectEval class to help with identifying calls of eval(-
). However, adding brackets to the beginning and end of the
string is a common way of sanitizing strings passed to eval-
(). Therefore, we added filters that identified the brackets and
excluded those from the results, as shown in Listing 4.

3) File Write: The Node.js node:fs module provides APIs
such as writeFile and appendFile to make changes to
files. Two arguments are passed to these APIs: (1) a file path
and (2) the content to write to the file path. We assume that
for this sink to be exploitable, both file path and the content
need to be controlled by the adversary. Subtle vulnerabilities
might occur where the adversary has control of one but not the
other; however, identifying such cases as vulnerable requires
understanding the semantics of the VS Code extension logic.
Therefore, we limit our identification of file write taint sinks
as instances where there exist flows from untrusted sources to
both arguments.

Automated Filtering: We used CodeQL’s existing FileS-
ystemWriteAccess class to identify file writes. To capture
our specific threat model criteria, we combined queries that
identify sources that flow to the file path and the content
argument of file writes. A simplified example of the combined
filtering is shown in Listing 5.

Filtering Limitations: Similar to the limitations filtering file
paths for the file read taint source, we required manual inspec-
tion to filter results for the file write sink. Another challenge
occurs when a VS Code extension writes to a file that it is also
reading. Without context, it is unclear if it is reading from and
writing to the same file, as there are multiple ways to encode
the file path into a string.

Our process of manual inspection for file writes follows
a similar process as manual inspection for file reads. Our
additional queries identify all possible untrusted sources with
a data flow to the file path and file content argument for a
file write. We navigated through the nodes on the path with
hyperlinks from the CodeQL VS Code extension. Combining
context from the source code files of the nodes provides
sufficient information to determine whether the file path or file
content can be injected through untrusted sources. This process
typically required inspection of 3 to 4 nodes. Inspection of each
node and its surrounding source code typically took less than
a minute.

C. Implementation

Our analysis pipeline consists of four stages: a package
downloader, a database builder, multiple query runners, and
query result parsers. We implemented it using the BullMQ
framework [40], a Node.js library built on top of redis
queue [30] that makes building microservice architectures
easier. The scraper gathers extension metadata and download
links for each extension package. The links were then added
into the package downloader queue, where a worker downloads
the extension source code from the VS Code marketplace and
unpackages it. Once the code is successfully downloaded and
unpackaged, the worker adds the job to a queue in our second
stage of the pipeline, the database builder, where another
worker runs CodeQL commands to build databases for the
downloaded source code.

After CodeQL databases are successfully built, the query
runner executes. Using the four sources and three sinks, we
constructed twelve queries with corresponding filters. We used
separate queues and workers so the queries ran in parallel.
Once a query has completed, it is added to a queue for
the query result parser. The worker for the parser processes
the query results and transforms it into the format saved in
mongoDB. Finally, we applied filters on our query results and
verified the results for vulnerabilities.

V. VS CODE EXTENSION DATASET

In this section, we discuss the data we collected and
characteristics within the dataset. The dataset comprises VS
Code extension metadata and source code. As mentioned in
Section II, VS Code extensions are largely similar to Node.js
applications, thus the code is similar. As the extensions are
similar to Node.js applications, we were able to collect the
actual source code for the extensions.

A. Dataset Collection

We collected extension metadata and source code from the
Microsoft Visual Studio Marketplace [39] in January 2023.
Our dataset consists of the 43,436 extensions on the market-
place at the time of our study. We implemented a scraper to
scrape the marketplace for extension metadata. Fields such as
extensionName, publisherName, lastUpdated, installs, GitHub
repository were included in the metadata. To gain further
insight into the data and its dependencies, we also collected
content and metadata of the extensions’ GitHub repository and
npm advisory data from Open Source Insights [27].

6

3 6 9 12 15 18 21 24 ≥ 25
0

0.5

1

1.5

2

·104

6
,0
6
7

3
,7
9
2

3
,2
1
7

3
,0
1
3

2
,5
1
8

2
,4
1
3

2
,5
1
5

2
,2
7
2

1
7
,6
1
1

1
0
,6
4
2

2
,0
1
2

4
6
7

1
,1
2
0

4
2
5

7
1
6

3
0
5

3
2
4

3
,6
8
0

months

#extensions installs (100K)

Fig. 2. Time since last update (relative to time of data collection, Jan 2023)

Our scraper also collected extension source code from
the marketplace. The source code of an extension typically
includes the manifest file package.json, the node_modules
directory with dependency data, and the JavaScript or Type-
Script code in a src directory. The manifest file, similarly to
Node.js applications, contains general application information
and dependency data. It also includes additional fields of data
specific to VS Code extensions, such as activationEvents,
commands, or configuration.

Out of the 43,436 extensions we gathered, 25,402 ex-
tensions had JavaScript or TypeScript code, the remaining
18,034 did not include code. As mentioned in Section II, VS
Code extensions without code include JSON files that specify
behavior of the extensions, common in extensions for themes
and snippets.

B. Dataset Characterization

To develop a deeper understanding of the data, we com-
pared various metadata metrics.

Recent Updates: We compared the field lastUpdated with
installations to gain an understanding of the state of extension
developers maintaining the application. As shown in Figure 2,
40% of the extensions have not been updated in more than two
years. As Zahan et al. [43] proposed, unmaintained packages
are considered a weak link in software. If we look at the
number of installations, we observe that over 54% of the
installations are extensions that have been updated in three
months. 18% of the installations however, are of extensions
that have not been updated in two years.

Number of Direct Dependencies: The number of depen-
dencies in an application correlates to the attack surface of
an application. The more dependencies a VS Code extension
depends on, the more it relies on third-party code, which
increases the chances of vulnerabilities being introduced. We
compare the number of direct dependencies with installs in
Figure 3, and observe that 80% of the extensions have less

0-5 6-10 11-15 16-20 21-25 ≥ 26
0

0.5

1

1.5

·104

1
2
,5
0
0

1
,8
0
6

6
5
0

2
8
6

1
6
0

2
2
5

6
,5
1
1

2
,6
3
6

8
5
1

1
,5
8
1

9
9
3 1
,9
8
5

direct dependencies

#extensions installs (100K)

Fig. 3. Direct dependency count in a VS Code extension

critical high moderate low none
0

0.2

0.4

0.6

0.8

1

1.2
·104

9
,7
1
0

2
,0
2
1

1
2
7

4
6

3
,2
9
1

3
,8
7
2

3
,6
0
2

2
5
4

2
0
4

4
,5
8
5

advisory level

#extensions installs (100K)

Fig. 4. Highest advisory level in VS Code extension dependencies

than five direct dependencies. From the figure, we observe that
extensions with more installs tend to include more dependen-
cies, 37% of the installations are extensions with more than ten
direct dependencies. Note that the numbers in the graph only
include direct dependencies, dependencies could be importing
other dependencies, thus the number would be larger for
transitive dependencies. Transitive dependency data required
a lock file, such as package-lock.json or yarn.lock,
that specifies the version of the package, which not all VS
Code extension source code included. We were able to collect
transitive dependency data for 15,185 of the extensions. Of
those, 13,655 had more than 100 transitive dependencies.

Advisories in Dependencies: To gain a more comprehensive
understanding of dependencies and its attack surface in VS
Code extensions, we compared npm package advisories against
extension dependencies. Figure 4 shows the most severe advi-
sory level in an extension’s transitive dependencies. Of the
15,185 extensions where we could collect exact transitive

7

dependency version data, 9710 (63.9%) imported a package
with a critical-level advisory. The large number of VS Code
extensions that import a critical-level advisory shows the
impact a supply chain attack through the npm ecosystem has
on VS Code extensions.

C. Access to system resources through Node.js

We present an overview of the number of VS Code
extensions with access to files, network, shell commands, and
local web servers. While access to these resources through the
Node.js environment do not directly pose a threat, it provides
context to better understand results of data flows from our taint
analysis. Figure 5 shows the number of VS Code extensions
where we identified the extension accessing files, network
resources, shell commands, and spawning local web servers.
CodeQL queries were constructed to identify these instances.
For a web server to be vulnerable, some action has to be done
on the incoming network request. It might be the case that a
VS Code extension spawns a web server and opens a socket,
but there is no clear API endpoint that an adversary can target.
Therefore, we not only identified applications that spawn a web
server, but further identified an existing function that handles
the incoming request for us to classify it as spawning a web
server.

From the 322 extensions where we identified a web server,
we installed and activated the extensions to check whether
sockets on the local system were opened by the VS Code
extension. We were able to verify 65 VS Code extensions
that opened sockets immediately after extension activation.
Of those where we did not detect an open socket, we were
not able to trigger the specific flow of events that caused
an extension to open sockets therefore we could not verify.
We also identified 5,112 extensions that access files, 4,074
extensions that access the network, and 1,902 extensions that
call shell command APIs. Those resources were accessed
through Node.js modules, which shows VS Code extensions’
reliance on the Node.js ecosystem.

VI. VULNERABILITY RESULTS

In this section, we discuss the vulnerabilities identified by
our analysis. The section is organized by taint source, i.e., the
attack vector used to exploit the vulnerability. For each taint
source, we provide a table that details the reduction from the
number of possible extensions that could have contained the
vulnerability (i.e., the code includes both the taint source and
taint sink) down to data flows between the source and sink. The
tables also detail the reduction provided by both automated and
manual filtering. When feasible, we created proof-of-concept
(PoC) exploits to demonstrate impact. As developing PoCs is
time and labor intensive, we focused on extensions with higher
installations and when code was not obfuscated.

A. VS Code workspace settings

Workspace setting values in VS Code allow for malformed
data to enter VS Code extensions. An adversary could dis-
tribute repositories including malformed data, targeting spe-
cific VS Code extension vulnerabilities. It is not uncommon
for open source repositories to include VS Code settings in
the .vscode subdirectory. Suppose a VS Code user has the

web server file access network access shell access
0

2,000

4,000

6,000

8,000

3
2
2

5
,1
1
2

4
,0
7
4

1
,9
0
2

4
9
3

2
,8
8
7

6
,6
2
0

9
8
3

resource type

#extensions installs (100K)

Fig. 5. Overview of resources accessed by VS Code extensions identified
by CodeQL

1 // taint source
2 get gitPaths() {
3 const configValue = vscode.workspace.

getConfiguration('git').get('path', null);
4 ...
5 }
6 // taint sink
7 function getGitExecutable(path) {
8 return new Promise((resolve, reject) => {
9 resolveSpawnOutput(cp.spawn(path, ['--version'])

).then((values) => {
10 ...
11 }

Listing 6. Simplified code of taint source and taint sink in git-graph VS
Code extension

targeted VS Code extension installed, downloads the repository
with malformed data, and opens the repository in VS Code.
The malformed payload could enter the VS Code extension
application through workspace setting values and lead to a
remote code injection attack. Table III shows the number of
flows we detected flowing from our first source: workspace
settings to our three sinks, (1) shell command, (2) eval(),
(3) file write, which we will discuss separately in this section.

1) Sink 1 - Shell Command: We identified 2,213 extensions
where both a workspace setting and a shell command existed.
Our CodeQL query tracking data flows from workspace set-
tings to shell command identified 389 extensions, which is
around 18% of those with source-sink combinations. Sorting
by the number of installations, we manually inspected the top
27 with more than 40,000 installations. Out of the 27, we
verified 7 extensions where the identified vulnerable data flows
allowed for code execution, the total number of installations
amounting to more than 5.7 million. Of the remaining 20
extensions, 5 were clearly not exploitable, 4 had obfuscated
code, another 4 extensions were deprecated or no longer on
the marketplace, and 7 we were unable to verify for proof of
concepts for an exploit.

Verified Exploit: For example, we identified a flow from a
workspace configuration value to a shell command in the git-

8

TABLE III. NUMBER OF IDENTIFIED FLOWS FROM THE WORKSPACE SETTINGS TAINT SOURCE

Sink Number of
extensions
with calls
to both the
source and
the sink

Flows Filters Filtered
Flows

Investigated PoC Not Exploitable Unable to Confirm

ev
al

()
w

ith
ou

t
en

cl
os

in
g

br
ac

ke
ts

un
tr

us
te

d
so

ur
ce

to
fil

ep
at

h
an

d
co

nt
en

t

ha
rd

-c
od

ed
w

ri
te

fil
ep

at
h

ot
he

r

de
pr

ec
at

ed

ob
fu

sc
at

ed

ac
tiv

at
io

n
er

ro
r

ot
he

r

shell 2,213 389 0 0 389 27 7 0 5 4 4 0 7
eval 192 12 12 0 12 12 6 0 4 0 1 0 1
file write 1,847 79 0 24 24 24 0 13 0 1 1 6 3

1 "git": { "path": "a-shell-script.sh" }

Listing 7. Workspace setting value to exploit git-graph extension vulnerability

1 function showAvailableCommands(context, manageFile)
{

2 vscode.window.showInformationMessage(
LOAD_COMMANDS_MSG);

3 const pythonPath = vscode.workspace.
getConfiguration(PYTHON).get(
CONFIGURATION_PYTHON_PATH);

4 const command = `${pythonPath} ${manageFile} help
--commands`;

5 cp.exec(command, (err, stdout) => {
6 ...

Listing 8. Simplified code of taint source and taint sink of in django-
commands VS Code extension

graph3 VS Code extension (5.1 million installations). This
extension shows a git graph for a repository and allows the
user to perform actions on the graph. As shown in Listing 6,
the extension gets the value for the field git.path from the
workspace setting (line 3), the value goes through a couple
function calls and is finally passed into child_process.sp-
awn as the path argument to be executed as a shell command
(line 8). To exploit this, we set up a workspace in VS Code and
modified the git.path value in the workspace configuration
file to the path of a shell script, as in Listing 7. With the
extension installed, we were able to execute the shell script
upon opening the workspace in VS Code.

Another extension we identified is Django Commands4

(49,000 downloads). The extension allows developers to run
commands in django projects in VS Code. As shown in
Listing 8, we identified a flow from a workspace configuration
value (line 3) to a shell command (line 5). An adversary could
create an open source django repository including the .vscode
directory that contains malformed workspace setting values
to target extension users. Suppose a user installs the Django
Commands extension and downloads an open source repository
of a django project template containing VS Code workspace
setting configuration to quickstart a project. Opening the
repository with malformed payload in VS Code could lead
to a remote code injection attack. We verified this by crafting
the workspace setting value as shown in Listing 9 and were
able to execute the malformed payload as a shell command.

3https://marketplace.visualstudio.com/items?itemNa-
me=mhutchie.git-graph

4https://marketplace.visualstudio.com/items?itemNa-
me=MaxChamps.django-commands

1 { "python.pythonPath": "a-shell-script.sh;" }

Listing 9. Workspace setting value to exploit scss-lint extension vulnerability

1 let scssLintPath = hasConfigFileDir && foundFile ?
path.join(configFileDir, '.scss-lint.yml') : '';

2 const configCmd = scssLintPath ? `-c "${scssLintPath
}" ` : '';

3 // taint sink
4 const cmd = `${echoCmd}scss-lint ${pathCmd}${

configCmd}${fileCmd}`;
5 exec(cmd, CONFIG_OBJ, (err, stdout) => { ...

Listing 10. Simplified code of taint source and taint sink of unexploitable
flow

Non-exploitable flow: We present an example to discuss how
manual inspection was required to determine that the flows
identified by CodeQL were not exploitable. The simplified
code is shown in Listing 10. Here, a flow from the workspace
setting value to a shell command was detected by our tool.
The extension retrieves a workspace setting value which is
passed to the configFileDir variable (line 1), then passed to
conditional operators to determine the values of strings passed
into the scssLintPath variable in the shell command. Upon
manual inspection, we find that the scssLintPath variable
value is resolved from either another variable or from the
combination of our configFileDir variable with a hard-
coded string. While there exists a data flow from our taint
source workspace settings to our taint sink shell command, we
determined that it is not able to achieve a code injection attack
with only a malformed value from the workspace setting.

2) Sink 2 - Eval(): There were 192 extensions where both
a workspace setting and a eval() existed. Our CodeQL tool
identified 12 VS Code extensions with flows from the source
to the sink, all of which did not include brackets enclosing
the string passed to the function. We manually inspected them
and found one with obfuscated code. For the remaining 11
extensions, we verified vulnerabilities for 6 extensions with
proof of concepts for code injection, where the total number
of installations add up to more than 80,000. 4 extensions were
not exploitable and one we were not able to confirm.

Verified Exploit: Our case study extension for this vulnera-
bility is the scss-lint5 extension, a linter for scss in VS Code
with more than 62,000 installations. As shown in Listing 11,
the extension reads for the workspace setting value scssL-
int.statusBarText (line 3), which is passed to a eval()

5https://marketplace.visualstudio.com/items?itemNa-
me=adamwalzer.scss-lint

9

1 // taint source
2 const updateConfig = () => {
3 const newConfig = vscode.workspace.

getConfiguration('scssLint');
4 statusBarText = newConfig.statusBarText;
5 ...
6 }
7 // taint sink
8 this._statusBarItem.text = eval(statusBarText);

Listing 11. Simplified code of taint source and taint sink in scss-lint VS
Code extension

1 "scssLint.statusBarText": "exec('ls > outputFile.out
');"

Listing 12. Workspace setting content to exploit scss-lint extension
vulnerability

function (line 8). We exploited this by crafting a workspace
setting value with a JavaScript string for the specified field as
shown in Listing 12. The JavaScript string was passed to the
eval(), evaluated as a statement, and we were able to achieve
code injection.

3) Sink 3 - File Write: For our third sink, we were not
able to verify proof of concepts for code injection attacks.
There were 1,847 extensions where both a workspace setting
and a file write existed. Our CodeQL query identified 79 VS
Code extensions with data flows from workspace settings to
file write. Of those, 24 extensions had a flow from an untrusted
source to both the write file path and the write content. After
manual investigation, we found one extension with obfuscated
code, one that was deprecated, 13 where the write file path had
hard-coded filenames or file extensions, 6 where we could not
correctly activate the extension to test exploits, and 3 where
we could not confirm proof of concepts.

Non-exploitable flow: To demonstrate how static analysis
could lack context in determining exploitability, we discuss one
of the flows we identified but categorized as not exploitable.
The simplified code for this example is shown in Listing 13.
Our tool identified a data flow from a workspace setting (line 2)
to a file write (line 8). We inspected the source code and
tested the extension and observed that the extension uses the
workspace setting value as the heading value in the outputted
markdown file, thus we determined this was not exploitable
for code injection.

B. Files

As VS Code extensions are able to read file data by lever-
aging Node.js modules, files opened in a VS Code workspace
could be a source of malformed data. Similar to the scenario
discussed in the previous section for the workspace setting
taint source (Section VI-A), an adversary could distribute
repositories with malformed data. Opening the repositories in
VS Code would allow the malformed data to enter extension
applications. What sets files apart from workspace settings as
a taint source is that files could be of any filename, while
workspace settings are stored in a specific file. Here we discuss
the number of data flows we detected from our second source:
file read to our three sinks (1) shell command, (2) eval(),
(3) file write, as shown in Table IV.

1 function dateHeader() {
2 const configDateFormat = vscode.workspace.

getConfiguration().get("dailyNotes.dateFormat");
3 if (configDateFormat) {
4 return "## " + moment(today).format(

configDateFormat) + "\r\n\r\n\r\n";
5 }
6 ... }
7 async function prependFile(filePath, content) {
8 await fsp.writeFile(filePath, content);
9 ... }

Listing 13. Simplified code of non-exploitable flow from workspace settings
to file write

1) Sink 1 - Shell Command: There were 1,718 extensions
where both the file read and shell command existed. Our
CodeQL query tracking data flows from a file read to shell
command identified 75 extensions. We manually inspected 26
extensions with more than 5,000 installations. Out of the 26,
we were able to come up with proof of concepts for code
injection for 4 of the extensions, adding up to more than
121,000 installations. Of the remaining, 9 were reading from
files in the extension’s directory (considered trusted), 2 were
not exploitable, 2 had obfuscated code, 4 we were not able to
activate correctly, and 5 we were not able to verify.

Verified Exploit: One extension where we found a vul-
nerability is CMake Test Explorer6, with more than 76,000
installations. As shown in Listing 14, the source of the flow is
in getCtestPath(), where the extension is reading from a
cacheFilePath file in the workspace (line 4). The value of
the filepath is resolved by joining the cwd and CMAKE_CAC-
HE_FILE variable. As discussed in Section IV-A2, using our
combined CodeQL queries, we determined that the resolved
filepath is within the workspace and therefore untrusted by
manual inspection. The content of the file flows to our sink
in loadCmakeTests(), where it is passed to a spawn()
(line 14) that executes the content as a shell command. We
exploited this flow by creating a CMakeCache.txt file in
the workspace, and setting the content of the file to a shell
script path. Then by setting certain workspace setting values
to trigger the vulnerability flow, we were able to execute the
shell script.

2) Sink 2 - Eval(): There were 397 extensions with the
file read and eval() combination, our CodeQL tool identified
55 extensions where there existed a data flow between this
source and sink. Our filters detected 21 extensions which had
brackets enclosing the string passed to eval(), thus they
were excluded. We inspected the remaining 34 extensions, and
verified vulnerabilities for 4 extensions with proof of concepts
for code injection, with the sum of installations totaling to
more than 11,000. Of the remaining 30 extensions, we found
that 3 were obfuscated, 18 were reading from files within the
extension or required the user to choose the file, and 9 we
were not able to confirm with exploits.

Verified Exploit: For this flow, we present the extension
autodocblocker7, with more than 10,000 installations. As

6https://marketplace.visualstudio.com/items?itemNa-
me=fredericbonnet.cmake-test-adapter

7https://marketplace.visualstudio.com/items?itemNa-
me=maddog986.autodocblocker

10

TABLE IV. NUMBER OF IDENTIFIED FLOWS FROM THE FILE READ TAINT SOURCE

Sink Number of
extensions
with calls
to both the
source and
the sink

Flows Filters Filtered
Flows

Investigated PoC Not Exploitable Unable to Confirm

ev
al

()
w

ith
ou

t
en

cl
os

in
g

br
ac

ke
ts

un
tr

us
te

d
so

ur
ce

to
fil

ep
at

h
an

d
co

nt
en

t

ha
rd

-c
od

ed
w

ri
te

fil
ep

at
h

re
ad

fr
om

fil
e

in
ex

te
ns

io
n

ot
he

r

de
pr

ec
at

ed

ob
fu

sc
at

ed

ac
tiv

at
io

n
er

ro
r

ot
he

r

shell 1,718 75 0 0 75 26 4 0 9 2 0 2 4 5
eval 397 55 34 0 34 34 4 0 18 0 0 3 0 9
file write 2,847 1,296 0 150 150 21 0 6 4 6 2 1 1 1

1 // taint source
2 function getCtestPath(cwd) {
3 const cacheFilePath = path.join(cwd,

CMAKE_CACHE_FILE);
4 const match = fs.readFileSync(cacheFilePath).

toString().match(CTEST_RE);
5 ...
6 return match[1];
7 }
8 // taint sink
9 function loadCmakeTests(ctestPath, cwd,

10 buildConfig, extraArgs = '') {
11 return new Promise((resolve, reject) => {
12 try {
13 ...
14 const ctestProcess = child_process.spawn(

ctestPath, [...], { cwd });
15 }}}

Listing 14. Simplified code of taint source and taint sink in CMake Test
Explorer VS Code extension

1 for (var folder of vscode.workspace.workspaceFolders
) {

2 if (fs.existsSync(folder.uri.fsPath + "\\.
autodocblocker.js")) {

3 try {
4 eval(fs.readFileSync(folder.uri.fsPath + '\\.

autodocblocker.js', 'utf8'));
5 }
6 ...

Listing 15. Simplified code of taint source and taint sink in autodocblocker
VS Code extension

shown in Listing 15, the extension reads content from a .au-
todocblocker.js file in the workspace (line 4), then passes
the file content to eval() to evaluate as JavaScript statements.
To exploit this, we created a .autodocblocker.js file in the
workspace with payload as shown in Listing 16. Our payload
includes the exec() function from the Node.js built-in module
child_process, as it is the most direct way to achieve code
injection. Other JavaScript code could also be embedded for
other attacks.

3) Sink 3 - File Write: 2,847 extensions had a file read
and a file write combination. Our CodeQL query tracking data
flows from a file read to file write identified 1,296 extensions.
We applied filters to identify those where there existed a
flow from an untrusted source to both the file path and the
content argument. This reduced the number to 150 extensions.
Of those, we inspected the 21 extensions with more than
5,000 installations and found one that was obfuscated, 2 were
deprecated, one was obfuscated, 6 had the filename hard-
coded, 4 read from files within the extension, one where we

1 const cp = require('node:child_process');
2 cp.exec('dir > "/path"', (err, stdout, stderr) => {
3 if(err){ console.log(err); }
4 });

Listing 16. File content to exploit autodocblocker extension vulnerability

were not able to activate the extension, and one where we
could not confirm the vulnerability with proof of concept for
code injection.

C. Network Response

As shown in Section V-C, VS Code extensions can make
outgoing network requests and receive incoming network
responses. This allows for untrusted data to enter VS Code
extension applications through network responses. The number
of combinations we found for this source and the various sinks
was drastically less than compared to the two previous sources.
Table V shows the number of flows we detected flowing from
our network responses to our three taint sinks.

1) Sink 1 - Shell Command: Although we identified a good
amount of vulnerable flows from the two previous sources
to shell command, our CodeQL tool did not identify any
extension with data flows from a network response to a shell
command. Only 174 extensions were found to have both a
network response and a shell command exist in the source
code.

2) Sink 2 - Eval(): We identified 122 extensions with
this source-sink combination. For data flows from a network
response to an eval() as a sink, our CodeQL tool identified
19 extensions. 15 of those had brackets enclosing the string
passed to eval(). We excluded those and further filtered the
results to restrict the URLs to insecure URLs and narrowed
it down to one extension. Due to the complicated logic in the
source code, we were not able to verify the exploitability of
the vulnerability with a proof of concept for code injection.

3) Sink 3 - File Write: 259 extensions were found to have
a call to a network response and a file write. We identified
191 extensions with a flow from network response to a file
write. After applying filters, we were left with 25 extensions
where (1) the URL of the network response is insecure and
(2) there exists a flow from untrusted sources to both the
file path and content arguments in the file write function.
After investigating the 25 extensions, we found that one was
clearly not exploitable, 17 had the write file path hard-coded
or required user input for the path, one was obfuscated, 2
extensions we could not activate, and another 4 where we

11

TABLE V. NUMBER OF IDENTIFIED FLOWS FROM THE NETWORK RESPONSE TAINT SOURCE

Sink Number of
extensions
with calls
to both the
source and
the sink

Flows Filters Filtered
Flows

Investigated PoC Not Exploitable Unable to Confirm

ev
al

()
w

ith
ou

t
en

cl
os

in
g

br
ac

ke
ts

un
tr

us
te

d
so

ur
ce

to
fil

ep
at

h
an

d
co

nt
en

t

in
se

cu
re

U
R

L

ha
rd

-c
od

ed
w

ri
te

fil
ep

at
h

ot
he

r

ob
fu

sc
at

ed

ac
tiv

at
io

n
er

ro
r

ot
he

r

shell 174 0 0 0 0 0 0 0 0 0 0 0 0
eval 122 19 15 1 0 1 1 0 0 0 0 0 1
file write 259 191 0 42 25 25 25 0 13 5 1 2 4

1 let extension = ".god";
2 // action on network response
3 return contentReq.then((response) => {
4 let outFileName = getModulePath(outline.entity.

ownerName) + "\\" + outline.entity.ownerName +
extension;

5 outFileName = path.normalize(outFileName);
6 fs.writeFile(outFileName.replace(/\\/g, '/'),

response["content"]);

Listing 17. Simplified code of non-exploitable flow from network response
to file write

could not confirm the vulnerabilities with proof of concepts
for code execution.

Non-exploitable flow: We present an example where we de-
termined the flow was not exploitable after manual inspection.
The simplified code for the flow is shown in Listing 17. This
extension receives a network response and writes the content
to a outFileName (line 6). This data flow seems exploitable
as it writes data from the network to a file. However, after
manual inspection, we observe that the extension variable
(line 4) specified the file extension of outFileName to .god
(line 1). This prevents a malicious actor from setting the file
path of the file written to a sensitive file such as .bashrc.
Therefore, we determine this flow as not exploitable.

D. Web Server

VS Code extensions have the capability to spawn web
servers through Node.js modules. Web servers open ports on
the user’s system and allow untrusted data to enter through
API endpoints declared by the web server. Table VI shows
the number of flows we detected flowing from web server
API endpoints to our three taint sinks. The number of source-
sink combinations for this category is also drastically less than
compared to the first two sources workspace setting and file
read.

1) Sink 1 - Shell Command: We identified 151 extensions
where a web server and a shell command existed. Our Cod-
eQL query tracking data flows from a web server API to a
shell command identified 3 extensions. We inspected all 3
extensions, one of which was obfuscated, one we were not
able to activate and another one we were not able to confirm
vulnerabilities with proof of concepts for code injection.

2) Sink 2 - Eval(): Although data flows to eval() yielded
results for taint sources we discussed previously, our CodeQL
query did not identify any extension where there existed a
flow from a web server API endpoint to eval(). Only 64

1 // taint source
2 this.app = express();
3 this._localWebService = new localWebService_1.

LocalWebService(extensionPath);
4 ...
5 this._localWebService.addPostJobDetailHandler("/api/

editScript", (req, res) => this.
apiEditScriptRequestHandler(req, res));

6 // taint sink
7 let jobCacheFolder = path.join(vscode.workspace.

rootPath, '.jobCache');
8 ...
9 fs.writeFileSync(scriptPath, jobDetail.properties.

script, { encoding: 'utf8' });

Listing 18. Simplified code of taint sources and taint sink in Azure Data
Lake Tools extension

extensions had both a web server and a eval() exist in the
source code.

3) Sink 3 - File Write: We identified 6 extensions, out of
146 with the source-sink combination, where data flows from a
web server API endpoint to a file write were identified with our
CodeQL tool. 3 of them had a flow from an untrusted source to
both the write file path and write content. We inspected them
and found one had the file path hard-coded, another one we
were not able to activate correctly, and one where we verified
it had a partial file integrity attack.

Verified Exploit: The extension where we identified a partial
file integrity attack is the Azure Data Lake Tools8 extension,
with more than 279,000 installations. As shown in Listing 18,
it spawns a web server on the user’s system using the express
framework and declares web server APIs (line 5), from which
incoming data flows to a file write. Data incoming from the
network to the web server would be written to a subdirectory
within the workspace (line 9). Upon manual inspection, we
were able to exploit the editScript API by sending payload
shown in Listing 19 that writes file content passed in the
request body to the file name specified in the payload. An
adversary could send requests to the local web server with
malformed payload through a website the user visits and
perform a partial file integrity attack.

VII. DISCUSSION

While we identified four sources and three sinks from our
threat model, our results show that certain combinations of
taint sources and taint sinks are more likely to expose a VS
Code extension user to attacks. Data from untrusted sources

8https://marketplace.visualstudio.com/items?itemNa-
me=usqlextpublisher.usql-vscode-ext

12

TABLE VI. NUMBER OF IDENTIFIED FLOWS FROM THE WEB SERVER TAINT SOURCE

Sink Number of
extensions
with calls
to both the
source and
the sink

Flows Filters Filtered
Flows

Investigated PoC Not Exploitable Unable to Confirm

un
tr

us
te

d
so

ur
ce

to
fil

ep
at

h
an

d
co

nt
en

t

ha
rd

-c
od

ed
w

ri
te

fil
ep

at
h

ot
he

r

ob
fu

sc
at

ed

ac
tiv

at
io

n
er

ro
r

ot
he

r

shell 151 3 0 3 3 0 0 0 1 1 1
eval 64 0 0 0 0 0 0 0 0 0 0
file write 146 6 3 3 3 1∗ 1 0 0 1 0
∗ partial file integrity attack.

1 { "detail":{
2 "name": "${filename}",
3 "properties":{
4 "script": "${filecontent}" }}}

Listing 19. Request body sent to extension API for partial file integrity attack

such as workspace settings and files in the workspace were the
most common in our identified vulnerability flows and verified
code execution vulnerabilities. Shell command and eval()
taint sinks consist of the large majority of our verified code
execution vulnerabilities. While these sources and sinks allow
a VS Code extension to provide rich features to the IDE, we
argue that more security measures could be taken to prevent
code execution attacks. Sanitizers could be implemented by VS
Code extension developers to filter out malformed data from
untrusted sources, string checking could also be put in place
for strings passed to shell commands or eval(). While the
VS Code marketplace implements a check on extension source
code when it is uploaded to the marketplace, it is unclear how
the checks are implemented and the effectiveness of it. VS
Code extensions could also be obfuscated, adding complexity
to code reviews. The Chrome extension web store, for example,
does not allow obfuscated code [36].

We encountered some interesting findings while going
through the taint analysis results. While these are not neces-
sarily exploitable code injection vulnerabilities in VS Code
extensions, we hope it provides insight on practices that
should or should not be adopted when developing VS Code
extensions.

Heroku URLs: Through our CodeQL query that identifies
data flows from network responses, we identified 5 extensions
that made outgoing requests to Heroku URLs and performed
actions on the responses. Heroku [13], is a platform as a
service that allows developers to build applications. It provides
a subdomain under ”herokuapp.com” where developers can
host their applications, which is registered upon the creation
of the app. No two applications can be registered under the
same subdomain; however, subdomains of deleted applications
can be used in future apps. Four of the five extensions we
identified with Heroku URLs made requests to deleted Heroku
applications. As deleted Heroku applications release Heroku
subdomains, an adversary could take advantage of these and
register new apps under the same subdomain and distribute
malformed payload to extension users. For example, one of the
extensions we identified, EasyAPI9, makes network requests to

9https://marketplace.visualstudio.com/items?itemNa-
me=webStarter.easyapi

”https://flask-apillist.herokuapp.com”. Visiting the URL shows
that no Heroku application exists there, allowing anyone to reg-
ister a new application under ”flask-apillist.herokuapp.com”.

Similar Code: We observed multiple cases of highly similar
code in separate VS Code extensions. We identified a flow
from a network response to a file write in the extension,
vscode-element-helper10. After going through similar flows
from other extensions, we identified nine other VS Code
extensions with similar code. We ran the files from the ten
extensions through the Moss system [31] for code similarity
detection. Moss selected pairs from the ten extensions, compar-
ing each pair of directories and returned the number of lines
matched between the compared files and the percentage of
matched lines within each directory. There were a total of ten
extensions, therefore 45 comparisons. Out of the 45, 28 of the
comparisons returned a percentage of at least 90% of matched
lines in at least one of the directories. All comparisons had
at least one directory where 40% of the lines were matched.
While we were not able to verify whether the detected flows
are exploitable vulnerabilities, the similarity of code in differ-
ent extensions sheds light on how code clones [17] could allow
vulnerabilities to propagate through the VS Code marketplace
ecosystem.

Limitations: CodeQL queries code databases by searching
for specific patterns to identify certain expressions in code.
There may be edge cases or unconventional ways of coding
where our CodeQL query tool will not be able to detect our
defined data flows. Furthermore, our tool focused on the data
flows within the VS Code extension, excluding dependency
source code, as our study is on VS Code extensions rather than
npm packages. However, there could exist vulnerabilities in the
dependencies that affect the users of VS Code. Additionally,
static analysis could include false positives, we attempted to
eliminate them through the filters we applied and verifying
exploits. Verifying proof-of-concepts for the vulnerabilities
required extensive manual investigation, hence we sampled the
extensions identified by our tool to verify PoCs for exploits.

Responsible Disclosure: We have notified all developers of
the extensions where we verified PoC exploits. Six developers
responded confirming vulnerabilities, with three developers
fixing the vulnerability and releasing new versions for the
extension. We have also notified the GitHub Security Team
and Visual Studio Code team at Microsoft of our results.

10https://marketplace.visualstudio.com/items?itemN-
ame=ElemeFE.vscode-element-helper

13

VIII. RELATED WORK

NPM dependencies and Node.js: Much work has been done
on dependencies in package managers and the npm ecosystem
overall [3], [6], [18], [21], [25], [41]. Cox et al. [6] proposed
metrics to measure the dependency freshness in software and
found that software with outdated dependencies are more likely
to encounter security issues. Prior work has shown that the
large number of maintainers and contributors provides a large
attack surface [43], [44]. Further, the number of dependents
and dependencies for a package increases the effect a malicious
package can cause. Studies have shown that while packages
have few direct dependencies, they have a much higher num-
ber for transitive dependencies [8]. Popular packages have a
large influence over the ecosystem, some having more than
a hundred thousand packages as dependents. It is estimated
that up to 40% of the packages are reliant on packages with
known vulnerabilities [44]. Ohm et al. [24] has shown that a
malicious package is available for 209 days on average before
being reported. Decan et al. [7] find that it takes more than
two years to find 50% of the vulnerabilities. They find that
more than 50% of packages are affected by vulnerabilities in
its dependencies.

With the large amount of dependencies in the Node.js
ecosystem, Abdalkareem et al. [1] analyzed the use of trivial
packages in npm. Their results show that 16.8% of npm
packages are trivial packages, and 10.9% of node applications
depend on them. The leftpad incident shows how large an
effect a trivial package with eleven lines of code has on the
ecosystem [5]. As more attention is directed toward vulnerabil-
ities in npm, various systems have been proposed to mitigate
the vulnerabilities from npm packages. Ferreira et al. [10]
proposed a permission system to limit and contain permissions
used by packages. Nielsen et al. [23] presented Nodest, while
Staicu et al. [35] proposed Synode, both static analysis tools
to detect vulnerabilities for injection attacks. Koishybayev and
Kapravelos [19] presented a static analysis tool, Mininode, to
remove unused code in Node.js applications.

Vulnerabilities in open source software: Being a free reg-
istry, npm faces the same threats open-source software faces.
There have been efforts in prior work to address these threats.
Hoepman and Jacobs [14] argue that open source is more
secure than closed source as it allows more developers to
review code and contribute to software. While others argue
that is not the case, since not all developers are experienced
with vulnerabilities and may not have the intention of find-
ing them [22], [28], [32], [37]. The onion model proposed
by Aberdour [2] shows the characteristics for a sustainable
software development community. Jarczyk et al. [15] proposed
two metrics for measuring the quality of open source projects.
Their study also found that the number of repositories a
developer has correlates negatively with the number of bugs
fixed.

IX. CONCLUSION

Developers commonly install extensions for added func-
tionality. However, vulnerabilities in IDE extensions are an
attractive target for adversaries who are increasingly targeting
the software supply chain. In this paper, we studied the security
of extensions in the VS Code marketplace. We defined a threat

model for extensions and a collection of CodeQL taint analysis
rules to detect vulnerabilities specific to VS Code extensions.
We then performed an ecosystem-wide vulnerability study,
showing that while vulnerabilities are not pervasive, they are
significant and impact millions of users. We hope that our
results will raise awareness of vulnerabilities in extensions and
motivate greater measures to restrict access given to extensions
in VS Code.

ACKNOWLEDGMENT

This work is supported in part by NSF grants CNS-
2207008 and CNS-2247686, and by the Office of Naval
Research (ONR) under grant N00014-21-1-2159. Any findings
and opinions expressed in this material are those of the
authors and do not necessarily reflect the views of the funding
agencies.

REFERENCES

[1] R. Abdalkareem, O. Nourry, S. Wehaibi, S. Mujahid, and E. Shihab,
“Why do developers use trivial packages? an empirical case study on
npm,” in Proceedings of the 2017 11th joint meeting on foundations of
software engineering, 2017, pp. 385–395.

[2] M. Aberdour, “Achieving quality in open-source software,” IEEE Soft-
ware, vol. 24, no. 1, pp. 58–64, 2007.

[3] C. Bogart, C. Kästner, J. Herbsleb, and F. Thung, “How to break an api:
cost negotiation and community values in three software ecosystems,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 2016, pp. 109–120.

[4] “Codeql.” [Online]. Available: https://codeql.github.com/
[5] K. Collins, “How one programmer broke the internet by deleting a tiny

piece of code,” https://qz.com/646467/how-one-programmer-broke-the-
internet-by-deleting-a-tiny-piece-of-code. [Online]. Available: https:
//qz.com/646467/how-one-programmer-broke-the-internet-by-deletin
g-a-tiny-piece-of-code/

[6] J. Cox, E. Bouwers, M. van Eekelen, and J. Visser, “Measuring
dependency freshness in software systems,” in 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering, vol. 2, 2015,
pp. 109–118.

[7] A. Decan, T. Mens, and E. Constantinou, “On the impact of security vul-
nerabilities in the npm package dependency network,” in Proceedings
of the 15th international conference on mining software repositories,
2018, pp. 181–191.

[8] A. Decan, T. Mens, and P. Grosjean, “An empirical comparison of de-
pendency network evolution in seven software packaging ecosystems,”
Empirical Software Engineering, vol. 24, no. 1, pp. 381–416, 2019.

[9] “Extension Anatomy.” [Online]. Available: https://code.visualstudio.co
m/api/get-started/extension-anatomy/#extension-manifest

[10] G. Ferreira, L. Jia, J. Sunshine, and C. Kästner, “Containing malicious
package updates in npm with a lightweight permission system,” in 2021
IEEE/ACM 43rd International Conference on Software Engineering
(ICSE), 2021, pp. 1334–1346.

[11] I. Goldman and Y. Kadkoda, “Can you trust your vscode extensions?”
Mar 2023. [Online]. Available: https://blog.aquasec.com/can-you-trust
-your-vscode-extensions

[12] D. Goodin, “Apple scrambles after 40 malicious “XcodeGhost” apps
haunt App Store,” Ars Technica, Sep. 2015. [Online]. Available:
https://arstechnica.com/information-technology/2015/09/apple-scrambl
es-after-40-malicious-xcodeghost-apps-haunt-app-store/

[13] “Heroku.” [Online]. Available: https://www.heroku.com/platform
[14] J.-H. Hoepman and B. Jacobs, “Increased security through open source,”

Communications of the ACM, vol. 50, no. 1, pp. 79–83, 2007.
[15] O. Jarczyk, B. Gruszka, S. Jaroszewicz, L. Bukowski, and

A. Wierzbicki, “Github projects. quality analysis of open-source soft-
ware,” in International Conference on Social Informatics. Springer,
2014, pp. 80–94.

14

https://codeql.github.com/
https://qz.com/646467/how-one-programmer-broke-the-internet-by-deleting-a-tiny-piece-of-code/
https://qz.com/646467/how-one-programmer-broke-the-internet-by-deleting-a-tiny-piece-of-code/
https://qz.com/646467/how-one-programmer-broke-the-internet-by-deleting-a-tiny-piece-of-code/
https://code.visualstudio.com/api/get-started/extension-anatomy/#extension-manifest
https://code.visualstudio.com/api/get-started/extension-anatomy/#extension-manifest
https://blog.aquasec.com/can-you-trust-your-vscode-extensions
https://blog.aquasec.com/can-you-trust-your-vscode-extensions
https://arstechnica.com/information-technology/2015/09/apple-scrambles-after-40-malicious-xcodeghost-apps-haunt-app-store/
https://arstechnica.com/information-technology/2015/09/apple-scrambles-after-40-malicious-xcodeghost-apps-haunt-app-store/
https://www.heroku.com/platform

[16] Z. Jin, S. Chen, Y. Chen, H. Duan, J. Chen, and J. Wu, “A security
study about electron applications and a programming methodology to
tame dom functionalities.”

[17] T. Kamiya, S. Kusumoto, and K. Inoue, “Ccfinder: A multilinguistic
token-based code clone detection system for large scale source code,”
IEEE transactions on software engineering, vol. 28, no. 7, pp. 654–670,
2002.

[18] R. Kikas, G. Gousios, M. Dumas, and D. Pfahl, “Structure and evolution
of package dependency networks,” in 2017 IEEE/ACM 14th Interna-
tional Conference on Mining Software Repositories (MSR). IEEE,
2017, pp. 102–112.

[19] I. Koishybayev and A. Kapravelos, “Mininode: Reducing the attack
surface of node.js applications,” in 23rd International Symposium on
Research in Attacks, Intrusions and Defenses (RAID 2020), 2020, pp.
121–134.

[20] Krebs On Security, “3CX Breach Was a Double Supply Chain
Compromise,” Apr. 2023. [Online]. Available: https://krebsonsecurity.
com/2023/04/3cx-breach-was-a-double-supply-chain-compromise/

[21] R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue, “Do
developers update their library dependencies?” Empirical Software
Engineering, vol. 23, no. 1, pp. 384–417, 2018.

[22] E. Levy, “Wide open source; is open source really more secure than
closed,” Elias Levy says there’s a little security in obscurity. Security-
Focus, 2000.

[23] B. B. Nielsen, B. Hassanshahi, and F. Gauthier, “Nodest: feedback-
driven static analysis of node.js applications,” in Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering,
2019, pp. 455–465.

[24] M. Ohm, H. Plate, A. Sykosch, and M. Meier, “Backstabber’s knife
collection: A review of open source software supply chain attacks,” in
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, 2020, pp. 23–43.

[25] A. Ojamaa and K. Düüna, “Assessing the security of node.js platform,”
in 2012 International Conference for Internet Technology and Secured
Transactions. IEEE, 2012, pp. 348–355.

[26] R. Onitza-Klugman and K. Efimov, “Deep dive into visual studio
code extension security vulnerabilities,” Nov 2021. [Online]. Available:
https://snyk.io/blog/visual-studio-code-extension-security-vulnerabiliti
es-deep-dive/

[27] “Open source insights.” [Online]. Available: https://deps.dev/

[28] C. Payne, “On the security of open source software,” Information
systems journal, vol. 12, no. 1, pp. 61–78, 2002.

[29] K. Peguero and X. Cheng, “Electrolint and security of electron appli-
cations,” High-Confidence Computing, vol. 1, no. 2, p. 100032, 2021.

[30] “Redis.” [Online]. Available: https://redis.io/

[31] S. Schleimer, D. S. Wilkerson, and A. Aiken, “Winnowing: local
algorithms for document fingerprinting,” in Proceedings of the 2003
ACM SIGMOD international conference on Management of data, 2003,
pp. 76–85.

[32] G. Schryen, “Is open source security a myth?” Communications of the
ACM, vol. 54, no. 5, pp. 130–140, 2011.

[33] “Setup Visual Studio Code’s Network Connection.” [Online]. Available:
https://code.visualstudio.com/docs/setup/network

[34] “Stack overflow developer survey 2022.” [Online]. Available: https:
//survey.stackoverflow.co/2022/

[35] C.-A. Staicu, M. Pradel, and B. Livshits, “Synode: Understanding and
automatically preventing injection attacks on node. js.” in NDSS, 2018.

[36] “Trustworthy chrome extensions, by default,” Oct 2018. [Online].
Available: https://blog.chromium.org/2018/10/trustworthy-chrome-ext
ensions-by-default.html

[37] J. Viega, “The myth of open source security,” 2001.

[38] “Visual studio code - remote code execution in restricted mode
(cve-2021-43908),” Jun 2022. [Online]. Available: https://blog.electro
volt.io/posts/vscode-rce/

[39] “Visual Studio Marketplace.” [Online]. Available: https://marketplace.
visualstudio.com/vscode

[40] “What is BullMQ - BullMQ.” [Online]. Available: https://docs.bullmq.
io/

[41] E. Wittern, P. Suter, and S. Rajagopalan, “A look at the dynamics of the
javascript package ecosystem,” in Proceedings of the 13th International
Conference on Mining Software Repositories, 2016, pp. 351–361.

[42] “Workspace Trust Extension Guide.” [Online]. Available: https:
//code.visualstudio.com/api/extension-guides/workspace-trust

[43] N. Zahan, T. Zimmermann, P. Godefroid, B. Murphy, C. Maddila, and
L. Williams, “What are weak links in the npm supply chain?” in 2022
IEEE/ACM 44th International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP). IEEE, 2022, pp. 331–
340.

[44] M. Zimmermann, C.-A. Staicu, C. Tenny, and M. Pradel, “Small world
with high risks: A study of security threats in the npm ecosystem,”
in 28th USENIX Security Symposium (USENIX Security 19), 2019, pp.
995–1010.

APPENDIX

A. Description & Requirements

The dataset for our study consisted of more than 25K
packages. We constructed CodeQL queries to run on these
packages to conduct data flow analysis. It is not feasible
to include all packages as they take up a lot of storage.
Therefore, our goal is to publish the queries we used and
show its executability. We will provide some packages and
the experiments to run on them to acquire a small amount of
our results.

1) How to access: https://doi.org/10.5281/zenodo.10146
469

2) Hardware dependencies: None.

3) Software dependencies: None.

4) Benchmarks: We provided five sample packages to per-
form experiments on. The folders in sample-data are CodeQL
databases built from the VS Code extension source code. These
databases are what we will execute the queries on.

B. Artifact Installation & Configuration

Have the VS Code IDE and the VS Code CodeQL exten-
sion installed. Additional information on installing VS Code
and the VS Code CodeQL extension can be found in the Re-
quirements section in the readme.md in the GitHub repository
or in VS Code and CodeQL documentation. Download the
repository at the GitHub link. Opening the repository in the
VS Code IDE will set up the required CodeQL environment
and allow you to run the queries in your VS Code workspace.

C. Experiment Workflow

1) Prepare the databases for the experiments: Sample Cod-
eQL databases are provided in the repository in the directory
sample-data. If you wish to build other CodeQL databases
to run experiments on, use the CodeQL CLI and run the
codeql database create command.

2) Running the experiments (queries):

1) Open the GitHub repository (section A1) in VS Code.
2) Load and select the CodeQL database in the sample-

data directory into the workspace using the CodeQL
VS Code extension. Figure 6 shows the interface to
load databases in VS Code.

15

https://krebsonsecurity.com/2023/04/3cx-breach-was-a-double-supply-chain-compromise/
https://krebsonsecurity.com/2023/04/3cx-breach-was-a-double-supply-chain-compromise/
https://snyk.io/blog/visual-studio-code-extension-security-vulnerabilities-deep-dive/
https://snyk.io/blog/visual-studio-code-extension-security-vulnerabilities-deep-dive/
https://deps.dev/
https://redis.io/
https://code.visualstudio.com/docs/setup/network
https://survey.stackoverflow.co/2022/
https://survey.stackoverflow.co/2022/
https://blog.chromium.org/2018/10/trustworthy-chrome-extensions-by-default.html
https://blog.chromium.org/2018/10/trustworthy-chrome-extensions-by-default.html
https://blog.electrovolt.io/posts/vscode-rce/
https://blog.electrovolt.io/posts/vscode-rce/
https://marketplace.visualstudio.com/vscode
https://marketplace.visualstudio.com/vscode
https://docs.bullmq.io/
https://docs.bullmq.io/
https://code.visualstudio.com/api/extension-guides/workspace-trust
https://code.visualstudio.com/api/extension-guides/workspace-trust
https://doi.org/10.5281/zenodo.10146469
https://doi.org/10.5281/zenodo.10146469

Fig. 6. Interface in VS Code CodeQL extension to load database.

Fig. 7. Selecting database in CodeQL extension.

3) Select database, as shown in figure 7, a checkmark
indicates database is selected.

4) Right-click on the query you wish to execute and
select CodeQL: Run Query on Selected Data-
base to execute the query, as shown in figure 8.
Results of the query will display in the VS Code
workspace.

D. Major Claims

Our study shows that we found a number of data flows
from our defined sources and sinks, as shown in table VII.
To reproduce these numbers, queries would have to be run on
more than 25K VS Code extension databases. Thus we provide
smaller scale experiments in Section E.

E. Evaluation

The directory sample-data in the repository contains pre-
built CodeQL databases that can be used for evaluating the
CodeQL queries. Our goal is to demonstrate that our queries
are executable and can identify data flows within the packages.
As the entire pipeline of running all queries on all 25K

Fig. 8. Menu displayed when right-clicking on query file. Includes option
to run query on CodeQL databases.

TABLE VII. NUMBER OF DATA FLOWS FOUND USING CODEQL
QUERIES.

Source Sink Data Flows

workspace setting shell 389
eval 12

file write 24

file read shell 75
eval 34

file write 150

network response shell 0
eval 1

file write 25

web server shell 3
eval 0

file write 3

packages requires a lot of storage for the packages and setting
up an automation framework, we do not expect the entirety of
our results to be replicable. We show that these queries can
be used to evaluate VS Code extensions and showcase a small
part of the results. These experiments can also be run on other
databases but would yield different results.

1) Experiment (E1): [5 human-minutes]: This experiment’s
goal is to show our queries can find our defined sources
and sinks in the packages. We will run our queries that
identify these sources and sinks on one of the sample databases
provided.

[How to] Prepare the database, then execute the query on
the database to acquire results.

[Preparation] Load and select the sample-
data/fredericbonnet.cmake-test-adapter-0.16.3 database
into the VS Code Workspace using the CodeQL extension as
detailed in Section C2.

[Execution] A right-click on the folder with the query files
will show a menu including the option to run the query, as
shown in figure 8. Run all the queries in the subdirectory
queries-source-and-sink on the database by selecting CodeQL-
: Run Queries in Selected Files from the menu. The
order of query execution does not matter in this experiment.

[Results] The results from the query workspace-setting-
api.ql will display in the VS Code workspace and should have
identified 4 instances of this source in the database. The shell.ql
query should have identified 2 instances of this source. The
file-read.ql query should have identified 1 file read source.

2) Experiment (E2): [5 human-minutes]: This experiment’s
goal is to find a data flow from web server API to a file write.
We will run our query for this specific data flow on one of the
sample databases provided.

[How to] Prepare database and execute the query on it to
acquire results.

[Preparation] As detailed in Section C2, load and select the
sample-data/usqlextpublisher.usql-vscode-ext-0.2.15 database.

[Execution] A menu including the option to run the
query will be available when right-clicking on the query file
queries/dataflow/webServer-to-fileWrite.ql. Run the query on
the database by selecting CodeQL: Run Queries in Sel-
ected Files from the menu.

16

[Results] The results from the query will display in the
VS Code workspace and should have identified 62 instances
of this dataflow in the database.

3) Experiment (E3): [5 human-minutes]: This experiment’s
goal is to find a data flow from file read to a shell command.
We will run our query for this specific data flow on one of the
sample databases provided.

[How to] Prepare the database, then execute the query on
the database to acquire results.

[Preparation] Load and select the sample-
data/fredericbonnet.cmake-test-adapter-0.16.3 database
into the VS Code Workspace using the CodeQL extension, as
detailed in Section C2.

[Execution] Run the query queries/dataflow/fileRead-to-
shell.ql on the database by right-clicking on the query file
and selecting CodeQL: Run Queries in Selected Fil-
es from the menu.

[Results] The results from the query will display in the
VS Code workspace and should have identified 12 instances
of this dataflow in the database.

4) Experiment (E4): [5 human-minutes]: This experiment’s
goal is to find a data flow from network response to a file write.
We will run our query for this specific data flow on one of the
sample databases provided.

[How to] Prepare the database, then execute the query on
the database to acquire results.

[Preparation] Load and select the sample-
data/iann0036.live-share-for-aws-cloud9-0.11.4 database
into the VS Code Workspace using the CodeQL extension, as
detailed in Section C2.

[Execution] Run the query queries/dataflow/network-to-
fileWrite.ql on the database by right-clicking on the query file
and selecting CodeQL: Run Queries in Selected Fil-
es from the menu.

[Results] The results from the query will display in the VS
Code workspace and should have identified 2 instances of this
dataflow in the database.

17

	Introduction
	Background and Motivation
	Threat Model
	Analysis
	Taint Sources
	Workspace Settings
	Files
	Network responses
	Local web servers

	Sinks
	Shell Commands
	Evaluate string as code
	File Write

	Implementation

	VS Code Extension Dataset
	Dataset Collection
	Dataset Characterization
	Access to system resources through Node.js

	Vulnerability Results
	VS Code workspace settings
	Sink 1 - Shell Command
	Sink 2 - Eval()
	Sink 3 - File Write

	Files
	Sink 1 - Shell Command
	Sink 2 - Eval()
	Sink 3 - File Write

	Network Response
	Sink 1 - Shell Command
	Sink 2 - Eval()
	Sink 3 - File Write

	Web Server
	Sink 1 - Shell Command
	Sink 2 - Eval()
	Sink 3 - File Write

	Discussion
	Related Work
	Conclusion
	References
	Appendix
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Artifact Installation & Configuration
	Experiment Workflow
	Prepare the databases for the experiments
	Running the experiments (queries)

	Major Claims
	Evaluation
	Experiment (E1)
	Experiment (E2)
	Experiment (E3)
	Experiment (E4)

