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• 𝑛 𝑀  as bandwidth usage of broadcast

• Computation cost of broadcast is free
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Figure 5: Per party median bandwidth usage (in Megabytes), mea-
sured as the amount of data sent by a party in the entire protocol.
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Figure 6: Median runtime (in seconds), i.e., the time between the start
of the protocol and the time parties output the q-SDH parameters.

64 parties and q = 216, our protocol takes approximately
1037 seconds, whereas the baseline protocol takes 3580 sec-
onds (3.4⇥ faster). Similarly, with 128 parties and q = 218,
our protocol takes approximately 4721 seconds compared to
28883 seconds (not shown in the figure) taken by the baseline
protocol, hence 6.1⇥ faster than the baseline protocol. Note
that, for the baseline, we only measure the runtime without any
networking component. Thus, if we also include the runtime
of the synchronous broadcast, the benefits of our protocol will
be even more significant.

In Table IV, we break down the runtime of different phases
in our protocol for different choices of n and q. In Table IV, the
setup includes the runtime of both ADKG and random double-
sharing protocol. We merge them as our implementation runs
these phases such that they share some building blocks. More-
over, both ADKG and the random double-sharing phase use the
same invocation of the consensus protocol. Based on Table IV,
we conclude the following.

First, the powers-of-two phase takes less than 2% of the
runtime in all experiments. Recall from Table III, during the
powers-of-two phase, each party performs O(n log q) group
multiplications and sends O(n log q) group elements. This is
significantly smaller than the computation cost and bandwidth
usage of setup and all powers phase. However, the powers-
of-two phase requires O(log q) rounds of interaction, which is
comparable to the setup and all powers phases. This illustrates
that the number of communication rounds is not a bottleneck.

Second, for smaller n, the runtime of the all-powers phase
contributes to almost all of the runtime of our protocol, espe-
cially for large q. This is as expected because each party needs
to perform O(n2 log q) and O(q log n) group multiplications
during the setup phase and all powers phase, respectively. For
larger q and smaller n, the latter is significantly larger than
the former. However, with increasing n, as with the case of
n = 124, q = 214, the computation cost of the setup phase
also becomes significant. Finally, as expected, for n = 128,
with larger q = 218, the runtime of the all powers phase again
starts to dominate the total runtime.

Bandwidth usage. We report the per-party bandwidth usage,
i.e., the amount of data (in Megabytes) each party sends during

Table V: Bandwidth usage of different phases of our protocol (in
% of total bandwidth usages). The setup phase corresponds to the
combined bandwidth usages of both ADKG and the random double-
sharing phase. The tuple represents (n, q).

Protocol Phase (16, 214) (16, 218) (128, 214) (128, 218)

Setup 34.4 4.1 95.2 68.8
Powers-of-two 2.2 0.3 0.9 0.7
All powers 63.4 95.6 3.9 30.5

the entire protocol, in Figure 5. The solid and dashed lines
represent the per-party bandwidth usage of our protocol and
baseline, respectively. Consistent with the analysis from §VI,
the bandwidth usage in our protocol increases quadratically
with the number of parties and linear in the q. We also report
the breakdown of bandwidth usage across different phases of
our protocol in Table V.

Our evaluation illustrates that parties in our protocol incur
significantly less bandwidth usage than the baseline. For ex-
ample, with 32 parties and q = 216, each party needs to send
13.57 Megabytes (MB) of data in our protocol, compared to 96
MB of data in the baseline protocol (7⇥ reduction). Similarly,
with 128 parties and q = 218, the bandwidth usage in our
protocol is 118.17 MB, compared to 1536 MB in the baseline
protocol; hence, 13⇥ less bandwidth usage than the baseline.
Again, for the baseline, we only measure the bandwidth usage
as nq bytes, where  = 48 is the size of each G1 element, and
do not account for any bandwidth usage for the synchronous
broadcast protocol. If we also include the bandwidth usage
due to the synchronous broadcast channel, the benefits of our
protocol will be even bigger.

Similar to the breakdown of runtime across different
phases, in Table IV, we illustrate the breakdown of bandwidth
usage across different phases of our protocol for different
choices of n and q. Again, in Table V, the setup includes
the runtime of both ADKG and the random double-sharing
protocol. From Table V, we draw a few conclusions.

First, for the same reason as the runtime, the bandwidth
usage of the powers-of-two phase takes less than 3% of the
total bandwidth usage in all experiments.

Second, unlike runtime, the bandwidth usage in the setup

12
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64 parties and q = 216, our protocol takes approximately
1037 seconds, whereas the baseline protocol takes 3580 sec-
onds (3.4⇥ faster). Similarly, with 128 parties and q = 218,
our protocol takes approximately 4721 seconds compared to
28883 seconds (not shown in the figure) taken by the baseline
protocol, hence 6.1⇥ faster than the baseline protocol. Note
that, for the baseline, we only measure the runtime without any
networking component. Thus, if we also include the runtime
of the synchronous broadcast, the benefits of our protocol will
be even more significant.

In Table IV, we break down the runtime of different phases
in our protocol for different choices of n and q. In Table IV, the
setup includes the runtime of both ADKG and random double-
sharing protocol. We merge them as our implementation runs
these phases such that they share some building blocks. More-
over, both ADKG and the random double-sharing phase use the
same invocation of the consensus protocol. Based on Table IV,
we conclude the following.

First, the powers-of-two phase takes less than 2% of the
runtime in all experiments. Recall from Table III, during the
powers-of-two phase, each party performs O(n log q) group
multiplications and sends O(n log q) group elements. This is
significantly smaller than the computation cost and bandwidth
usage of setup and all powers phase. However, the powers-
of-two phase requires O(log q) rounds of interaction, which is
comparable to the setup and all powers phases. This illustrates
that the number of communication rounds is not a bottleneck.

Second, for smaller n, the runtime of the all-powers phase
contributes to almost all of the runtime of our protocol, espe-
cially for large q. This is as expected because each party needs
to perform O(n2 log q) and O(q log n) group multiplications
during the setup phase and all powers phase, respectively. For
larger q and smaller n, the latter is significantly larger than
the former. However, with increasing n, as with the case of
n = 124, q = 214, the computation cost of the setup phase
also becomes significant. Finally, as expected, for n = 128,
with larger q = 218, the runtime of the all powers phase again
starts to dominate the total runtime.

Bandwidth usage. We report the per-party bandwidth usage,
i.e., the amount of data (in Megabytes) each party sends during
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represent the per-party bandwidth usage of our protocol and
baseline, respectively. Consistent with the analysis from §VI,
the bandwidth usage in our protocol increases quadratically
with the number of parties and linear in the q. We also report
the breakdown of bandwidth usage across different phases of
our protocol in Table V.

Our evaluation illustrates that parties in our protocol incur
significantly less bandwidth usage than the baseline. For ex-
ample, with 32 parties and q = 216, each party needs to send
13.57 Megabytes (MB) of data in our protocol, compared to 96
MB of data in the baseline protocol (7⇥ reduction). Similarly,
with 128 parties and q = 218, the bandwidth usage in our
protocol is 118.17 MB, compared to 1536 MB in the baseline
protocol; hence, 13⇥ less bandwidth usage than the baseline.
Again, for the baseline, we only measure the bandwidth usage
as nq bytes, where  = 48 is the size of each G1 element, and
do not account for any bandwidth usage for the synchronous
broadcast protocol. If we also include the bandwidth usage
due to the synchronous broadcast channel, the benefits of our
protocol will be even bigger.

Similar to the breakdown of runtime across different
phases, in Table IV, we illustrate the breakdown of bandwidth
usage across different phases of our protocol for different
choices of n and q. Again, in Table V, the setup includes
the runtime of both ADKG and the random double-sharing
protocol. From Table V, we draw a few conclusions.

First, for the same reason as the runtime, the bandwidth
usage of the powers-of-two phase takes less than 3% of the
total bandwidth usage in all experiments.
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64 parties and q = 216, our protocol takes approximately
1037 seconds, whereas the baseline protocol takes 3580 sec-
onds (3.4⇥ faster). Similarly, with 128 parties and q = 218,
our protocol takes approximately 4721 seconds compared to
28883 seconds (not shown in the figure) taken by the baseline
protocol, hence 6.1⇥ faster than the baseline protocol. Note
that, for the baseline, we only measure the runtime without any
networking component. Thus, if we also include the runtime
of the synchronous broadcast, the benefits of our protocol will
be even more significant.

In Table IV, we break down the runtime of different phases
in our protocol for different choices of n and q. In Table IV, the
setup includes the runtime of both ADKG and random double-
sharing protocol. We merge them as our implementation runs
these phases such that they share some building blocks. More-
over, both ADKG and the random double-sharing phase use the
same invocation of the consensus protocol. Based on Table IV,
we conclude the following.

First, the powers-of-two phase takes less than 2% of the
runtime in all experiments. Recall from Table III, during the
powers-of-two phase, each party performs O(n log q) group
multiplications and sends O(n log q) group elements. This is
significantly smaller than the computation cost and bandwidth
usage of setup and all powers phase. However, the powers-
of-two phase requires O(log q) rounds of interaction, which is
comparable to the setup and all powers phases. This illustrates
that the number of communication rounds is not a bottleneck.

Second, for smaller n, the runtime of the all-powers phase
contributes to almost all of the runtime of our protocol, espe-
cially for large q. This is as expected because each party needs
to perform O(n2 log q) and O(q log n) group multiplications
during the setup phase and all powers phase, respectively. For
larger q and smaller n, the latter is significantly larger than
the former. However, with increasing n, as with the case of
n = 124, q = 214, the computation cost of the setup phase
also becomes significant. Finally, as expected, for n = 128,
with larger q = 218, the runtime of the all powers phase again
starts to dominate the total runtime.
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baseline, respectively. Consistent with the analysis from §VI,
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Our evaluation illustrates that parties in our protocol incur
significantly less bandwidth usage than the baseline. For ex-
ample, with 32 parties and q = 216, each party needs to send
13.57 Megabytes (MB) of data in our protocol, compared to 96
MB of data in the baseline protocol (7⇥ reduction). Similarly,
with 128 parties and q = 218, the bandwidth usage in our
protocol is 118.17 MB, compared to 1536 MB in the baseline
protocol; hence, 13⇥ less bandwidth usage than the baseline.
Again, for the baseline, we only measure the bandwidth usage
as nq bytes, where  = 48 is the size of each G1 element, and
do not account for any bandwidth usage for the synchronous
broadcast protocol. If we also include the bandwidth usage
due to the synchronous broadcast channel, the benefits of our
protocol will be even bigger.
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Figure 6: Median runtime (in seconds), i.e., the time between the start
of the protocol and the time parties output the q-SDH parameters.

64 parties and q = 216, our protocol takes approximately
1037 seconds, whereas the baseline protocol takes 3580 sec-
onds (3.4⇥ faster). Similarly, with 128 parties and q = 218,
our protocol takes approximately 4721 seconds compared to
28883 seconds (not shown in the figure) taken by the baseline
protocol, hence 6.1⇥ faster than the baseline protocol. Note
that, for the baseline, we only measure the runtime without any
networking component. Thus, if we also include the runtime
of the synchronous broadcast, the benefits of our protocol will
be even more significant.

In Table IV, we break down the runtime of different phases
in our protocol for different choices of n and q. In Table IV, the
setup includes the runtime of both ADKG and random double-
sharing protocol. We merge them as our implementation runs
these phases such that they share some building blocks. More-
over, both ADKG and the random double-sharing phase use the
same invocation of the consensus protocol. Based on Table IV,
we conclude the following.

First, the powers-of-two phase takes less than 2% of the
runtime in all experiments. Recall from Table III, during the
powers-of-two phase, each party performs O(n log q) group
multiplications and sends O(n log q) group elements. This is
significantly smaller than the computation cost and bandwidth
usage of setup and all powers phase. However, the powers-
of-two phase requires O(log q) rounds of interaction, which is
comparable to the setup and all powers phases. This illustrates
that the number of communication rounds is not a bottleneck.

Second, for smaller n, the runtime of the all-powers phase
contributes to almost all of the runtime of our protocol, espe-
cially for large q. This is as expected because each party needs
to perform O(n2 log q) and O(q log n) group multiplications
during the setup phase and all powers phase, respectively. For
larger q and smaller n, the latter is significantly larger than
the former. However, with increasing n, as with the case of
n = 124, q = 214, the computation cost of the setup phase
also becomes significant. Finally, as expected, for n = 128,
with larger q = 218, the runtime of the all powers phase again
starts to dominate the total runtime.

Bandwidth usage. We report the per-party bandwidth usage,
i.e., the amount of data (in Megabytes) each party sends during

Table V: Bandwidth usage of different phases of our protocol (in
% of total bandwidth usages). The setup phase corresponds to the
combined bandwidth usages of both ADKG and the random double-
sharing phase. The tuple represents (n, q).

Protocol Phase (16, 214) (16, 218) (128, 214) (128, 218)

Setup 34.4 4.1 95.2 68.8
Powers-of-two 2.2 0.3 0.9 0.7
All powers 63.4 95.6 3.9 30.5

the entire protocol, in Figure 5. The solid and dashed lines
represent the per-party bandwidth usage of our protocol and
baseline, respectively. Consistent with the analysis from §VI,
the bandwidth usage in our protocol increases quadratically
with the number of parties and linear in the q. We also report
the breakdown of bandwidth usage across different phases of
our protocol in Table V.

Our evaluation illustrates that parties in our protocol incur
significantly less bandwidth usage than the baseline. For ex-
ample, with 32 parties and q = 216, each party needs to send
13.57 Megabytes (MB) of data in our protocol, compared to 96
MB of data in the baseline protocol (7⇥ reduction). Similarly,
with 128 parties and q = 218, the bandwidth usage in our
protocol is 118.17 MB, compared to 1536 MB in the baseline
protocol; hence, 13⇥ less bandwidth usage than the baseline.
Again, for the baseline, we only measure the bandwidth usage
as nq bytes, where  = 48 is the size of each G1 element, and
do not account for any bandwidth usage for the synchronous
broadcast protocol. If we also include the bandwidth usage
due to the synchronous broadcast channel, the benefits of our
protocol will be even bigger.

Similar to the breakdown of runtime across different
phases, in Table IV, we illustrate the breakdown of bandwidth
usage across different phases of our protocol for different
choices of n and q. Again, in Table V, the setup includes
the runtime of both ADKG and the random double-sharing
protocol. From Table V, we draw a few conclusions.

First, for the same reason as the runtime, the bandwidth
usage of the powers-of-two phase takes less than 3% of the
total bandwidth usage in all experiments.

Second, unlike runtime, the bandwidth usage in the setup
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Figure 6: Median runtime (in seconds), i.e., the time between the start
of the protocol and the time parties output the q-SDH parameters.

64 parties and q = 216, our protocol takes approximately
1037 seconds, whereas the baseline protocol takes 3580 sec-
onds (3.4⇥ faster). Similarly, with 128 parties and q = 218,
our protocol takes approximately 4721 seconds compared to
28883 seconds (not shown in the figure) taken by the baseline
protocol, hence 6.1⇥ faster than the baseline protocol. Note
that, for the baseline, we only measure the runtime without any
networking component. Thus, if we also include the runtime
of the synchronous broadcast, the benefits of our protocol will
be even more significant.

In Table IV, we break down the runtime of different phases
in our protocol for different choices of n and q. In Table IV, the
setup includes the runtime of both ADKG and random double-
sharing protocol. We merge them as our implementation runs
these phases such that they share some building blocks. More-
over, both ADKG and the random double-sharing phase use the
same invocation of the consensus protocol. Based on Table IV,
we conclude the following.

First, the powers-of-two phase takes less than 2% of the
runtime in all experiments. Recall from Table III, during the
powers-of-two phase, each party performs O(n log q) group
multiplications and sends O(n log q) group elements. This is
significantly smaller than the computation cost and bandwidth
usage of setup and all powers phase. However, the powers-
of-two phase requires O(log q) rounds of interaction, which is
comparable to the setup and all powers phases. This illustrates
that the number of communication rounds is not a bottleneck.

Second, for smaller n, the runtime of the all-powers phase
contributes to almost all of the runtime of our protocol, espe-
cially for large q. This is as expected because each party needs
to perform O(n2 log q) and O(q log n) group multiplications
during the setup phase and all powers phase, respectively. For
larger q and smaller n, the latter is significantly larger than
the former. However, with increasing n, as with the case of
n = 124, q = 214, the computation cost of the setup phase
also becomes significant. Finally, as expected, for n = 128,
with larger q = 218, the runtime of the all powers phase again
starts to dominate the total runtime.

Bandwidth usage. We report the per-party bandwidth usage,
i.e., the amount of data (in Megabytes) each party sends during

Table V: Bandwidth usage of different phases of our protocol (in
% of total bandwidth usages). The setup phase corresponds to the
combined bandwidth usages of both ADKG and the random double-
sharing phase. The tuple represents (n, q).

Protocol Phase (16, 214) (16, 218) (128, 214) (128, 218)

Setup 34.4 4.1 95.2 68.8
Powers-of-two 2.2 0.3 0.9 0.7
All powers 63.4 95.6 3.9 30.5

the entire protocol, in Figure 5. The solid and dashed lines
represent the per-party bandwidth usage of our protocol and
baseline, respectively. Consistent with the analysis from §VI,
the bandwidth usage in our protocol increases quadratically
with the number of parties and linear in the q. We also report
the breakdown of bandwidth usage across different phases of
our protocol in Table V.

Our evaluation illustrates that parties in our protocol incur
significantly less bandwidth usage than the baseline. For ex-
ample, with 32 parties and q = 216, each party needs to send
13.57 Megabytes (MB) of data in our protocol, compared to 96
MB of data in the baseline protocol (7⇥ reduction). Similarly,
with 128 parties and q = 218, the bandwidth usage in our
protocol is 118.17 MB, compared to 1536 MB in the baseline
protocol; hence, 13⇥ less bandwidth usage than the baseline.
Again, for the baseline, we only measure the bandwidth usage
as nq bytes, where  = 48 is the size of each G1 element, and
do not account for any bandwidth usage for the synchronous
broadcast protocol. If we also include the bandwidth usage
due to the synchronous broadcast channel, the benefits of our
protocol will be even bigger.

Similar to the breakdown of runtime across different
phases, in Table IV, we illustrate the breakdown of bandwidth
usage across different phases of our protocol for different
choices of n and q. Again, in Table V, the setup includes
the runtime of both ADKG and the random double-sharing
protocol. From Table V, we draw a few conclusions.

First, for the same reason as the runtime, the bandwidth
usage of the powers-of-two phase takes less than 3% of the
total bandwidth usage in all experiments.

Second, unlike runtime, the bandwidth usage in the setup
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Figure 6: Median runtime (in seconds), i.e., the time between the start
of the protocol and the time parties output the q-SDH parameters.

64 parties and q = 216, our protocol takes approximately
1037 seconds, whereas the baseline protocol takes 3580 sec-
onds (3.4⇥ faster). Similarly, with 128 parties and q = 218,
our protocol takes approximately 4721 seconds compared to
28883 seconds (not shown in the figure) taken by the baseline
protocol, hence 6.1⇥ faster than the baseline protocol. Note
that, for the baseline, we only measure the runtime without any
networking component. Thus, if we also include the runtime
of the synchronous broadcast, the benefits of our protocol will
be even more significant.

In Table IV, we break down the runtime of different phases
in our protocol for different choices of n and q. In Table IV, the
setup includes the runtime of both ADKG and random double-
sharing protocol. We merge them as our implementation runs
these phases such that they share some building blocks. More-
over, both ADKG and the random double-sharing phase use the
same invocation of the consensus protocol. Based on Table IV,
we conclude the following.

First, the powers-of-two phase takes less than 2% of the
runtime in all experiments. Recall from Table III, during the
powers-of-two phase, each party performs O(n log q) group
multiplications and sends O(n log q) group elements. This is
significantly smaller than the computation cost and bandwidth
usage of setup and all powers phase. However, the powers-
of-two phase requires O(log q) rounds of interaction, which is
comparable to the setup and all powers phases. This illustrates
that the number of communication rounds is not a bottleneck.

Second, for smaller n, the runtime of the all-powers phase
contributes to almost all of the runtime of our protocol, espe-
cially for large q. This is as expected because each party needs
to perform O(n2 log q) and O(q log n) group multiplications
during the setup phase and all powers phase, respectively. For
larger q and smaller n, the latter is significantly larger than
the former. However, with increasing n, as with the case of
n = 124, q = 214, the computation cost of the setup phase
also becomes significant. Finally, as expected, for n = 128,
with larger q = 218, the runtime of the all powers phase again
starts to dominate the total runtime.

Bandwidth usage. We report the per-party bandwidth usage,
i.e., the amount of data (in Megabytes) each party sends during

Table V: Bandwidth usage of different phases of our protocol (in
% of total bandwidth usages). The setup phase corresponds to the
combined bandwidth usages of both ADKG and the random double-
sharing phase. The tuple represents (n, q).

Protocol Phase (16, 214) (16, 218) (128, 214) (128, 218)

Setup 34.4 4.1 95.2 68.8
Powers-of-two 2.2 0.3 0.9 0.7
All powers 63.4 95.6 3.9 30.5

the entire protocol, in Figure 5. The solid and dashed lines
represent the per-party bandwidth usage of our protocol and
baseline, respectively. Consistent with the analysis from §VI,
the bandwidth usage in our protocol increases quadratically
with the number of parties and linear in the q. We also report
the breakdown of bandwidth usage across different phases of
our protocol in Table V.

Our evaluation illustrates that parties in our protocol incur
significantly less bandwidth usage than the baseline. For ex-
ample, with 32 parties and q = 216, each party needs to send
13.57 Megabytes (MB) of data in our protocol, compared to 96
MB of data in the baseline protocol (7⇥ reduction). Similarly,
with 128 parties and q = 218, the bandwidth usage in our
protocol is 118.17 MB, compared to 1536 MB in the baseline
protocol; hence, 13⇥ less bandwidth usage than the baseline.
Again, for the baseline, we only measure the bandwidth usage
as nq bytes, where  = 48 is the size of each G1 element, and
do not account for any bandwidth usage for the synchronous
broadcast protocol. If we also include the bandwidth usage
due to the synchronous broadcast channel, the benefits of our
protocol will be even bigger.

Similar to the breakdown of runtime across different
phases, in Table IV, we illustrate the breakdown of bandwidth
usage across different phases of our protocol for different
choices of n and q. Again, in Table V, the setup includes
the runtime of both ADKG and the random double-sharing
protocol. From Table V, we draw a few conclusions.

First, for the same reason as the runtime, the bandwidth
usage of the powers-of-two phase takes less than 3% of the
total bandwidth usage in all experiments.

Second, unlike runtime, the bandwidth usage in the setup
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Figure 6: Median runtime (in seconds), i.e., the time between the start
of the protocol and the time parties output the q-SDH parameters.

64 parties and q = 216, our protocol takes approximately
1037 seconds, whereas the baseline protocol takes 3580 sec-
onds (3.4⇥ faster). Similarly, with 128 parties and q = 218,
our protocol takes approximately 4721 seconds compared to
28883 seconds (not shown in the figure) taken by the baseline
protocol, hence 6.1⇥ faster than the baseline protocol. Note
that, for the baseline, we only measure the runtime without any
networking component. Thus, if we also include the runtime
of the synchronous broadcast, the benefits of our protocol will
be even more significant.

In Table IV, we break down the runtime of different phases
in our protocol for different choices of n and q. In Table IV, the
setup includes the runtime of both ADKG and random double-
sharing protocol. We merge them as our implementation runs
these phases such that they share some building blocks. More-
over, both ADKG and the random double-sharing phase use the
same invocation of the consensus protocol. Based on Table IV,
we conclude the following.

First, the powers-of-two phase takes less than 2% of the
runtime in all experiments. Recall from Table III, during the
powers-of-two phase, each party performs O(n log q) group
multiplications and sends O(n log q) group elements. This is
significantly smaller than the computation cost and bandwidth
usage of setup and all powers phase. However, the powers-
of-two phase requires O(log q) rounds of interaction, which is
comparable to the setup and all powers phases. This illustrates
that the number of communication rounds is not a bottleneck.

Second, for smaller n, the runtime of the all-powers phase
contributes to almost all of the runtime of our protocol, espe-
cially for large q. This is as expected because each party needs
to perform O(n2 log q) and O(q log n) group multiplications
during the setup phase and all powers phase, respectively. For
larger q and smaller n, the latter is significantly larger than
the former. However, with increasing n, as with the case of
n = 124, q = 214, the computation cost of the setup phase
also becomes significant. Finally, as expected, for n = 128,
with larger q = 218, the runtime of the all powers phase again
starts to dominate the total runtime.

Bandwidth usage. We report the per-party bandwidth usage,
i.e., the amount of data (in Megabytes) each party sends during

Table V: Bandwidth usage of different phases of our protocol (in
% of total bandwidth usages). The setup phase corresponds to the
combined bandwidth usages of both ADKG and the random double-
sharing phase. The tuple represents (n, q).

Protocol Phase (16, 214) (16, 218) (128, 214) (128, 218)

Setup 34.4 4.1 95.2 68.8
Powers-of-two 2.2 0.3 0.9 0.7
All powers 63.4 95.6 3.9 30.5

the entire protocol, in Figure 5. The solid and dashed lines
represent the per-party bandwidth usage of our protocol and
baseline, respectively. Consistent with the analysis from §VI,
the bandwidth usage in our protocol increases quadratically
with the number of parties and linear in the q. We also report
the breakdown of bandwidth usage across different phases of
our protocol in Table V.

Our evaluation illustrates that parties in our protocol incur
significantly less bandwidth usage than the baseline. For ex-
ample, with 32 parties and q = 216, each party needs to send
13.57 Megabytes (MB) of data in our protocol, compared to 96
MB of data in the baseline protocol (7⇥ reduction). Similarly,
with 128 parties and q = 218, the bandwidth usage in our
protocol is 118.17 MB, compared to 1536 MB in the baseline
protocol; hence, 13⇥ less bandwidth usage than the baseline.
Again, for the baseline, we only measure the bandwidth usage
as nq bytes, where  = 48 is the size of each G1 element, and
do not account for any bandwidth usage for the synchronous
broadcast protocol. If we also include the bandwidth usage
due to the synchronous broadcast channel, the benefits of our
protocol will be even bigger.

Similar to the breakdown of runtime across different
phases, in Table IV, we illustrate the breakdown of bandwidth
usage across different phases of our protocol for different
choices of n and q. Again, in Table V, the setup includes
the runtime of both ADKG and the random double-sharing
protocol. From Table V, we draw a few conclusions.

First, for the same reason as the runtime, the bandwidth
usage of the powers-of-two phase takes less than 3% of the
total bandwidth usage in all experiments.

Second, unlike runtime, the bandwidth usage in the setup
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Figure 6: Median runtime (in seconds), i.e., the time between the start
of the protocol and the time parties output the q-SDH parameters.

64 parties and q = 216, our protocol takes approximately
1037 seconds, whereas the baseline protocol takes 3580 sec-
onds (3.4⇥ faster). Similarly, with 128 parties and q = 218,
our protocol takes approximately 4721 seconds compared to
28883 seconds (not shown in the figure) taken by the baseline
protocol, hence 6.1⇥ faster than the baseline protocol. Note
that, for the baseline, we only measure the runtime without any
networking component. Thus, if we also include the runtime
of the synchronous broadcast, the benefits of our protocol will
be even more significant.

In Table IV, we break down the runtime of different phases
in our protocol for different choices of n and q. In Table IV, the
setup includes the runtime of both ADKG and random double-
sharing protocol. We merge them as our implementation runs
these phases such that they share some building blocks. More-
over, both ADKG and the random double-sharing phase use the
same invocation of the consensus protocol. Based on Table IV,
we conclude the following.

First, the powers-of-two phase takes less than 2% of the
runtime in all experiments. Recall from Table III, during the
powers-of-two phase, each party performs O(n log q) group
multiplications and sends O(n log q) group elements. This is
significantly smaller than the computation cost and bandwidth
usage of setup and all powers phase. However, the powers-
of-two phase requires O(log q) rounds of interaction, which is
comparable to the setup and all powers phases. This illustrates
that the number of communication rounds is not a bottleneck.

Second, for smaller n, the runtime of the all-powers phase
contributes to almost all of the runtime of our protocol, espe-
cially for large q. This is as expected because each party needs
to perform O(n2 log q) and O(q log n) group multiplications
during the setup phase and all powers phase, respectively. For
larger q and smaller n, the latter is significantly larger than
the former. However, with increasing n, as with the case of
n = 124, q = 214, the computation cost of the setup phase
also becomes significant. Finally, as expected, for n = 128,
with larger q = 218, the runtime of the all powers phase again
starts to dominate the total runtime.

Bandwidth usage. We report the per-party bandwidth usage,
i.e., the amount of data (in Megabytes) each party sends during

Table V: Bandwidth usage of different phases of our protocol (in
% of total bandwidth usages). The setup phase corresponds to the
combined bandwidth usages of both ADKG and the random double-
sharing phase. The tuple represents (n, q).

Protocol Phase (16, 214) (16, 218) (128, 214) (128, 218)

Setup 34.4 4.1 95.2 68.8
Powers-of-two 2.2 0.3 0.9 0.7
All powers 63.4 95.6 3.9 30.5

the entire protocol, in Figure 5. The solid and dashed lines
represent the per-party bandwidth usage of our protocol and
baseline, respectively. Consistent with the analysis from §VI,
the bandwidth usage in our protocol increases quadratically
with the number of parties and linear in the q. We also report
the breakdown of bandwidth usage across different phases of
our protocol in Table V.

Our evaluation illustrates that parties in our protocol incur
significantly less bandwidth usage than the baseline. For ex-
ample, with 32 parties and q = 216, each party needs to send
13.57 Megabytes (MB) of data in our protocol, compared to 96
MB of data in the baseline protocol (7⇥ reduction). Similarly,
with 128 parties and q = 218, the bandwidth usage in our
protocol is 118.17 MB, compared to 1536 MB in the baseline
protocol; hence, 13⇥ less bandwidth usage than the baseline.
Again, for the baseline, we only measure the bandwidth usage
as nq bytes, where  = 48 is the size of each G1 element, and
do not account for any bandwidth usage for the synchronous
broadcast protocol. If we also include the bandwidth usage
due to the synchronous broadcast channel, the benefits of our
protocol will be even bigger.

Similar to the breakdown of runtime across different
phases, in Table IV, we illustrate the breakdown of bandwidth
usage across different phases of our protocol for different
choices of n and q. Again, in Table V, the setup includes
the runtime of both ADKG and the random double-sharing
protocol. From Table V, we draw a few conclusions.

First, for the same reason as the runtime, the bandwidth
usage of the powers-of-two phase takes less than 3% of the
total bandwidth usage in all experiments.

Second, unlike runtime, the bandwidth usage in the setup
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Figure 6: Median runtime (in seconds), i.e., the time between the start
of the protocol and the time parties output the q-SDH parameters.

64 parties and q = 216, our protocol takes approximately
1037 seconds, whereas the baseline protocol takes 3580 sec-
onds (3.4⇥ faster). Similarly, with 128 parties and q = 218,
our protocol takes approximately 4721 seconds compared to
28883 seconds (not shown in the figure) taken by the baseline
protocol, hence 6.1⇥ faster than the baseline protocol. Note
that, for the baseline, we only measure the runtime without any
networking component. Thus, if we also include the runtime
of the synchronous broadcast, the benefits of our protocol will
be even more significant.

In Table IV, we break down the runtime of different phases
in our protocol for different choices of n and q. In Table IV, the
setup includes the runtime of both ADKG and random double-
sharing protocol. We merge them as our implementation runs
these phases such that they share some building blocks. More-
over, both ADKG and the random double-sharing phase use the
same invocation of the consensus protocol. Based on Table IV,
we conclude the following.

First, the powers-of-two phase takes less than 2% of the
runtime in all experiments. Recall from Table III, during the
powers-of-two phase, each party performs O(n log q) group
multiplications and sends O(n log q) group elements. This is
significantly smaller than the computation cost and bandwidth
usage of setup and all powers phase. However, the powers-
of-two phase requires O(log q) rounds of interaction, which is
comparable to the setup and all powers phases. This illustrates
that the number of communication rounds is not a bottleneck.

Second, for smaller n, the runtime of the all-powers phase
contributes to almost all of the runtime of our protocol, espe-
cially for large q. This is as expected because each party needs
to perform O(n2 log q) and O(q log n) group multiplications
during the setup phase and all powers phase, respectively. For
larger q and smaller n, the latter is significantly larger than
the former. However, with increasing n, as with the case of
n = 124, q = 214, the computation cost of the setup phase
also becomes significant. Finally, as expected, for n = 128,
with larger q = 218, the runtime of the all powers phase again
starts to dominate the total runtime.

Bandwidth usage. We report the per-party bandwidth usage,
i.e., the amount of data (in Megabytes) each party sends during

Table V: Bandwidth usage of different phases of our protocol (in
% of total bandwidth usages). The setup phase corresponds to the
combined bandwidth usages of both ADKG and the random double-
sharing phase. The tuple represents (n, q).

Protocol Phase (16, 214) (16, 218) (128, 214) (128, 218)

Setup 34.4 4.1 95.2 68.8
Powers-of-two 2.2 0.3 0.9 0.7
All powers 63.4 95.6 3.9 30.5

the entire protocol, in Figure 5. The solid and dashed lines
represent the per-party bandwidth usage of our protocol and
baseline, respectively. Consistent with the analysis from §VI,
the bandwidth usage in our protocol increases quadratically
with the number of parties and linear in the q. We also report
the breakdown of bandwidth usage across different phases of
our protocol in Table V.

Our evaluation illustrates that parties in our protocol incur
significantly less bandwidth usage than the baseline. For ex-
ample, with 32 parties and q = 216, each party needs to send
13.57 Megabytes (MB) of data in our protocol, compared to 96
MB of data in the baseline protocol (7⇥ reduction). Similarly,
with 128 parties and q = 218, the bandwidth usage in our
protocol is 118.17 MB, compared to 1536 MB in the baseline
protocol; hence, 13⇥ less bandwidth usage than the baseline.
Again, for the baseline, we only measure the bandwidth usage
as nq bytes, where  = 48 is the size of each G1 element, and
do not account for any bandwidth usage for the synchronous
broadcast protocol. If we also include the bandwidth usage
due to the synchronous broadcast channel, the benefits of our
protocol will be even bigger.

Similar to the breakdown of runtime across different
phases, in Table IV, we illustrate the breakdown of bandwidth
usage across different phases of our protocol for different
choices of n and q. Again, in Table V, the setup includes
the runtime of both ADKG and the random double-sharing
protocol. From Table V, we draw a few conclusions.

First, for the same reason as the runtime, the bandwidth
usage of the powers-of-two phase takes less than 3% of the
total bandwidth usage in all experiments.

Second, unlike runtime, the bandwidth usage in the setup
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Figure 5: Per party median bandwidth usage (in Megabytes), mea-
sured as the amount of data sent by a party in the entire protocol.
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Figure 6: Median runtime (in seconds), i.e., the time between the start
of the protocol and the time parties output the q-SDH parameters.

64 parties and q = 216, our protocol takes approximately
1037 seconds, whereas the baseline protocol takes 3580 sec-
onds (3.4⇥ faster). Similarly, with 128 parties and q = 218,
our protocol takes approximately 4721 seconds compared to
28883 seconds (not shown in the figure) taken by the baseline
protocol, hence 6.1⇥ faster than the baseline protocol. Note
that, for the baseline, we only measure the runtime without any
networking component. Thus, if we also include the runtime
of the synchronous broadcast, the benefits of our protocol will
be even more significant.

In Table IV, we break down the runtime of different phases
in our protocol for different choices of n and q. In Table IV, the
setup includes the runtime of both ADKG and random double-
sharing protocol. We merge them as our implementation runs
these phases such that they share some building blocks. More-
over, both ADKG and the random double-sharing phase use the
same invocation of the consensus protocol. Based on Table IV,
we conclude the following.

First, the powers-of-two phase takes less than 2% of the
runtime in all experiments. Recall from Table III, during the
powers-of-two phase, each party performs O(n log q) group
multiplications and sends O(n log q) group elements. This is
significantly smaller than the computation cost and bandwidth
usage of setup and all powers phase. However, the powers-
of-two phase requires O(log q) rounds of interaction, which is
comparable to the setup and all powers phases. This illustrates
that the number of communication rounds is not a bottleneck.

Second, for smaller n, the runtime of the all-powers phase
contributes to almost all of the runtime of our protocol, espe-
cially for large q. This is as expected because each party needs
to perform O(n2 log q) and O(q log n) group multiplications
during the setup phase and all powers phase, respectively. For
larger q and smaller n, the latter is significantly larger than
the former. However, with increasing n, as with the case of
n = 124, q = 214, the computation cost of the setup phase
also becomes significant. Finally, as expected, for n = 128,
with larger q = 218, the runtime of the all powers phase again
starts to dominate the total runtime.

Bandwidth usage. We report the per-party bandwidth usage,
i.e., the amount of data (in Megabytes) each party sends during

Table V: Bandwidth usage of different phases of our protocol (in
% of total bandwidth usages). The setup phase corresponds to the
combined bandwidth usages of both ADKG and the random double-
sharing phase. The tuple represents (n, q).

Protocol Phase (16, 214) (16, 218) (128, 214) (128, 218)

Setup 34.4 4.1 95.2 68.8
Powers-of-two 2.2 0.3 0.9 0.7
All powers 63.4 95.6 3.9 30.5

the entire protocol, in Figure 5. The solid and dashed lines
represent the per-party bandwidth usage of our protocol and
baseline, respectively. Consistent with the analysis from §VI,
the bandwidth usage in our protocol increases quadratically
with the number of parties and linear in the q. We also report
the breakdown of bandwidth usage across different phases of
our protocol in Table V.

Our evaluation illustrates that parties in our protocol incur
significantly less bandwidth usage than the baseline. For ex-
ample, with 32 parties and q = 216, each party needs to send
13.57 Megabytes (MB) of data in our protocol, compared to 96
MB of data in the baseline protocol (7⇥ reduction). Similarly,
with 128 parties and q = 218, the bandwidth usage in our
protocol is 118.17 MB, compared to 1536 MB in the baseline
protocol; hence, 13⇥ less bandwidth usage than the baseline.
Again, for the baseline, we only measure the bandwidth usage
as nq bytes, where  = 48 is the size of each G1 element, and
do not account for any bandwidth usage for the synchronous
broadcast protocol. If we also include the bandwidth usage
due to the synchronous broadcast channel, the benefits of our
protocol will be even bigger.

Similar to the breakdown of runtime across different
phases, in Table IV, we illustrate the breakdown of bandwidth
usage across different phases of our protocol for different
choices of n and q. Again, in Table V, the setup includes
the runtime of both ADKG and the random double-sharing
protocol. From Table V, we draw a few conclusions.

First, for the same reason as the runtime, the bandwidth
usage of the powers-of-two phase takes less than 3% of the
total bandwidth usage in all experiments.

Second, unlike runtime, the bandwidth usage in the setup
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