
Powers of Tau in Asynchrony

Sourav Das Zhuolun Xiang Ling Ren

1
souravd2@Illinois.edu

mailto:souravd2@Illinois.edu

2

Problem Definitions

𝑞-Strong Diffie-Hellman (𝑞-SDH) Assumption

3

𝑞-Strong Diffie-Hellman (𝑞-SDH) Assumption

3

Adversary 𝒜Challenger

𝑞-Strong Diffie-Hellman (𝑞-SDH) Assumption

3

1. Elliptic curve group 𝔾
2. Scalar field 𝔽
3. Generator G ∈ 𝔾 Adversary 𝒜Challenger

𝑞-Strong Diffie-Hellman (𝑞-SDH) Assumption

3

1. Elliptic curve group 𝔾
2. Scalar field 𝔽
3. Generator G ∈ 𝔾 Adversary 𝒜Challenger

𝑞-Strong Diffie-Hellman (𝑞-SDH) Assumption

3

1. Elliptic curve group 𝔾
2. Scalar field 𝔽
3. Generator G ∈ 𝔾 Adversary 𝒜Challenger

𝑞-Strong Diffie-Hellman (𝑞-SDH) Assumption

3

1. Elliptic curve group 𝔾
2. Scalar field 𝔽
3. Generator G ∈ 𝔾 Adversary 𝒜Challenger

𝑞-Strong Diffie-Hellman (𝑞-SDH) Assumption

3

1. Elliptic curve group 𝔾
2. Scalar field 𝔽
3. Generator G ∈ 𝔾

𝑞 ∈ ℕ

Adversary 𝒜Challenger

𝑞-Strong Diffie-Hellman (𝑞-SDH) Assumption

3

1. Elliptic curve group 𝔾
2. Scalar field 𝔽
3. Generator G ∈ 𝔾

𝑞 ∈ ℕ

𝜏 ← 𝔽

Adversary 𝒜Challenger

𝑞-Strong Diffie-Hellman (𝑞-SDH) Assumption

3

1. Elliptic curve group 𝔾
2. Scalar field 𝔽
3. Generator G ∈ 𝔾

𝑞 ∈ ℕ

G, 𝜏G, 𝜏!G,… , 𝜏"G

𝜏 ← 𝔽

Adversary 𝒜Challenger

𝑞-Strong Diffie-Hellman (𝑞-SDH) Assumption

3

1. Elliptic curve group 𝔾
2. Scalar field 𝔽
3. Generator G ∈ 𝔾

𝑞 ∈ ℕ

G, 𝜏G, 𝜏!G,… , 𝜏"G

𝜏 ← 𝔽 𝑐, 𝜏 + 𝑐 #$ ⋅ G

Adversary 𝒜Challenger

𝑞-Strong Diffie-Hellman (𝑞-SDH) Assumption

3

1. Elliptic curve group 𝔾
2. Scalar field 𝔽
3. Generator G ∈ 𝔾

𝑞 ∈ ℕ

G, 𝜏G, 𝜏!G,… , 𝜏"G

𝜏 ← 𝔽 𝑐, 𝜏 + 𝑐 #$ ⋅ G

Adversary wins: if 𝑐 + 𝜏 ≠ 0 and 𝜏 + 𝑐 #$ ⋅ G is well formed

Adversary 𝒜Challenger

𝑞-Strong Diffie-Hellman (𝑞-SDH) Assumption

3

1. Elliptic curve group 𝔾
2. Scalar field 𝔽
3. Generator G ∈ 𝔾

𝑞 ∈ ℕ

G, 𝜏G, 𝜏!G,… , 𝜏"G

𝜏 ← 𝔽 𝑐, 𝜏 + 𝑐 #$ ⋅ G

Adversary wins: if 𝑐 + 𝜏 ≠ 0 and 𝜏 + 𝑐 #$ ⋅ G is well formed

Adversary 𝒜

𝑞-SDH assumptions says adversary wins with negligible probability

Challenger

𝑞-SDH parameters (aka Powers of Tau)

4

1. Elliptic curve group 𝔾
2. Scalar field 𝔽
3. Generator G ∈ 𝔾

𝑞 ∈ ℕ

G, 𝜏G, 𝜏!G,… , 𝜏"G

𝜏 ← 𝔽 𝑐, 𝜏 + 𝑐 #$ ⋅ G

Adversary wins: if 𝑐 + 𝜏 ≠ 0 and 𝜏 + 𝑐 #$ ⋅ G is well formed

Adversary 𝒜

𝑞-SDH assumptions says adversary wins with negligible probability

Challenger

Applications of 𝑞-SDH parameters

• Short signatures

• Cryptographic Accumulators

• Vector commitments

• Constant size polynomial commitments

• SNARKs

• Verifiable Secret Sharing

• Randomness Beacon

5

Applications of 𝑞-SDH parameters

• Short signatures

• Cryptographic Accumulators

• Vector commitments

• Constant size polynomial commitments

• SNARKs

• Verifiable Secret Sharing

• Randomness Beacon

5

Applications of 𝑞-SDH parameters

• Short signatures

• Cryptographic Accumulators

• Vector commitments

• Constant size polynomial commitments

• SNARKs

• Verifiable Secret Sharing

• Randomness Beacon

5

Applications of 𝑞-SDH parameters

• Short signatures

• Cryptographic Accumulators

• Vector commitments

• Constant size polynomial commitments

• SNARKs

• Verifiable Secret Sharing

• Randomness Beacon

5

Applications of 𝑞-SDH parameters

• Short signatures

• Cryptographic Accumulators

• Vector commitments

• Constant size polynomial commitments

• SNARKs

• Verifiable Secret Sharing

• Randomness Beacon

5

Applications of 𝑞-SDH parameters

• Short signatures

• Cryptographic Accumulators

• Vector commitments

• Constant size polynomial commitments

• SNARKs

• Verifiable Secret Sharing

• Randomness Beacon

5

Applications of 𝑞-SDH parameters

• Short signatures

• Cryptographic Accumulators

• Vector commitments

• Constant size polynomial commitments

• SNARKs

• Verifiable Secret Sharing

• Randomness Beacon

5

Applications of 𝑞-SDH parameters

• Short signatures

• Cryptographic Accumulators

• Vector commitments

• Constant size polynomial commitments

• SNARKs

• Verifiable Secret Sharing

• Randomness Beacon

5

Our Goal

6

System model:
• 𝑛 ≥ 3𝑡 + 1 nodes among which up to 𝑡 are corrupt
• Asynchronous network:

• Message delays could be arbitrary

Our Goal

6

MPC protocol to generate of Powers of Tau in an asynchronous network

System model:
• 𝑛 ≥ 3𝑡 + 1 nodes among which up to 𝑡 are corrupt
• Asynchronous network:

• Message delays could be arbitrary

Our Goal

6

MPC protocol to generate of Powers of Tau in an asynchronous network

System model:
• 𝑛 ≥ 3𝑡 + 1 nodes among which up to 𝑡 are corrupt
• Asynchronous network:

• Message delays could be arbitrary

Our Goal

6

MPC protocol to generate of Powers of Tau in an asynchronous network

System model:
• 𝑛 ≥ 3𝑡 + 1 nodes among which up to 𝑡 are corrupt
• Asynchronous network:

• Message delays could be arbitrary

Our Goal

6

MPC protocol to generate of Powers of Tau in an asynchronous network

System model:
• 𝑛 ≥ 3𝑡 + 1 nodes among which up to 𝑡 are corrupt
• Asynchronous network:
• Message delays could be arbitrary

7

Related Works

Generic MPC based approach

30

Generic MPC based approach

MPC Circuit
⋯

31

𝜏G

Generic MPC based approach

MPC Circuit

𝜏!G 𝜏"G

⋯

32

⋯

𝜏G

Generic MPC based approach

MPC Circuit

𝜏!G 𝜏"G

⋯

33

⋯

- MPC over both field 𝔽 and group 𝔾

𝜏G

Generic MPC based approach

MPC Circuit

𝜏!G 𝜏"G

⋯

34

⋯

- MPC over both field 𝔽 and group 𝔾

𝜏G

Generic MPC based approach

MPC Circuit

𝜏!G 𝜏"G

⋯

35

⋯

MPC Circuit

[𝜏] [𝜏!] [𝜏"]

⋯

⋯

- MPC over both field 𝔽 and group 𝔾

𝜏G

Generic MPC based approach

MPC Circuit

𝜏!G 𝜏"G

⋯

36

⋯

MPC Circuit

[𝜏] [𝜏!] [𝜏"]

Exponentiation Circuit

⋯

⋯

⋯

- MPC over both field 𝔽 and group 𝔾

𝜏G

Generic MPC based approach

MPC Circuit

𝜏!G 𝜏"G

⋯

37

⋯

MPC Circuit

[𝜏] [𝜏!] [𝜏"]

Exponentiation Circuit

𝜏G 𝜏!G 𝜏"G

⋯

⋯

⋯

⋯

- MPC over both field 𝔽 and group 𝔾

𝜏G

Generic MPC based approach

MPC Circuit

𝜏!G 𝜏"G

⋯

38

⋯

MPC Circuit

[𝜏] [𝜏!] [𝜏"]

Exponentiation Circuit

𝜏G 𝜏!G 𝜏"G

⋯

⋯

⋯

⋯

- MPC over both field 𝔽 and group 𝔾
+ MPC over only field 𝔽
+ O log	𝑞 rounds

𝜏G

Generic MPC based approach

MPC Circuit

𝜏!G 𝜏"G

⋯

39

⋯

MPC Circuit

[𝜏] [𝜏!] [𝜏"]

Exponentiation Circuit

𝜏G 𝜏!G 𝜏"G

⋯

⋯

⋯

⋯

- MPC over both field 𝔽 and group 𝔾
+ MPC over only field 𝔽
+ O log	𝑞 rounds

𝜏G

Generic MPC based approach

MPC Circuit

𝜏!G 𝜏"G

⋯

40

⋯

MPC Circuit

[𝜏] [𝜏!] [𝜏"]

Exponentiation Circuit

𝜏G 𝜏!G 𝜏"G

⋯

⋯

⋯

⋯

- MPC over both field 𝔽 and group 𝔾
+ MPC over only field 𝔽
+ O log	𝑞 rounds

𝜏G

Generic MPC based approach

MPC Circuit

𝜏!G 𝜏"G

⋯

41

⋯

MPC Circuit

[𝜏] [𝜏!] [𝜏"]

Exponentiation Circuit

𝜏G 𝜏!G 𝜏"G

⋯

⋯

⋯

⋯

- MPC over both field 𝔽 and group 𝔾

- O 𝑞 multiplication units

+ MPC over only field 𝔽
+ O log	𝑞 rounds

𝜏G

Generic MPC based approach

MPC Circuit

𝜏!G 𝜏"G

⋯

42

⋯

MPC Circuit

[𝜏] [𝜏!] [𝜏"]

Exponentiation Circuit

𝜏G 𝜏!G 𝜏"G

⋯

⋯

⋯

⋯

- MPC over both field 𝔽 and group 𝔾

- O 𝑞 multiplication units

+ MPC over only field 𝔽
+ O log	𝑞 rounds

Multiplication units are expensive, per party Ω 𝑛𝑞 communication costs

Round Robin approach

43

Round Robin approach

44

- Sample 𝜏$ ← 𝔽
- Compute G, 𝜏$G, 𝜏$!G,… , 𝜏$

"G
- Post G, 𝜏$G, 𝜏$!G,… , 𝜏$

"G

Round Robin approach

45

- Sample 𝜏$ ← 𝔽
- Compute G, 𝜏$G, 𝜏$!G,… , 𝜏$

"G
- Post G, 𝜏$G, 𝜏$!G,… , 𝜏$

"G

Round Robin approach

46

- Sample 𝜏$ ← 𝔽
- Compute G, 𝜏$G, 𝜏$!G,… , 𝜏$

"G
- Post G, 𝜏$G, 𝜏$!G,… , 𝜏$

"G

Round Robin approach

47

- Sample 𝜏$ ← 𝔽
- Compute G, 𝜏$G, 𝜏$!G,… , 𝜏$

"G
- Post G, 𝜏$G, 𝜏$!G,… , 𝜏$

"G

Round Robin approach

48

- Sample 𝜏$ ← 𝔽
- Compute G, 𝜏$G, 𝜏$!G,… , 𝜏$

"G
- Post G, 𝜏$G, 𝜏$!G,… , 𝜏$

"G

Round Robin approach

G, 𝜏$G, 𝜏$!G,… , 𝜏$
"G

49

- Sample 𝜏$ ← 𝔽
- Compute G, 𝜏$G, 𝜏$!G,… , 𝜏$

"G
- Post G, 𝜏$G, 𝜏$!G,… , 𝜏$

"G

- Download G%, G$, G!, … , G"
- Sample 𝜏! ← 𝔽;
- Compute G%, 𝜏!G$, 𝜏!!G!, … , 𝜏!

"G"
- Broadcast G%, 𝜏!G$, 𝜏!!G!, … , 𝜏!

"G"

Round Robin approach

G, 𝜏$G, 𝜏$!G,… , 𝜏$
"G

50

- Sample 𝜏$ ← 𝔽
- Compute G, 𝜏$G, 𝜏$!G,… , 𝜏$

"G
- Post G, 𝜏$G, 𝜏$!G,… , 𝜏$

"G

- Download G%, G$, G!, … , G"
- Sample 𝜏! ← 𝔽;
- Compute G%, 𝜏!G$, 𝜏!!G!, … , 𝜏!

"G"
- Broadcast G%, 𝜏!G$, 𝜏!!G!, … , 𝜏!

"G"

Round Robin approach

G, 𝜏$G, 𝜏$!G,… , 𝜏$
"G

51

- Sample 𝜏$ ← 𝔽
- Compute G, 𝜏$G, 𝜏$!G,… , 𝜏$

"G
- Post G, 𝜏$G, 𝜏$!G,… , 𝜏$

"G

- Download G%, G$, G!, … , G"
- Sample 𝜏! ← 𝔽;
- Compute G%, 𝜏!G$, 𝜏!!G!, … , 𝜏!

"G"
- Broadcast G%, 𝜏!G$, 𝜏!!G!, … , 𝜏!

"G"

Round Robin approach

G, 𝜏$G, 𝜏$!G,… , 𝜏$
"G

52

- Sample 𝜏$ ← 𝔽
- Compute G, 𝜏$G, 𝜏$!G,… , 𝜏$

"G
- Post G, 𝜏$G, 𝜏$!G,… , 𝜏$

"G

- Download G%, G$, G!, … , G"
- Sample 𝜏! ← 𝔽;
- Compute G%, 𝜏!G$, 𝜏!!G!, … , 𝜏!

"G"
- Broadcast G%, 𝜏!G$, 𝜏!!G!, … , 𝜏!

"G"

Round Robin approach

G, 𝜏$G, 𝜏$!G,… , 𝜏$
"G

53

- Sample 𝜏$ ← 𝔽
- Compute G, 𝜏$G, 𝜏$!G,… , 𝜏$

"G
- Post G, 𝜏$G, 𝜏$!G,… , 𝜏$

"G

- Download G%, G$, G!, … , G"
- Sample 𝜏! ← 𝔽;
- Compute G%, 𝜏!G$, 𝜏!!G!, … , 𝜏!

"G"
- Broadcast G%, 𝜏!G$, 𝜏!!G!, … , 𝜏!

"G"

Round Robin approach

G, 𝜏$G, 𝜏$!G,… , 𝜏$
"G

54

- Sample 𝜏$ ← 𝔽
- Compute G, 𝜏$G, 𝜏$!G,… , 𝜏$

"G
- Post G, 𝜏$G, 𝜏$!G,… , 𝜏$

"G

- Download G%, G$, G!, … , G"
- Sample 𝜏! ← 𝔽;
- Compute G%, 𝜏!G$, 𝜏!!G!, … , 𝜏!

"G"
- Broadcast G%, 𝜏!G$, 𝜏!!G!, … , 𝜏!

"G"

Round Robin approach

G, 𝜏$G, 𝜏$!G,… , 𝜏$
"G

G%, 𝜏!G$, 𝜏!!G!, … , 𝜏!
"G"

55

- Sample 𝜏$ ← 𝔽
- Compute G, 𝜏$G, 𝜏$!G,… , 𝜏$

"G
- Post G, 𝜏$G, 𝜏$!G,… , 𝜏$

"G

- Download G%, G$, G!, … , G"
- Sample 𝜏! ← 𝔽;
- Compute G%, 𝜏!G$, 𝜏!!G!, … , 𝜏!

"G"
- Broadcast G%, 𝜏!G$, 𝜏!!G!, … , 𝜏!

"G"
⋮

⋮

Round Robin approach

G, 𝜏$G, 𝜏$!G,… , 𝜏$
"G

G%, 𝜏!G$, 𝜏!!G!, … , 𝜏!
"G"

56

- Sample 𝜏$ ← 𝔽
- Compute G, 𝜏$G, 𝜏$!G,… , 𝜏$

"G
- Post G, 𝜏$G, 𝜏$!G,… , 𝜏$

"G

- Download G%, G$, G!, … , G"
- Sample 𝜏! ← 𝔽;
- Compute G%, 𝜏!G$, 𝜏!!G!, … , 𝜏!

"G"
- Broadcast G%, 𝜏!G$, 𝜏!!G!, … , 𝜏!

"G"
⋮

⋮

Round Robin approach

G, 𝜏$G, 𝜏$!G,… , 𝜏$
"G

G%, 𝜏!G$, 𝜏!!G!, … , 𝜏!
"G"

Final output: G, 𝜏$𝜏!⋯𝜏& G, 𝜏$𝜏!⋯𝜏& !G, ⋯ 𝜏$𝜏!⋯𝜏& "G

57

- Sample 𝜏$ ← 𝔽
- Compute G, 𝜏$G, 𝜏$!G,… , 𝜏$

"G
- Post G, 𝜏$G, 𝜏$!G,… , 𝜏$

"G

- Download G%, G$, G!, … , G"
- Sample 𝜏! ← 𝔽;
- Compute G%, 𝜏!G$, 𝜏!!G!, … , 𝜏!

"G"
- Broadcast G%, 𝜏!G$, 𝜏!!G!, … , 𝜏!

"G"
⋮

⋮

Round Robin approach

G, 𝜏$G, 𝜏$!G,… , 𝜏$
"G

G%, 𝜏!G$, 𝜏!!G!, … , 𝜏!
"G"

+ Parties need not be fixed a priori
+ Only one honest party is needed

Final output: G, 𝜏$𝜏!⋯𝜏& G, 𝜏$𝜏!⋯𝜏& !G, ⋯ 𝜏$𝜏!⋯𝜏& "G

58

- Sample 𝜏$ ← 𝔽
- Compute G, 𝜏$G, 𝜏$!G,… , 𝜏$

"G
- Post G, 𝜏$G, 𝜏$!G,… , 𝜏$

"G

- Download G%, G$, G!, … , G"
- Sample 𝜏! ← 𝔽;
- Compute G%, 𝜏!G$, 𝜏!!G!, … , 𝜏!

"G"
- Broadcast G%, 𝜏!G$, 𝜏!!G!, … , 𝜏!

"G"
⋮

⋮

Round Robin approach

G, 𝜏$G, 𝜏$!G,… , 𝜏$
"G

G%, 𝜏!G$, 𝜏!!G!, … , 𝜏!
"G"

+ Parties need not be fixed a priori
+ Only one honest party is needed

Final output: G, 𝜏$𝜏!⋯𝜏& G, 𝜏$𝜏!⋯𝜏& !G, ⋯ 𝜏$𝜏!⋯𝜏& "G

59

- Sample 𝜏$ ← 𝔽
- Compute G, 𝜏$G, 𝜏$!G,… , 𝜏$

"G
- Post G, 𝜏$G, 𝜏$!G,… , 𝜏$

"G

- Download G%, G$, G!, … , G"
- Sample 𝜏! ← 𝔽;
- Compute G%, 𝜏!G$, 𝜏!!G!, … , 𝜏!

"G"
- Broadcast G%, 𝜏!G$, 𝜏!!G!, … , 𝜏!

"G"
⋮

⋮

Round Robin approach

G, 𝜏$G, 𝜏$!G,… , 𝜏$
"G

G%, 𝜏!G$, 𝜏!!G!, … , 𝜏!
"G"

+ Parties need not be fixed a priori
+ Only one honest party is needed

Final output: G, 𝜏$𝜏!⋯𝜏& G, 𝜏$𝜏!⋯𝜏& !G, ⋯ 𝜏$𝜏!⋯𝜏& "G

60

- Sample 𝜏$ ← 𝔽
- Compute G, 𝜏$G, 𝜏$!G,… , 𝜏$

"G
- Post G, 𝜏$G, 𝜏$!G,… , 𝜏$

"G

- Download G%, G$, G!, … , G"
- Sample 𝜏! ← 𝔽;
- Compute G%, 𝜏!G$, 𝜏!!G!, … , 𝜏!

"G"
- Broadcast G%, 𝜏!G$, 𝜏!!G!, … , 𝜏!

"G"
⋮

⋮

Round Robin approach

G, 𝜏$G, 𝜏$!G,… , 𝜏$
"G

G%, 𝜏!G$, 𝜏!!G!, … , 𝜏!
"G"

+ Parties need not be fixed a priori
+ Only one honest party is needed

Final output: G, 𝜏$𝜏!⋯𝜏& G, 𝜏$𝜏!⋯𝜏& !G, ⋯ 𝜏$𝜏!⋯𝜏& "G

61

- Sample 𝜏$ ← 𝔽
- Compute G, 𝜏$G, 𝜏$!G,… , 𝜏$

"G
- Post G, 𝜏$G, 𝜏$!G,… , 𝜏$

"G

- Download G%, G$, G!, … , G"
- Sample 𝜏! ← 𝔽;
- Compute G%, 𝜏!G$, 𝜏!!G!, … , 𝜏!

"G"
- Broadcast G%, 𝜏!G$, 𝜏!!G!, … , 𝜏!

"G"
⋮

⋮

Round Robin approach

G, 𝜏$G, 𝜏$!G,… , 𝜏$
"G

G%, 𝜏!G$, 𝜏!!G!, … , 𝜏!
"G"

+ Parties need not be fixed a priori
+ Only one honest party is needed

- Require Ω 𝑛 sequential broadcasts
- Does not work in asynchrony

Final output: G, 𝜏$𝜏!⋯𝜏& G, 𝜏$𝜏!⋯𝜏& !G, ⋯ 𝜏$𝜏!⋯𝜏& "G

62

- Sample 𝜏$ ← 𝔽
- Compute G, 𝜏$G, 𝜏$!G,… , 𝜏$

"G
- Post G, 𝜏$G, 𝜏$!G,… , 𝜏$

"G

- Download G%, G$, G!, … , G"
- Sample 𝜏! ← 𝔽;
- Compute G%, 𝜏!G$, 𝜏!!G!, … , 𝜏!

"G"
- Broadcast G%, 𝜏!G$, 𝜏!!G!, … , 𝜏!

"G"
⋮

⋮

Round Robin approach

G, 𝜏$G, 𝜏$!G,… , 𝜏$
"G

G%, 𝜏!G$, 𝜏!!G!, … , 𝜏!
"G"

+ Parties need not be fixed a priori
+ Only one honest party is needed

- Require Ω 𝑛 sequential broadcasts
- Does not work in asynchrony

Final output: G, 𝜏$𝜏!⋯𝜏& G, 𝜏$𝜏!⋯𝜏& !G, ⋯ 𝜏$𝜏!⋯𝜏& "G

63

- Sample 𝜏$ ← 𝔽
- Compute G, 𝜏$G, 𝜏$!G,… , 𝜏$

"G
- Post G, 𝜏$G, 𝜏$!G,… , 𝜏$

"G

- Download G%, G$, G!, … , G"
- Sample 𝜏! ← 𝔽;
- Compute G%, 𝜏!G$, 𝜏!!G!, … , 𝜏!

"G"
- Broadcast G%, 𝜏!G$, 𝜏!!G!, … , 𝜏!

"G"
⋮

⋮

Round Robin approach

G, 𝜏$G, 𝜏$!G,… , 𝜏$
"G

G%, 𝜏!G$, 𝜏!!G!, … , 𝜏!
"G"

+ Parties need not be fixed a priori
+ Only one honest party is needed

- Require Ω 𝑛 sequential broadcasts
- Does not work in asynchrony

Final output: G, 𝜏$𝜏!⋯𝜏& G, 𝜏$𝜏!⋯𝜏& !G, ⋯ 𝜏$𝜏!⋯𝜏& "G

64

Our Approach

65

Our Approach: High-level

66

Our Approach: High-level

Specialized asynchronous MPC for generating Powers of Tau

67

Our Approach: High-level

Specialized asynchronous MPC for generating Powers of Tau

68

Three phases:

Our Approach: High-level

Specialized asynchronous MPC for generating Powers of Tau

Async.
DKG

⋯

69

Three phases:

Our Approach: High-level

Specialized asynchronous MPC for generating Powers of Tau

Async.
DKG

⋯ 𝜏

70

Three phases:

Our Approach: High-level

Specialized asynchronous MPC for generating Powers of Tau

Async.
DKG

Squaring
MPC

⋯ 𝜏

71

Three phases:

Our Approach: High-level

Specialized asynchronous MPC for generating Powers of Tau

Async.
DKG

Squaring
MPC

⋯ 𝜏

𝜏

⋯

𝜏!

𝜏'

𝜏"

72

Three phases:

Our Approach: High-level

Specialized asynchronous MPC for generating Powers of Tau

Async.
DKG

Squaring
MPC

⋯ 𝜏

𝜏

⋯

𝜏!

𝜏'

𝜏"

Exponen-
tiation

Protocol⋯

73

Three phases:

Our Approach: High-level

Specialized asynchronous MPC for generating Powers of Tau

Async.
DKG

Squaring
MPC

⋯ 𝜏

𝜏

⋯

𝜏!

𝜏'

𝜏"

Exponen-
tiation

Protocol

𝜏G
𝜏!G
𝜏(G

𝜏"G

⋯⋯

74

Three phases:

Our Approach: High-level

Specialized asynchronous MPC for generating Powers of Tau

Async.
DKG

Squaring
MPC

⋯ 𝜏

𝜏

⋯

𝜏!

𝜏'

𝜏"

Exponen-
tiation

Protocol

𝜏G
𝜏!G
𝜏(G

𝜏"G

⋯⋯

Only O(log	𝑞) multiplication units are needed

75

Three phases:

Our Approach: High-level

Specialized asynchronous MPC for generating Powers of Tau

Async.
DKG

Squaring
MPC

⋯ 𝜏

𝜏

⋯

𝜏!

𝜏'

𝜏"

Exponen-
tiation

Protocol

𝜏G
𝜏!G
𝜏(G

𝜏"G

⋯⋯

Only O(log	𝑞) multiplication units are needed

76

All parts can be implemented with expected O(log	𝑞 + log	𝑛) rounds

Three phases:

Step 1: Asynchronous DKG

77

• We use the Asynchronous DKG protocol from [DXKR’23]
• O(𝑛!) per-party communication cost
• O(log	𝑛) expected rounds

Step 1: Asynchronous DKG

Asynchronous
DKG

⋯

78

• We use the Asynchronous DKG protocol from [DXKR’23]
• O(𝑛!) per-party communication cost
• O(log	𝑛) expected rounds

Step 1: Asynchronous DKG

Asynchronous
DKG

⋯ 𝜏 , 𝜏 G

79

• We use the Asynchronous DKG protocol from [DXKR’23]
• O(𝑛!) per-party communication cost
• O(log	𝑛) expected rounds

Step 1: Asynchronous DKG

Asynchronous
DKG

⋯ 𝜏 , 𝜏 G

80

where 𝜏 G = 𝜏 $G, 𝜏 !G,… 𝜏 &G

• We use the Asynchronous DKG protocol from [DXKR’23]
• O(𝑛!) per-party communication cost
• O(log	𝑛) expected rounds

Step 1: Asynchronous DKG

Asynchronous
DKG

⋯ 𝜏 , 𝜏 G

81

where 𝜏 G = 𝜏 $G, 𝜏 !G,… 𝜏 &G

𝜏 G are also called as threshold public keys

• We use the Asynchronous DKG protocol from [DXKR’23]
• O(𝑛!) per-party communication cost
• O(log	𝑛) expected rounds

Step 1: Asynchronous DKG

Asynchronous
DKG

⋯ 𝜏 , 𝜏 G

82

where 𝜏 G = 𝜏 $G, 𝜏 !G,… 𝜏 &G

𝜏 G are also called as threshold public keys

• We use the Asynchronous DKG protocol from [DXKR’23]
• O(𝑛!) per-party communication cost
• O(log	𝑛) expected rounds

Step 1: Asynchronous DKG

Asynchronous
DKG

⋯ 𝜏 , 𝜏 G

83

where 𝜏 G = 𝜏 $G, 𝜏 !G,… 𝜏 &G

𝜏 G are also called as threshold public keys

• We use the Asynchronous DKG protocol from [DXKR’23]
• O(𝑛!) per-party communication cost
• O(log	𝑛) expected rounds

Step 1: Asynchronous DKG

Asynchronous
DKG

⋯ 𝜏 , 𝜏 G

84

where 𝜏 G = 𝜏 $G, 𝜏 !G,… 𝜏 &G

𝜏 G are also called as threshold public keys

• We use the Asynchronous DKG protocol from [DXKR’23]
• O(𝑛!) per-party communication cost
• O(log	𝑛) expected rounds

85

Step 2: Squaring protocol

Double sharing-based MPC multiplication
• Let 𝑎) and 𝑎 !) be degree 𝑡 and 2𝑡 sharing of a 𝑎 ← 𝔽
• Let 𝑎)G and 𝑎 !)G be threshold public keys

Double sharing generation from [DXKR’23]
• Per party per unit communication cost of 𝑂(𝑛!)
• Per party total communication cost of 𝑂(𝑛!log	𝑞)

Squaring
Protocol

86

𝜏 , 𝜏 G

Step 2: Squaring protocol

Double sharing-based MPC multiplication
• Let 𝑎) and 𝑎 !) be degree 𝑡 and 2𝑡 sharing of a 𝑎 ← 𝔽
• Let 𝑎)G and 𝑎 !)G be threshold public keys

Double sharing generation from [DXKR’23]
• Per party per unit communication cost of 𝑂(𝑛!)
• Per party total communication cost of 𝑂(𝑛!log	𝑞)

Squaring
Protocol

𝜏! , 𝜏! G

87

𝜏 , 𝜏 G

Step 2: Squaring protocol

Double sharing-based MPC multiplication
• Let 𝑎) and 𝑎 !) be degree 𝑡 and 2𝑡 sharing of a 𝑎 ← 𝔽
• Let 𝑎)G and 𝑎 !)G be threshold public keys

Double sharing generation from [DXKR’23]
• Per party per unit communication cost of 𝑂(𝑛!)
• Per party total communication cost of 𝑂(𝑛!log	𝑞)

Squaring
Protocol

𝜏! , 𝜏! G

88

𝜏 , 𝜏 G 𝜏' , 𝜏' G

Step 2: Squaring protocol

Double sharing-based MPC multiplication
• Let 𝑎) and 𝑎 !) be degree 𝑡 and 2𝑡 sharing of a 𝑎 ← 𝔽
• Let 𝑎)G and 𝑎 !)G be threshold public keys

Double sharing generation from [DXKR’23]
• Per party per unit communication cost of 𝑂(𝑛!)
• Per party total communication cost of 𝑂(𝑛!log	𝑞)

Squaring
Protocol

𝜏! , 𝜏! G

89

𝜏 , 𝜏 G 𝜏' , 𝜏' G

𝜏" , 𝜏" G

⋯

Step 2: Squaring protocol

Double sharing-based MPC multiplication
• Let 𝑎) and 𝑎 !) be degree 𝑡 and 2𝑡 sharing of a 𝑎 ← 𝔽
• Let 𝑎)G and 𝑎 !)G be threshold public keys

Double sharing generation from [DXKR’23]
• Per party per unit communication cost of 𝑂(𝑛!)
• Per party total communication cost of 𝑂(𝑛!log	𝑞)

Squaring
Protocol

𝜏! , 𝜏! G

90

𝜏 , 𝜏 G 𝜏' , 𝜏' G

𝜏" , 𝜏" G

⋯

Step 2: Squaring protocol

Double sharing-based MPC multiplication
• Let 𝑎) and 𝑎 !) be degree 𝑡 and 2𝑡 sharing of a 𝑎 ← 𝔽
• Let 𝑎)G and 𝑎 !)G be threshold public keys

Double sharing generation from [DXKR’23]
• Per party per unit communication cost of 𝑂(𝑛!)
• Per party total communication cost of 𝑂(𝑛!log	𝑞)

Squaring
Protocol

𝜏! , 𝜏! G

91

𝜏 , 𝜏 G 𝜏' , 𝜏' G

𝜏" , 𝜏" G

⋯

Step 2: Squaring protocol

Double sharing-based MPC multiplication
• Let 𝑎) and 𝑎 !) be degree 𝑡 and 2𝑡 sharing of a 𝑎 ← 𝔽
• Let 𝑎)G and 𝑎 !)G be threshold public keys

Double sharing generation from [DXKR’23]
• Per party per unit communication cost of 𝑂(𝑛!)
• Per party total communication cost of 𝑂(𝑛!log	𝑞)

Squaring
Protocol

𝜏! , 𝜏! G

92

𝜏 , 𝜏 G 𝜏' , 𝜏' G

𝜏" , 𝜏" G

⋯

Step 2: Squaring protocol

Double sharing-based MPC multiplication
• Let 𝑎) and 𝑎 !) be degree 𝑡 and 2𝑡 sharing of a 𝑎 ← 𝔽
• Let 𝑎)G and 𝑎 !)G be threshold public keys

Double sharing generation from [DXKR’23]
• Per party per unit communication cost of 𝑂(𝑛!)
• Per party total communication cost of 𝑂(𝑛!log	𝑞)

Squaring
Protocol

𝜏! , 𝜏! G

93

𝜏 , 𝜏 G 𝜏' , 𝜏' G

𝜏" , 𝜏" G

⋯

Step 2: Squaring protocol

Double sharing-based MPC multiplication
• Let 𝑎) and 𝑎 !) be degree 𝑡 and 2𝑡 sharing of a 𝑎 ← 𝔽
• Let 𝑎)G and 𝑎 !)G be threshold public keys

(𝜏 , 𝑎 !))

Double sharing generation from [DXKR’23]
• Per party per unit communication cost of 𝑂(𝑛!)
• Per party total communication cost of 𝑂(𝑛!log	𝑞)

Squaring
Protocol

𝜏! , 𝜏! G

94

𝜏 , 𝜏 G 𝜏' , 𝜏' G

𝜏" , 𝜏" G

⋯

Step 2: Squaring protocol

Double sharing-based MPC multiplication
• Let 𝑎) and 𝑎 !) be degree 𝑡 and 2𝑡 sharing of a 𝑎 ← 𝔽
• Let 𝑎)G and 𝑎 !)G be threshold public keys

Reveal(𝜏 𝜏 + 𝑎 !))(𝜏 , 𝑎 !))

Double sharing generation from [DXKR’23]
• Per party per unit communication cost of 𝑂(𝑛!)
• Per party total communication cost of 𝑂(𝑛!log	𝑞)

Squaring
Protocol

𝜏! , 𝜏! G

95

𝜏 , 𝜏 G 𝜏' , 𝜏' G

𝜏" , 𝜏" G

⋯

Step 2: Squaring protocol

Double sharing-based MPC multiplication
• Let 𝑎) and 𝑎 !) be degree 𝑡 and 2𝑡 sharing of a 𝑎 ← 𝔽
• Let 𝑎)G and 𝑎 !)G be threshold public keys

Reveal(𝜏 𝜏 + 𝑎 !)) 𝑧(𝜏 , 𝑎 !))

Double sharing generation from [DXKR’23]
• Per party per unit communication cost of 𝑂(𝑛!)
• Per party total communication cost of 𝑂(𝑛!log	𝑞)

Squaring
Protocol

𝜏! , 𝜏! G

96

𝜏 , 𝜏 G 𝜏' , 𝜏' G

𝜏" , 𝜏" G

⋯

Step 2: Squaring protocol

Double sharing-based MPC multiplication
• Let 𝑎) and 𝑎 !) be degree 𝑡 and 2𝑡 sharing of a 𝑎 ← 𝔽
• Let 𝑎)G and 𝑎 !)G be threshold public keys

Reveal(𝜏 𝜏 + 𝑎 !)) 𝑧(𝜏 , 𝑎 !)) Compute 𝜏! * ≔ 𝑧 − 𝑎 *
)

Compute 𝜏! G ≔ (𝑧 − 𝑎)) ⋅ G

Double sharing generation from [DXKR’23]
• Per party per unit communication cost of 𝑂(𝑛!)
• Per party total communication cost of 𝑂(𝑛!log	𝑞)

Squaring
Protocol

𝜏! , 𝜏! G

97

𝜏 , 𝜏 G 𝜏' , 𝜏' G

𝜏" , 𝜏" G

⋯

Step 2: Squaring protocol

Double sharing-based MPC multiplication
• Let 𝑎) and 𝑎 !) be degree 𝑡 and 2𝑡 sharing of a 𝑎 ← 𝔽
• Let 𝑎)G and 𝑎 !)G be threshold public keys

Reveal(𝜏 𝜏 + 𝑎 !)) 𝑧(𝜏 , 𝑎 !)) Compute 𝜏! * ≔ 𝑧 − 𝑎 *
)

Compute 𝜏! G ≔ (𝑧 − 𝑎)) ⋅ G

Double sharing generation from [DXKR’23]
• Per party per unit communication cost of 𝑂(𝑛!)
• Per party total communication cost of 𝑂(𝑛!log	𝑞)

Squaring
Protocol

𝜏! , 𝜏! G

98

𝜏 , 𝜏 G 𝜏' , 𝜏' G

𝜏" , 𝜏" G

⋯

Step 2: Squaring protocol

Double sharing-based MPC multiplication
• Let 𝑎) and 𝑎 !) be degree 𝑡 and 2𝑡 sharing of a 𝑎 ← 𝔽
• Let 𝑎)G and 𝑎 !)G be threshold public keys

Reveal(𝜏 𝜏 + 𝑎 !)) 𝑧(𝜏 , 𝑎 !)) Compute 𝜏! * ≔ 𝑧 − 𝑎 *
)

Compute 𝜏! G ≔ (𝑧 − 𝑎)) ⋅ G

Double sharing generation from [DXKR’23]
• Per party per unit communication cost of 𝑂(𝑛!)
• Per party total communication cost of 𝑂(𝑛!log	𝑞)

Squaring
Protocol

𝜏! , 𝜏! G

99

𝜏 , 𝜏 G 𝜏' , 𝜏' G

𝜏" , 𝜏" G

⋯

Step 2: Squaring protocol

Double sharing-based MPC multiplication
• Let 𝑎) and 𝑎 !) be degree 𝑡 and 2𝑡 sharing of a 𝑎 ← 𝔽
• Let 𝑎)G and 𝑎 !)G be threshold public keys

Reveal(𝜏 𝜏 + 𝑎 !)) 𝑧(𝜏 , 𝑎 !)) Compute 𝜏! * ≔ 𝑧 − 𝑎 *
)

Compute 𝜏! G ≔ (𝑧 − 𝑎)) ⋅ G

Double sharing generation from [DXKR’23]
• Per party per unit communication cost of 𝑂(𝑛!)
• Per party total communication cost of 𝑂(𝑛!log	𝑞)

Squaring
Protocol

𝜏! , 𝜏! G

100

𝜏 , 𝜏 G 𝜏' , 𝜏' G

𝜏" , 𝜏" G

⋯

Step 2: Squaring protocol

Double sharing-based MPC multiplication
• Let 𝑎) and 𝑎 !) be degree 𝑡 and 2𝑡 sharing of a 𝑎 ← 𝔽
• Let 𝑎)G and 𝑎 !)G be threshold public keys

Reveal(𝜏 𝜏 + 𝑎 !)) 𝑧(𝜏 , 𝑎 !)) Compute 𝜏! * ≔ 𝑧 − 𝑎 *
)

Compute 𝜏! G ≔ (𝑧 − 𝑎)) ⋅ G

Double sharing generation from [DXKR’23]
• Per party per unit communication cost of 𝑂(𝑛!)
• Per party total communication cost of 𝑂(𝑛!log	𝑞)

Squaring
Protocol

𝜏! , 𝜏! G

101

𝜏 , 𝜏 G 𝜏' , 𝜏' G

𝜏" , 𝜏" G

⋯

Step 2: Squaring protocol

Double sharing-based MPC multiplication
• Let 𝑎) and 𝑎 !) be degree 𝑡 and 2𝑡 sharing of a 𝑎 ← 𝔽
• Let 𝑎)G and 𝑎 !)G be threshold public keys

Reveal(𝜏 𝜏 + 𝑎 !)) 𝑧(𝜏 , 𝑎 !)) Compute 𝜏! * ≔ 𝑧 − 𝑎 *
)

Compute 𝜏! G ≔ (𝑧 − 𝑎)) ⋅ G

Double sharing generation from [DXKR’23]
• Per party per unit communication cost of 𝑂(𝑛!)
• Per party total communication cost of 𝑂(𝑛!log	𝑞)

102

Step 3: All exponents

Exponentiation
Protocol

𝜏! , 𝜏! G

103

𝜏 , 𝜏 G

𝜏" , 𝜏" G

Step 3: All exponents

⋯𝜏' , 𝜏' G

Exponentiation
Protocol

𝜏! , 𝜏! G

104

𝜏 , 𝜏 G

𝜏" , 𝜏" G

⋯

Step 3: All exponents

⋯𝜏' , 𝜏' G
𝜏!G
𝜏G

𝜏"G

𝜏(G

Exponentiation
Protocol

𝜏! , 𝜏! G

105

𝜏 , 𝜏 G

𝜏" , 𝜏" G

⋯

Step 3: All exponents

⋯𝜏' , 𝜏' G
𝜏!G
𝜏G

𝜏"G

𝜏(G

Example: 𝜏+G

Exponentiation
Protocol

𝜏! , 𝜏! G

106

𝜏 , 𝜏 G

𝜏" , 𝜏" G

⋯

Step 3: All exponents

⋯𝜏' , 𝜏' G
𝜏!G
𝜏G

𝜏"G

𝜏(G

Example: 𝜏+G = (𝜏!⋅!𝜏)G

Exponentiation
Protocol

𝜏! , 𝜏! G

107

𝜏 , 𝜏 G

𝜏" , 𝜏" G

⋯

Step 3: All exponents

⋯𝜏' , 𝜏' G
𝜏!G
𝜏G

𝜏"G

𝜏(G

Example: 𝜏+G = (𝜏!⋅!𝜏)G = 𝜏! 𝜏!G ⋅ (𝜏G)

Exponentiation
Protocol

𝜏! , 𝜏! G

108

𝜏 , 𝜏 G

𝜏" , 𝜏" G

⋯

Step 3: All exponents

⋯𝜏' , 𝜏' G
𝜏!G
𝜏G

𝜏"G

𝜏(G

Example: 𝜏+G

Protocol:
1. Each node 𝑖 publishes 𝜏! * 𝜏!G
2. Interpolate 𝜏! * 𝜏!G 	in the exponent to compute 𝜏! 𝜏!G
3. Compute 𝜏! 𝜏!G ⋅ 𝜏G = 𝜏+G

= (𝜏!⋅!𝜏)G = 𝜏! 𝜏!G ⋅ (𝜏G)

Exponentiation
Protocol

𝜏! , 𝜏! G

109

𝜏 , 𝜏 G

𝜏" , 𝜏" G

⋯

Step 3: All exponents

⋯𝜏' , 𝜏' G
𝜏!G
𝜏G

𝜏"G

𝜏(G

Example: 𝜏+G

Protocol:
1. Each node 𝑖 publishes 𝜏! * 𝜏!G
2. Interpolate 𝜏! * 𝜏!G 	in the exponent to compute 𝜏! 𝜏!G
3. Compute 𝜏! 𝜏!G ⋅ 𝜏G = 𝜏+G

= (𝜏!⋅!𝜏)G = 𝜏! 𝜏!G ⋅ (𝜏G)

Exponentiation
Protocol

𝜏! , 𝜏! G

110

𝜏 , 𝜏 G

𝜏" , 𝜏" G

⋯

Step 3: All exponents

⋯𝜏' , 𝜏' G
𝜏!G
𝜏G

𝜏"G

𝜏(G

Example: 𝜏+G

Protocol:
1. Each node 𝑖 publishes 𝜏! * 𝜏!G
2. Interpolate 𝜏! * 𝜏!G 	in the exponent to compute 𝜏! 𝜏!G
3. Compute 𝜏! 𝜏!G ⋅ 𝜏G = 𝜏+G

= (𝜏!⋅!𝜏)G = 𝜏! 𝜏!G ⋅ (𝜏G)

Exponentiation
Protocol

𝜏! , 𝜏! G

111

𝜏 , 𝜏 G

𝜏" , 𝜏" G

⋯

Step 3: All exponents

⋯𝜏' , 𝜏' G
𝜏!G
𝜏G

𝜏"G

𝜏(G

Example: 𝜏+G

Protocol:
1. Each node 𝑖 publishes 𝜏! * 𝜏!G
2. Interpolate 𝜏! * 𝜏!G 	in the exponent to compute 𝜏! 𝜏!G
3. Compute 𝜏! 𝜏!G ⋅ 𝜏G = 𝜏+G

= (𝜏!⋅!𝜏)G = 𝜏! 𝜏!G ⋅ (𝜏G)

Exponentiation
Protocol

𝜏! , 𝜏! G

112

𝜏 , 𝜏 G

𝜏" , 𝜏" G

⋯

Step 3: All exponents

⋯𝜏' , 𝜏' G
𝜏!G
𝜏G

𝜏"G

𝜏(G

Example: 𝜏+G

Protocol:
1. Each node 𝑖 publishes 𝜏! * 𝜏!G
2. Interpolate 𝜏! * 𝜏!G 	in the exponent to compute 𝜏! 𝜏!G
3. Compute 𝜏! 𝜏!G ⋅ 𝜏G = 𝜏+G

= (𝜏!⋅!𝜏)G = 𝜏! 𝜏!G ⋅ (𝜏G)

Exponentiation
Protocol

𝜏! , 𝜏! G

113

𝜏 , 𝜏 G

𝜏" , 𝜏" G

⋯

Step 3: All exponents

⋯𝜏' , 𝜏' G
𝜏!G
𝜏G

𝜏"G

𝜏(G

Example: 𝜏+G

Protocol:
1. Each node 𝑖 publishes 𝜏! * 𝜏!G
2. Interpolate 𝜏! * 𝜏!G 	in the exponent to compute 𝜏! 𝜏!G
3. Compute 𝜏! 𝜏!G ⋅ 𝜏G = 𝜏+G

= (𝜏!⋅!𝜏)G = 𝜏! 𝜏!G ⋅ (𝜏G)

• Naively O 𝑛 per-party communication per exponent
• Batch amortization optimization to get O 1 per-party communication cost

Exponentiation
Protocol

𝜏! , 𝜏! G

114

𝜏 , 𝜏 G

𝜏" , 𝜏" G

⋯

Step 3: All exponents

⋯𝜏' , 𝜏' G
𝜏!G
𝜏G

𝜏"G

𝜏(G

Example: 𝜏+G

Protocol:
1. Each node 𝑖 publishes 𝜏! * 𝜏!G
2. Interpolate 𝜏! * 𝜏!G 	in the exponent to compute 𝜏! 𝜏!G
3. Compute 𝜏! 𝜏!G ⋅ 𝜏G = 𝜏+G

= (𝜏!⋅!𝜏)G = 𝜏! 𝜏!G ⋅ (𝜏G)

• Naively O 𝑛 per-party communication per exponent
• Batch amortization optimization to get O 1 per-party communication cost

Exponentiation
Protocol

𝜏! , 𝜏! G

115

𝜏 , 𝜏 G

𝜏" , 𝜏" G

⋯

Step 3: All exponents

⋯𝜏' , 𝜏' G
𝜏!G
𝜏G

𝜏"G

𝜏(G

Example: 𝜏+G

Protocol:
1. Each node 𝑖 publishes 𝜏! * 𝜏!G
2. Interpolate 𝜏! * 𝜏!G 	in the exponent to compute 𝜏! 𝜏!G
3. Compute 𝜏! 𝜏!G ⋅ 𝜏G = 𝜏+G

= (𝜏!⋅!𝜏)G = 𝜏! 𝜏!G ⋅ (𝜏G)

• Naively O 𝑛 per-party communication per exponent
• Batch amortization optimization to get O 1 per-party communication cost

Putting together everything

116

Putting together everything

Async.
DKG

Squaring
MPC

⋯ 𝜏

𝜏

⋯

𝜏!

𝜏'

𝜏"

Exponen-
tiation

Protocol

𝜏G
𝜏!G
𝜏(G

𝜏"G

⋯⋯

117

Putting together everything

Async.
DKG

Squaring
MPC

⋯ 𝜏

𝜏

⋯

𝜏!

𝜏'

𝜏"

Exponen-
tiation

Protocol

𝜏G
𝜏!G
𝜏(G

𝜏"G

⋯⋯

118

Comm. Cost:

Rounds:

Putting together everything

Async.
DKG

Squaring
MPC

⋯ 𝜏

𝜏

⋯

𝜏!

𝜏'

𝜏"

Exponen-
tiation

Protocol

𝜏G
𝜏!G
𝜏(G

𝜏"G

⋯⋯

119

Comm. Cost:

Rounds:
O 𝑛!

Putting together everything

Async.
DKG

Squaring
MPC

⋯ 𝜏

𝜏

⋯

𝜏!

𝜏'

𝜏"

Exponen-
tiation

Protocol

𝜏G
𝜏!G
𝜏(G

𝜏"G

⋯⋯

120

Comm. Cost:

Rounds:
O 𝑛!

O log	𝑛

Putting together everything

Async.
DKG

Squaring
MPC

⋯ 𝜏

𝜏

⋯

𝜏!

𝜏'

𝜏"

Exponen-
tiation

Protocol

𝜏G
𝜏!G
𝜏(G

𝜏"G

⋯⋯

121

Comm. Cost:

Rounds:
O 𝑛!

O log	𝑛
O 𝑛!log	𝑞

Putting together everything

Async.
DKG

Squaring
MPC

⋯ 𝜏

𝜏

⋯

𝜏!

𝜏'

𝜏"

Exponen-
tiation

Protocol

𝜏G
𝜏!G
𝜏(G

𝜏"G

⋯⋯

122

Comm. Cost:

Rounds:
O 𝑛!

O log	𝑛
O 𝑛!log	𝑞
O log	𝑞

Putting together everything

Async.
DKG

Squaring
MPC

⋯ 𝜏

𝜏

⋯

𝜏!

𝜏'

𝜏"

Exponen-
tiation

Protocol

𝜏G
𝜏!G
𝜏(G

𝜏"G

⋯⋯

123

Comm. Cost:

Rounds:
O 𝑛!

O log	𝑛
O 𝑛!log	𝑞
O log	𝑞

O 𝑞

Putting together everything

Async.
DKG

Squaring
MPC

⋯ 𝜏

𝜏

⋯

𝜏!

𝜏'

𝜏"

Exponen-
tiation

Protocol

𝜏G
𝜏!G
𝜏(G

𝜏"G

⋯⋯

124

Comm. Cost:

Rounds:
O 𝑛!

O log	𝑛
O 𝑛!log	𝑞
O log	𝑞

O 𝑞
O log	𝑞

Putting together everything

Async.
DKG

Squaring
MPC

⋯ 𝜏

𝜏

⋯

𝜏!

𝜏'

𝜏"

Exponen-
tiation

Protocol

𝜏G
𝜏!G
𝜏(G

𝜏"G

⋯⋯

125

Comm. Cost:

Rounds:
O 𝑛!

O log	𝑛
O 𝑛!log	𝑞
O log	𝑞

O 𝑞
O log	𝑞

Total per party communication cost: O 𝑞 + 𝑛!log	𝑞

Putting together everything

Async.
DKG

Squaring
MPC

⋯ 𝜏

𝜏

⋯

𝜏!

𝜏'

𝜏"

Exponen-
tiation

Protocol

𝜏G
𝜏!G
𝜏(G

𝜏"G

⋯⋯

126

Comm. Cost:

Rounds:
O 𝑛!

O log	𝑛
O 𝑛!log	𝑞
O log	𝑞

O 𝑞
O log	𝑞

Total per party communication cost: O 𝑞 + 𝑛!log	𝑞

Expected rounds: 𝑂 log	𝑛 + log	𝑞 . Can me made O(log	𝑞)

Implementation and Evaluation

127

• Implemented in python with rust for cryptography

• Available at https://github.com/sourav1547/qsdh-py

• Evaluation with up to 128 AWS nodes

• Round-robin protocol as baseline

• 𝑛 𝑀 as bandwidth usage of broadcast

• Computation cost of broadcast is free

128

Implementation Details

https://github.com/sourav1547/qsdh-py

• Implemented in python with rust for cryptography

• Available at https://github.com/sourav1547/qsdh-py

• Evaluation with up to 128 AWS nodes

• Round-robin protocol as baseline

• 𝑛 𝑀 as bandwidth usage of broadcast

• Computation cost of broadcast is free

129

Implementation Details

https://github.com/sourav1547/qsdh-py

• Implemented in python with rust for cryptography

• Available at https://github.com/sourav1547/qsdh-py

• Evaluation with up to 128 AWS nodes

• Round-robin protocol as baseline

• 𝑛 𝑀 as bandwidth usage of broadcast

• Computation cost of broadcast is free

130

Implementation Details

https://github.com/sourav1547/qsdh-py

• Implemented in python with rust for cryptography

• Available at https://github.com/sourav1547/qsdh-py

• Evaluation with up to 128 AWS nodes

• Round-robin protocol as baseline

• 𝑛 𝑀 as bandwidth usage of broadcast

• Computation cost of broadcast is free

131

Implementation Details

https://github.com/sourav1547/qsdh-py

• Implemented in python with rust for cryptography

• Available at https://github.com/sourav1547/qsdh-py

• Evaluation with up to 128 AWS nodes

• Round-robin protocol as baseline

• 𝑛 𝑀 as bandwidth usage of broadcast

• Computation cost of broadcast is free

132

Implementation Details

https://github.com/sourav1547/qsdh-py

• Implemented in python with rust for cryptography

• Available at https://github.com/sourav1547/qsdh-py

• Evaluation with up to 128 AWS nodes

• Round-robin protocol as baseline

• 𝑛 𝑀 as bandwidth usage of broadcast

• Computation cost of broadcast is free

133

Implementation Details

https://github.com/sourav1547/qsdh-py

• Implemented in python with rust for cryptography

• Available at https://github.com/sourav1547/qsdh-py

• Evaluation with up to 128 AWS nodes

• Round-robin protocol as baseline

• 𝑛 𝑀 as bandwidth usage of broadcast

• Computation cost of broadcast is free

134

Implementation Details

https://github.com/sourav1547/qsdh-py

135

Evaluation results: Runtime

136

Evaluation results: Runtime

16 32 64 128
0

50

100

150

200

Number of parties

B
an

dw
id

th
(in

M
B

)

q = 214 q = 216, This work.
q = 214 q = 216, Baseline.

Figure 5: Per party median bandwidth usage (in Megabytes), mea-
sured as the amount of data sent by a party in the entire protocol.

16 32 64 128
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

Number of parties

R
un

tim
e

(in
se

co
nd

s)

Figure 6: Median runtime (in seconds), i.e., the time between the start
of the protocol and the time parties output the q-SDH parameters.

64 parties and q = 216, our protocol takes approximately
1037 seconds, whereas the baseline protocol takes 3580 sec-
onds (3.4⇥ faster). Similarly, with 128 parties and q = 218,
our protocol takes approximately 4721 seconds compared to
28883 seconds (not shown in the figure) taken by the baseline
protocol, hence 6.1⇥ faster than the baseline protocol. Note
that, for the baseline, we only measure the runtime without any
networking component. Thus, if we also include the runtime
of the synchronous broadcast, the benefits of our protocol will
be even more significant.

In Table IV, we break down the runtime of different phases
in our protocol for different choices of n and q. In Table IV, the
setup includes the runtime of both ADKG and random double-
sharing protocol. We merge them as our implementation runs
these phases such that they share some building blocks. More-
over, both ADKG and the random double-sharing phase use the
same invocation of the consensus protocol. Based on Table IV,
we conclude the following.

First, the powers-of-two phase takes less than 2% of the
runtime in all experiments. Recall from Table III, during the
powers-of-two phase, each party performs O(n log q) group
multiplications and sends O(n log q) group elements. This is
significantly smaller than the computation cost and bandwidth
usage of setup and all powers phase. However, the powers-
of-two phase requires O(log q) rounds of interaction, which is
comparable to the setup and all powers phases. This illustrates
that the number of communication rounds is not a bottleneck.

Second, for smaller n, the runtime of the all-powers phase
contributes to almost all of the runtime of our protocol, espe-
cially for large q. This is as expected because each party needs
to perform O(n2 log q) and O(q log n) group multiplications
during the setup phase and all powers phase, respectively. For
larger q and smaller n, the latter is significantly larger than
the former. However, with increasing n, as with the case of
n = 124, q = 214, the computation cost of the setup phase
also becomes significant. Finally, as expected, for n = 128,
with larger q = 218, the runtime of the all powers phase again
starts to dominate the total runtime.

Bandwidth usage. We report the per-party bandwidth usage,
i.e., the amount of data (in Megabytes) each party sends during

Table V: Bandwidth usage of different phases of our protocol (in
% of total bandwidth usages). The setup phase corresponds to the
combined bandwidth usages of both ADKG and the random double-
sharing phase. The tuple represents (n, q).

Protocol Phase (16, 214) (16, 218) (128, 214) (128, 218)

Setup 34.4 4.1 95.2 68.8
Powers-of-two 2.2 0.3 0.9 0.7
All powers 63.4 95.6 3.9 30.5

the entire protocol, in Figure 5. The solid and dashed lines
represent the per-party bandwidth usage of our protocol and
baseline, respectively. Consistent with the analysis from §VI,
the bandwidth usage in our protocol increases quadratically
with the number of parties and linear in the q. We also report
the breakdown of bandwidth usage across different phases of
our protocol in Table V.

Our evaluation illustrates that parties in our protocol incur
significantly less bandwidth usage than the baseline. For ex-
ample, with 32 parties and q = 216, each party needs to send
13.57 Megabytes (MB) of data in our protocol, compared to 96
MB of data in the baseline protocol (7⇥ reduction). Similarly,
with 128 parties and q = 218, the bandwidth usage in our
protocol is 118.17 MB, compared to 1536 MB in the baseline
protocol; hence, 13⇥ less bandwidth usage than the baseline.
Again, for the baseline, we only measure the bandwidth usage
as nq bytes, where  = 48 is the size of each G1 element, and
do not account for any bandwidth usage for the synchronous
broadcast protocol. If we also include the bandwidth usage
due to the synchronous broadcast channel, the benefits of our
protocol will be even bigger.

Similar to the breakdown of runtime across different
phases, in Table IV, we illustrate the breakdown of bandwidth
usage across different phases of our protocol for different
choices of n and q. Again, in Table V, the setup includes
the runtime of both ADKG and the random double-sharing
protocol. From Table V, we draw a few conclusions.

First, for the same reason as the runtime, the bandwidth
usage of the powers-of-two phase takes less than 3% of the
total bandwidth usage in all experiments.

Second, unlike runtime, the bandwidth usage in the setup

12

137

Evaluation results: Runtime

16 32 64 128
0

50

100

150

200

Number of parties

B
an

dw
id

th
(in

M
B

)

q = 214 q = 216, This work.
q = 214 q = 216, Baseline.

Figure 5: Per party median bandwidth usage (in Megabytes), mea-
sured as the amount of data sent by a party in the entire protocol.

16 32 64 128
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

Number of parties

R
un

tim
e

(in
se

co
nd

s)

Figure 6: Median runtime (in seconds), i.e., the time between the start
of the protocol and the time parties output the q-SDH parameters.

64 parties and q = 216, our protocol takes approximately
1037 seconds, whereas the baseline protocol takes 3580 sec-
onds (3.4⇥ faster). Similarly, with 128 parties and q = 218,
our protocol takes approximately 4721 seconds compared to
28883 seconds (not shown in the figure) taken by the baseline
protocol, hence 6.1⇥ faster than the baseline protocol. Note
that, for the baseline, we only measure the runtime without any
networking component. Thus, if we also include the runtime
of the synchronous broadcast, the benefits of our protocol will
be even more significant.

In Table IV, we break down the runtime of different phases
in our protocol for different choices of n and q. In Table IV, the
setup includes the runtime of both ADKG and random double-
sharing protocol. We merge them as our implementation runs
these phases such that they share some building blocks. More-
over, both ADKG and the random double-sharing phase use the
same invocation of the consensus protocol. Based on Table IV,
we conclude the following.

First, the powers-of-two phase takes less than 2% of the
runtime in all experiments. Recall from Table III, during the
powers-of-two phase, each party performs O(n log q) group
multiplications and sends O(n log q) group elements. This is
significantly smaller than the computation cost and bandwidth
usage of setup and all powers phase. However, the powers-
of-two phase requires O(log q) rounds of interaction, which is
comparable to the setup and all powers phases. This illustrates
that the number of communication rounds is not a bottleneck.

Second, for smaller n, the runtime of the all-powers phase
contributes to almost all of the runtime of our protocol, espe-
cially for large q. This is as expected because each party needs
to perform O(n2 log q) and O(q log n) group multiplications
during the setup phase and all powers phase, respectively. For
larger q and smaller n, the latter is significantly larger than
the former. However, with increasing n, as with the case of
n = 124, q = 214, the computation cost of the setup phase
also becomes significant. Finally, as expected, for n = 128,
with larger q = 218, the runtime of the all powers phase again
starts to dominate the total runtime.

Bandwidth usage. We report the per-party bandwidth usage,
i.e., the amount of data (in Megabytes) each party sends during

Table V: Bandwidth usage of different phases of our protocol (in
% of total bandwidth usages). The setup phase corresponds to the
combined bandwidth usages of both ADKG and the random double-
sharing phase. The tuple represents (n, q).

Protocol Phase (16, 214) (16, 218) (128, 214) (128, 218)

Setup 34.4 4.1 95.2 68.8
Powers-of-two 2.2 0.3 0.9 0.7
All powers 63.4 95.6 3.9 30.5

the entire protocol, in Figure 5. The solid and dashed lines
represent the per-party bandwidth usage of our protocol and
baseline, respectively. Consistent with the analysis from §VI,
the bandwidth usage in our protocol increases quadratically
with the number of parties and linear in the q. We also report
the breakdown of bandwidth usage across different phases of
our protocol in Table V.

Our evaluation illustrates that parties in our protocol incur
significantly less bandwidth usage than the baseline. For ex-
ample, with 32 parties and q = 216, each party needs to send
13.57 Megabytes (MB) of data in our protocol, compared to 96
MB of data in the baseline protocol (7⇥ reduction). Similarly,
with 128 parties and q = 218, the bandwidth usage in our
protocol is 118.17 MB, compared to 1536 MB in the baseline
protocol; hence, 13⇥ less bandwidth usage than the baseline.
Again, for the baseline, we only measure the bandwidth usage
as nq bytes, where  = 48 is the size of each G1 element, and
do not account for any bandwidth usage for the synchronous
broadcast protocol. If we also include the bandwidth usage
due to the synchronous broadcast channel, the benefits of our
protocol will be even bigger.

Similar to the breakdown of runtime across different
phases, in Table IV, we illustrate the breakdown of bandwidth
usage across different phases of our protocol for different
choices of n and q. Again, in Table V, the setup includes
the runtime of both ADKG and the random double-sharing
protocol. From Table V, we draw a few conclusions.

First, for the same reason as the runtime, the bandwidth
usage of the powers-of-two phase takes less than 3% of the
total bandwidth usage in all experiments.

Second, unlike runtime, the bandwidth usage in the setup

12

16 32 64 128
0

50

100

150

200

Number of parties

B
an

dw
id

th
(in

M
B

)

q = 214 q = 216, This work.
q = 214 q = 216, Baseline.

Figure 5: Per party median bandwidth usage (in Megabytes), mea-
sured as the amount of data sent by a party in the entire protocol.

16 32 64 128
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

Number of parties

R
un

tim
e

(in
se

co
nd

s)

Figure 6: Median runtime (in seconds), i.e., the time between the start
of the protocol and the time parties output the q-SDH parameters.

64 parties and q = 216, our protocol takes approximately
1037 seconds, whereas the baseline protocol takes 3580 sec-
onds (3.4⇥ faster). Similarly, with 128 parties and q = 218,
our protocol takes approximately 4721 seconds compared to
28883 seconds (not shown in the figure) taken by the baseline
protocol, hence 6.1⇥ faster than the baseline protocol. Note
that, for the baseline, we only measure the runtime without any
networking component. Thus, if we also include the runtime
of the synchronous broadcast, the benefits of our protocol will
be even more significant.

In Table IV, we break down the runtime of different phases
in our protocol for different choices of n and q. In Table IV, the
setup includes the runtime of both ADKG and random double-
sharing protocol. We merge them as our implementation runs
these phases such that they share some building blocks. More-
over, both ADKG and the random double-sharing phase use the
same invocation of the consensus protocol. Based on Table IV,
we conclude the following.

First, the powers-of-two phase takes less than 2% of the
runtime in all experiments. Recall from Table III, during the
powers-of-two phase, each party performs O(n log q) group
multiplications and sends O(n log q) group elements. This is
significantly smaller than the computation cost and bandwidth
usage of setup and all powers phase. However, the powers-
of-two phase requires O(log q) rounds of interaction, which is
comparable to the setup and all powers phases. This illustrates
that the number of communication rounds is not a bottleneck.

Second, for smaller n, the runtime of the all-powers phase
contributes to almost all of the runtime of our protocol, espe-
cially for large q. This is as expected because each party needs
to perform O(n2 log q) and O(q log n) group multiplications
during the setup phase and all powers phase, respectively. For
larger q and smaller n, the latter is significantly larger than
the former. However, with increasing n, as with the case of
n = 124, q = 214, the computation cost of the setup phase
also becomes significant. Finally, as expected, for n = 128,
with larger q = 218, the runtime of the all powers phase again
starts to dominate the total runtime.

Bandwidth usage. We report the per-party bandwidth usage,
i.e., the amount of data (in Megabytes) each party sends during

Table V: Bandwidth usage of different phases of our protocol (in
% of total bandwidth usages). The setup phase corresponds to the
combined bandwidth usages of both ADKG and the random double-
sharing phase. The tuple represents (n, q).

Protocol Phase (16, 214) (16, 218) (128, 214) (128, 218)

Setup 34.4 4.1 95.2 68.8
Powers-of-two 2.2 0.3 0.9 0.7
All powers 63.4 95.6 3.9 30.5

the entire protocol, in Figure 5. The solid and dashed lines
represent the per-party bandwidth usage of our protocol and
baseline, respectively. Consistent with the analysis from §VI,
the bandwidth usage in our protocol increases quadratically
with the number of parties and linear in the q. We also report
the breakdown of bandwidth usage across different phases of
our protocol in Table V.

Our evaluation illustrates that parties in our protocol incur
significantly less bandwidth usage than the baseline. For ex-
ample, with 32 parties and q = 216, each party needs to send
13.57 Megabytes (MB) of data in our protocol, compared to 96
MB of data in the baseline protocol (7⇥ reduction). Similarly,
with 128 parties and q = 218, the bandwidth usage in our
protocol is 118.17 MB, compared to 1536 MB in the baseline
protocol; hence, 13⇥ less bandwidth usage than the baseline.
Again, for the baseline, we only measure the bandwidth usage
as nq bytes, where  = 48 is the size of each G1 element, and
do not account for any bandwidth usage for the synchronous
broadcast protocol. If we also include the bandwidth usage
due to the synchronous broadcast channel, the benefits of our
protocol will be even bigger.

Similar to the breakdown of runtime across different
phases, in Table IV, we illustrate the breakdown of bandwidth
usage across different phases of our protocol for different
choices of n and q. Again, in Table V, the setup includes
the runtime of both ADKG and the random double-sharing
protocol. From Table V, we draw a few conclusions.

First, for the same reason as the runtime, the bandwidth
usage of the powers-of-two phase takes less than 3% of the
total bandwidth usage in all experiments.

Second, unlike runtime, the bandwidth usage in the setup

12

138

Evaluation results: Runtime

16 32 64 128
0

50

100

150

200

Number of parties

B
an

dw
id

th
(in

M
B

)

q = 214 q = 216, This work.
q = 214 q = 216, Baseline.

Figure 5: Per party median bandwidth usage (in Megabytes), mea-
sured as the amount of data sent by a party in the entire protocol.

16 32 64 128
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

Number of parties

R
un

tim
e

(in
se

co
nd

s)

Figure 6: Median runtime (in seconds), i.e., the time between the start
of the protocol and the time parties output the q-SDH parameters.

64 parties and q = 216, our protocol takes approximately
1037 seconds, whereas the baseline protocol takes 3580 sec-
onds (3.4⇥ faster). Similarly, with 128 parties and q = 218,
our protocol takes approximately 4721 seconds compared to
28883 seconds (not shown in the figure) taken by the baseline
protocol, hence 6.1⇥ faster than the baseline protocol. Note
that, for the baseline, we only measure the runtime without any
networking component. Thus, if we also include the runtime
of the synchronous broadcast, the benefits of our protocol will
be even more significant.

In Table IV, we break down the runtime of different phases
in our protocol for different choices of n and q. In Table IV, the
setup includes the runtime of both ADKG and random double-
sharing protocol. We merge them as our implementation runs
these phases such that they share some building blocks. More-
over, both ADKG and the random double-sharing phase use the
same invocation of the consensus protocol. Based on Table IV,
we conclude the following.

First, the powers-of-two phase takes less than 2% of the
runtime in all experiments. Recall from Table III, during the
powers-of-two phase, each party performs O(n log q) group
multiplications and sends O(n log q) group elements. This is
significantly smaller than the computation cost and bandwidth
usage of setup and all powers phase. However, the powers-
of-two phase requires O(log q) rounds of interaction, which is
comparable to the setup and all powers phases. This illustrates
that the number of communication rounds is not a bottleneck.

Second, for smaller n, the runtime of the all-powers phase
contributes to almost all of the runtime of our protocol, espe-
cially for large q. This is as expected because each party needs
to perform O(n2 log q) and O(q log n) group multiplications
during the setup phase and all powers phase, respectively. For
larger q and smaller n, the latter is significantly larger than
the former. However, with increasing n, as with the case of
n = 124, q = 214, the computation cost of the setup phase
also becomes significant. Finally, as expected, for n = 128,
with larger q = 218, the runtime of the all powers phase again
starts to dominate the total runtime.

Bandwidth usage. We report the per-party bandwidth usage,
i.e., the amount of data (in Megabytes) each party sends during

Table V: Bandwidth usage of different phases of our protocol (in
% of total bandwidth usages). The setup phase corresponds to the
combined bandwidth usages of both ADKG and the random double-
sharing phase. The tuple represents (n, q).

Protocol Phase (16, 214) (16, 218) (128, 214) (128, 218)

Setup 34.4 4.1 95.2 68.8
Powers-of-two 2.2 0.3 0.9 0.7
All powers 63.4 95.6 3.9 30.5

the entire protocol, in Figure 5. The solid and dashed lines
represent the per-party bandwidth usage of our protocol and
baseline, respectively. Consistent with the analysis from §VI,
the bandwidth usage in our protocol increases quadratically
with the number of parties and linear in the q. We also report
the breakdown of bandwidth usage across different phases of
our protocol in Table V.

Our evaluation illustrates that parties in our protocol incur
significantly less bandwidth usage than the baseline. For ex-
ample, with 32 parties and q = 216, each party needs to send
13.57 Megabytes (MB) of data in our protocol, compared to 96
MB of data in the baseline protocol (7⇥ reduction). Similarly,
with 128 parties and q = 218, the bandwidth usage in our
protocol is 118.17 MB, compared to 1536 MB in the baseline
protocol; hence, 13⇥ less bandwidth usage than the baseline.
Again, for the baseline, we only measure the bandwidth usage
as nq bytes, where  = 48 is the size of each G1 element, and
do not account for any bandwidth usage for the synchronous
broadcast protocol. If we also include the bandwidth usage
due to the synchronous broadcast channel, the benefits of our
protocol will be even bigger.

Similar to the breakdown of runtime across different
phases, in Table IV, we illustrate the breakdown of bandwidth
usage across different phases of our protocol for different
choices of n and q. Again, in Table V, the setup includes
the runtime of both ADKG and the random double-sharing
protocol. From Table V, we draw a few conclusions.

First, for the same reason as the runtime, the bandwidth
usage of the powers-of-two phase takes less than 3% of the
total bandwidth usage in all experiments.

Second, unlike runtime, the bandwidth usage in the setup

12

For example, with 𝑞 = 2$-, Ours: 1037 seconds, Baseline: 3580 seconds (3.4×)

16 32 64 128
0

50

100

150

200

Number of parties

B
an

dw
id

th
(in

M
B

)

q = 214 q = 216, This work.
q = 214 q = 216, Baseline.

Figure 5: Per party median bandwidth usage (in Megabytes), mea-
sured as the amount of data sent by a party in the entire protocol.

16 32 64 128
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

Number of parties

R
un

tim
e

(in
se

co
nd

s)

Figure 6: Median runtime (in seconds), i.e., the time between the start
of the protocol and the time parties output the q-SDH parameters.

64 parties and q = 216, our protocol takes approximately
1037 seconds, whereas the baseline protocol takes 3580 sec-
onds (3.4⇥ faster). Similarly, with 128 parties and q = 218,
our protocol takes approximately 4721 seconds compared to
28883 seconds (not shown in the figure) taken by the baseline
protocol, hence 6.1⇥ faster than the baseline protocol. Note
that, for the baseline, we only measure the runtime without any
networking component. Thus, if we also include the runtime
of the synchronous broadcast, the benefits of our protocol will
be even more significant.

In Table IV, we break down the runtime of different phases
in our protocol for different choices of n and q. In Table IV, the
setup includes the runtime of both ADKG and random double-
sharing protocol. We merge them as our implementation runs
these phases such that they share some building blocks. More-
over, both ADKG and the random double-sharing phase use the
same invocation of the consensus protocol. Based on Table IV,
we conclude the following.

First, the powers-of-two phase takes less than 2% of the
runtime in all experiments. Recall from Table III, during the
powers-of-two phase, each party performs O(n log q) group
multiplications and sends O(n log q) group elements. This is
significantly smaller than the computation cost and bandwidth
usage of setup and all powers phase. However, the powers-
of-two phase requires O(log q) rounds of interaction, which is
comparable to the setup and all powers phases. This illustrates
that the number of communication rounds is not a bottleneck.

Second, for smaller n, the runtime of the all-powers phase
contributes to almost all of the runtime of our protocol, espe-
cially for large q. This is as expected because each party needs
to perform O(n2 log q) and O(q log n) group multiplications
during the setup phase and all powers phase, respectively. For
larger q and smaller n, the latter is significantly larger than
the former. However, with increasing n, as with the case of
n = 124, q = 214, the computation cost of the setup phase
also becomes significant. Finally, as expected, for n = 128,
with larger q = 218, the runtime of the all powers phase again
starts to dominate the total runtime.

Bandwidth usage. We report the per-party bandwidth usage,
i.e., the amount of data (in Megabytes) each party sends during

Table V: Bandwidth usage of different phases of our protocol (in
% of total bandwidth usages). The setup phase corresponds to the
combined bandwidth usages of both ADKG and the random double-
sharing phase. The tuple represents (n, q).

Protocol Phase (16, 214) (16, 218) (128, 214) (128, 218)

Setup 34.4 4.1 95.2 68.8
Powers-of-two 2.2 0.3 0.9 0.7
All powers 63.4 95.6 3.9 30.5

the entire protocol, in Figure 5. The solid and dashed lines
represent the per-party bandwidth usage of our protocol and
baseline, respectively. Consistent with the analysis from §VI,
the bandwidth usage in our protocol increases quadratically
with the number of parties and linear in the q. We also report
the breakdown of bandwidth usage across different phases of
our protocol in Table V.

Our evaluation illustrates that parties in our protocol incur
significantly less bandwidth usage than the baseline. For ex-
ample, with 32 parties and q = 216, each party needs to send
13.57 Megabytes (MB) of data in our protocol, compared to 96
MB of data in the baseline protocol (7⇥ reduction). Similarly,
with 128 parties and q = 218, the bandwidth usage in our
protocol is 118.17 MB, compared to 1536 MB in the baseline
protocol; hence, 13⇥ less bandwidth usage than the baseline.
Again, for the baseline, we only measure the bandwidth usage
as nq bytes, where  = 48 is the size of each G1 element, and
do not account for any bandwidth usage for the synchronous
broadcast protocol. If we also include the bandwidth usage
due to the synchronous broadcast channel, the benefits of our
protocol will be even bigger.

Similar to the breakdown of runtime across different
phases, in Table IV, we illustrate the breakdown of bandwidth
usage across different phases of our protocol for different
choices of n and q. Again, in Table V, the setup includes
the runtime of both ADKG and the random double-sharing
protocol. From Table V, we draw a few conclusions.

First, for the same reason as the runtime, the bandwidth
usage of the powers-of-two phase takes less than 3% of the
total bandwidth usage in all experiments.

Second, unlike runtime, the bandwidth usage in the setup

12

139

Evaluation results: Bandwidth Usage

140

Evaluation results: Bandwidth Usage

16 32 64 128
0

50

100

150

200

Number of parties

B
an

dw
id

th
(in

M
B

)

q = 214 q = 216, This work.
q = 214 q = 216, Baseline.

Figure 5: Per party median bandwidth usage (in Megabytes), mea-
sured as the amount of data sent by a party in the entire protocol.

16 32 64 128
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

Number of parties

R
un

tim
e

(in
se

co
nd

s)

Figure 6: Median runtime (in seconds), i.e., the time between the start
of the protocol and the time parties output the q-SDH parameters.

64 parties and q = 216, our protocol takes approximately
1037 seconds, whereas the baseline protocol takes 3580 sec-
onds (3.4⇥ faster). Similarly, with 128 parties and q = 218,
our protocol takes approximately 4721 seconds compared to
28883 seconds (not shown in the figure) taken by the baseline
protocol, hence 6.1⇥ faster than the baseline protocol. Note
that, for the baseline, we only measure the runtime without any
networking component. Thus, if we also include the runtime
of the synchronous broadcast, the benefits of our protocol will
be even more significant.

In Table IV, we break down the runtime of different phases
in our protocol for different choices of n and q. In Table IV, the
setup includes the runtime of both ADKG and random double-
sharing protocol. We merge them as our implementation runs
these phases such that they share some building blocks. More-
over, both ADKG and the random double-sharing phase use the
same invocation of the consensus protocol. Based on Table IV,
we conclude the following.

First, the powers-of-two phase takes less than 2% of the
runtime in all experiments. Recall from Table III, during the
powers-of-two phase, each party performs O(n log q) group
multiplications and sends O(n log q) group elements. This is
significantly smaller than the computation cost and bandwidth
usage of setup and all powers phase. However, the powers-
of-two phase requires O(log q) rounds of interaction, which is
comparable to the setup and all powers phases. This illustrates
that the number of communication rounds is not a bottleneck.

Second, for smaller n, the runtime of the all-powers phase
contributes to almost all of the runtime of our protocol, espe-
cially for large q. This is as expected because each party needs
to perform O(n2 log q) and O(q log n) group multiplications
during the setup phase and all powers phase, respectively. For
larger q and smaller n, the latter is significantly larger than
the former. However, with increasing n, as with the case of
n = 124, q = 214, the computation cost of the setup phase
also becomes significant. Finally, as expected, for n = 128,
with larger q = 218, the runtime of the all powers phase again
starts to dominate the total runtime.

Bandwidth usage. We report the per-party bandwidth usage,
i.e., the amount of data (in Megabytes) each party sends during

Table V: Bandwidth usage of different phases of our protocol (in
% of total bandwidth usages). The setup phase corresponds to the
combined bandwidth usages of both ADKG and the random double-
sharing phase. The tuple represents (n, q).

Protocol Phase (16, 214) (16, 218) (128, 214) (128, 218)

Setup 34.4 4.1 95.2 68.8
Powers-of-two 2.2 0.3 0.9 0.7
All powers 63.4 95.6 3.9 30.5

the entire protocol, in Figure 5. The solid and dashed lines
represent the per-party bandwidth usage of our protocol and
baseline, respectively. Consistent with the analysis from §VI,
the bandwidth usage in our protocol increases quadratically
with the number of parties and linear in the q. We also report
the breakdown of bandwidth usage across different phases of
our protocol in Table V.

Our evaluation illustrates that parties in our protocol incur
significantly less bandwidth usage than the baseline. For ex-
ample, with 32 parties and q = 216, each party needs to send
13.57 Megabytes (MB) of data in our protocol, compared to 96
MB of data in the baseline protocol (7⇥ reduction). Similarly,
with 128 parties and q = 218, the bandwidth usage in our
protocol is 118.17 MB, compared to 1536 MB in the baseline
protocol; hence, 13⇥ less bandwidth usage than the baseline.
Again, for the baseline, we only measure the bandwidth usage
as nq bytes, where  = 48 is the size of each G1 element, and
do not account for any bandwidth usage for the synchronous
broadcast protocol. If we also include the bandwidth usage
due to the synchronous broadcast channel, the benefits of our
protocol will be even bigger.

Similar to the breakdown of runtime across different
phases, in Table IV, we illustrate the breakdown of bandwidth
usage across different phases of our protocol for different
choices of n and q. Again, in Table V, the setup includes
the runtime of both ADKG and the random double-sharing
protocol. From Table V, we draw a few conclusions.

First, for the same reason as the runtime, the bandwidth
usage of the powers-of-two phase takes less than 3% of the
total bandwidth usage in all experiments.

Second, unlike runtime, the bandwidth usage in the setup

12

141

Evaluation results: Bandwidth Usage

16 32 64 128
0

50

100

150

200

Number of parties

B
an

dw
id

th
(in

M
B

)

q = 214 q = 216, This work.
q = 214 q = 216, Baseline.

Figure 5: Per party median bandwidth usage (in Megabytes), mea-
sured as the amount of data sent by a party in the entire protocol.

16 32 64 128
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

Number of parties

R
un

tim
e

(in
se

co
nd

s)

Figure 6: Median runtime (in seconds), i.e., the time between the start
of the protocol and the time parties output the q-SDH parameters.

64 parties and q = 216, our protocol takes approximately
1037 seconds, whereas the baseline protocol takes 3580 sec-
onds (3.4⇥ faster). Similarly, with 128 parties and q = 218,
our protocol takes approximately 4721 seconds compared to
28883 seconds (not shown in the figure) taken by the baseline
protocol, hence 6.1⇥ faster than the baseline protocol. Note
that, for the baseline, we only measure the runtime without any
networking component. Thus, if we also include the runtime
of the synchronous broadcast, the benefits of our protocol will
be even more significant.

In Table IV, we break down the runtime of different phases
in our protocol for different choices of n and q. In Table IV, the
setup includes the runtime of both ADKG and random double-
sharing protocol. We merge them as our implementation runs
these phases such that they share some building blocks. More-
over, both ADKG and the random double-sharing phase use the
same invocation of the consensus protocol. Based on Table IV,
we conclude the following.

First, the powers-of-two phase takes less than 2% of the
runtime in all experiments. Recall from Table III, during the
powers-of-two phase, each party performs O(n log q) group
multiplications and sends O(n log q) group elements. This is
significantly smaller than the computation cost and bandwidth
usage of setup and all powers phase. However, the powers-
of-two phase requires O(log q) rounds of interaction, which is
comparable to the setup and all powers phases. This illustrates
that the number of communication rounds is not a bottleneck.

Second, for smaller n, the runtime of the all-powers phase
contributes to almost all of the runtime of our protocol, espe-
cially for large q. This is as expected because each party needs
to perform O(n2 log q) and O(q log n) group multiplications
during the setup phase and all powers phase, respectively. For
larger q and smaller n, the latter is significantly larger than
the former. However, with increasing n, as with the case of
n = 124, q = 214, the computation cost of the setup phase
also becomes significant. Finally, as expected, for n = 128,
with larger q = 218, the runtime of the all powers phase again
starts to dominate the total runtime.

Bandwidth usage. We report the per-party bandwidth usage,
i.e., the amount of data (in Megabytes) each party sends during

Table V: Bandwidth usage of different phases of our protocol (in
% of total bandwidth usages). The setup phase corresponds to the
combined bandwidth usages of both ADKG and the random double-
sharing phase. The tuple represents (n, q).

Protocol Phase (16, 214) (16, 218) (128, 214) (128, 218)

Setup 34.4 4.1 95.2 68.8
Powers-of-two 2.2 0.3 0.9 0.7
All powers 63.4 95.6 3.9 30.5

the entire protocol, in Figure 5. The solid and dashed lines
represent the per-party bandwidth usage of our protocol and
baseline, respectively. Consistent with the analysis from §VI,
the bandwidth usage in our protocol increases quadratically
with the number of parties and linear in the q. We also report
the breakdown of bandwidth usage across different phases of
our protocol in Table V.

Our evaluation illustrates that parties in our protocol incur
significantly less bandwidth usage than the baseline. For ex-
ample, with 32 parties and q = 216, each party needs to send
13.57 Megabytes (MB) of data in our protocol, compared to 96
MB of data in the baseline protocol (7⇥ reduction). Similarly,
with 128 parties and q = 218, the bandwidth usage in our
protocol is 118.17 MB, compared to 1536 MB in the baseline
protocol; hence, 13⇥ less bandwidth usage than the baseline.
Again, for the baseline, we only measure the bandwidth usage
as nq bytes, where  = 48 is the size of each G1 element, and
do not account for any bandwidth usage for the synchronous
broadcast protocol. If we also include the bandwidth usage
due to the synchronous broadcast channel, the benefits of our
protocol will be even bigger.

Similar to the breakdown of runtime across different
phases, in Table IV, we illustrate the breakdown of bandwidth
usage across different phases of our protocol for different
choices of n and q. Again, in Table V, the setup includes
the runtime of both ADKG and the random double-sharing
protocol. From Table V, we draw a few conclusions.

First, for the same reason as the runtime, the bandwidth
usage of the powers-of-two phase takes less than 3% of the
total bandwidth usage in all experiments.

Second, unlike runtime, the bandwidth usage in the setup

12

16 32 64 128
0

50

100

150

200

Number of parties

B
an

dw
id

th
(in

M
B

)

q = 214 q = 216, This work.
q = 214 q = 216, Baseline.

Figure 5: Per party median bandwidth usage (in Megabytes), mea-
sured as the amount of data sent by a party in the entire protocol.

16 32 64 128
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

Number of parties

R
un

tim
e

(in
se

co
nd

s)

Figure 6: Median runtime (in seconds), i.e., the time between the start
of the protocol and the time parties output the q-SDH parameters.

64 parties and q = 216, our protocol takes approximately
1037 seconds, whereas the baseline protocol takes 3580 sec-
onds (3.4⇥ faster). Similarly, with 128 parties and q = 218,
our protocol takes approximately 4721 seconds compared to
28883 seconds (not shown in the figure) taken by the baseline
protocol, hence 6.1⇥ faster than the baseline protocol. Note
that, for the baseline, we only measure the runtime without any
networking component. Thus, if we also include the runtime
of the synchronous broadcast, the benefits of our protocol will
be even more significant.

In Table IV, we break down the runtime of different phases
in our protocol for different choices of n and q. In Table IV, the
setup includes the runtime of both ADKG and random double-
sharing protocol. We merge them as our implementation runs
these phases such that they share some building blocks. More-
over, both ADKG and the random double-sharing phase use the
same invocation of the consensus protocol. Based on Table IV,
we conclude the following.

First, the powers-of-two phase takes less than 2% of the
runtime in all experiments. Recall from Table III, during the
powers-of-two phase, each party performs O(n log q) group
multiplications and sends O(n log q) group elements. This is
significantly smaller than the computation cost and bandwidth
usage of setup and all powers phase. However, the powers-
of-two phase requires O(log q) rounds of interaction, which is
comparable to the setup and all powers phases. This illustrates
that the number of communication rounds is not a bottleneck.

Second, for smaller n, the runtime of the all-powers phase
contributes to almost all of the runtime of our protocol, espe-
cially for large q. This is as expected because each party needs
to perform O(n2 log q) and O(q log n) group multiplications
during the setup phase and all powers phase, respectively. For
larger q and smaller n, the latter is significantly larger than
the former. However, with increasing n, as with the case of
n = 124, q = 214, the computation cost of the setup phase
also becomes significant. Finally, as expected, for n = 128,
with larger q = 218, the runtime of the all powers phase again
starts to dominate the total runtime.

Bandwidth usage. We report the per-party bandwidth usage,
i.e., the amount of data (in Megabytes) each party sends during

Table V: Bandwidth usage of different phases of our protocol (in
% of total bandwidth usages). The setup phase corresponds to the
combined bandwidth usages of both ADKG and the random double-
sharing phase. The tuple represents (n, q).

Protocol Phase (16, 214) (16, 218) (128, 214) (128, 218)

Setup 34.4 4.1 95.2 68.8
Powers-of-two 2.2 0.3 0.9 0.7
All powers 63.4 95.6 3.9 30.5

the entire protocol, in Figure 5. The solid and dashed lines
represent the per-party bandwidth usage of our protocol and
baseline, respectively. Consistent with the analysis from §VI,
the bandwidth usage in our protocol increases quadratically
with the number of parties and linear in the q. We also report
the breakdown of bandwidth usage across different phases of
our protocol in Table V.

Our evaluation illustrates that parties in our protocol incur
significantly less bandwidth usage than the baseline. For ex-
ample, with 32 parties and q = 216, each party needs to send
13.57 Megabytes (MB) of data in our protocol, compared to 96
MB of data in the baseline protocol (7⇥ reduction). Similarly,
with 128 parties and q = 218, the bandwidth usage in our
protocol is 118.17 MB, compared to 1536 MB in the baseline
protocol; hence, 13⇥ less bandwidth usage than the baseline.
Again, for the baseline, we only measure the bandwidth usage
as nq bytes, where  = 48 is the size of each G1 element, and
do not account for any bandwidth usage for the synchronous
broadcast protocol. If we also include the bandwidth usage
due to the synchronous broadcast channel, the benefits of our
protocol will be even bigger.

Similar to the breakdown of runtime across different
phases, in Table IV, we illustrate the breakdown of bandwidth
usage across different phases of our protocol for different
choices of n and q. Again, in Table V, the setup includes
the runtime of both ADKG and the random double-sharing
protocol. From Table V, we draw a few conclusions.

First, for the same reason as the runtime, the bandwidth
usage of the powers-of-two phase takes less than 3% of the
total bandwidth usage in all experiments.

Second, unlike runtime, the bandwidth usage in the setup

12

142

Evaluation results: Bandwidth Usage

For example, with 𝑞 = 2$-, Ours: 13.57 MBytes, Baseline: 96 MBytes (7×)

16 32 64 128
0

50

100

150

200

Number of parties

B
an

dw
id

th
(in

M
B

)

q = 214 q = 216, This work.
q = 214 q = 216, Baseline.

Figure 5: Per party median bandwidth usage (in Megabytes), mea-
sured as the amount of data sent by a party in the entire protocol.

16 32 64 128
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

Number of parties

R
un

tim
e

(in
se

co
nd

s)

Figure 6: Median runtime (in seconds), i.e., the time between the start
of the protocol and the time parties output the q-SDH parameters.

64 parties and q = 216, our protocol takes approximately
1037 seconds, whereas the baseline protocol takes 3580 sec-
onds (3.4⇥ faster). Similarly, with 128 parties and q = 218,
our protocol takes approximately 4721 seconds compared to
28883 seconds (not shown in the figure) taken by the baseline
protocol, hence 6.1⇥ faster than the baseline protocol. Note
that, for the baseline, we only measure the runtime without any
networking component. Thus, if we also include the runtime
of the synchronous broadcast, the benefits of our protocol will
be even more significant.

In Table IV, we break down the runtime of different phases
in our protocol for different choices of n and q. In Table IV, the
setup includes the runtime of both ADKG and random double-
sharing protocol. We merge them as our implementation runs
these phases such that they share some building blocks. More-
over, both ADKG and the random double-sharing phase use the
same invocation of the consensus protocol. Based on Table IV,
we conclude the following.

First, the powers-of-two phase takes less than 2% of the
runtime in all experiments. Recall from Table III, during the
powers-of-two phase, each party performs O(n log q) group
multiplications and sends O(n log q) group elements. This is
significantly smaller than the computation cost and bandwidth
usage of setup and all powers phase. However, the powers-
of-two phase requires O(log q) rounds of interaction, which is
comparable to the setup and all powers phases. This illustrates
that the number of communication rounds is not a bottleneck.

Second, for smaller n, the runtime of the all-powers phase
contributes to almost all of the runtime of our protocol, espe-
cially for large q. This is as expected because each party needs
to perform O(n2 log q) and O(q log n) group multiplications
during the setup phase and all powers phase, respectively. For
larger q and smaller n, the latter is significantly larger than
the former. However, with increasing n, as with the case of
n = 124, q = 214, the computation cost of the setup phase
also becomes significant. Finally, as expected, for n = 128,
with larger q = 218, the runtime of the all powers phase again
starts to dominate the total runtime.

Bandwidth usage. We report the per-party bandwidth usage,
i.e., the amount of data (in Megabytes) each party sends during

Table V: Bandwidth usage of different phases of our protocol (in
% of total bandwidth usages). The setup phase corresponds to the
combined bandwidth usages of both ADKG and the random double-
sharing phase. The tuple represents (n, q).

Protocol Phase (16, 214) (16, 218) (128, 214) (128, 218)

Setup 34.4 4.1 95.2 68.8
Powers-of-two 2.2 0.3 0.9 0.7
All powers 63.4 95.6 3.9 30.5

the entire protocol, in Figure 5. The solid and dashed lines
represent the per-party bandwidth usage of our protocol and
baseline, respectively. Consistent with the analysis from §VI,
the bandwidth usage in our protocol increases quadratically
with the number of parties and linear in the q. We also report
the breakdown of bandwidth usage across different phases of
our protocol in Table V.

Our evaluation illustrates that parties in our protocol incur
significantly less bandwidth usage than the baseline. For ex-
ample, with 32 parties and q = 216, each party needs to send
13.57 Megabytes (MB) of data in our protocol, compared to 96
MB of data in the baseline protocol (7⇥ reduction). Similarly,
with 128 parties and q = 218, the bandwidth usage in our
protocol is 118.17 MB, compared to 1536 MB in the baseline
protocol; hence, 13⇥ less bandwidth usage than the baseline.
Again, for the baseline, we only measure the bandwidth usage
as nq bytes, where  = 48 is the size of each G1 element, and
do not account for any bandwidth usage for the synchronous
broadcast protocol. If we also include the bandwidth usage
due to the synchronous broadcast channel, the benefits of our
protocol will be even bigger.

Similar to the breakdown of runtime across different
phases, in Table IV, we illustrate the breakdown of bandwidth
usage across different phases of our protocol for different
choices of n and q. Again, in Table V, the setup includes
the runtime of both ADKG and the random double-sharing
protocol. From Table V, we draw a few conclusions.

First, for the same reason as the runtime, the bandwidth
usage of the powers-of-two phase takes less than 3% of the
total bandwidth usage in all experiments.

Second, unlike runtime, the bandwidth usage in the setup

12

16 32 64 128
0

50

100

150

200

Number of parties

B
an

dw
id

th
(in

M
B

)

q = 214 q = 216, This work.
q = 214 q = 216, Baseline.

Figure 5: Per party median bandwidth usage (in Megabytes), mea-
sured as the amount of data sent by a party in the entire protocol.

16 32 64 128
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

Number of parties

R
un

tim
e

(in
se

co
nd

s)

Figure 6: Median runtime (in seconds), i.e., the time between the start
of the protocol and the time parties output the q-SDH parameters.

64 parties and q = 216, our protocol takes approximately
1037 seconds, whereas the baseline protocol takes 3580 sec-
onds (3.4⇥ faster). Similarly, with 128 parties and q = 218,
our protocol takes approximately 4721 seconds compared to
28883 seconds (not shown in the figure) taken by the baseline
protocol, hence 6.1⇥ faster than the baseline protocol. Note
that, for the baseline, we only measure the runtime without any
networking component. Thus, if we also include the runtime
of the synchronous broadcast, the benefits of our protocol will
be even more significant.

In Table IV, we break down the runtime of different phases
in our protocol for different choices of n and q. In Table IV, the
setup includes the runtime of both ADKG and random double-
sharing protocol. We merge them as our implementation runs
these phases such that they share some building blocks. More-
over, both ADKG and the random double-sharing phase use the
same invocation of the consensus protocol. Based on Table IV,
we conclude the following.

First, the powers-of-two phase takes less than 2% of the
runtime in all experiments. Recall from Table III, during the
powers-of-two phase, each party performs O(n log q) group
multiplications and sends O(n log q) group elements. This is
significantly smaller than the computation cost and bandwidth
usage of setup and all powers phase. However, the powers-
of-two phase requires O(log q) rounds of interaction, which is
comparable to the setup and all powers phases. This illustrates
that the number of communication rounds is not a bottleneck.

Second, for smaller n, the runtime of the all-powers phase
contributes to almost all of the runtime of our protocol, espe-
cially for large q. This is as expected because each party needs
to perform O(n2 log q) and O(q log n) group multiplications
during the setup phase and all powers phase, respectively. For
larger q and smaller n, the latter is significantly larger than
the former. However, with increasing n, as with the case of
n = 124, q = 214, the computation cost of the setup phase
also becomes significant. Finally, as expected, for n = 128,
with larger q = 218, the runtime of the all powers phase again
starts to dominate the total runtime.

Bandwidth usage. We report the per-party bandwidth usage,
i.e., the amount of data (in Megabytes) each party sends during

Table V: Bandwidth usage of different phases of our protocol (in
% of total bandwidth usages). The setup phase corresponds to the
combined bandwidth usages of both ADKG and the random double-
sharing phase. The tuple represents (n, q).

Protocol Phase (16, 214) (16, 218) (128, 214) (128, 218)

Setup 34.4 4.1 95.2 68.8
Powers-of-two 2.2 0.3 0.9 0.7
All powers 63.4 95.6 3.9 30.5

the entire protocol, in Figure 5. The solid and dashed lines
represent the per-party bandwidth usage of our protocol and
baseline, respectively. Consistent with the analysis from §VI,
the bandwidth usage in our protocol increases quadratically
with the number of parties and linear in the q. We also report
the breakdown of bandwidth usage across different phases of
our protocol in Table V.

Our evaluation illustrates that parties in our protocol incur
significantly less bandwidth usage than the baseline. For ex-
ample, with 32 parties and q = 216, each party needs to send
13.57 Megabytes (MB) of data in our protocol, compared to 96
MB of data in the baseline protocol (7⇥ reduction). Similarly,
with 128 parties and q = 218, the bandwidth usage in our
protocol is 118.17 MB, compared to 1536 MB in the baseline
protocol; hence, 13⇥ less bandwidth usage than the baseline.
Again, for the baseline, we only measure the bandwidth usage
as nq bytes, where  = 48 is the size of each G1 element, and
do not account for any bandwidth usage for the synchronous
broadcast protocol. If we also include the bandwidth usage
due to the synchronous broadcast channel, the benefits of our
protocol will be even bigger.

Similar to the breakdown of runtime across different
phases, in Table IV, we illustrate the breakdown of bandwidth
usage across different phases of our protocol for different
choices of n and q. Again, in Table V, the setup includes
the runtime of both ADKG and the random double-sharing
protocol. From Table V, we draw a few conclusions.

First, for the same reason as the runtime, the bandwidth
usage of the powers-of-two phase takes less than 3% of the
total bandwidth usage in all experiments.

Second, unlike runtime, the bandwidth usage in the setup

12

Summary

See paper for:
• Batch amortization optimization
• Running DKG and multiplication unit generation protocol in parallel
• Evaluation breakdown of each phases

143

Summary
Asynchronous protocol for generating Powers of Tau

See paper for:
• Batch amortization optimization
• Running DKG and multiplication unit generation protocol in parallel
• Evaluation breakdown of each phases

144

Summary
Asynchronous protocol for generating Powers of Tau

Communication
Cost (per party)

Computation
Cost (per party)

Expected Number
of Rounds

Cryptography
Assumption

O 𝑞 + 𝑛!log 𝑞 O(𝑞log 𝑛 𝔾 + 𝑛log 𝑞 ℙ) O log 𝑞 + ADKG 𝑞-SDH + ADKG

See paper for:
• Batch amortization optimization
• Running DKG and multiplication unit generation protocol in parallel
• Evaluation breakdown of each phases

145

Summary
Asynchronous protocol for generating Powers of Tau

Communication
Cost (per party)

Computation
Cost (per party)

Expected Number
of Rounds

Cryptography
Assumption

O 𝑞 + 𝑛!log 𝑞 O(𝑞log 𝑛 𝔾 + 𝑛log 𝑞 ℙ) O log 𝑞 + ADKG 𝑞-SDH + ADKG

See paper for:
• Batch amortization optimization
• Running DKG and multiplication unit generation protocol in parallel
• Evaluation breakdown of each phases

146

Summary
Asynchronous protocol for generating Powers of Tau

Communication
Cost (per party)

Computation
Cost (per party)

Expected Number
of Rounds

Cryptography
Assumption

O 𝑞 + 𝑛!log 𝑞 O(𝑞log 𝑛 𝔾 + 𝑛log 𝑞 ℙ) O log 𝑞 + ADKG 𝑞-SDH + ADKG

See paper for:
• Batch amortization optimization
• Running DKG and multiplication unit generation protocol in parallel
• Evaluation breakdown of each phases

147

Summary
Asynchronous protocol for generating Powers of Tau

Communication
Cost (per party)

Computation
Cost (per party)

Expected Number
of Rounds

Cryptography
Assumption

O 𝑞 + 𝑛!log 𝑞 O(𝑞log 𝑛 𝔾 + 𝑛log 𝑞 ℙ) O log 𝑞 + ADKG 𝑞-SDH + ADKG

See paper for:
• Batch amortization optimization
• Running DKG and multiplication unit generation protocol in parallel
• Evaluation breakdown of each phases

148

Summary
Asynchronous protocol for generating Powers of Tau

Communication
Cost (per party)

Computation
Cost (per party)

Expected Number
of Rounds

Cryptography
Assumption

O 𝑞 + 𝑛!log 𝑞 O(𝑞log 𝑛 𝔾 + 𝑛log 𝑞 ℙ) O log 𝑞 + ADKG 𝑞-SDH + ADKG

See paper for:
• Batch amortization optimization
• Running DKG and multiplication unit generation protocol in parallel
• Evaluation breakdown of each phases

149

Summary
Asynchronous protocol for generating Powers of Tau

Communication
Cost (per party)

Computation
Cost (per party)

Expected Number
of Rounds

Cryptography
Assumption

O 𝑞 + 𝑛!log 𝑞 O(𝑞log 𝑛 𝔾 + 𝑛log 𝑞 ℙ) O log 𝑞 + ADKG 𝑞-SDH + ADKG

See paper for:
• Batch amortization optimization
• Running DKG and multiplication unit generation protocol in parallel
• Evaluation breakdown of each phases

Thank You (souravd2@Illinois.edu) 150

mailto:souravd2@Illinois.edu

