
Proof of Backhaul: Trustfree Measurement of
Broadband Bandwidth

Peiyao Sheng∗†, Nikita Yadav†‡, Vishal Sevani†, Arun Babu†, SVR Anand†, Himanshu Tyagi†‡ and Pramod Viswanath†§
∗University of Illinois at Urbana Champaign, USA

Email: psheng2@illinois.edu
†Witness Chain, USA

Email: {vishal.sevani,arun.babu,svr.anad}@kaleidoscope-blockchain.com
‡Indian Institute of Science, India

Email: {nikitayadav,htyagi}@iisc.ac.in
§Princeton University, USA

Email: pramodv@princeton.edu

Abstract—Recent years have seen the emergence of decen-
tralized wireless networks consisting of nodes hosted by many
individuals and small enterprises, reawakening the decades-old
dream of open networking. These networks have been deployed
in an organic, distributed manner and are driven by new
economic models resting on performance-based incentives. A
critical requirement for the incentives to scale is the ability
to prove network performance in a decentralized “trustfree”
manner, i.e., a Byzantine fault tolerant network telemetry system.

In this paper, we present a Proof of Backhaul (PoB) protocol
which measures the bandwidth of the (broadband) backhaul link
of a wireless access point, termed prover, in a decentralized and
trustfree manner. In particular, our proposed protocol is the first
to satisfy the following two properties: (1) Trustfree. Bandwidth
measurement is secure against Byzantine attacks by collusion of
challenge servers and the prover. (2) Open. The barrier-to-entry
for being a challenge server is low; there is no requirement of
having a low latency and high throughput path to the measured
link. At a high-level, our protocol aggregates the challenge traffic
from multiple challenge servers and uses cryptographic primitives
to ensure that a subset of challengers or, even challengers and
provers, cannot maliciously modify results in their favor. A formal
security model allows us to establish guarantees of accurate
bandwidth measurement as a function of the maximum fraction
of malicious actors.

We implement our protocol with challengers spread across
geographical locations and release the code [5]. Our evaluation
shows that our PoB protocol can verify backhaul bandwidth of
up to 1000 Mbps with less than 10% error using measurements
lasting only 100 ms. The measurement accuracy is not affected
in the presence of corrupted challengers. Importantly, the basic
verification protocol lends itself to a minor modification that can
measure available bandwidth even in the presence of cross-traffic.

Finally, the security guarantees of our PoB protocol output are
naturally composable with “commitments” on blockchain ledgers,
which are commonly used for decentralized networks.

I. INTRODUCTION

Provisioning of robust and fast internet bandwidth is a
critical need of the information age. Bandwidth testing is a
cornerstone of the field of classical computer networking, and
continues to be relevant to this day. The contemporary Internet
relies heavily on consistent and trustworthy bandwidth, spurred
by the emergence of bandwidth-intensive technologies and
applications such as Ultra High Definition videos, high-speed
5G networks and Augmented Reality/Virtual Reality (AR/VR).
Commercial bandwidth testing services such as SpeedTest [6]
and Fast [2] endeavor to provide measurement accuracy by
transmitting large files over a long duration through powerful
servers. Recent scientific studies [57], [56] aim to improve the
efficiency of measurement both spatially and temporally via a
statistical sampling framework. In all these scenarios, both the
network operation and bandwidth measurements are largely
centralized operations, involving coordination and integration
and trust among network and measurement entities.

Separately, decentralized networks have been in the making
for decades. Starting with Software Defined Networking [36],
[35] to simplifying the hardware and open software [45] to
facilitate application development, to real-world deployments
of decentralized Internet Service Providers (ISPs) [4] and
decentralized Mobile Network Operators (MNOs) [25] have
emerged. These decentralized networks have been made pos-
sible by the convergence of several engineering, business, and
policy developments: the availability of cheap hardware for
WiFi access points (and now even cellular base stations);
the availability of cloud-native orchestration and AAA soft-
ware [39]; and the availability of lightly licensed spectrum
(CBRS, standing for citizen band radio service has 150MHz
of spectrum between 3.55 and 3.7 GHz) for cellular communi-
cation [23]. CBRS-driven “private 5G” network offerings allow
the participation of smaller operators (including small business
complexes) and are emerging as efficient and complemen-
tary avenues to the traditional vertically-integrated wide area
cellular network service [10], [11], [12]. Apart from private
5G networks augmenting traditional cellular carriers, a token-
driven incentive ecosystem known as the Helium network [25]
has led to hundreds of thousands of “hotspots” being hosted
by individuals, although yet to be integrated into a multi-RAT

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.24764
www.ndss-symposium.org

(radio access technologies) network.

With the growth of these decentralized networks, a central
and new engineering challenge emerges – we need to design
secure and decentralized network telemetry. In centrally man-
aged networks, network telemetry is used for performance
measurement and subsequent optimization. In contrast, net-
work telemetry plays a more pivotal role in decentralized
networks: it is now needed to ensure incentive compatibility,
i.e., the network nodes provide the service that they are being
paid for. For this purpose, there are two new requirements for
decentralized network telemetry:

• Trustfree. The protocol is secure against Byzantine
attacks by the parties involved.

• Open. The barrier-to-entry for servers participating in
decentralized telemetry is low. In particular, any node
with a “reasonably good” internet connection should
be able to participate.

The measurements that we get as the output of such trustfree
and open network telemetry protocols can be viewed as a
cryptographically secure proof of network performance.

In this paper, we focus on measuring a specific network
performance parameter which is of central importance in
decentralized wireless network deployments. In such deploy-
ments, users are required to get a broadband connection with
appropriate bandwidth, as a backhaul for the wireless access
point. But how do we know that the user has indeed set
up a good backhaul connection? Can we apply any existing
techniques from the extensive, decades-spanning literature on
bottleneck link-throughput measurement? It turns out none
of the existing tools is applicable for our setting; below we
point out shortcomings of prominent techniques and clarify
our contributions.

Comparison with speedtest. Speedtest (speedtest.net) is a
state-of-the-art bandwidth testing tool widely used globally.
Whenever a user (the “prover”) sends a measurement request,
a nearby server is selected from a centralized challenger server
pool. The selected server generates traffic continuously until
the target link is saturated. This necessitates the challenger
server to maintain a high bandwidth, low latency, and low
packet loss link to the prover, which presents a significant
barrier to entry for potential challengers. Furthermore, the mea-
surements rely on the rates of sending packets from challengers
and acknowledgements from the prover – an untrustworthy
prover or challenger can adversely impact the measurement.
Speedtest and similar architectures are unsuited for trustfree
network telemetry.

Traffic aggregation. One way to allow more challengers to
participate in the telemetry (and thus being more open) is to
aggregate traffic from multiple challengers. Such aggregation
removes the requirement of high capacity for a single server to
measure high-bandwidth links, by uniting a group of servers to
generate sufficient traffic in parallel. While this technique can
improve the accuracy (e.g., recent works [14], [2], [57], [56]),
the method is not trustfree: a Byzantine prover can readily
manipulate the measurement results with no check or balance.

Interactive Measurement. To eliminate the need of trust on
the prover, challengers should interact with other parties in

the network to generate measurements. Popular interactive
telemetry tools such as traceroute [28] and pathchar [29] use
the timing information obtained by combining the Internet
control message protocol’s (ICMP) time-to-live (TTL) and
packet dropped messages to estimate link performance over
the Internet. In particular, challengers estimate the round-trip
time (RTT) to the two endpoints of the link to be measured.
The throughput is then derived by dividing the packet size by
the difference in RTT. To further increase accuracy, packets
of different sizes can be transmitted and the measurements
can be aggregated through linear regression [29], [22]. Secure
measurement, resistant to collusion between the prover and
challengers, is not guaranteed in these protocols.

Our contributions. We present the first multichallenger PoB
protocol for measuring backhaul bandwidth that satisfies the
aforementioned trustfree and open properties, (details in §III).
Broadly, the protocol is built by implementing the following
ideas:

1) Traffic aggregation. We simultaneously send chal-
lenge traffic from multiple challengers to the prover.
The duration of the challenge is chosen to be suf-
ficiently high to ensure that traffic from all the
challengers queues at the prover’s backhaul link.

2) Unforgeable probe. We randomly select challengers
from a larger pool, each of which sends digital
signatures as traffic. This prevents any other party
from forging the measurement probe. Furthermore,
we limit the amount of challenge traffic from each
challenger to curtail any single party’s influence.

3) Short witness. The prover can send a short message
to the challengers to prove that it has received ap-
propriate amount of data. As will be seen below, our
security considerations require us to use a partially
verifiable hash. For this purpose, we use a Merkle
tree [43].

4) Robust timing measurement. We estimate the overall
challenge’s round-trip time (RTT) by taking the me-
dian of the RTTs measured by various challengers.

We implement these steps and experimentally validate the
design choices to identify the best performing configuration;
see Figure 1 for a depiction. The main contribution of this work
is the trustfree property of the proposed protocol – it is secure
under a rigorous threat model that we outline in §IV. Our
proposed protocol is the first one that can measure bandwidth
of hundreds of Mbps without requiring any specialized server
with high throughput and low latency for challengers in the
trustfree setting. We further extend this protocol to measure
available bandwidth in the presence of cross-traffic, making it
a truly distributed “speedtest.”

We analyze the security of our multichallenger PoB pro-
tocol under a formal threat model which allows any subset of
parties (up to 1/3 challengers collaborating with the prover) to
maliciously deviate from the protocol. Given the unforgeable
nature of our probe, even a corrupted prover is still required to
obtain probe packets from the challengers. However, corrupted
challengers, too, can modify the packet flow using two attacks:
(i) the withholding attack where a corrupted challenger does
not send probe packets; and (ii) the rushing attack where a
corrupted challenger coordinates with the corrupted prover to

2

speedtest.net

Technique Secure Challenger BW < Backhaul BW Accuracy
Pathchar [22], [29], [40] ✗ ✓ Low

Packet dispersion based [17], [18], [38], [50] ✗ ✗ –
Secure BW estimation [33], [53], [59] ✓ ✗ –

Multichallenger PoB ✓ ✓ High
(a)

Backhaul BW Challenger BW Challenge Data Attack Measured BW Guaranteed BW
(Mbps) (Mbps) (MB) (Error %) (Mbps)

250 25 3.44 – 246 (1.6%) 184
500 20 6.86 – 475 (5%) 356
750 75 10.31 – 705 (6%) 529

1000 100 13.75 – 921 (8%) 691
250 32 3.44 Rushing 331 (0.6%) 249
250 32 3.44 Withholding 241 (3.6%) 181

(b)

TABLE I: (a) Comparison of our multichallenger PoB protocol with prior-art techniques. (b) Summary of our performance results
with 10 challengers. We perform attacks with 2 corrupted challengers.

...

Prover

Backhaul link
1k ...

1k 1k ...

1k ...

111

Verifier

RTT Measurements
 Packets Receipt

1k ...

1k ...

111

Internet

Router

...

...

Challengers

Fig. 1: The multichallenger PoB Protocol.

send the packets or their information quickly without using
the challenged link. To compensate for the withholding attack,
we must send more packets than the link bandwidth to have
sufficient traffic even after withholding attack. To compen-
sate for the rushing attack, we multiply the actual measured
bandwidth with a correction factor derived from the bound
of bandwidth inflation to arrive at the guaranteed bandwidth.
In addition, corrupted challengers can modify their outputs
needed for verification. Specifically, they may report wrong
RTT or they may claim modified packet data. We circumvent
the former attack by taking a median of the measurements. To
circumvent the latter attack, we employ a Merkle tree. This
allows us to verify the consistency of the hash response from
the prover with the data of uncorrupted challengers, without
the need for correct data from the corrupted parties.

Overall, denoting the maximum fraction of corrupted chal-
lengers by β, we show that for β < 1/31, our protocol does
not allow any prover to inflate the bandwidth and allows an
honest prover to establish at least a fraction (1− 2β)/(1− β)
of the true bandwidth.

Design scope exploration. Our main protocol assumes avail-
ability of digital signatures and nothing more. Different vari-
ants of this protocol can be implemented depending on the
availability of resources; we explore the design scope in
§ V and present the results in Table II. Specifically, we

1The adversarial threshold can be 1/2 if the verifier has access to a timer.
See the discussion in §IV-B.

observe that (1) the protocol can achieve a higher accuracy
of (1− β) using TCP packets if a fairness property holds, as
this prevents corrupted challengers from reporting deviating
bandwidths higher than the majority; (2) the accuracy is
reduced to (1 − 3β)/(1 − β) when digital signatures are not
used, due to the deniability of the packets delivery; (3) by
limiting the access of corrupted challengers to additional links
with higher bandwidth, the feasibility of rushing attacks is
eliminated. Additionally, by implementing a shuffled packet
creation phase, the effects of other attacks can be minimized
and optimal accuracy can be achieved.

Implementation and evaluation. To convert the idealized
protocol into a practical tool, we implement a variant of
our protocol designed to address real-world issues (§VI) and
thoroughly evaluate its performance (§VII). For instance, mea-
suring links with 100 Mbps and higher bandwidth, which is
commonplace in broadband services, requires latency measure-
ments with an accuracy that is hard to achieve due to jitter
in the Internet; we elaborate on overcoming this challenge in
Appendix B.

Our evaluation focuses on the loss of measurement accu-
racy that occurs when using multiple challengers and traffic
aggregation; in particular, we consider the loss of accuracy
due to: (i) time synchronization errors and network jitter; (ii)
computation time delays due to the use of digital signatures,
hash computation, verification, and Merkle trees; and (iii)
geographically spread challengers with heterogeneous capa-
bilities. We also implement rushing and withholding attacks
to illustrate that the security guarantees of the theory hold
in practice. Our main experimental results are summarized in
Table I. We report both the actual measured bandwidth and the
output of our protocol – the guaranteed bandwidth – which is
obtained by applying the correction factor (1− 2β)/(1− β).

II. BACKGROUND AND RELATED WORK

Bandwidth estimation. In data networks, bandwidth signifies
the data volume a network path can transfer over time. Two
metrics related to bandwidth are extensively investigated in
the literature, the maximum possible data rate called capacity
and the maximum available data rate called available band-
width [50]. Packet dispersion techniques[18], [17], [52], [34],
[38] are widely used to measure bottleneck link capacity.
Available bandwidth measurement techniques are outlined
in [30], [31], [51], [54], [27], [16], [42], [41], [6], [2],

3

[57], [56]. Of these, Pathload [30], [31] and Pathchirp [51]
generate brief traffic loads with varying stream rates to adjust
estimations based on one-way delay differences. The state-of-
the-art commercial tools [2], [6] use global high-bandwidth
servers to generate saturating TCP traffic on target links,
while recent research like FastBTS[57] reduce the data usage
and bandwidth requirements through concurrent connections.
Swiftest[56] leverages UDP to address TCP limitations. Given
bandwidth measurements’ importance, certain works focus
on securing these against inflation attacks [33], [59]. Others,
such as [53], propose secure estimation against malicious
peers, using consensus vectors from network-wide bandwidth
evaluations. This scheme, while opportunistic, doesn’t fully ap-
praise high-bandwidth nodes. In another direction, Torpath [24]
suggests a proof system for network telemetry, remunerating
Tor network relays based on transmitted data volume. In
comparison, in this paper, our PoB protocol targets backhaul
bandwidth measurement of end nodes, with no bandwidth
requirements on the measuring nodes.

Per-hop capacity estimation. Of all the bandwidth estimation
techniques in literature, [28], [29], [22], [40], [37], [47],
[26] are closest to our work. These techniques can measure
capacity for any link in an end-to-end path and so can be
used to measure the prover backhaul, which is our goal.
Traceroute [28] and pathchar [29], [22] make use of time-
to-live (TTL) information in ICMP packets to control the
packet drop at different intermediate hops to measure capacity
of any link. [37], [47], [26] improve the approach used by
pathchar [29], [22] with variable packet sizes. However these
techniques require precise timing measurements of the order
of packet transmission times. For bandwidth in 100s of Mbps,
the packet transmission times are of the order of tens of
microseconds. Given the jitter in latency over the Internet, our
experiments reveal that such precise timing measurements are
difficult. Indeed, previous work [26] reports errors over 20%
for measuring bandwidths of 500 Mbps or more.

Decentralized networks. Every decentralized network pro-
posal features a proof system verifying network performance
parameters, with participants benefiting from substantiating
their contribution. Helium [25] exploits blockchain’s potential
to establish a decentralized data network via a proof-of-
coverage tokenized incentive. Hotspots receive compensation
for reliable coverage confirmed by regular challenge requests
and beacon responses. Althea [55] operates as a distributed
ISP, fostering last-mile connectivity through a competitive
platform, using route meters and accuracy scores to ensure
quality connections. Route Bazaar [19] creates end-to-end
connectivity agreements among untrusted parties, resolving
contractual and routing difficulties. The path performance is
ensured via periodic forwarding proofs on blockchains, encap-
sulating encrypted path tags, traffic samples, and performance
metrics.

III. THE MULTICHALLENGER POB PROTOCOL

In this section, we formulate the PoB problem (§III-A),
introduce main techniques (§III-B) and describe our multichal-
lenger PoB protocol in details (§III-C) .

A. Problem Statement

We consider a system consisting of a group of end nodes
such as base stations, WiFi access points and remote servers
over the Internet willing to assist with backhaul bandwidth
measurement. All nodes are connected to the network core
through one backhaul link, simply referred to as backhaul from
hereon, with an internal state θ representing the bandwidth
of the link. We model the network core as a single point
since fiber cables usually provide extremely high bandwidth,
e.g., 100 Gbps. A PoB protocol allows a trusted verifier
to use a subset of available nodes for securely measuring
the backhaul bandwidth for a specific node called a prover,
denoted P. The verifier can not observe the internal state θP
of the prover directly. Instead, it needs to interact with the
system by issuing a challenge request to the rest of the parties.
We assume that n participants serve as challengers, denoted
as {C1, · · · , Cn}, among which up to f = βn challengers
are corrupted, where β represents the fraction of adversarial
challengers. These challengers are responsible for generating
and sending probes to the prover and output the measurements
to the verifier. The output of PoB protocol is an estimation
of the backhaul bandwidth of the prover. It guarantees the
following two security properties:

• Approximate completeness: When the prover is un-
corrupted, if the protocol outputs θ′P, the actual band-
width of the prover θP satisfies θ′P ≥ αθP for a constant
accuracy ratio α ∈ [0, 1].

• Soundness: The protocol will not output a bandwidth
higher than θP, even when the prover is corrupted.

Design landscape. To maximize the accuracy of the protocol
while ensuring soundness, we explore the design landscape
which takes into account a set of fundamental parameters.
Firstly, we explore the cryptography primitives that can be
utilized, specifically debating between digital signatures and
pseudorandom generators. Each of these cryptographic tools
offers its own set of advantages; digital signatures provide
non-repudiation and integrity assurance, while pseudorandom
generators can supply a degree of randomness with less
overhead. Secondly, our protocol design considers the types of
packets that will be utilized for data transmission. We weigh
the pros and cons of TCP and UDP packets, including slow
start and fairness. Lastly, we investigate the threat model within
which our protocol will operate. Of particular interest is the
potential for adversaries to launch “rushing attacks”, in which
the adversary attempts to gain an unfair advantage by rushing
to transmit information before honest parties. The details and
implications of such attacks are explored in subsequent sec-
tions (§ IV-A). These considerations (summarized in Table II)
form the bedrock of our protocol design and implementation,
guiding us towards a balanced solution that combines robust
security and performance.

Other assumptions for theoretical analysis. Except for
signatures and pseudo-random generator, our protocol makes
use of collision resistant cryptographic hash functions. These
primitives are assumed to be perfectly secure. When using digi-
tal signatures, parties verify every received signature by default
and ignore those signed invalidly. We assume the network is
synchronous and every challenger has access to a synchronized
clock. Each node knows the public address and public key of

4

TABLE II: Comparison of different protocols in design landscape

Packets Crypto primivite Rushing attack Accuracy

PoB UDP signature Yes (1 − 2β)/(1 − β)

PoB-TCP TCP signature Yes 1 − β

PoB-PRG UDP pseudorandom generator Yes (1 − 3β)/(1 − β)

PoB-shuffle UDP signature No 1 − (1+δb)β
t

(1−δg)(1−β)t
①

① 0 < δb, δg ≤ 1

others. We suppose there exists a trusted verifier such as a
blockchain to broadcast information to the system. It is crucial
to note that the assumptions made in our theoretical analysis
are for the purpose of simplification and easy understanding.
However, when evaluating our implementation, we take into
account the possible deviations from these assumptions that
may occur in real-world scenarios.

B. Protocol Overview and Main Results

Heuristically, the protocol proceeds by randomly selecting
a set of n challengers from all the participants to send a train
of probes to the prover (Figure 1). The protocol enforces
packets from different challengers to arrive at the link to
be measured around the same time. This traffic aggregation
strategy effectively combines the group of challengers to
an equivalent challenger with larger bandwidth and thereby
renders the prover’s backhaul the bottleneck link.

Formally, suppose that the protocol starts at time t0, and
each challenger Ci starts to send a sequence of k packets of
size b each at time ti1, 1 ≤ i ≤ n. We have the following two
requirements:

1) Aggregation condition. There is a θ0 ≤
min(θ1, · · · , θn) such that the bandwidths θi
of Ci satisfy

t0 +
b

θ0
= t11 +

b

θ1
= · · · = tn1 +

b

θn
. (1)

2) Bandwidth condition. The quantity θ0 satisfies

(n− f) · θ0 ≥ θP. (2)

The “aggregation condition” coordinates the arrival time of
packets sent from various challengers, allowing multiple traffic
flows to be effectively aggregated and merged into one stream
at an appropriate rate. In this way, at least (n−f)b bits of data
are transmitted within the transmission time of one packet for
a single challenger (b/θ0). Therefore, the equivalent bandwidth
of the challenger group is enlarged by at least a factor of
(n− f). The “bandwidth condition” ensures that the prover’s
backhaul becomes the bottleneck link. We assume there always
exist enough potential challengers to meet both conditions.

While honest participants are supposed to correctly report
their own bandwidth and send packets on time, corrupted par-
ties can violate the conditions in arbitrary ways. For instance,
a corrupted challenger can rush the packets through extra links
or refuse to send any packets. We therefore require the prover
to send back a response to all challengers on receiving (n−f)k
packets as a transmission receipt, since we can not expect more

packets in the case of a withholding attack (detailed in §IV-A).
Then challengers measure the time it takes to transmit all these
packets. Since corrupted challengers can claim arbitrary values,
the median of all reported time is used to avoid manipulations
and provide robust timing measurement.

Cryptographic primitives. To save bandwidth use during
verification, the prover transmits a concise witness: a hash of
received packets to terminate measurements. We utilize a hash
function Hash(·) that accepts any string and delivers a deter-
ministic fixed-length random string. If input is a set of mes-
sages, it’s serialized to a string for hashing. For verification,
each challenger confirms only its sent packets and leverages
the Merkle tree to perform inclusion checks with partial data.
Using MerkleRoot(·), a sequence of hashes aggregates to
a single cumulative hash, reducing verification overhead per
challenger to O(log n), significantly cutting response traffic
for large n. For our protocols using digital signatures to create
unforgeable probes and ensure bad behavior traceability, we
use a key generation function keyGen outputting a secret-
public key pair, a signing function sign(sk,msg) enabling
anyone to sign any message with a secret key sk, and a veri-
fication function verify(pk,msg, σ) to confirm if signature
σ is derived by signing the given message msg with the
secret key paired with public key pk. For protocols involving
a pseudo-random generator, a function gen(seed) yields the
next random number from the seed.

Blockchain as a verifier. Our PoB protocol is triggered by a
challenge request issued from a verifier, who is also responsi-
ble for the broadcast of public parameters such as protocol start
time t0 and bandwidth requirement θ0. Generally, any trusted
entity can play the role of a verifier. In tokenized decentralized
settings, smart contracts supported by blockchains are a good
fit to transparently generate, broadcast protocol parameters
and coordinate measurement reports from multiple challengers.
Implementing a version of our protocol with blockchain as a
verifier (deploying appropriate smart contracts) is beyond the
scope of this paper.

Main results. Table II presents different variants of our pro-
tocol designs with their corresponding parameters. Our main
protocol PoB uses UDP packets for probing, operates under the
assumption that every packet is signed using digital signatures
and adversarial nodes have access to extra high-bandwidth
links to send packets. We describe the full protocol in the
subsequent subsection and analyze its security and accuracy
in § IV-B. Detailed discussions of these variants are found in
§ V, revealing intriguing elements in these explorations.

We observe, firstly, that the protocol can enhance its
accuracy to (1 − β) when it utilizes TCP packets, a version

5

referred to as PoB-TCP. This heightened accuracy is achievable
only when a fairness property is maintained. Fairness ensures
that nodes sending traffic at the same speeds simultaneously to
a link receive the same rate, therefore we can rely on the results
reported by the majority of nodes to deter malicious inflation.
Nonetheless, TCP flows come with inherent drawbacks, such
as a slow start, rendering it less than ideal for implementation.

Secondly, we observe a reduction in the protocol’s accuracy
to (1 − 3β)/(1 − β) in the absence of digital signatures. To
ensure packet unforgeability without signatures, the protocol
employs a pseudorandom generator, thus earning it the name
PoB-PRG. This method is more cost-effective to calculate.
In particular, challengers send packets containing a random
number, generated from a unique seed committed to the verifier
before initiating the protocol and revealed afterwards. This
procedure enables the prover to verify the correctness of the
received packets. However, senders can deny having sent the
packets, which precipitates the accuracy drop.

Moreover, we point out that by restricting corrupted chal-
lengers’ access to additional high-bandwidth links, we can
eradicate the possibility of rushing attacks. These attacks
would enable challengers to complete measurements in a
shorter time. Given this assumption, we suggest the PoB-
shuffle protocol. This variant introduces a shuffled phase,
wherein challengers are randomly selected from the pool based
on bandwidth to co-sign the packets. This strategy minimizes
the effects of collusion between challengers and provers, as
more challengers would need to collude to launch attacks.
This enhancement optimizes accuracy in a probabilistic way,
provided that security parameters are aptly set and the pool
size is sufficiently large.

C. Full PoB Protocol

The full PoB protocol contains two phases, a measurement
phase described in Algorithm 1, where challengers generate
and send packets, and a verification phase described in Al-
gorithm 2, where the prover constructs proofs for the verifier.
Finally, the verifier outputs the final results after verification.

	 packets

are received

...

...

...

... ...

Protocol starts Packets arrive at
the network core

	 packets

are received

Fig. 2: The measurement phase of PoB protocol. tiq is the
time for challenger Ci to send the q-the packet. k1 is the actual
number of packets received with sequence number 1.

Measurement phase. At the beginning of the measurement
phase, the verifier produces three public protocol parameters
(t0,m0, θ0) and broadcasts it to all challengers, where t0 is the
start time of the protocol, m0 is a random message, θ0 is the
global minimum bandwidth. To participate in the measurement

Algorithm 1 The Measurement Phase of PoB Protocol
1: as a challenger Ci
2: t0,m0, θ0 ← generated and broadcast by verifier
3: measure its own bandwidth θi (require θi ≥ θ0).
4: generate (pki, ski)← keyGen, send pki to verifier.
5: for sequence number q = 1, · · · , k do
6: tiq ← t0 + q · b/θ0 − b/θi
7: σiq ← sign(ski, (q,m0)),miq ← (i, q, σiq)
8: send packet miq to P at tiq
9: upon receiving (h1i, h2, σi) from P do

10: if verify(pkP , (h1i, h2), σi) outputs 1 then
11: record round trip time ∆i ← curT imei − ti
12:
13: as a prover

∀i ∈ [1, n],M[i]← ∅, (pkp, skp)← keyGen
14: upon receiving packet M ′ from Ci do
15: (i, q, σ)←M ′

16: add (q, σ) to M[i]
17: if

∑n
j=1 |M[j]| = (n− f)k then

18: ∀j ∈ [1, n], h1j ← Hash(M[j])
19: h2 ←MerkleRoot({h1j}j∈[1,n])
20: ∀j ∈ [1, n], σj ← sign(skp, (h1j , h2))
21: ∀j ∈ [1, n], send (h1j , h2, σj) to Cj .
22:

process, challengers must first measure their own bandwidth
θi and generate a key pair consisting of a public key pki and
a private key ski. The public key is then sent to the verifier.
The time to start sending the first packet ti1 is determined by
Eq. (1). The challenger Ci generates a sequence of k packets
by signing the public message m0 together with a sequence
number q and sends them one by one to the prover with
a fixed duration b/θ0. The process is depicted in Figure 2,
where the q-th packet of Ci is sent at time tiq (see line 6 of
Algorithm 1). On receiving the packets from the challengers,
the prover separates the messages from different challengers
and adds them to corresponding sets. When the total number
of received packets reaches (n − f)k, the prover generates a
response to broadcast to all challengers. This terminates the
measurements phase. The response contains (1) a receipt h1i

to each challenger Ci, which is the hash of all packets received
from the same sender; and (2) a Merkle root h2 constructed
from all receipts. All challengers record the round trip time ∆i

between the start time ti1 and the time curT imei at which a
valid response is received.

Verification phase. In the verification phase, the prover is
responsible for proving to the challengers the content of
received packets. To that end, it constructs another response
revealing the indices Bi of packets received from Ci and
showing the inclusion of each receipt in the Merkle tree
with a Merkle proof Pi. It also sends the Merkle root to the
verifier. On receiving the Merkle proof Pi from the prover, the
challengers reconstruct the receipt hash and the Merkle root.
The challenger Ci forwards ∆i and the number of packets sent
by it to the verifier, after making sure that both the hashes
are consistent. At the end of the second phase, the verifier
aggregates these measurements from all the challengers about
how long the measurement phase takes and how many packets
are indeed received by the prover. It also forwards the reports

6

Algorithm 2 The Verification Phase of PoB Protocol
1: as a prover
2: Bi ← a bitmap of size k where the q-th bit in the

bitmap is set if some packet (q, ∗) ∈M[i]
3: Pi ← the Merkle proof of h1i

4: send (Bi, Pi) to Ci, output (REPORT, h2) to verifier.
5:
6: as a challenger
7: upon receiving (Bi, Pi) from P do
8: Add all (q, σiq) to a set M if the q-th bit is set to

1 in Bi. Check whether Hash(M) = h1i.
9: Reconstruct the Merkle root h′ using Pi and h1i.

Check whether h2 = h′.
10: If both two checks are passed, output (REPORT,

P, h2,∆i, |M|) to verifier.
11:
12: as a verifier
13: M← ∅, cnt← 0
14: upon receiving (REPORT, h) from prover P do
15: record h
16: upon receiving (REPORT, P, h2,∆i, ki) from Ci do
17: Check h2 = h, add ∆i to M, cnt← cnt+ ki
18: if cnt ≥ (n− f)k and |M| ≥ n− f then
19: ∆′ ←Median(M)

20: θ′P ←
cnt·b·(n−2f)
∆′·(n−f)

21: Output (POB, P, θ′P)
22:

from challengers to the prover, who checks the consistency
and submits the packets and the Merkle proof in case disputes
exist. Once the verifier has received “sufficiently many” valid
reports . Specifically it waits to receive a confirmation from at
least n− f challengers with at least (n− f)k packets in total.
We assume there is no packet drop and address the packet drop
problem in §VI. Then it calculates the final output bandwidth
by dividing the total size of received packets by the median
of the reported RTTs; see line 20 of Algorithm 2.

IV. SECURITY MODEL AND ANALYSIS

The primary challenge in trustfree networking is the in-
herent security vulnerability, since any party can depart from
the protocol at will and even collude with other parties to
manipulate the results. In this section, we formalize a broad
threat model underlying measuring bandwidth, systematically
examine the security issues to which the system is exposed
(§IV-A), and analyze the security guarantees (§IV-B).

A. Threat Model

We consider a static adversary allowed to corrupt at most
f among n challengers before the protocol starts, the rest of
uncorrupted challengers are referred to as honest. The prover
can also be corrupted. In addition to the backhaul link indicated
in the model in §III-A, we allow the adversary to access
external communication channels. Specifically, the adversary
has access to additional links with arbitrarily high bandwidth
connecting to all the participants. The corrupted parties can
act arbitrarily in order to either inflate or deflate the measured
bandwidth; we discuss prominent attacks below.

Withholding attack. The measurement of bandwidth requires
the challengers to send probes and measure the time it takes
for the prover to receive the probes. The corrupted challengers
who have been bribed by the consumers or the competitors of a
prover might be motivated to deflate the bandwidth estimation
to reduce service costs. They can delay the sending of the
packets to increase the observed RTT or even withhold the
packets for the entire protocol. During the verification phase,
corrupted challengers can also refuse to report verification
results. Moreover, the prover can also bribe the challengers
to withhold packets during the measurement phase but report
that the maximum number of packets have been sent in the
verification phase.

Rushing attack. Since a reasonable incentive system will
allow the participants to be compensated in proportion to their
bandwidth, provers can collude with challengers to inflate
bandwidth to get more rewards. During the measurement
phase, instead of the backhaul link which is filled with the
packets from uncorrupted challengers, corrupted challengers
transmit packets through an extra link with an extremely high
bandwidth to finish the measurements within a shorter time.

Information sharing attack. Besides the rushing attack, an-
other way for the prover to get more information about the
data from the challengers than that was transmitted through
the backhaul link is to exploit the information structure. In
the verification phase, to facilitate the verification of whether
the packets received by the prover are indeed those sent by
the challengers, the challengers are required to provide the
information related to packet generation. If the information
to generate packets is much smaller than the actual packet
data and is shared to the prover directly, the prover can also
terminate the measurements much earlier since it can generate
a fraction of packets by itself. For instance, in our protocol,
corrupted challengers can send their secret keys to the prover.

DoS and related attacks. Attacks are possible where a
challenger sends traffic with invalid signatures, sends duplicate
packets, or reports fewer packets in the verification phase.
These attacks result in the same outcome: the prover is unable
to report its actual bandwidth because unwanted extra traffic
was present at the time of challenge. One can view all these
attacks as variants of Denial-of-Service (DoS) attack. DoS or
distributed Dos (DDoS) attacks are possible in our setting,
especially if one implements the protocol by setting public IP
address. Specifically, a challenger or a group of them with a
high bandwidth link can flood the prover backhaul with invalid
packets, preventing the valid packets sent by uncorrupted
challengers from reaching the prover. Even a challenger who
has not been selected for a particular challenge but knows the
time of the challenge can disrupt the challenge similarly. It
will be challenging to alleviate the problem using standard
filtering techniques [48] without cooperation from the ISP. In
fact, if ISP cooperates or the deployment is on a local network,
a promising direction for countermeasure will be to adopt a
network architecture with accountability[15] and incentivize
ISPs to enforce challenge-specific security policies[46]. The
detection and dis-incentivization of such attacks (for instance,
using crypto-economic “slashing”) is a topic of future work.
Furthermore, we assume that there is no attack during the net-
work synchronization phase; in future we can adopt Byzantine
resistant time synchronization schemes such as those in [21]

7

to further enhance security.

B. Security Properties

Theorem 1 (Soundness). When f < n/3, the prover cannot
inflate the bandwidth.

Proof: According to the protocol, all packets with se-
quence number q sent by uncorrupted challengers will arrive at
the network core at t0+ q · b/θ0 and be added to the backhaul
link queue Q. Because it takes at least b/θ0 to finish transmit-
ting all packets with the same sequence number (according to
bandwidth condition in Eq.2), the queue will never be empty
during the measurement phase. Before sending the response,
the prover waits for K ≥ (n − f) · k packets, among which
at most fk packets come from corrupted challengers. These
packets can be sent through an external link (rushing attack)
or generated by prover directly if the secret keys are shared in
collusion (information sharing attack). In either case they will
not actually consume the bandwidth of the prover’s backhaul
link. Even so, there are still at least K − fk ≥ (n − 2f) · k
packets sent by uncorrupted challengers. Since packets from
uncorrupted challengers are not forgeable by anyone else, the
earliest time at which the prover can send response is the time
at which (K − fk) packets from Q get delivered, which is at
least tR = t0+b/θ0+(K−fk)b/θP, whereby the uncorrupted
challengers will receive the response and time tiR > tR.

Since the verifier needs to collect at least n− f time mea-
surements, of which n− 2f must be reported by uncorrupted
challengers, the median ∆′ of the RTTs must be bounded by
the minimum of honest measurements since f < n/3, in this
way the estimated time will not get affected by individual
misreports. Then, denoting the set of honest challengers as
H , we have ∆′ ≥ min{tiR}i∈H − t0 − b/θ0 > (K − fk)b/θP
and

θ′P =
K · b · (n− 2f)

∆′ · (n− f)
≤ K · (n− 2f) · θP

(K − fk) · (n− f)
≤ θP.

Theorem 2 (Approximate completeness). When f < n/3 and
the prover is uncorrupted, the protocol will always output
bandwidth with accuracy α = θ′P/θP ≥ (n − 2f)/(n − f).

Proof: When the prover is uncorrupted, it waits for
(n− f) · k packets to generate the response. Even under with-
holding attacks, where corrupted challengers never send their
packets, (n − f) · k packets generated by honest challengers
will arrive at the prover before tR = t0+b/θ0+(n−f)kb/θP.
Then all uncorrupted challengers receive the response at the
same time and output to the verifier. Assuming that the size
and the latency of the response is negligible, we have the
median RTT ∆′ = (n−f)kb/θP. If corrupted challengers try to
misreport the number of packets received by the prover, claim
the proof sent by the prover is incorrect, or even withhold the
measurement results, the prover can send the genuine packets
it has received from the challenger to the verifier together
with the Merkle proof. The verifier will reconstruct the Merkle
root from the submitted partial data and Merkle proof to solve
disputes. Thus, even under attacks, the total number of packets

are no less than (n − f)k. Consequently, the protocol will
output

θ′P =
(n− f)kb · (n− 2f)

∆′ · (n− f)
=

n− 2f

n− f
θP.

Remark. (Adversarial threshold.) Our protocol can tolerate
up to a fraction 1/3 of Byzantine challengers. This threshold
of 1/3 arises from the requirement to ensure that a majority
of (n − f) RTT measurements are collected from uncor-
rupted challengers. This allows the verifier to terminate the
collection responsively (or “lazily”) when receiving enough
reports without the requirement of a timer. However, if the
verifier has access to a timer with desired accuracy (roughly
100ms for us), it can wait for a certain period (determined
by maximal network delay and backhaul links transmission
delays) to collect the measurements, by which all challengers
who fail to send the report are recorded as 0. In this case
at least n − f reports of total n reports are from honest
challengers, the majority requirement n − f > f means that
the protocol is able to tolerate a fraction 1/2 of Byzantine
challengers.

V. EXPLORING THE DESIGN LANDSCAPE

In this section, we investigate variants of our protocol and
variations in security guarantees when different primitives such
as throughput fairness (§ V-A), digital signatures (§ V-B) and
extra side-links (§ V-C) are present or absent.

A. Stronger Primitive: Fairness

We first consider a stronger primitive when using TCP
packets as our challenge flow, whose congestion control al-
gorithm is known to provide fairness [20]. Fairness guarantees
that when n challengers are sending traffic simultaneously with
the same rate to a link with capacity B, each should have an
average rate of B/n. Under fairness assumption, we modify
the packet-based termination rule (prover generates the first
response on receiving enough packets) of the protocol to a
time-based rule that prover will wait for a fixed amount of
time ∆ before sending the first response. On receiving the
first response, challengers stop timer and measure their average
throughput during the measurement period. In this variant,
the final output is the robust sum of throughput reports. In
particular, we take the median throughput from n collected
reports and multiply it by (n − f) to get the estimated
bandwidth. The report collection phase lasts long enough to
make sure all honest reports get delivered, and the throughput
of those who never submit reports is set to a default value
0. Since honest challengers send the challenge traffic at rate
θ0 = θP/(n − f) as is specified in the protocol, they are
guaranteed to share the backhaul bandwidth in a same rate
θ′0 ≤ θ0 (it is possible that θ′0 < θ0 when more than n − f
challengers generate traffic).

Security analysis. Since honest challengers share the same
throughput θ′0 ≤ θ0, and the median of throughput is bounded
by honest reports, the output bandwidth must be no larger
than (n − f)θ′0 ≤ (n − f)θ0 = θP, thus the soundness holds.
When more than (n− f) challengers send the packets, honest
rates will become lower than θ0. But since anyone who send

8

more than θ0∆ will be considered as malicious, to stay covert
corrupted challengers can only send up to θ0∆ packets during
the measurement phase. In other words, the final bandwidth has
accuracy 1−β, which is better than the accuracy (1−2β)/(1−
β) of the current protocol (Theorem 2) due to fairness.

B. Weaker Primitive: Without Signature

In our main PoB protocol, digital signatures are used to
generate unforgeable packets and resolve disputes between
prover and challengers in terms of the number of packets that
are indeed received by the prover. We now discuss a case where
digital signature schemes are not available, instead, packets are
generated by a pseudo random generator with a seed picked by
each challenger. We describe the key changes in the protocol
below. The protocol guarantees an accuracy of (1−3β)/(1−β).

Measurement phase. At the beginning of measurement phase,
challengers generate a seed Si and commit it to the veri-
fier. Same as the main protocol, each challenger generates
a sequence of k packets with rate θ0. The q-th packet from
the challenger Ci contains the sequence number q and q-th
random number Riq generated from seed Si. The responses
are generated in the same way as Algorithm 1.

Verification phase. After the measurements, each challenger
reveals the seed Si to the prover, who can check whether
it matches the pre-committed seed from the verifier. Chal-
lengers verify responses by constructing Merkle tree just as
Algorithm 2. The key change in the verification phase is the
termination check. The verifier accepts the output as long as
at least (n − 2f) packets are reported as received since f
corrupted challengers may refuse to report the actual number
of packets received by the prover and the prover can not
prove the inconsistency, though the honest prover is required to
terminate after receiving (n− f)k packets. As a consequence,
the correction factor becomes (1− 3β)/(1− 2β).

Security analysis. The soundness proof of the new protocol
is similar to the proof in Theorem 1. The only difference
caused by the new termination rule is that an honest prover
may get only (n− 2f)k reported packets while they actually
receive (n− f)k packets (corrupted challengers all report 0).
Different from digital signatures, random packets generated
by pseudo random generator does not keep unforgeability
after the seed is revealed, thus there is no way to resolve
disputes. However, during the measurement phase, the packets
generated by honest challengers are still unforgeable, therefore
even corrupted prover needs to receive at least (n − 3f)k
packets from the honest challengers to generate responses,
which means the median time ∆′ ≥ (n− 3f)kb/θP and

θ′P ≤
(1− 3β)(n− 2f)kb

(1− 2β)(n− 3f)kb/θP
= θP

The termination is guaranteed for honest provers due to
the relaxed termination rule with the cost of lower accuracy.
When the prover is uncorrupted, it still waits for (n − f)k
packets to generate the response. Under witholding attacks and
the misreporting attacks, the honest prover can only prove the
receipt of (n−2f)k packets. Therefore, the protocol will output

θ′P ≥
(1− 3β)(n− 2f)kb

(1− 2β)(n− f)kb/θP
≥ (1− 3β)

(1− β)
θP

So accuracy is reduced to α = (1− 3β)/(1− β).

C. Relaxed Threat Model

In §IV-A, we assume adversary has access to extra high-
bandwidth channels to every end node in the Internet, which
enables unavoidable rushing attacks. In real world, though,
maintaining such a backdoor network can be prohibitively
expensive. A more realistic privilege adversary may have is
a high-bandwidth channel to the network core. This means
packets sent by corrupted participants can reach network core
almost instantly, but will be added to the message queue
together with other honest packets and be transmitted to
destination following the order in queue.

Shuffle phase. With the relaxed threat model, we design a new
class of protocols to improve the accuracy ratio. When there
are no extra links connecting the adversary with other nodes
directly, corrupted challengers can not rush packets through
extra links. But information share attack is still possible, to
address which we design a shuffle phase to involve more than
one challengers into the packets generating process.

We consider a slightly different system where challengers
join a pool with shares and the number of shares of a chal-
lenger Ci is determined by its available bandwidth θi and the
bandwidth unit θ0. For example, a challenger with bandwidth
50 Mbps owns 5 shares in a pool with bandwidth unit 10
Mbps. Each share is assigned with a unique ID {1, · · · , U}
(we assume U → ∞). The Byzantine fraction of corrupted
bandwidth units β < 1

3 .

During the shuffle phase, t shares are drew from the pool
uniformly randomly to form a challenger group, we call such
a protocol t-shuffle scheme. Suppose we have n challenger
groups sampled from the pool, denoted as C1, · · · , Cn. Specif-
ically, the owner of each bandwidth unit in the challenger
group signs a sequence of packets using the same method in
Algorithm 1, and sends these packets to the next challenger in
the group, who also signs the packets to get a new sequence
of packets. Then in the measurement phase, the last challenger
serves as the sender to forward the sequence of packets signed
by the entire group to the prover.

In this way, as long as one of the challengers in the group
is uncorrupted, the information share attack no longer works
since corrupted challengers can only share partial information
about how to generate packets to the prover. In other words,
only those groups in which all bandwidth units belong to cor-
rupted challengers can still mount the information share attack.
On the other hand, the multi-signed packets scheme implies
that even one corrupted challenger can withhold the packets.
We call a challenger group is good if all bandwidth units in
the group belong to honest challengers, and a challenger group
is bad if all bandwidth units in the group belong to corrupted
challengers. We denote the number of good and bad groups as
random variables G and B. For each challenger group Ci,

P (Ci is good) = (1− β)t, P (Ci is bad) = βt

Full protocol. After shuffle phase, the last challengers in
all groups forward packets to the prover and start timer for
transmission process. The time to send each packet is the same
as Algorithm 1. On collecting cnt ≥ g = (θP/θ0)k packets

9

(g is a liveness parameter), the prover computes the hash of
all packets (from different challengers) as the first response,
receiving which challengers will stop timer and log time. In
the verification phase, prover need to broadcast all received
packets to all challengers so that they can verify the hash and
submit reports to the verifier. Then similar to Algorithm 2,
verifier waits for time reports from at least n− f challengers,
and takes the median of RTT ∆′ as time measurement. The
final bandwidth of output is given by the following formula.

θ′P ←
cnt · p · (g − b)

∆′ · g
(3)

where g is the liveness parameter, b is the accuracy
parameter, p is the packet size.

Security analysis. The parameters defined in equation (3)
determines the security and accuracy of PoB with shuffle.
Formally, to provide soundness we require

Pr(θ′P > θP) = Pr

(
g − b

g −B
> 1

)
= Pr(B > b) (4)

to be negligible. Meanwhile, we want to achieve approximate
completeness and maximize the accuracy ratio (g − b)/g,
which implies Pr(G < g) should also be negligible to
ensure termination. Among n challenger groups, let G =∑n

i=1 I[C is good], B =
∑n

i=1 I[C is bad] (I is an indicator
function), we have

E[G] = (1− β)tn, E[B] = βtn

According to Chernoff bounds, for any 0 < δg ≤ 1 and 0 <
δb ≤ 1, we have

P (G < (1− δg)(1− β)tn) = P (G < g) < exp(−Θ(δ2gn))

P (B > (1 + δb)β
tn) = P (B > b) < exp(−Θ(δ2bn))

Thus by choosing appropriate g, b, we get accuracy

α =
g − b

g
= 1− (1 + δb)β

t

(1− δg)(1− β)t

In Appendix E, we set error probability ϵ = 0.5 and
β = 1/3. We search for parameters g, b to reach optimal
accuracy ratio α given different number of challenger groups
n ∈ [10, 500]. The results are shown in Figure 7.

VI. PROTOCOL IMPLEMENTATION

In this section, we present the protocol implementation in
a real system. Towards practicality, we discuss the factors that
are not addressed in our theoretical modeling (§VI-A) which
leads to the modifications in implementation to the basic form
of the protocol (§VI-B).

A. Practical considerations

Challenger bandwidth. In §III-C, we assume each challenger
can measure its spare bandwidth θi precisely. However, this
bandwidth may be time-varying and it will be difficult for the
challenger to measure every time. We relax this requirement by
allowing every challenger simply ensure that it has at least θ0
bandwidth available for the challenge. Here θ0 = θP/(n− f)
is the smallest value that satisfies the bandwidth condition in
Eq. (2). Each challenger will now send the challenge traffic at
rate θ0.

Latency. The key requirement of our technique is that the
packets from each challenger reach the prover backhaul at
the same time. The aggregation condition Eq. (1) ensures this
when there is no synchronization error or latency. However,
in practice, a packet from the challenger Ci will take time
li to reach the prover, where li is the one-way latency from
challenger Ci to the prover. The value of li can indeed vary for
different challengers and to account for such varying latencies,
we modify Eq. (1) as

t0 +
b

θ0
+ l0 = t11 +

b

θ0
+ l1 = · · · = tn1 +

b

θ0
+ ln

where ti1 is the start time of challenger Ci to send the first
packet. Note that θi is replaced by θ0 as in our implementation;
challengers release packets at rate θ0.

Likewise, the response packet from the prover will take
time li to reach challenger Ci. Accordingly, ∆i in Algorithm 1
now changes to ∆i = curT imei− ti−2 · li, where curT imei
is the time when challenger Ci receives the response from
the prover. For measuring li, before the challenge starts, each
challenger sends 20 ICMP ping packets to the prover and
takes the average across these 20 packets as RTT . We set
the value li as RTT/2. Note that using ping packets to
measure li creates a vulnerability: prover can delay the ping
response, inflating li and thereby θ′P. To circumvent this, one
possible solution is to restrict the challengers to be within
certain geographical limit of the prover. This will ensure that
the maximum li is bounded by a small value of say 10-15
ms and so the error in estimating θ′P due to incorrect li is
also small, provided the challenge duration is chosen to be
sufficiently long; see error analysis of implemented protocol
in Appendix A.

Packet drops. Our premise is that all k packets from a
challenger reach the prover. However, simultaneous packet
sending by challengers can cause buffer overflow at the
prover’s last link, leading to packet drops. As we employ
UDP protocol, dropped packets will not be retransmitted. As
a result, packet drops can hinder challenge termination. In
our experiments, we observed that sending 1.1k packets from
challengers compensates for packet drops. With a presumed
packet drop rate of up to 10%, it assures the prover receives
enough packets, leading to termination.

Time synchronization. We require that all the challengers are
synchronized via Network Time Protocol (NTP) [13]. Note
that NTP does not ensure perfect time synchronization, there
can still be residual synchronization errors of the order of tens
of milliseconds over the Internet [44].

Computation overhead. The use of cryptographic primitives
like Hash and MerkleRoot (Algorithm 1) inevitably incurs

10

computation overhead, which will delay the prover from send-
ing responses to challengers and thereby add to an error in
measurements. We detail empirical computation times of these
primitives in §VII-A as a function of the number of challengers
and challenge duration for completeness.

B. Implementation

We implement challengers and the prover as UDP socket
applications in C++ and each challenger conducts measure-
ments by sending UDP packets to the prover. Details are
described below.

Digital signatures. As per Algorithm 1, each packet needs
challenger’s signature. We employ an OpenSSL based im-
plementation of Ed25519 [32], [3], an Edwards-curve dig-
ital signature scheme, for its low computational overhead.
Our findings reveal that 64 Bytes challenge packets (size of
Ed25519 signature) compromise measurement accuracy, par-
ticularly over WiFi. For efficiency, modern WiFi uses packet
aggregation [49], combining multiple network layer packets
into a single MAC layer packet, up to 1MB. Smaller 64
bytes UDP challenge packets hinder WiFi MAC aggregation,
decreasing the throughput θ0 for the challenger. To counter
this, we bundle multiple signatures into a single larger packet.
We use 1514 bytes challenge packets (1472 byte UDP payload
with a 42-byte header), carrying 23 distinct 64 byte signatures.
The payload contains only signatures to prevent malicious
challengers from omitting plaintext content.

Hashing and verification. As described in Algorithm 1, upon
receiving the required number of total packets, the prover gen-
erates a hash for each challenger Ci, i.e., h1i ← Hash(M [i])
where M [i] is the set of all the signatures received from
challenger Ci. The prover then generates a MerkleRoot of all
the hashes from all the challengers. For generating the hash
we use sha256 hash function via the implementation [8] and
for generating the Merkle root, we use a C++ open source
implementation [9]. The prover sends h1i and MerkleRoot as
response to the challenger Ci. The response packet is a UDP
packet with a payload of 64 bytes as it contains two 256-
bit hashes. In the verification phase (Algorithm 2), the prover
sends bitmap Bi and Merkle proof Pi to challenger Ci, who
then verifies the Merkle proof and sends RTT ∆i and number
of its packets received by the prover, to the verifier.

Precomputing the signatures. Signature generation incurs
computation time too and our benchmarking of OpenSSL
implementation [3] of Ed25519 indicates that generating one
signature of 64 bytes takes about 50-60 microseconds (µs) on
a resource-constrained Linux system consisting of 1 GB of
RAM and 1 CPU core. For each packet, a challenger has to
generate 23 signatures which will incur a maximum time of
23 ∗ 60 ≈ 1.4 ms. As the signature generation time is more
than the packet transmission time of about 1.2 ms even at
θ0 = 10 Mbps, in our implementation challengers precompute
all the signatures before the challenge begins. This can be done
after the challenger receives the challenge request and while
measuring the ping latency li.

Benchmarking the technique. Making use of multiple chal-
lengers with the additional requirement of security introduces
more sources of errors. Particularly, li is not a constant and has
some jitter. NTP synchronization can result in error of tens of

milliseconds over the Internet. Computation overhead of hash
and Merkle tree generation adds delay. Given these sources
of error, we evaluate the accuracy as a function of challenger
duration and the number of challengers.

VII. EXPERIMENTAL EVALUATION

In this section, we explore the accuracy and robustness of
the available backhaul bandwidth measurements through the
employment of multiple challengers. To begin with, we com-
pare the measurement results with those of existing tools under
the assumption that all participants are operating honestly
(§VII-A). Then, we stress test the protocol under Byzantine
attacks to assess the security robustness (§VII-B). Lastly, we
present a full-stack PoB system and assess the performance of
in a real-world setting (§VII-C).

Experimental setup. Our setup consists of a diverse set of
challengers in terms of computation capability and geograph-
ical location. We carry out experiments with a maximum of
ten challengers. The prover has backhaul bandwidth (θP) of
250 Mbps enforced by Linux rate limiter tc. The details of
the prover and different challengers are listed in Table III.
Challengers 1-3 are connected to the Internet via WiFi links,
while other challengers have a wired link.

Compute Parameters Location RTT
RAM (GB) CPU (ms)

Prover 1 1 AWS X
Ch. 1-3 12-16 4-8 Y 25
Ch. 4-5 1 1 AWS Z 198

Ch. 6-10 1 1 AWS X 1

TABLE III: Experimental setup details for the prover and
challengers. Location of the nodes are in different continents
and are anonymized.

A. Performance Evaluation with All Honest Participants

To study how accuracy varies with challenge duration
and the number of challengers, we conduct experiments by
adjusting the number of selected challengers from 4 to 10 and
challenge duration from 25 ms to 200 ms for the prover.

Challenge duration is the time required to transmit the
required amount of packets i.e., (n − f)k packets through
the prover backhaul. Individual challengers will take longer
to complete the challenge due to their latency, li, and the fact
that they send 1.1k packets to account for packet drops. We
rate-limit the prover backhaul to 250 Mbps using the Linux
utility tc [7] and set the bandwidth of each challenger (θ0) as
θP/n, where n is the number of challengers.

Fig. 3 shows the backhaul measured by our technique
for varying number of challengers and challenge durations
as 25, 50, 100 and 200 ms. For each challenge duration, ten
experiments are carried out. We plot the average and standard
deviation for ten experiments in Fig. 3.

As can be seen from Fig. 3, with the number of challengers
set to 4, the measured backhaul is only about 167 Mbps for
25 ms challenge duration, but when the challenge duration
is increased to 200 ms, the measured backhaul increases to
about 241 Mbps with an error of about 4%. On the other hand,
when the number of challengers is increased to 6 or more, the

11

150

170

190

210

230

250

270

25 50 75 100 125 150 175 200

B
an

d
w

id
th

 (
M

b
p

s)

Challenge Duration (ms)

4 challengers

6 challengers

8 challengers

10 challengers

Fig. 3: Backhaul measured by our technique for different
challenge durations. Error bars ≈ std. deviation.

measured backhaul has an error of less than 5%, even for 25 ms
challenge. However, the standard deviation for 25 ms and 50
ms experiments is higher. The measurement accuracy increases
and the standard deviation decreases, if the challenge duration
is increased to 100 ms or more. For 100 ms, we observe an
error of less than 5% for six or more challengers.

175

200

225

250

275

300

325

350

375

400

425

450

475

500

525

0 1 2 3 4 5 6 7 8 9

B
an

d
w

id
th

 (
M

b
p

s)

Challenger

25 ms 50 ms 100 ms 200 ms

Median 25ms Median 50ms Median 100ms Median 200ms

Fig. 4: Backhaul measured by each challenger (n = 8) for
different challenge durations. Error bars ≈ std. deviation.

We look at how measurement accuracy is affected as a
function of the challenge duration for the case of n = 8. Fig. 4
shows the backhaul measured by each of eight challengers,
as an average across ten experiments for different challenge
durations. As can be seen from Fig. 4, the backhaul measured
by individual challenger shows higher error when challenge
duration is 25 ms or 50 ms. For example, the backhaul
measured by challenger 5 is about 440 Mbps and 320 Mbps for
25 ms and 50 ms duration. However, the error decreases when
challenge duration is increased to 100 ms or more. Note that
standard deviation across 10 experiments for each challenger
also decreases as the challenger duration is increased.

Some ISPs use token bucket filter to rate limit the back-
haul [58], whereby few packets can be released in a burst at
much higher rate than the average backhaul speed. Since in
our technique we use large number of packets (much more
than the burst size of typical token bucket filter), we will still
be able to measure the average backhaul which is our goal.

Sources of error. As shown in Fig. 4, some challengers
measured the prover’s backhaul as higher than the actual value
of 250 Mbps. This is due to errors affecting measurement

accuracy (see §VI) such as time synchronization and jitters
in latency. We observe that due to these errors, there is a
time difference of 20-30 ms between the first packet from
the first and the last challenger reaching the prover backhaul.
To compensate for the maximum packet drop rate of 10%
(see §VI), each challenger sends 10% more data. So, the
challengers that start late might receive the response from the
prover before they finish sending their share of challenge pack-
ets, if sufficient challenge packets have been received by the
prover from the challengers that start early. Such late starting
challenger’s backhaul estimate may be higher than the actual
value. However, the median evaluation at the final step, which
is primarily designed for security, also provides robustness
against such outliers. Consequently, our measurement accuracy
increases when there are more challengers.

The computation overhead of hash and Merkle tree gener-
ation also adds to the measurement error. We observe that the
computation overhead for the case of 4 challengers for 25 ms
challenge duration is about 500 µs, while for 10 challengers
for 200 ms challenge duration is about 3ms.

Amount of data. For packet drop rate of 10%, the total amount
of data required for different challenge duration to measure a
250 Mbps backhaul link is given in Table IV.

Expt. Duration (ms) 25 50 100 200
Data (MB) 0.86 1.71 3.44 6.88

TABLE IV: Amount of challenge data required.

As seen from Fig. 4, for challenges with 100-ms duration
we get a good accuracy for each challenger. Thus, our results
show that our technique can measure 250 Mbps backhaul in
100 ms with about 3.5 MB of data and an error of less than
5%, when 6 or more uncorrupted challengers are involved.

Comparison with a single challenger. With a single chal-
lenger that has a bandwidth of 250 Mbps, we could measure
prover backhaul of 250 Mbps with less than 2% error with
challenge duration being only 10 ms and the amount of data
required is about 345 KB. Multichallenger technique requires
larger challenge duration due to the aforementioned errors.
As the duration of the challenge is longer, the amount of
data used correspondingly increases. But the primary benefit
of multichallenger technique is that each challenger requires
much smaller bandwidth. With ten challengers, each challenger
requires a bandwidth of only 25 Mbps to measure prover
backhaul of 250 Mbps.

Accuracy for larger prover backhauls. The experimental
results of accuracy for larger prover backhauls (500 Mbps to
1000 Gbps) with 10 challengers are tabulated in Table V. We
observe that the measurement error grows as prover backhaul
increases; however even for prover backhaul of 1000 Mbps,
the measurement error is less than 8%.

Backhaul (Mbps) 500 750 1000
Measured BW (Mbps) 474.7 705.4 921.4

Error (%) 5.1 5.9 7.9
Overhead (ms) 4.6 7.3 10.2

TABLE V: Measured bandwidth and computation overhead for
larger prover backhauls.

12

One reason for higher error as prover backhaul increases
is the increasing computation time to construct Merkle tree.
The last row of Table V shows the computation overhead
for various prover backhauls. The computation overhead for a
prover with 1000 Mbps is about 10 ms, 10% of the challenge
duration. The experiments show that larger prover backhaul
leads to higher computation overhead. So, for backhauls over
1000 Mbps, the challenge duration should be extended.

Cross traffic on the backhaul link is another factor po-
tentially affecting measurements and possibly leading to pro-
tocol non-termination. To mitigate this issue, we propose a
protocol patch. Its effectiveness, evaluated under cross-traffic
conditions, is detailed in Appendix B.

Comparison with existing techniques. We compare the per-
formance of our technique with pathchar [22], MagicTrain [59]
and speedtest [6]. Pathchar uses round trip delays, while
MagicTrain uses packet dispersion and speedtest uses bulk
TCP transfer to measure bandwidth. Table VI illustrates the
results for backhaul of 500 Mbps.

Technique PoB pathchar MagicTrain speedtest
Measured BW (Mbps) 474.7 101.3 152.1 492.3
Amount of data (MB) 6.88 1.2 0.1 501

TABLE VI: Measurement accuracy of existing techniques.

As evident from Table VI, although pathchar and Magic-
Train use less data, they suffer from poor accuracy. Speedtest,
while more accurate, consumes about fifty times more data.
Recent tools [57], [56] improve speedtest’s data usage, but we
couldn’t execute their codes. Moreover, these techniques lack
Byzantine tolerance and necessitate their measurement servers
to be proximate to the end device.

The poor performance of pathchar and MagicTrain is
due to their reliance on precise timing measurements. We
empirically demonstrate the reasons in Appendix C. Similar
factors account for the inadequate performance of MagicTrain.

B. Security Evaluation

We carry out experiments to study how measurement
results are effected in the presence of malicious challengers.
We choose n = 10 and f = 2. We carry out measurements for
two different prover backhauls of 100 Mbps and 250 Mbps,
with a challenge duration of 100 ms.

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10

B
an

d
w

id
th

 (
M

b
p

s)

Challenger

Honest Withhold Rushing True BW

Expected Rushing Honest Median Rushing Median Withhold Median

Fig. 5: Backhaul measured by each challenger in case of
withholding and rushing attack. Prover backhaul is 250 Mbps.

Fig. 5 shows the average bandwidth measured by each
challenger across ten experiment runs for the case when prover
backhaul is 250 Mbps. As can be seen from Fig. 5, the
measured backhaul in the case when all challengers are honest
(honest median in Fig. 5) is 251.5 Mbps, while the measured
backhaul in the case of withholding attack (Withhold Median
in Fig. 5) is 241.4 Mbps. The expected measured backhaul in
case of withholding attack is 250 Mbps. So the measurement
accuracy in case of withholding attack is within 4%. Note that
this is the accuracy of the measurement technique. Our PoB
protocol will apply a correction factor α = (n− 2f)/(n− f)
(Algorithm 2) and output the guaranteed bandwidth for the
prover as 241.4α ≈ 181 Mbps which is about 28% less than
the prover backhaul of 250 Mbps.

In case of a rushing attack, the measured bandwidth is
inflated to 250/α ≈ 333 Mbps. The measured backhaul
(rushing median in Fig. 5) 331.5 Mbps matches our theoretical
prediction. The output of the protocol in this case will be
331.5α ≈ 249 Mbps, close to the actual prover backhaul.

Note that our security guarantees require us to curtail
bandwidth inflation. Indeed, we can observe that even under
a rushing attack, the guaranteed bandwidth does not exceed
the actual bandwidth. This is enabled by multiplying by a
shrinkage factor to compensate for adversarial challengers try-
ing to help the prover to claim an inflated bandwidth. However,
this comes at the cost of lower guaranteed bandwidth even
when all challengers are reporting honestly. After repeating
the experiment for a backhaul of 100 Mbps, the results stay
similar, validating our theoretical predictions.

C. A Full-stack PoB System

We have developed a full-stack implementation of our PoB
framework. This refined code base facilitates the deployment
of provers and challengers, and is available for reference [5].
Crucially, we have achieved integration with Ethereum [1]
blockchain. Briefly, the system enables a payer to initiate
a PoB challenge using blockchains. This request entails a
payment in test tokens of the underlying blockchains. For each
specific challenge, we randomly select a group of challengers,
who are subsequently rewarded with the test tokens provided
by the payer at the end of the challenge. The details of the
system architecture, workflow and smart contract interfaces
are presented in Appendix D.

Our system is alive and allows anyone who has a Ethereum
wallet to join as a challenger by simply deploying our code.
At the time of writing, we have approximately 25-30 active
challengers situated in diverse geographic regions including
the US, Europe, and Asia.

Measurements from real setting. For a better understanding
of the system’s practical performance, Table VII presents the
measurement results for three different backhauls of 500, 700
and 1000 Mbps.

Backhaul (Mbps) 500 700 1000
Measured BW [stdev] (Mbps) 478.8 [11.9] 671.5 [13.6] 901.0 [16.0]

Average Error 4.2% 4.1% 9.9%

TABLE VII: Measurement results in a real setting.

13

Each measured backhaul in Table VII is average across
ten challenges carried out with different set of challengers and
provers at different times. The average measurement error is
about 4% for backhaul of 500 and 700 Mbps and about 10%
for backhaul of 1000 Mbps, similar to our testbed experiments.

VIII. CONCLUSION AND DISCUSSION

Summary. Trustfree telemetry is a central problem in de-
centralized networks. Our Proof of Backhaul protocol ad-
dresses a core requirement by providing a secure and accurate
backhaul bandwidth measurement service for wireless access
points while also allowing open participation. The protocol
is operated by a group of challengers, whose latency and
bandwidth can be ordinary, with the goal of measuring a prover
hotspot who may have a high-bandwidth backhaul link. We
have established a trust model for the PoB problem, designed
precise specifications of the PoB protocol, and tested a high-
performance, low-overhead implementation.

Improving accuracy in practice. Our protocol guarantees
soundness and completeness of backhaul measurements with
a reasonable accuracy in the presence of Byzantine parties.
The accuracy ratio (1 − 2β)/(1 − β) is determined by the
Byzantine fraction due to a correction made for an unavoidable
rushing attack – corrupted challengers can always rush their
packets through an external high-bandwidth link to lower RTT
and inflate backhaul bandwidth to be measured. However,
such backdoor links may incur substantial costs in practice,
necessitating a more relaxed threat model and a family of
extended protocols. Without rushing links, we equip PoB
protocols with a shuffle phase where a pair of challengers
are asked to jointly sign packets. This mechanism improves
accuracy by making information sharing attack harder in a
probabilistic manner, with a cost of higher communication
overhead for verification. Implementing an efficient system for
such a shuffle protocol in practice is an active area of research.

Cross traffic. In our proposed method for handling cross-
traffic in Appendix B, we run experiments for increasing values
of bandwidth below the claimed link capacity. This requires
fresh data to be sent for each value and increases the amount of
data needed. To reduce the data consumption, a naive approach
could be that the prover replies to the challengers with the
number of packets received in a fixed duration. An alternative
approach is to send intermediate responses when appropri-
ate amounts of data are received. Both approaches cannot
guarantee a fixed accuracy for different available bandwidths.
Designing a protocol which is more data efficient and has such
guarantees is an open problem.

ACKNOWLEDGMENT

This work was conducted when all authors were working
at Witness Chain (https://witnesschain.com/).

REFERENCES

[1] “Ethereum,” https://ethereum.org/en/, [Online; accessed 26-June-2023].
[2] “Fast internet speed test.” https://fast.com/, [Online; accessed 26-June-

2023].
[3] “Openssl ed25519 implementation,” https://www.openssl.org/docs/

man1.1.1/man7/Ed25519.html, [Online; accessed 26-June-2023].

[4] “PM-WANI Central Registry,” https://pmwani.gov.in/wani, [Online; ac-
cessed 26-June-2023].

[5] “proof-of-backhaul,” https://github.com/multichallengerpob/
proof-of-backhaul, [Online; accessed 26-June-2023].

[6] “Speedtest,” https://www.speedtest.net, [Online; accessed 26-June-
2023].

[7] “Tc - traffic control, linux manual,” https://man7.org/linux/man-pages/
man8/tc.8.html, 2001, [Online; accessed 18-September-2022].

[8] “C++ sha256 implementation,” http://www.zedwood.com/article/
cpp-sha256-function, 2012, [Online; accessed 26-June-2022].

[9] https://github.com/IAIK/merkle-tree, 2015, [Online; accessed 26-June-
2023].

[10] “Celona: Private wireless for the enterprise,” https://www.celona.io/,
2019, [Online; accessed 26-June-2023].

[11] “Ericsson private 5g: Private network for your industry,” https://
www.ericsson.com/en/private-networks/ericsson-private-5g, 2019, [On-
line; accessed 26-June-2023].

[12] “Take your business into the digital age with private wireless,” https://
www.nokia.com/networks/private-wireless-network, 2019, [Online; ac-
cessed 26-June-2023].

[13] “Ntp: The network time protocol,” http://www.ntp.org/, 2020, [Online;
accessed 26-June-2023].

[14] “Multi-server testing,” https://www.ookla.com/articles/
how-ookla-ensures-accurate-reliable-data-2021, 2021, [Online;
accessed 26-June-2023].

[15] D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen, D. Moon,
and S. Shenker, “Accountable internet protocol (aip),” in Proceedings of
the ACM SIGCOMM 2008 conference on Data communication, 2008,
pp. 339–350.

[16] S. Banerjee and A. K. Agrawala, “Estimating available capacity of a
network connection,” in Proceedings IEEE International Conference on
Networks 2000 (ICON 2000). Networking Trends and Challenges in the
New Millennium. IEEE, 2000.

[17] R. L. Carter and M. E. Crovella, “Dynamic server selection using
bandwidth probing in wide-area networks,” Boston University Computer
Science Department, Tech. Rep., 1996.

[18] ——, “Measuring bottleneck link speed in packet-switched networks,”
Performance evaluation, vol. 27, pp. 297–318, 1996.

[19] I. Castro, A. Panda, B. Raghavan, S. Shenker, and S. Gorinsky,
“Route Bazaar: Automatic Interdomain Contract Negotiation,” in
15th Workshop on Hot Topics in Operating Systems (HotOS
XV). Kartause Ittingen, Switzerland: USENIX Association, May
2015. [Online]. Available: https://www.usenix.org/conference/hotos15/
workshop-program/presentation/castro

[20] D.-M. Chiu and R. Jain, “Analysis of the increase/decrease algorithms
for congestion avoidance in computer networks. j-comp-net-isdn, 17
(1): 1–14,” 1989.

[21] J. Douceur, J. Howell, and J. J. Douceur, “Scalable byzantine-fault-
quantifying clock synchronization,” 2003.

[22] A. B. Downey, “Using pathchar to estimate internet link characteristics,”
ACM SIGCOMM Computer Communication Review, vol. 29, no. 4, pp.
241–250, 1999.

[23] FCC, “Title 47, Chapter I, Subchapter D, Part 96,
Citizens Broadband Radio Service,” Federal Communications
Commission, Regulatory Information, Oct. 2020. [Online]. Avail-
able: https://www.govinfo.gov/content/pkg/CFR-2020-title47-vol5/pdf/
CFR-2020-title47-vol5-part96.pdf

[24] M. Ghosh, M. Richardson, B. Ford, and R. Jansen, “A torpath to
torcoin: Proof-of-bandwidth altcoins for compensating relays,” NAVAL
RESEARCH LAB WASHINGTON DC, Tech. Rep., 2014.

[25] A. Haleem, A. Allen, A. Thompson, M. Nijdam, and R. Garg, “Helium:
A Decentralized Wireless Network,” Helium Systems, Inc., White
Paper, Nov. 2018. [Online]. Available: http://whitepaper.helium.com

[26] K. Harfoush, A. Bestavros, and J. Byers, “Measuring bottleneck band-
width of targeted path segments,” in IEEE INFOCOM 2003. Twenty-
second Annual Joint Conference of the IEEE Computer and Communi-
cations Societies, 2003.

[27] N. Hu and P. Steenkiste, “Evaluation and characterization of available

14

https://witnesschain.com/
https://ethereum.org/en/
https://fast.com/
https://www.openssl.org/docs/man1.1.1/man7/Ed25519.html
https://www.openssl.org/docs/man1.1.1/man7/Ed25519.html
https://pmwani.gov.in/wani
https://github.com/multichallengerpob/proof-of-backhaul
https://github.com/multichallengerpob/proof-of-backhaul
https://www.speedtest.net
https://man7.org/linux/man-pages/man8/tc.8.html
https://man7.org/linux/man-pages/man8/tc.8.html
http://www.zedwood.com/article/cpp-sha256-function
http://www.zedwood.com/article/cpp-sha256-function
https://github.com/IAIK/merkle-tree
https://www.celona.io/
https://www.ericsson.com/en/private-networks/ericsson-private-5g
https://www.ericsson.com/en/private-networks/ericsson-private-5g
https://www.nokia.com/networks/private-wireless-network
https://www.nokia.com/networks/private-wireless-network
http://www.ntp.org/
https://www.ookla.com/articles/how-ookla-ensures-accurate-reliable-data-2021
https://www.ookla.com/articles/how-ookla-ensures-accurate-reliable-data-2021
https://www.usenix.org/conference/hotos15/workshop-program/presentation/castro
https://www.usenix.org/conference/hotos15/workshop-program/presentation/castro
https://www.govinfo.gov/content/pkg/CFR-2020-title47-vol5/pdf/CFR-2020-title47-vol5-part96.pdf
https://www.govinfo.gov/content/pkg/CFR-2020-title47-vol5/pdf/CFR-2020-title47-vol5-part96.pdf
http://whitepaper.helium.com

bandwidth probing techniques,” Journal on Selected Areas in Commu-
nications, vol. 21, no. 6, pp. 879–894, 2003.

[28] V. Jacobson, “Traceroute,” https://linux.die.net/man/8/traceroute6.

[29] ——, “Pathchar,” ftp://ftp.ee.lbl.gov/pathchar/, 1999.

[30] M. Jain and C. Dovrolis, “End-to-end available bandwidth: Measure-
ment methodology, dynamics, and relation with tcp throughput,” in
ACM SIGCOMM Computer Communication Review, 2002.

[31] ——, “Pathload: A measurement tool for end-to-end available band-
width,” in In Proceedings of Passive and Active Measurements (PAM)
Workshop. Citeseer, 2002.

[32] S. Josefsson and I. Liusvaara, “Edwards-curve digital signature algo-
rithm (eddsa),” Tech. Rep., 2017.

[33] G. O. Karame, B. Danev, C. Bannwart, and S. Capkun, “On the security
of end-to-end measurements based on packet-pair dispersions,” IEEE
Transactions on Information Forensics and Security, vol. 8, no. 1, pp.
149–162, 2012.

[34] S. Keshav, “A control-theoretic approach to flow control,” in Proceed-
ings of the conference on Communications architecture and protocols,
1991.

[35] H. Kim and N. Feamster, “Improving network management with soft-
ware defined networking,” IEEE Communications Magazine, vol. 51,
no. 2, pp. 114–119, 2013.

[36] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-defined networking: A comprehensive
survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2014.

[37] K. Lai and M. Baker, “Measuring link bandwidths using a determin-
istic model of packet delay,” in Proceedings of the conference on
applications, technologies, architectures, and protocols for computer
communication, 2000, pp. 283–294.

[38] ——, “Nettimer: A tool for measuring bottleneck link bandwidth,” in
3rd USENIX Symposium on Internet Technologies and Systems (USITS
01), 2001.

[39] “Magma: A modern mobile core network solution,” magma Core
Foundation. [Online]. Available: https://magmacore.org

[40] B. A. Mah, “pchar: A tool for measuring internet path characteristics,”
http://www. employees. org/ bmah/Software/pchar/, 2000.

[41] B. Melander, M. Bjorkman, and P. Gunningberg, “A new end-to-end
probing and analysis method for estimating bandwidth bottlenecks,” in
Globecom’00-IEEE. Global Telecommunications Conference. IEEE,
2000.

[42] ——, “Regression-based available bandwidth measurements,” in In-
ternational Symposium on Performance Evaluation of Computer and
Telecommunications Systems, 2002.

[43] R. C. Merkle, “A digital signature based on a conventional encryption
function,” in Conference on the theory and application of cryptographic
techniques. Springer, 1987, pp. 369–378.

[44] D. L. Mills, “On the accuracy and stablility of clocks synchronized by
the network time protocol in the internet system,” in ACM SIGCOMM
Computer Communication Review, 1989.

[45] “ORAN: Transforming the Radio Access Networks Towards Open,
Intelligent, Virtualized and Fully Interoperable RAN,” o-RAN Alliance
e.V. [Online]. Available: https://www.o-ran.org

[46] C. Pappas, R. M. Reischuk, and A. Perrig, “Fair: Forwarding ac-
countability for internet reputability,” in 2015 IEEE 23rd International
Conference on Network Protocols (ICNP). IEEE, 2015, pp. 189–200.

[47] A. Pasztor and D. Veitch, “Active probing using packet quartets,”
in Proceedings of the 2nd ACM SIGCOMM Workshop on Internet
Measurment, 2002, pp. 293–305.

[48] T. Peng, C. Leckie, and K. Ramamohanarao, “Protection from dis-
tributed denial of service attacks using history-based ip filtering,” in
IEEE International Conference on Communications, 2003. ICC’03.,
vol. 1. IEEE, 2003, pp. 482–486.

[49] E. Perahia and R. Stacey, Next generation wireless LANs: 802.11 n and
802.11 ac. Cambridge university press, 2013.

[50] R. Prasad, C. Dovrolis, M. Murray, and K. Claffy, “Bandwidth esti-
mation: metrics, measurement techniques, and tools,” IEEE network,
vol. 17, no. 6, pp. 27–35, 2003.

[51] V. J. Ribeiro, R. H. Riedi, R. G. Baraniuk, J. Navratil, and L. Cottrell,
“pathchirp: Efficient available bandwidth estimation for network paths,”
in Passive and active measurement workshop, 2003.

[52] K. M. Salehin and R. Rojas-Cessa, “Packet-pair sizing for controlling
packet dispersion on wired heterogeneous networks,” in 2013 Inter-
national Conference on Computing, Networking and Communications
(ICNC). IEEE, 2013, pp. 1031–1035.

[53] R. Snader and N. Borisov, “Eigenspeed: secure peer-to-peer bandwidth
evaluation.” in IPTPS, 2009, p. 9.

[54] J. Strauss, D. Katabi, and F. Kaashoek, “A measurement study of
available bandwidth estimation tools,” in Proceedings of the 3rd ACM
SIGCOMM conference on Internet measurement. ACM, 2003.

[55] J. Tremback and J. Kilpatrick, “Althea: An incentivized mesh network
protocol,” Althea Network, Inc., White Paper, May 2017. [Online].
Available: https://github.com/althea-net/althea-whitepaper/blob/master/
whitepaper.pdf

[56] X. Yang, H. Lin, Z. Li, F. Qian, X. Li, Z. He, X. Wu, X. Wang, Y. Liu,
Z. Liao et al., “Mobile access bandwidth in practice: measurement,
analysis, and implications,” in Proceedings of the ACM SIGCOMM
2022 Conference, 2022, pp. 114–128.

[57] X. Yang, X. Wang, Z. Li, Y. Liu, F. Qian, L. Gong, R. Miao, and T. Xu,
“Fast and light bandwidth testing for internet users,” in 18th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
21), 2021, pp. 1011–1026.

[58] E. Zhang and L. Xu, “Capacity and token rate estimation for networks
with token bucket shapers,” Computer Networks, vol. 88, pp. 1–11,
2015.

[59] P. Zhou, R. K. Chang, X. Gu, M. Fei, and J. Zhou, “Magic train: design
of measurement methods against bandwidth inflation attacks,” IEEE
Transactions on Dependable and Secure Computing, vol. 15, no. 1, pp.
98–111, 2015.

APPENDIX

A. Security Analysis of Implemented Protocol

Taking practical factors such as packet drop rate bound
r and an overall latency bound L (including time synchro-
nization error, transmission latency and computation overhead)
into consideration, we analyze the security properties of our
implemented protocol below.

Theorem 3 (Soundness). In implemented protocol, by adjust-
ing the correction factor to (n−2f−rf)/(n−f)−Lθ0/(kb),
the prover cannot inflate the bandwidth when f < n/3.

Proof: When at least n − f honest challengers send
packets at rate θ0, according to the bandwidth condition in
Eq.2, the backhaul link will never be empty. To account
for packet drops, challengers are required to send (1 + r)k
packets, which means at most (1 + r)fk packets can be
sent by corrupted challengers without actually consuming the
bandwidth (in rushing attack or information sharing attack).
Thus, the number of packets sent by uncorrupted challengers
is at least (n− 2f − rf) · k .

For handling latency, note that the median ∆′ of the RTTs
is at least (n− 2fk)b/θP − L, whereby

θ′P ≤
(n− f)kb

(n− 2f − rf)kb/θP − L
· (n− 2f − rf)kb− L(n− f)θ0

(n− f)kb

≤ θP.

Theorem 4 (Approximate completeness). When f < n/3
and the prover is uncorrupted, the implemented protocol

15

https://magmacore.org
https://www.o-ran.org
https://github.com/althea-net/althea-whitepaper/blob/master/whitepaper.pdf
https://github.com/althea-net/althea-whitepaper/blob/master/whitepaper.pdf

will always output bandwidth with accuracy α′ = θ′P/θP ≥
(n−2f−rf)kb/(n−f)−Lθ0

(1+r)kb+Lθ0
.

Proof: In presence of latency and packet drops, the
maximum median RTT is ∆′ = (n − f)(1 + r)kb/θP + L.
But the total number of packets are still no less than (n−f)k.
Consequently, the bandwidth of honest challenger output by
the protocol is at least

θ′P =
(n− f)kb

(n− f)(1 + r)kb/θP + L
· (n− 2f − rf)kb− L(n− f)θ0

(n− f)kb

≥ (n− 2f − rf)kb− L(n− f)θ0
(n− f)(1 + r)kb+ L(n− f)θ0

θP

=
(n− 2f − rf)kb/(n− f)− Lθ0

(1 + r)kb+ Lθ0
θP.

B. Effect of cross traffic

Our PoB protocol terminates when (n − f)k packets are
received by the prover. The number of packets k sent by each
challenger is determined by the prover backhaul and challenge
duration. However, if there is cross-traffic, the available band-
width at the prover will be reduced and the challenge packets
may experience a larger drop rate than 10% that we assume
for our experiments. In this situation the experiment may not
terminate.

We propose a modification to measure the available band-
width in the presence of cross traffic, up to a fixed accuracy δ.
The protocol repeats the basic PoB protocol, but instead of ver-
ifying θP, it verifies iteratively θ

(1)
P = δ, θ

(2)
P = 2δ, ..., θ

(ℓ)
P = ℓδ

and so on till θP. In more detail, we proceed as follows.

1) At step i, execute multichallenger PoB protocol with
θ
(i)
P = iδ. Note that each challenger must release

challenge traffic at rate θ0 = θ
(i)
P /n at this step.

2) Each challenger sets a timeout of 5× (challenge
duration). If the response from the prover is not
received during this period, the challenger declares
not terminate. If majority of the challengers
declare not terminate, we say that the protocol
does not terminate.

3) If the protocol for the ith step terminates, increment
i← i+ 1 and repeat the steps above.

4) Else if the protocol for the ith step does not termi-
nate, output the bandwidth obtained in the previous
execution of the PoB protocol.

We assume that the amount of cross traffic does not vary
throughout all the steps of the experiment. Using the approach
above, we carried out experiments to measure available band-
width in the presence of different amounts of cross-traffic. The
backhaul of the prover is set to 250 Mbps and the number of
challengers is 10. θP,0 is set to 40 Mbps and δ to 20 Mbps.

Table VIII summarizes the results. The measured band-
widths are close to available bandwidths, except for 90 Mbps.
The likely reason for this discrepancy is that the presence of
challenge traffic reduces cross traffic, resulting in an overesti-
mation of the available bandwidth.

Available BW (Mbps) 220 140 90
Measured BW (Mbps) 219.6 144.6 104.1

TABLE VIII: Measured bandwidth in the presence of cross
traffic.

C. Measurements for Pathchar

As we outlined earlier, the performance of pathchar de-
pends on how robust are minimum delay estimates over the
Internet and how long will it take for us to get a robust
estimate. Thus, to evaluate the performance of pathchar, we
measure the RTT to the prover node using ping for 15 different
packet sizes in multiples of 100 Bytes, starting from 100
Bytes and ending at 1500 Bytes. We ran the experiment
five times and took 500 measurements for each packet size.
Pathchar [29], [22] suggests taking the minimum RTT for each
packet size and fitting the linear least squares line to the data.

0 200 400 600 800 1000 1200 1400
Packet size (Bytes)

16.6

16.8

17.0

17.2

17.4

17.6

RT
T

(m
s)

Min RTTs
Fitted line
Intercept

Fig. 6: Minimum round trip time to the prover versus packet
size in Bytes. The line shows the linear least squares fit.

Expt. 1 2 3 4 5
RTT 16.589 16.511 16.635 16.565 16.500

TABLE IX: Linear least squares line’s intercept values for each
experiment’s dataset. RTT is in ms.

Figure 6 shows the minimum RTT (ms) versus packet size
in bytes and the fitted line for the first experiment. Table IX
shows the y-intercepts for five experiments; note that the y-
intercept represents latency. We can see that the y-intercepts
have a difference of 50-100 ms. Thus, we can say that the jitters
experienced over the internet is not negligible; in particular,
we cannot estimate the minimum latency below accurancy of
50-100 microseconds. Consequently, it is not feasible to use
pathchar to measure 100 Mbps or higher bandwidth.

D. PoB System Design

We construct the PoB framework utilizing Ethereum as
the verifier blockchain. Beyond the basic roles of challengers
and provers, our system incorporates several auxiliary roles
delineated in Table X. Specifically, payers are the entities that

16

TABLE X: Parties involved in PoB system

Party Descriptions

Payer A party who pays for the challenge
Prover The end-point whose backhaul capacity is being measured

Challengers A pool of servers which can send challenge traffic to the prover
Challenge coordinator Centralized services for (i) communication between the parties; (ii) computing challenge meta data; and (iii) interacting with the ledger
Blockchain full nodes Parties maintain a decentralized ledger for recording all the challenge requests and outcomes

cover the expense of the challenge, and challenge coordina-
tors facilitate the coordination among challengers, provers,
and blockchain full nodes. The responsibility of a challenge
coordinator includes maintaining an active list of challengers,
selecting a subset of them randomly for each challenge, and
interacting with the blockchain to record challenge-related
data. Importantly, although a poorly performing challenge
coordinator can compromise the system’s liveness, it does not
affect its accuracy or soundness. In practice, we encourage
system liveness through commission fees and by establishing
a pool of coordinators.

We have categorized the primary stages of the protocol as
follows:

- Challenge Initiation. The payer triggers an on-chain
request via the STARTCHALLENGE function. This
function submits the public keys of both the payer and
the prover, and the claimed capacity. To accommodate
the expenses related to the challenge (which fluctuate
with the claimed capacity), the payer deposits escrow
tokens into the contract.

- Challenge Setup. The challenge coordinator operates
a blockchain watcher to track the contract’s states.
Upon the submission of a new request, it employs the
GETPOB function to extract the request information
from the chain and selects a suitable number of
challengers from its list of active challengers. The
challenge coordinator subsequently informs the prover
and the chosen challengers of the impending chal-
lenge.

- Challenge Execution. Each challenger calculates the
RTT to the prover. The prover provides instructions to
each challenger regarding the location and the timing
for the transmission of challenge data. In accordance
with the protocol, the challengers proceed to dispatch
the challenge data. The prover, after collecting a
sufficient number of packets, computes a response
hash from the received data and shares it with each
challenger. The challengers record both the initiation
time and the time of response hash receipt. The prover
then sends signed verification data to each challenger,
which allows them to calculate the transmission time
and the count of received packets. This data is passed
on to the challenge coordinator, who determines the
bandwidth and uploads all the data (including a list
of challengers and their responses) on-chain using the
ENDCHALLENGE function. Post data verification, the
PoB contract is terminated and the escrowed tokens
are distributed among the challengers as a token of
appreciation for their contribution to the challenge.

E. Practicality Analysis of PoB-Shuffle

In order to evaluate the practical application of PoB-
Shuffle, we establish a Byzantine fraction β = 1/3 and desig-
nate a maximum error probability ϵ = 0.5. We then compare
four different variations of the t-shuffle protocols, character-
ized by varying challenger group sizes of t = 2, 3, 4, 5. We
employ a binary search of parameters g, b to calculate the
optimal accuracy ratio under differing quantities of challenger
groups.

Our results indicate that a larger number of challenger
groups n enhances the accuracy ratio across all three cases.
However, the rate of improvement declines over n until the
accuracy eventually converges and the limit can be improved
by choosing larger t. Furthermore, a larger t improves mea-
surement accuracy with the same number of groups, albeit at
the expense of inherently larger latency. Also, the minimum
group number requirements to maintain achieve the specific
error probability will be increased. For t = 3, 4, 5, there exist
no feasible parameters to attain the required error probability
when the number of challenger groups is small. Given our
choice of a non-negligible error probability, it is necessary to
repetitively execute the protocol to obtain more dependable
results. In conclusion, PoB-shuffle protocol can achieve better
accuracy compared to the constant ratio of PoB when we have
sufficiently large number of challenge groups.

17

0 100 200 300 400 500
Total number of challenger groups

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

 ra
tio

PoB
PoB-shuffle

(a) t = 2

0 100 200 300 400 500
Total number of challenger groups

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

 ra
tio

PoB
PoB-shuffle

(b) t = 3

0 200 400 600 800 1000
Total number of challenger groups

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

 ra
tio

PoB
PoB-shuffle

(c) t = 4

0 100 200 300 400 500
Total number of challenger groups

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

 ra
tio

PoB
PoB-shuffle

(d) t = 5

Fig. 7: The comparison of accuracy ratio between PoB and t-shuffle protocols. Byzantine ratio β = 1/3, we calculate the best
accuracy ratio under different number of challenger groups n. The maximal failure probability of PoB-shuffle protocol is ϵ = 0.5.

18

	Introduction
	Background and Related Work
	The Multichallenger PoB Protocol
	Problem Statement
	Protocol Overview and Main Results
	Full PoB Protocol

	Security Model and Analysis
	Threat Model
	Security Properties

	Exploring the Design Landscape
	Stronger Primitive: Fairness
	Weaker Primitive: Without Signature
	Relaxed Threat Model

	Protocol Implementation
	Practical considerations
	Implementation

	Experimental Evaluation
	Performance Evaluation with All Honest Participants
	Security Evaluation
	A Full-stack PoB System

	Conclusion and Discussion
	References
	Appendix
	Security Analysis of Implemented Protocol
	Effect of cross traffic
	Measurements for Pathchar
	PoB System Design
	Practicality Analysis of PoB-Shuffle

