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Abstract—Defeating use-after-free exploits presents a challeng-
ing problem, one for which a universal solution remains elusive.
Recent efforts towards efficient prevention of use-after-free exploits
have found that delaying the reuse of freed memory can both
be effective and efficient in many cases. Previous studies have
proposed two primary approaches: one where reuse is postponed
until the allocator can confidently ascertain the absence of any
dangling pointers to the freed memory, and another that refrains
from reusing a freed heap chunk until the program’s termination.
We make an intriguing observation from our in-depth analysis of
these two approaches and their reported performance impacts.
When compared to the design that delays the reuse until the
program terminates the strategy that delays the reuse just until
no dangling pointer references the freed chunk suffers from a
significant performance overhead for some workloads. The change
in the reuse of each heap chunk affects the distribution of allocated
chunks in the heap, and the performance of some benchmarks.
This study proposes HUSHVAC, an allocator that performs delayed
reuse in such a way that the distribution of heap chunks becomes
more friendly to such workloads. An evaluation of HUSHVAC
showed that the average performance overhead of HUSHVAC
(4.7%) was lower than that of the state-of-the-art (11.4%) when
running the SPEC CPU 2006 benchmark suite. Specifically, the
overhead of HUSHVAC on the distribution-sensitive benchmark
was about 35.2% while the prior work has an overhead of 110%.

I. INTRODUCTION

Use-after-free is a longstanding memory safety problem.
Programming languages with manual memory management
require developers to free heap chunks explicitly so that the
chunks can be reused for other objects later. Unfortunately,
determining if there is a pointer in the process that targets
a freed chunk is not straightforward. If a chunk is freed
while the program still has a pointer, such a dangling pointer
can be misused to corrupt an object that reuses the chunk.
Many software products are reported to have this class of
vulnerability [5, 6, 7] despite the large mitigation effort [11,
12, 15, 16, 17, 19, 23, 25, 26, 27, 28, 29, 30, 31, 32, 34, 36].
The prevalence and severity of the threat even motivates the
industry to migrate the existing software products into other
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languages such as Rust [22, 33, 35], which prevents the use-
after-free vulnerabilities as one of its design goals.

Delaying the reuse of the freed memory chunks until
the pointers to them disappear from memory is a promising
approach to preventing use-after-free vulnerabilities. Markus
and MineSweeper [11, 18] are state-of-the-arts in this direction,
and with relatively low overhead in several benchmarks.
When compared to the others, they exhibit relatively low
overhead on execution time and do not require special hardware
features that are not accessible on commodity processors, while
deterministically preventing temporal safety violations unless
the program hides the pointers. The disadvantage of these two
approaches is that some allocation-intensive benchmarks are
still significantly slowed down. Preliminary studies show that
the current strategy, which combines the mark-sweep approach
with existing commodity heap allocators has an inherent and
unavoidable inefficiency. Simply delaying the reuse of freed
chunks already incurs the slowdown because the approach
increases heap fragmentation.

The most extreme form of delayed reuse is never reusing
the freed chunks. This approach has a fundamental limitation:
the program cannot run indefinitely since the virtual address
space will eventually be exhausted. In return, the strategy has
recently been found to be promising provided that the heap
allocator itself is redesigned for such one-time allocation [36].
One interesting observation from this study is that it does not
cause a significant slowdown compared to the aforementioned
allocation-intensive benchmark.

These findings inspire us to tackle the problem from a
different angle. HUSHVAC prevents heap object use-after-free
by allocating heap chunks that have never been allocated or
are addressed by no dangling pointers. The system is built on
recent findings that modern computer systems can efficiently
perform synchronous marking and concurrent sweeping with
little performance intervention [11] and heap allocators can be
optimized to allocate fresh heap chunks rather than reusing
freed ones [36].

The following five key design choices enable HUSHVAC
to attain the desired level of efficiency when running with
allocation-intensive benchmarks and to become more compre-
hensive in discovering dangling pointers. First, HUSHVAC’s
underlying allocator is FFmalloc [36], which is optimized for
allocating fresh chunks. Unlike conventional heap allocators or
existing mark-sweep approaches, allocation from fresh chunks
will be the norm in HUSHVAC. This design decision is inspired
by FFmalloc’s excellent performance result, which demonstrates
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that always creating fresh chunks does not necessarily incur
performance overhead. Second, HUSHVAC primarily reuses
freed memory chunks at the page level, thereby improving the
proximity of allocations made from reused chunks. In principle,
it does not explicitly reuse the physical memory space of
the freed chunks. Instead, HUSHVAC only seeks to reuse the
virtual address space of the freed chunks leaving physical
page reuse to the operating system kernel. One observation
that enables this design is that the Linux kernel allows a
process to detach the physical page from a virtual page without
unmapping the virtual page. This feature is a key enabler of this
design because if HUSHVAC has to unmap such pages, it will
encounter the over-splitting VMA structure issue that FFmalloc
has been designed to avoid. Third, HUSHVAC performs the
mark-sweep procedure to reuse the virtual address space only
when the process is not actively allocating heap chunks. The
two previous design choices enable HUSHVAC to use this third
method because postponing the mark-sweep procedure does
not incur a significant overhead on memory usage. Whereas the
previous method pushes the heap chunks with their physical
memory space to the waitlist for reuse, HUSHVAC pushes
the virtual pages after detaching their physical memory space.
Having more virtual pages in the wait list does not necessarily
increase the process’s memory usage because HUSHVAC only
needs to maintain its metadata, not the entire page. Fourth,
HUSHVAC also reuses the chunks from a page that is not
entirely safe to reuse yet, to alleviate the potential fragmentation
that small live heap chunks in mostly freed pages may cause. We
designed this sub-page reuse in a way that does not nullify the
page-level sweeping and harm the locality of reused chunks.
Fifth, HUSHVAC scans the memory more comprehensively.
Specifically, it also scans the memory pages that the application
obtained by invoking system calls directly, without using a heap
allocator. This comprehensive scanning enables HUSHVAC to
discover some dangling pointers that an existing mark-sweep-
based system [11] cannot. We validate this by discovering a
Proof-of-Concept that triggers unsafe reuse when a program
uses anonymous pages obtained directly (§V-F).

We implement HUSHVAC using FFmalloc as the under-
lying allocator and test it against several benchmark suites,
including SPEC CPU, PARSEC, and BBench over Firefox. In
all benchmarks, our evaluation shows that HUSHVAC incurs
lower performance overhead than MarkUs, the state-of-the-art
mark-sweep method. For example, the geomean overhead of
HUSHVAC when running SPEC CPU 2006 is approximately
4.7% whereas MarkUs incur 11.4%. Notably, HUSHVAC incurs
only 35% overhead on xalancbmk, the allocation-intensive
the allocation-intensive benchmark we have been discussing,
whereas MarkUs incurs 110%. One disadvantage of HUSHVAC
that requires further optimization and evaluation is that the
overhead on memory usage is approximately 59.8% when
running SPEC CPU 2006, which is higher than that of MarkUs,
25.1%. We also test HUSHVAC’s effectiveness against four
CVE-assigned vulnerabilities [1, 2, 3, 4] found in widely used
software. Furthermore, we employed HardsHeap [38], a fuzzer
designed to target heap allocators. HUSHVAC successfully
prevented all four exploits of the vulnerabilities. Additionally,
HardsHeap failed to find any use-after-free vulnerabilities in
HUSHVAC during a continuous testing period of over 20 hours.

In summary, this paper makes the following contributions.

• We are the first to investigate a novel approach to use-
after-free prevention, beginning with a specially designed
allocator that never reuses freed chunks. This new direction
led us to make two new design choices: page-level
sweeping and opportunistic mark-sweep. We also carefully
adjust the sub-page reuse so as not to interfere with the
page-level sweeping.

• To the best of our knowledge, we are the first to identify the
root cause behind the performance overhead of existing
mark-sweep-based use-after-free prevention approaches
on an allocation-intensive benchmark and provide an
alternative design that avoids the problem.

• Our implementation of HUSHVAC scans the memory more
comprehensively. Specifically, unlike the two state-of-the-
art marksweep-based delayed-reuse allocators, it scans the
entire memory including anonymous pages, and leaves
only the allocator metadata.

• HUSHVAC has the lowest performance overhead among
the mark-sweep approaches for preventing use-after-free
exploits.

II. BACKGROUNDS

A. Use-after-Free Primer

One common flaw found in software written in low-level
languages such as C or C++ is the use-after-free vulnerability.
The vulnerability arises when pointers still pointing to a freed
heap area are mistakenly left in memory and then used by
other code. An attacker exploiting this can trick the code by
dereferencing the dangling pointer in various ways toward their
goals, such as privilege escalation or information leakage. To
illustrate, if a specific section of assigned memory holds data
regarding a crucial function pointer (e.g., a function pointer
that invokes a security-sensitive system call), the data within
that section can persist long after it has been reused. If an
attacker can manipulate the way a victim program uses the
dangling pointer, they can execute their desired program, like
running a shell by activating the corresponding function pointer
in that section. To avoid exploiting these vulnerabilities, we
must check whether a dangling pointer exists in memory or
not before reusing a freed heap chunk.

B. Existing Approaches Delaying the Reuse

Recent studies [11, 17, 18, 36] demonstrate that postponing
the reuse of freed heap chunks can effectively reduce use-after-
free vulnerability exploits. They postpone the reuse until all
dangling pointers have vanished or until the program terminates,
ensuring that no dangling pointer remains associated with any
allocated heap chunk.

Reusing Freed Chunks after Ensuring No Dangling Pointers.
MarkUs and MineSweeper [11, 18] take the former approach,
allowing the allocator to reuse a freed chunk only after a
memory scan confirms the absence of dangling pointers. They
begin by differing the frees by placing the freed chunks on the
quarantine list. A chunk remains on this list until the allocator
deems it safe for reuse. To determine which chunks from the
quarantine list can be safely reused, MarkUs and MineSweeper
pause the application, mark the heap chunks referenced by
any pointer in the memory, and then transfer the unmarked
chunks from the quarantine list to their free list. This process
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Fig. 1. On the right is the overhead of Delayed Free when running xalancbmk
and on the left is the spatial locality of the chunks allocated from temporally
local allocation requests.

of enabling the chunks to be reused is often referred to as
sweeping. The difference between MarkUs and MineSweeper
is the way they perform the mark phase. MarkUs uses the
existing C++ garbage collector to take the conventional mark-
and-sweep approach [8, 14]. MineSweeper shows that a linear
scan of the memory could also be a valid alternative, allowing
the use of the existing heap allocator rather than the specific
allocator designed for garbage collection. One observation
from our preliminary study is that their fundamental behavior,
delayed reuse of freed chunks, inherently incurs a significant
slowdown in some benchmarks. We further discuss this in the
next section (§III).

One-time Allocation. An alternative, yet significantly different
approach, is to avoid reusing freed chunks altogether. Oscar
and FFmalloc [17, 36] are two recent studies that use this
method. The fundamental principle is that by allocating new
heap chunks from fresh virtual pages, no dangling pointers
may be referenced. This approach cannot function indefinitely
because of the limited virtual address space. However, it is
still valuable in many instances where a program runs for a
shorter duration. Although they refrain from reusing virtual
pages, they do not consume excessive memory since they
can still reuse physical pages when all heap chunks from
a specific virtual page are freed. One intriguing observation
that prompted the development of HUSHVAC is that FFmalloc,
which is optimized for performance, incurs significantly less
execution time overhead on some benchmarks, which MarkUs
and MineSweeper cannot avoid.

III. MOTIVATION

The interesting performance implications of the two ap-
proaches delayed reused and one-time allocation, inspired the
development of HUSHVAC that inconspicuously and oppor-
tunistically reuses freed chunks.

MarkUs and MineSweeper incur high overhead on execution
time when executing xalancbmk, often exceeding 100% (or
2×). When using MarkUs, our measurement shows more than
2× overhead, and MineSweeper authors report more than
2× overhead when using MineSweeper in the secure, mostly
concurrent mode. On the contrary, FFmalloc does not incur
a significant slowdown on the same benchmark, according to
ours and the FFmalloc author’s measurement.
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Fig. 2. An overview of HUSHVAC. §V-A describes how the components
interact with each other.

Our effort to understand the reason for the slowdown reveals
that merely delaying the reuse of freed chunks slows down the
benchmark as shown in Figure 1, even exceeding FFmalloc. We
hypothesize that the slowdown is caused by the lower spatial
locality of chunks allocated from the temporally local allocation
requests. Looking into the behavior of xalancbmk, we discover
that the benchmark has hot spots where it frees and allocates
many chunks within a short period. Instant reuse of free chunks
enables the benchmark to obtain the chunks it has just freed,
which are likely to have similar spatial locality to the chunks it
has just freed. Conversely, delayed reuse of free chunks forces
the benchmark to obtain chunks that have either never been
used or have been freed a while ago, potentially resulting in
a lower spatial locality. FFmalloc, however, allocates spatially
local chunks for the spree of allocation requests because it
always allocates fresh chunks from the top of the heap’s size
classes. We validate our hypothesis by measuring the distance
between the chunks that are allocated from the temporally
local allocation requests, as shown in Figure 1. We compute
the average distance of an allocation as the average distance
between the allocated chunk and the 10 nearest chunks that are
allocated before and after the allocation. The figure we report is
the average of this average distance for each of the benchmark’s
50 allocations. The number we report is the average of this
average distance for every 50 allocations in the benchmark.
As expected, delayed reuse significantly increases the average
distance, while FFmalloc exhibits a considerably low (about
4M) average distance.

IV. THREAT MODEL

We assume that a program that runs with HUSHVAC has
one or more use-after-free vulnerabilities and that these are
the program’s only vulnerabilities. In other words, the attacker
must exploit one or more of these use-after-free vulnerabilities.
Other vulnerabilities, such as spatial safety violations or logic
bugs, are out of scope. HUSHVAC is not designed to defeat
the attacks exploiting vulnerabilities other than use-after-free.
We also assume that HUSHVAC is well-written and does not
include any exploitable vulnerabilities. Note that this set of
assumptions is consistent with prior work on use-after-free
mitigation and prevention [11, 17, 18, 36].
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V. DESIGN

HUSHVAC is built around the opportunistic page-level mark-
sweep engine along with FFmalloc as the underlying allocator.
We designed HUSHVAC on top of FFmalloc because HUSHVAC
forces the underlying allocator to frequently allocate from the
fresh virtual pages, and FFmalloc is optimized for this scenario.
The difference between HUSHVAC’s mark-sweep engine and
the existing ones is that it primarily reuses the freed virtual
pages, not the heap chunks with the corresponding physical
memory space.

A. Overview

Figure 2 gives an overview of HUSHVAC. Its runtime uses
page metadata shared with its marker and sweeper threads to
mediate allocator calls within the application thread. HUSHVAC
mediates allocation requests and mostly serves chunks returned
by its heap allocator, FFmalloc ( 1 ). When possible, HUSHVAC
serves chunks that can be safely reused as described in §V-G
( 2 ). The primary role of HUSHVAC’s runtime is to alter a
chunk’s state to free upon an invocation of a free, where it
updates the corresponding metadata ( 3 ). HUSHVAC’s marker
thread performs two-staged marking (§V-C) by reading the
application thread’s memory, stopping it when needed ( 4 ), and
updating the result to the page metadata ( 5 ). The sweeper
thread checks the page metadata ( 6 ) to determine if an entire
virtual page can be reused, and deliver such pages to the heap
allocator for reuse ( 7 ).

B. Mark-Sweep For Virtual Pages

HUSHVAC’s mark-sweep engine determines if it is safe to
reuse each freed virtual page and makes the safe pages available
for future allocation. During the sweep phase, the allocator is
re-provisioned with the unreferenced yet freed virtual pages
after identifying which address ranges are still referenced by
the application during the mark phase. HUSHVAC considers
a virtual page as free if all heap chunks within the page are
freed.

HUSHVAC tracks the freed status of each chunk in the
virtual page by maintaining a bitmap for each virtual page
within the heap. When the final live chunk in a virtual page is
marked as freed by an invocation of free, HUSHVAC pushes
the virtual page to the quarantine list after detaching the
corresponding physical page. This process is not batched by
HUSHVAC. After the final chunk of a 4-KiB virtual page is
freed, it is immediately moved to the quarantine list, without
waiting for additional pages in a larger batch to be freed.
By invoking the mmap system call with the MAP_FIXED flag,
HUSHVAC can still detach the physical page corresponding to
the virtual page without splitting the in-kernel VMA structure,
so that the pages in the quarantine list do not hold the physical
memory unnecessarily.

This design choice builds on three observations. Firstly, as
per our experiments and prior work [18], promptly invoking
unmap without batching does not significantly impact execution
time, but helps in reducing memory usage. Secondly, invoking
mmap in this manner does not fragment the kernel’s VMA
structure. A previous concern was that frequent mmap calls
might lead to VMA fragmentation. Because each unmap
invocation splits the VMA structure, promptly invoking unmap

might bring back this issue. However, invoking mmap with
MAP_FIXED, which simply detaches physical memory from
the virtual page, avoids splitting the VMA structure while
decreasing memory usage. We demonstrate empirically that
HUSHVAC does not cause the creation of many VMA structures
in Figure 22(a). Finally, a freed page is likely to be reused
soon after all references to it disappear, and retaining the
page mapping allows HUSHVAC to avoid unnecessary mmap
invocation when reusing the page. These three facts imply that
our design choice of promptly invoking mmap without batching
neither incurs significant overhead on execution time nor the
number of VMA structures while maintaining the advantage of
reducing memory usage.

C. Two-Staged Mark Phase

The mark phase comprises concurrent and synchronous
phases, to reduce the time the application must be stopped for
sound marking. In principle, the safety of virtual page reuse,
as indicated by the presence of dangling pointers to the virtual
page, must be examined while the application is stopped. A
concurrent mark phase beginning at t0 and ending at t1 may
miss a pointer moving from one location to another after t0 but
before t1. This problem has already been acknowledged in a
recently proposed system [18], and they believe their concurrent
approach is insecure. Specifically, HardsHeap generates a
PoC when we run the open-sourced implementation of this
scheme, which works only when marking is performed fully
concurrently. The synchronous mark phase eradicates this
problem because the marking happens instantly from the
perspective of the application that is not executing. From the
application’s perspective, the marking effectively happens at a
certain point in time, say t2. The disadvantage of synchronous
marking is its inherent overhead on the execution time. The
time spent on synchronous marking immediately becomes the
extra execution time, slowing down the application.

The two-staged mark phase reduces the number of pages
that HUSHVAC must scan synchronously. Each concurrent
mark phase begins by determining the set of pages that
HUSHVAC must scan, from the Linux kernel’s interface that
provides the application’s virtual address space information,
/proc/self/maps file. Scanning each page begins with clear-
ing the dirty bit, indicating if the page content has been
modified since the last clearance of the bit. After clearing
all dirty bits, the scanning thread traverses the page, treating
each 8-byte value as a pointer if it is in the heap range. For
each pointer identified, HUSHVAC sets the corresponding mark
bit in the mark map. The synchronous mark phase follows
the concurrent phase and begins with the mark-sweep thread
pausing the application. At this moment, if a pointer is in one
of the pages whose dirty bit is 0, the corresponding mark
bit is 1. The mark map is not yet sound because it does not
guarantee anything about the pages whose dirty bit is 1, i.e.,
about the pages that have been modified since the last clearance
of the dirty bit, the beginning of the concurrent mark phase.
While the application is not running, the synchronous mark
phase of HUSHVAC refines the mark map by scanning these
dirty pages again. After scanning, the mark map becomes
sound in that it indicates whether or not each pointer exists
in the application’s memory at a given point in time. Because
the next step, the sweep phase, can also run concurrently,
HUSHVAC resumes right after the synchronous mark phase.
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In summary, HUSHVAC’s two-staged mark phase reduces the
latency of synchronous marking by reducing the number of
pages that must be scanned synchronously while still ensuring
the soundness of the mark map by synchronously scanning the
dirty pages.

D. Page-Level Sweeping

Following the mark phase, HUSHVAC executes the sweep
phase, which reclaims the virtual pages in the quarantine list if
the virtual page’s addresses can be safely reused. As mentioned
earlier, this phase runs concurrently with the application threads
following the synchronous mark phase. The sweeping thread
begins by traversing the quarantine list, and for each virtual
page in the list, it checks to see if any bit in the mark map
corresponding to the page is set to 1. A freed virtual page
is considered safe to reuse if all the page’s mark bits remain
cleared (i.e., 0) at this moment. The pages are then moved
from the quarantine list to the reuse batch list by HUSHVAC.
When HUSHVAC is ready to enlarge the heap, it first checks
to see if the reuse batch list contains any virtual pages before
invoking mmap, and if so, uses the one from this list. The
cost of additional decision-making, whether to reuse a virtual
page or not, is amortized by the reduced number of mmap calls
because the pages in the reuse batch list are already mapped.
As explained earlier, HUSHVAC only detaches the physical
memory and retains the virtual page.

E. Opportunistically Triggering the Mark-Sweep Procedure

To avoid stopping the application while running actively,
HUSHVAC launches the mark-sweep procedure opportunisti-
cally. What enables this design choice is the page-level reuse of
virtual address space. Unlike previous methods, the virtual pages
in HUSHVAC’s quarantine list do not contain the physical page
because the physical pages are detached from the virtual pages
when the page is freed. Having one page in the quarantine list
costs only approximately 16 Bytes for the virtual page’s base
address and data structure management. Because of this low
cost, HUSHVAC can keep many virtual pages in the quarantine
list and postpone the mark-sweep procedure as needed.

Our implementation of HUSHVAC avoids triggering the
mark-sweep procedure, which accompanies the synchronous
mark phase when the application actively allocates new heap
objects. We chose this approach under the assumption that
latency-critical tasks often begin with an incoming request,
followed by data generation or retrieval, all of which involve
heap allocations HUSHVAC detects this hotspot by continuously
monitoring the frequency of heap allocations. A counter is
increased for each allocation request and is used by the period-
ically activated mark-sweep thread to estimate the frequency of
heap allocations. The average number of allocations per period
is maintained by the mark-sweep thread. The thread uses a
counter to compare the average with the number of allocations
during the previous epoch. HUSHVAC triggers the mark-sweep
procedure only when the number of allocations in the last
epoch is below a certain threshold (empirically set to 1.1×
of the average). In other words, if the number of allocations
during an epoch is greater than 1.1× of the average, HUSHVAC
considers the application to be busy and delays the mark-sweep
procedure.

1 #define PROT_FLAG PROT_READ|PROT_WRITE
2 #define MAP_FLAG MAP_ANON|MAP_PRIVATE
3

4 int main() {
5 void **p = (void **)mmap(NULL, PAGE_SIZE ,

PROT_FLAG , MAP_FLAG, 0, 0);
6 p[0] = malloc(963751);
7 free(p[0]);
8 p[1] = malloc(963776);
9

10 // [BUG] Reclaim happens: p[0]=0x564549a79000
(size=963760) -> p[1]=0x564549a79000 (size
=963792)

11 assert(p[0] <= p[1] && p[1] < p[0] + 963760);
12 }

Fig. 3. Proof-of-concept triggering an unsafe reuse, generated by a modified
HardsHeap [38] against an existing use-after-free mitigation scheme [11]. This
scheme does not traverse the anonymous page, which results in the reuse of a
chunk pointed to by a dangling pointer left behind at line 7.

F. Comprehensive Scanning of the Memory Space

The mark-sweep procedure of HUSHVAC scans the entire
memory except for the allocator metadata to determine if
it is safe to reuse the virtual pages in the quarantine list.
Areas scanned include the stack, heap, and memory space the
application retrieved by invoking the mmap directly. We deem
this conservative approach inevitable because HUSHVAC cannot
assume that the application stores the heap pointers exclusively
within a designated set of virtual address pages (e.g., the heap
pages). For example, a modified version of HardsHeap [38],
a fuzzer specifically designed to detect vulnerabilities in heap
allocators, generates a proof of concept (PoC) that triggers
a use-after-free issue while an existing scheme is running,
as demonstrated in Figure 3. In the experiment, we adjusted
HardsHeap to diversify the pointer locations and include mmaped
page, thereby enabling it to discover the PoC.

G. Sub-Page Reuse

A potential disadvantage of HUSHVAC’s page-level sweep-
ing is that it reuses freed chunks only after the entire page
containing the chunk is freed. In some cases, small live
chunks on a page may prevent the entire page from being
reused, wasting of physical memory. To address this, HUSHVAC
selectively and carefully reuses some chunks before the entire
page becomes eligible for page-level sweeping. Specifically, this
sub-page reuse is designed such that the chunks allocated by the
sub-page reuse feature have better spatial locality than chunks
allocated by existing schemes, and enabling the sub-page reuse
does not prevent page-level reuse paths. To this end, HUSHVAC
does not explicitly create and maintain a quarantine list of freed
chunks. By not putting the chunks in another quarantine list,
HUSHVAC leaves the pages containing freed chunks as the
candidate for page-level reuse, whereas it potentially reuses
the freed chunk if no dangling pointer references it. Instead,
HUSHVAC builds and maintains a sub-page reuse batch list
from which it retrieves chunks for reuse at the sub-page level.
During a sweep phase, HUSHVAC pushes pages containing
at least one chunk that can be reused safely to the sub-page
reuse batch list. When processing a new request for allocation,
HUSHVAC retrieves heap chunks from this batch list whenever
possible. Therefore, sub-page reuse still maintains a page-level
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Fig. 4. Normalized execution time when running benchmarks in SPEC CPU 2006 with MarkUs, FFmalloc, and HUSHVAC. MarkUs, FFmalloc, and HUSHVAC
slow down the benchmarks by 11.4%, -2.1%, and 4.7% on average (geometric mean), respectively.

reuse list to ensure that temporally local allocations are more
likely to be served from the same page and the page at the
tail of the sub-page reuse batch list could get a chance to
become a fully freed virtual page, being the last candidate for
the sub-page reuse.

VI. EVALUATION

Experimental Setup. We evaluated HUSHVAC on a system
that runs Ubuntu 18.04 with Linux 5.4.0-150-generic as the
kernel, on a machine with an AMD Ryzen 5 2600 and 32
GB main memory. All allocators compared to HUSHVAC are
built using their default configurations. HUSHVAC runs one
reclaimer thread and 10 scanner threads per process.

Effectiveness. We observed that the implementation of
HUSHVAC effectively prevents the reuse of chunks referenced
by dangling pointers in two ways. First, we verify that
HUSHVAC can prevent real-world exploits using four public
use-after-free exploits as shown in §VI-G. Second, we run
HardsHeap’s Reclaim module [38], designed to look for use-
after-free examples that an allocator fails to prevent. Running
HardsHeap for more than 20 hours against HUSHVAC did
not report any working use-after-free examples, indicating
HUSHVAC’s effective preventtion of use-after-free. Similar to
FFmalloc [36], HUSHVAC does not abort the use-after-free
test cases in the NIST Juliet Test Suite [20]. NIST Juliet is
a collection of C/C++ test cases that includes the ones for
testing use-after-free of heap chunks. Note that NIST Juliet’s
use-after-free test cases only evaluates whether freed chunk are
reused using dangling pointers. FFmalloc and HUSHVAC do
not affect this behavior because they are designed to prevent the
use of dangling pointers after a chunk is reused in subsequent
allocations, rather than using freed objects before the reuse.

Performance Benchmarks. We compare HUSHVAC with an
existing system using five different workloads. First, we use the
SPEC CPU 2006 benchmark suite [10], which is the de facto
standard benchmark suite for evaluating the performance impact
of use-after-free prevention schemes. The results we report here
will allow the comparison of HUSHVAC with many existing
use-after-free prevention schemes. The second benchmark we
use is the SPEC CPU 2017, the latest version of the SPEC CPU
benchmark suite. We selected 19 single-threaded workloads
written in C/C++ from SPEC CPU 2006 and 12 multi-threaded

workloads from SPEC CPU 2017. We measured the execution
time and the maximum resident set size (MaxRSS) of each
workload using time utility and the command generated by
the benchmark driving script. We build the benchmarks using
the build system included in the suite and enable OpenMP
OMP_THREAD_NUM to 8 for SPEC CPU 2017. Note that CPU
2006 uses -O2 as the default optimization level, and CPU 2017
uses -O3. Third, we use BBench [21] on Firefox, a browser
rendering benchmark that MarkUs used for evaluation. This
benchmark was chosen to demonstrate that HUSHVAC can
work for large real-world applications. Since BBench 3.0 was
not available at the time of evaluation, we used BBench 2.0.
The fourth benchmark that we used was the mimalloc-bench.
It is composed of microbenchmarks that test the allocator
performance and allocation-intensive application workloads.
The last one is the 12 multi-threaded workloads written in
C/C++ from PARSEC 3.0 [13] that FFmalloc used to evaluate
the scalability of HUSHVAC. Note that we do not report the
performance impact of PARSEC on two workloads, x264 and
ferret, as it could not be run with FFmalloc or MarkUs.

Comparison Targets. We compare HUSHVAC with
MarkUs [11] and FFmalloc [36]. Unless otherwise stated,
results were obtained by running them in our environ-
ment. Another recent use-after-free prevention scheme,
Minesweeper [18], could not be used because the release
version did not work as expected. As stated in the study, this
implementation works only in fully concurrent mode and does
not prevent use-after-free. The appropriate configuration for the
comparison is the mostly concurrent version, but the released
version does not work as expected.

A. SPEC CPU 2006

Performance Overhead. Figure 4 shows the overhead of three
allocators on the execution time of the 19 workloads in SPEC
CPU 2006. The execution time overhead incurred by HUSHVAC
is 4.7% on average (geometric mean), which is lower than
MarkUs’ 11.4% but higher than FFmalloc’s -2.1%. One factor
that contributes to the performance advantage of HUSHVAC
is the stop-the-world time when the application threads are
paused during the synchronous mark phase. Figure 5 shows
that HUSHVAC stops the application thread for only 3.03 s on
average whereas MarkUs pauses for 28 s. Note that FFmalloc
does not reuse virtual pages or freed chunks, so it does not stop
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Fig. 5. Stop-the-world delay in SPEC CPU 2006 with MarkUs and HUSHVAC.
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Fig. 6. Normalized memory usage when running benchmarks in SPEC CPU 2006 with MarkUs, FFmalloc, and HUSHVAC. The memory usage increases on
average (geometric mean) by 25.1%, 115%, and 57.2% when running with MarkUs, FFmalloc, and HUSHVAC, respectively.
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Fig. 7. Normalized execution time when running benchmarks in SPEC CPU 2017 with MarkUs, FFmalloc, and HUSHVAC. MarkUs, FFmalloc, and HUSHVAC
slow down the benchmarks by 12.6%, 2.6%, and 7.3% on average (geometric mean), respectively. For allocators with *, we use the gcc results reported in the
literature[18].

the application threads. When running the well-known malloc-
intensive benchmarks, such as perlbench, gcc, omnetpp, and
xalancbmk, HUSHVAC exhibits lower performance overhead
than MarkUs. Regarding xalancbmk, HUSHVAC incurs only
35% additional overhead, whereas MarkUs has a whopping
110% overhead because of the lesser spatial locality explained
in §II. This result suggests that HUSHVAC is a more attractive
allocator that prevents use-after-free when running on the
allocation-intensive benchmarks than the existing mark-and-
sweep approaches.

Memory Overhead. Figure 6 shows the memory overheads for
19 SPEC CPU 2006 workloads running on HUSHVAC, MarkUs,

and FFmalloc, respectively. Benchmarks run on HUSHVAC
consume 57.2% more memory. This is less than FFmalloc,
whose overhead is 115%, but more than MarkUs, which incurs
25.1% memory overhead only.

B. SPEC CPU 2017

Performance Overhead. Figure 7 shows the normalized
execution times for 12 benchmarks from the SPEC CPU
2017 benchmark suite. HUSHVAC’s overhead is 4.1% on
average (geometric mean), slightly higher than FFmalloc’s
2.6%, but much lower than MarkUs’ 12.6%. Specifically, the
overhead of HUSHVAC on four allocation intensive benchmarks,
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Fig. 8. Stop-the-world delay when running SPEC CPU 2017 with MarkUs and HUSHVAC.
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Fig. 9. Normalized memory usage when running benchmarks in SPEC CPU 2017 with MarkUs, FFmalloc, and HUSHVAC. The memory usage increases on
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Fig. 10. Normalized execution time when running mimalloc-bench with MarkUs, FFmalloc, and HUSHVAC. MarkUs, FFmalloc, and HUSHVAC slow down
the benchmarks by 974%, 91.8%, and 372% on average (geometric mean), respectively.

perlbench, gcc, omnetpp, and xalancbmk are 5.7%, 43%,
21%, and 23%, respectively. These are significantly lower
than what MarkUs incur (9.1%, 60.0%, 67.0%, and 59.1%,
respectively). For CPU 2006, the stop-the-world time largely
contributes to the performance overhead of MarkUs, as we
present in Figure 8.

Memory Overhead. As shown in Figure 9, similar to the
result from CPU 2006, HUSHVAC incurs higher memory usage
overhead than MarkUs The average overhead of HUSHVAC is
48.9%, while FFmalloc and MarkUs incur 94.7% and 35.4%,
respectively.

C. Stress Testing with Mimalloc-bench

We also use the Mimalloc-bench, which consists of
workloads heavily stressing the heap allocator. As shown
in Figure 10, the average overhead of HUSHVAC (372%)
is significantly lower than that of MarkUs (974%). Similar
to the application benchmark, HUSHVAC still exhibits higher
memory usage overhead compared to MarkUs due to internal
fragmentation, as Figure 11 shows. Note that Figure 12 shows
the stop-the-world delay when running the mimalloc-bench.
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Fig. 11. Normalized memory usage when running mimalloc-bench with MarkUs, FFmalloc, and HUSHVAC. The memory usage increases on average
(geometric mean) by 65.8%, 520%, and 257% when running with MarkUs, FFmalloc, and HUSHVAC, respectively.
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Fig. 12. Stop-the-world delay in when running mimalloc-bench with MarkUs and HUSHVAC.
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Fig. 13. Average (geometric mean) overhead on the render time when
running BBench on Firefox that runs with MarkUs, FFmalloc, and HUSHVAC.
We measured the FFmalloc result on our environment, but the MarkUs result
is the one reported by the authors as we could not run Firefox with MarkUs
in our environment.

D. Real-world Application

Figure 13 shows the results of running a browser workload
using MarkUs, FFmalloc, and HUSHVAC. As also shown
in Figure 14, each number is obtained by computing the
geometric mean of normalized render time from 20 consecutive
runs of 11 webpages, as we also present. We obtained the
overhead of FFmalloc on our environment, but the number
for MarkUs is computed from the result reported in the
paper because we could not run Firefox with MarkUs in
our environment. The result shows that HUSHVAC has similar
performance to MarkUs, with 19.13% longer rendering time
compared to unmodified Firefox running with jemalloc [9].

Figure 14 shows the normalized render time for each
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1Fig. 14. HUSHVAC on BBench [21] in Firefox. The average performance
speedup across webpages loaded by BBench in Firefox is 19.1%, while MarkUs
reports a 15% slowdown.

webpage over 20 consecutive runs of Firefox running with
HUSHVAC. The result confirms that HUSHVAC can handle
real-world workloads for a long time. Consecutive runs do not
show any significant trend in the render time except for some
iterations, and the overhead does not increase monotonically as
the run continues. Our analysis of the exceptionally long render
time in some iterations reveals that Firefox exhibits a relatively
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Fig. 15. Execution time when running benchmarks from PARSEC 3.0 with four different allocators. The overhead of HUSHVAC is hardly noticeable except for
swaptions and dedup.
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Fig. 16. Memory usage when running benchmarks from PARSEC 3.0. Regarding memory usage, HUSHVAC has results comparable to FFmalloc except for
netferret and bodytrack.
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Fig. 17. HUSHVACBATCHING on BBench [21] in Firefox. The average
performance speedup across webpages loaded by BBench in Firefox is 9.47%,
while MarkUs reports a 15% slowdown.

high number of system calls and page faults to expand the
heap when rendering some benchmarks, such as Amazon (the
fourth run), causing the slowdown. Heavily invoking memory
management system calls from multiple threads causes the
slow down, since memory management system calls are often
serialized in the kernel. We also observe some cases where the
stop-the-world delay contributes to the long render time, such
as ESPN (the eighth run). As Figure 13 and Figure 17 show,
reducing the number of memory management system calls
by batching them helps the performance, potentially making
HUSHVAC outperform MarkUs on average.

E. Multi-threaded Workloads

We evaluate MarkUs, FFmalloc, and HUSHVAC using
12 workloads from PARSEC 3.0 [13] with varying numbers
of threads using the Native input. We could run these 12
workloads with all three allocators, except for the combination
of vips and MarkUs. Moreover, we could not run 3 of the
15 workloads that FFmalloc used for evaluation, netdedup,
ferret, and x264 with FFmalloc or MarkUs. The failure
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(b) Memory

Fig. 18. Geometric mean of the normalized execution time and memory when running 12 benchmarks in PARSEC 3.0 with varying numbers of threads.
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Fig. 19. Normalized execution time when we run benchmarks in SPEC CPU 2006 with variations of HUSHVAC where only a subset of design choices are
enabled. VPS stands for virtual page-level sweeping, TSM for two-stage mark phase, and SPR for sub-page reuse.

occurred because PARSEC 3.0, despite its prevalent mention
in academic literature, was incompatible with Ubuntu 18.04
due to the cessation of active development.

As shown in Figure 15, HUSHVAC exhibits the lowest
execution time overheads, except for the fluidanimate
benchmark when run with a single thread. This result shows
that the 11 helper threads HUSHVAC uses do not significantly
affect performance owing to the opportunistic mark-sweep.
Moreover, Figure 16 shows that the memory usage overhead of
HUSHVAC is comparable to that of MarkUs. dedup with 32
threads is the only workload where MarkUs has lower memory
overhead.

We summarize the overhead of three allocators when
running the 12 benchmarks in PARSEC 3.0 by computing
the geometric mean of the execution time and memory usage
in Figure 18(a) and Figure 18(b), respectively. As Figure 18(a)
shows, HUSHVAC slows down only 36% on average, while
the overhead of FFmalloc and MarkUs is 21%, and 46%,
respectively. Notably, the overhead of HUSHVAC with PARSEC
3.0 is higher on average than that of FFmalloc because the reuse
ratio of remapped virtual pages outweighs the performance
overhead due to frequent system calls.

Figure 18(b) shows the remarkable memory usage of
HUSHVAC with little effect from the stop-the-world due to lazy
sweeping compared to MarkUs, which sacrifice execution time
with the stop-the-world to reduce memory usage. HUSHVAC
exhibits 41% of memory overhead, whereas FFmalloc has
42% and MarkUs has 11.9%. When we compare FFmalloc and

HUSHVAC, what is noticeable is that PARSEC 3.0 has a greater
memory overhead from batch page unmapping than memory
overhead from internal fragmentation, even though HUSHVAC
has the same internal fragmentation problem as FFmalloc.

F. Evaluating Design Choices

Performance Impact. We evaluate the impact of our design
choices on execution time and memory usage when we run
benchmarks in SPEC CPU 2006. Figure 19 presents the
normalized execution time, showing that most of HUSHVAC’s
advantage in execution time is owing to the page-level sweeping.
Note that all design choices other than the two-staged mark
phase and sub-page reuse are turned on together with virtual
page-level sweeping. As expected, the two-staged mark phase
positively affects the execution time on some benchmarks that
experience a relatively long stop-the-world delay. Figure 20
further presents how the design choices affect the stop-the-
world delay. Note that sub-page reuse negatively affects the
execution time on some benchmarks, such as xalancbmk where
sub-page reuse could potentially harm the locality. Nevertheless,
our careful design for preserving the locality benefit makes the
overhead on this benchmark much lower than the other mark-
sweep-based approaches. Figure 21 presents the impact of these
design choices on memory usage. As we further highlight later
in this section, some benchmarks (e.g., sphinx3) that suffer
from a small number of chunks occupying mostly free pages
get a significant benefit in memory usage, when we enable
sub-page reuse.
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Fig. 20. Stop-the-world delay when we run benchmarks in SPEC CPU 2006 with variations of HUSHVAC where only a subset of design choices are enabled.
VPS stands for virtual page-level sweeping, TSM for two-stage mark phase, and SPR for sub-page reuse.
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Fig. 21. Normalized Memory usage when we run benchmarks in SPEC CPU 2006 with variations of HUSHVAC where only a subset of design choices are
enabled. VPS stands for virtual page-level sweeping, TSM for two-stage mark phase, and SPR for sub-page reuse.
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(a) VMA count over time for Xalancbmk.
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(b) Memory usage over time for sphinx3.

Fig. 22. VMA count and memory usage over time

Impact on The Number of VMA Structures. To confirm
that our design choice that detaches physical pages promptly
does not cause VMA explosion, we measure the number of
VMA structures over time when running Xalancbmk, which is
known to cause a large number of VMA structures. Figure 22(a)
shows the number of VMA structures over time. The result
shows that HUSHVAC successfully bounds the number of VMA
structures thanks to its design choice of retaining the virtual
pages being mapped, while FFmalloc suffers from the VMA
explosion problem due to the unmap invocations.

Impact of Sub-Page Reuse in Memory Usage. We further

highlight the impact of the sub-page reuse feature on one
benchmark, sphinx3, from SPEC CPU 2006. Figure 22(b)
shows the memory usage over time for sphinx3. The result
from sphinx3 in Figure 22(b) shows that enabling sub-page
reuse reduces memory usage without incurring additional
slowdown. HUSHVAC already exhibits considerably lower
memory usage than FFmalloc, and the sub-page reuse feature
further reduces memory usage. Unfortunately, the sub-page
reuse feature does not eradicate the trend of increase in memory
usage over time, suggesting that sphinx3 has a heap usage
pattern, causing a small number of chunks left over for a long
time.
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TABLE I. EFFECTIVENESS OF HUSHVAC IN PREVENTING USE-AFTER-FREE (UAF) EXPLOITS.

Program CVE ID Bug Type Original Attack With the Protection of HUSHVAC

PHP 7.0.7 CVE-2016-5773 [4] UAF → double free Arbitrary code execution Exploit prevented & double free detected
PHP 5.5.14 CVE-2015-2787 [1] UAF Arbitrary code execution Exploit prevented & runs well
PHP 5.4.44 CVE-2015-6835 [3] UAF Arbitrary memory disclosure Exploit prevented & runs well
PHP 5.4.44 CVE-2015-6834 [2] UAF Arbitrary memory disclosure Exploit prevented & runs well

G. Effectiveness

In addition to the test using HardsHeap [38], we evaluate the
effectiveness of HUSHVAC in preventing use-after-free exploits
by using public proof-of-concept (PoC) exploits against some
CVE-assigned public vulnerabilities in real-world applications.
We use four CVE-assigned public vulnerabilities in three
versions of PHP for evaluation because the corresponding
public exploits are available. As Table I presents, HUSHVAC
successfully prevents all four exploits from succeeding in
achieving the goal, such as arbitrary code execution or memory
disclosure. With HUSHVAC, the exploit’s attempt to manipulate
the behavior of code that uses a dangling pointer fails because
the vulnerable heap chunk that the dangling pointer points to
is not reused.

VII. RELATED WORK

This work is closely related to previous efforts to reduce
use-after-free vulnerabilities through garbage collection [8, 11,
18, 25, 30] and virtual address management [17, 36].

Garbage collection. This approach reclaims delay-freed mem-
ory chunks when there are no dangling pointers in the system.
MarkUs [11] extended the Boehm-Demers-Weiser Garbage
Collector (bdwgc) [8] with a quarantine list that indicates
memory objects that are delay freed. Multiple concurrent
threads scan the memory for the presence of dangling pointers
in memory and register, after pausing the application threads.
The frequency of this synchronous scanning offers a trade-
off between longer execution time and lower memory usage.
Minesweeper [18] performs a linear memory scan to identify
quarantined objects with no dangling pointers. Unlike MarkUs,
its marking procedure marks the presence of a dangling pointer
on the shadow space corresponding to the entire memory of
the application, by scanning the memory linearly. Minesweeper
also proposed several optimization techniques, such as the
prompt release of large chunks and the zeroing of freed chunks.
However, Minesweeper still suffers from the stop-the-world
delay when running mostly concurrent mode, and negatively
affects the locality of heap chunks.

Besides the mark-and-sweep method, various techniques
are proposed to detect dangling pointers with compile-time
instrumentations. pSweeper [25] is one method that instruments
code to detect pointer objects at compile time, checks their
status in concurrent threads during runtime, and frees them. This
method is similar to mark-and-sweep but is a stop-the-world-
less approach to tracking live pointer objects. CRCount [30] is
a technique that tracks pointer propagation by instrumenting
code at compile time to count pointer copies during runtime.
This method tracks the number of references by using a counter
for each chunk, reclaiming the chunk only after the counter
value becomes zero. These two approaches share a common

trait: compile-time instrumentation results in execution time
overhead.

Virtual Address Management. Recent studies have proposed
virtual address management such as one-time allocation. This
approach helps prevent use-after-free because the allocator never
reuses the virtual address after freeing the memory chunk. The
point of this approach is to make dangling pointers useless even
if they exist. Oscar [17] is a similar design to one-time allocation
with an object-per-page scheme using virtual shadow pages. In
Oscar, each object has a virtual shadow page, but each shadow
page is located in the same physical page frame and when
unmapped, the physical frame is also unmapped. FFmalloc [36]
provides a one-time allocation strategy that never reuses a
virtual address. It incorporates fast continuous allocation and
forward binning mechanisms to minimize memory and Virtual
Memory Area (VMA) overheads, thereby facilitating one-time
allocation. However, the non-reusability of the address space
renders it impractical for long-running applications.

Pointer Nullification. Another approach to prevent use-after-
free is pointer nullification when an object is freed. This
approach follows the strategy of removing dangling pointers
rather than checking if they exist. DangNull [23] establishes
relationships between all pointers and objects and nullifies
pointers when the corresponding object is freed. DangSan [34]
uses shadow memory-based metadata inspired by log-structured
file systems to detect dangling pointers in a multithread system.
FreeSentry [37] follows a similar approach to DangNull, but
instead of completely nullifying the pointer, it modifies the
most significant bit, turning it into an invalid address. This
technique aids in retaining the context when examining crash
dumps.

Access Validation. This approach comprehensively exam-
ines all memory accesses to ensure temporal memory safety.
However, this can have the disadvantage of increasing runtime
overhead and potentially generating false positives. CETS [26]
developed a solution that uses key and lock addresses to
implement a separate metadata space for each pointer and
check for pointer dereferences. Whenever a memory operation
is performed, the CETS runtime system checks the metadata to
ensure that the operation is safe. If the operation is unsafe, the
runtime system generates an error. However, this task incurs
a high-performance overhead for tracking pointer propagation.
PTAuth [19] was proposed to support this challenge by defining
the authentication codes (AC) to verify metadata integrity and
identify when pointers are accessed. ViK [16] also identifies
all allocation and pointer dereference sites statically and
instruments code to track and examine metadata for use-after-
free mitigation. PACMem [24] uses ARM’s architectural feature
called Pointer Authentication to reduce the overhead of pointer
metadata tracking when defeating temporal safety violations.
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VIII. CONCLUSION

We proposed HUSHVAC, which adopts an innovative
approach with three key design choices to efficiently avoid use-
after-free. The intriguing performance impact of two potential
prevention mechanisms, mark-sweep and one-time allocation
on an allocation-intensive benchmark, inspired the innovative
approach in which HUSHVAC uses a one-time allocator as an
underlying allocator and carefully reuses freed virtual pages.
Page-level reuse has shown to be a viable option because
HUSHVAC can detach the physical page without splitting the
VMA structure, allowing HUSHVAC to quarantine individual
virtual pages. The lack of physical pages in the quarantine
list also allowed the mark-sweep procedure to be triggered
opportunistically. All of these design choices resulted in the
HUSHVAC design outperforming the status quo on nearly every
benchmark.
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