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Abstract—Machine learning (ML) is promising in accurately
detecting malicious flows in encrypted network traffic; however, it
is challenging to collect a training dataset that contains a sufficient
amount of encrypted malicious data with correct labels. When
ML models are trained with low-quality training data, they suffer
degraded performance. In this paper, we aim at addressing a real-
world low-quality training dataset problem, namely, detecting
encrypted malicious traffic generated by continuously evolving
malware. We develop RAPIER that fully utilizes different dis-
tributions of normal and malicious traffic data in the feature
space, where normal data is tightly distributed in a certain
area and the malicious data is scattered over the entire feature
space to augment training data for model training. RAPIER
includes two pre-processing modules to convert traffic into feature
vectors and correct label noises. We evaluate our system on two
public datasets and one combined dataset. With 1000 samples
and 45% noises from each dataset, our system achieves the F1
scores of 0.770, 0.776, and 0.855, respectively, achieving average
improvements of 352.6%, 284.3%, and 214.9% over the existing
methods, respectively. Furthermore, We evaluate RAPIER with a
real-world dataset obtained from a security enterprise. RAPIER
effectively achieves encrypted malicious traffic detection with the
best F1 score of 0.773 and improves the F1 score of existing
methods by an average of 272.5%.

I. INTRODUCTION

Network-based intrusion detection approaches [6], [19],
[20], [21], [33], [51], [54], [58], [74], [89] have been ex-
tensively developed to detect malicious traffic in different
networks [11], [12], [14]. As more malware samples start to
use encryption protocols to hide traffic content, the traditional
detection methods focusing on analyzing plaintext payloads
are obsoleted. Learning-based methods [2], [3], [23], [42],
[43], [69], [73], [79], [84], [88] advanced malicious behavior
detection by analyzing encrypted network flows. These designs
are typically supervised, heavily relying on a training dataset
that contains high-quality data samples to build accurate and
robust detection models.

It is non-trivial to collect high-quality training data. First,
collecting time-sensitive malware data is difficult. The typical
approach is to execute malware samples captured in real-world

∗The first two authors contributed equally to this paper.

cyberspace in controlled sandboxes and collect the generated
traffic [48], [77]. However, since the malware evolves con-
sistently, the captured malware samples have insufficient time
sensitivity. Second, it is difficult to label the collected data in
practice. Data labels predicted by malware detection services
are not always reliable [80]. For instance, labels assigned to
malware by Virustotal may vary in the reports published in
different years. Moreover, the cost of labeling data manually
is non-negligible [28], [80]. The current labeling approach
results in potential label noises in collected datasets. Unfor-
tunately, the encryption protocols (e.g., SSL/TLS) prevent us
from manually correcting these noises. Therefore, the training
dataset collected in reality is typically limited in both quality
and size.

Prior art [17], [53], [61], [64], [72], [75] shows that a
limited number of training samples or label noises of training
samples can lead to the degradation of model generalizability
on new data. The issue becomes worse when the limited
training samples have label noises, i.e., low-quality training
data. However, existing techniques like data augmentation [16],
[33], [40], [83] and robust ML models against label noises [9],
[26], [29], [32], [39], [47], [53], [63], [66], [78], [80], [81], [82]
cannot address the issue. Specifically, the data augmentation
methods synthesize new data based on the distributions of
existing training data. However, label noises will confuse the
distributions of different categories, resulting in new data being
synthesized from an incorrect distribution, which could create
more label noises. Further, to correct the impacts of label noise
on model training, existing art relies on strong assumptions
and prior knowledge [9], [26], [32], [53], [66], [78], [81] (e.g.,
the probability of a sample being mislabeled) or a large-sized
training set that can reveal each sample’s intrinsic characteris-
tics [29], [47], [63], [80], [82]. None of these prerequisites are
satisfied in our problem. Recent encrypted traffic classification
methods [41], [87] improved the performance under limited
labeled training data by transferring knowledge from additional
large-scale unlabeled training data. However, collecting and
pre-processing such a large-scale dataset is expensive. It may
also increase the risk of privacy leakage, i.e., an attacker can
infer attributes of training data from a trained ML model [35].

In this paper, we propose a novel encrypted malicious
traffic detection system RAPIER that is robust to low-quality
training data. The high-level idea is to leverage the difference
in distribution between benign and malicious traffic data to
estimate the possible location of each type of data. Since
our system does not depend on the correctness of the sample
labels or the amount of training data, it can be trained on a
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low-quality dataset that contains label noises. Since normal
behaviors are typically more representative and consistent
than malicious ones, benign data tends to exhibit a denser
distribution than malicious data. Thus, we can infer the true
labels for training samples based on their data distributions.
Armored attackers may imitate normal behaviors by generating
malicious data with a distribution similar to that of normal data
over time. In this case, we synthesize new training data located
in the possible distribution regions of new malicious data to
improve the generalizability of our models.

RAPIER is powered by three tightly coupled components.
First, we propose a novel feature extraction module to convert
raw encrypted network traffic into feature vectors representing
fine-grained behaviors. Based on an improved auto-encoder
architecture, our feature extraction module works in an un-
supervised manner to prevent incorrect labels from contami-
nating the feature vectors. Second, we design a distribution-
aware label noise correction module to infer the true labels
of the original training samples. It estimates the distribution
of training data via an auto-regressive generative model, re-
labels the training data exhibiting the most obvious distribution
characteristics, and infers the labels of remaining data through
ensemble learning. Third, we develop a new data augmenta-
tion module to synthesize new training data. With the label-
corrected training data, this module selects the possible distri-
bution regions of new malicious data and applies an improved
Generative Adversarial Network (GAN) model to generate
new training data that is located in these target regions. The
synthetic data is combined with the label-corrected data for
training. In summary, our contributions are as follows:

• We develop a system called RAPIER to detect encrypted
malicious traffic in the case that the amount of training data
is limited and non-negligible label noises exist. It is the
first malware traffic detection system that simultaneously
overcomes the challenges of both training data insufficiency
and label noises.

• We implement RAPIER and perform extensive evaluations
based on two public datasets and one combined dataset.
With only 1000 training samples (i.e., 500 malicious and
500 normal ones) and 45% noise ratio, RAPIER effectively
achieves the F1 scores of 0.770, 0.776, and 0.855 on the
three datasets, respectively, achieving average improvements
of 352.6%, 284.3%, and 214.9% over the existing methods.

• We evaluate RAPIER with a real-world dataset collected by
a security enterprise. It achieves the best label correction
performance when the noise ratios vary from 20% to 45%,
consistently reducing the noise ratios to less than 4.3%.
Furthermore, it can effectively achieve encrypted malicious
traffic detection with the best F1 score of 0.773 and improve
the F1 score of existing methods by an average of 272.5%.

II. BACKGROUND

A. Data Augmentation

Data augmentation techniques can effectively increase the
size of the training data set without explicitly collecting new
data. The most common data augmentation strategy is to
oversampling, i.e., replicate samples from the minority class. In
particular, the new training samples can be randomly sampled
from minority class examples [34] or be synthesized based

on random combinations of existing training samples and
their nearest neighbors [8], [30], [31]. As a result, the ML
model may overfit the training set due to the limited diversity
of the data. Recently, the Generative Adversarial Network
(GAN) [27] has been developed and widely applied for data
augmentation in various areas like image classification [18]. A
typical GAN consists of two major components: the generator
learns a specific data distribution to generate new data and
the discriminator tries to distinguish the newly generated data
from the original training data. Powered by an adversarial
training framework, the generator may learn the original
training data distribution and then create a variety of new
training data that conform to this distribution for the purpose
of augmenting the limited training data. However, all those
methods are not resilient to label noises. The falsely labeled
training samples will confuse the data distribution of different
categories, generating more label noises. Thus, the existing
data augmentation methods cannot handle the low-quality issue
of encrypted training data.

B. Robust Machine Learning Models

Robust machine learning models aim to mitigate the im-
pacts of incorrectly labeled training data on the generalizability
of the models. In particular, several models [25], [46], [76],
[85] utilize robust loss functions to achieve the same mis-
classification probability for the truly labeled and incorrectly
labeled training data. They typically rely on one assumption
that a sample in one category will be mislabeled into other
categories with equal probability; however, this assumption
does not always hold in practice. Other models [32], [53] apply
the label transition matrix, which records the probability of a
category being mislabeled into another category, to correct loss
values impacted by noise labels. However, the label transition
matrix is usually unknown prior. Recent studies [5], [29], [47],
[63] address the issue by automatically selecting incorrectly
labeled samples from the noisy training set based on their
properties, e.g.,, the loss value of a mislabeled sample is higher
than that of truly labeled ones in the training stage. However,
these properties may not hold when the number of training
samples decreases and significantly constrain these methods.

III. PROBLEM STATEMENT

This paper aims to develop a system that can detect mal-
ware infections within an internal network, e.g., a campus or
an enterprise network, by identifying the encrypted malicious
traffic generated by malware. The detection system is deployed
at the gateway of the intranet to monitor the outgoing traffic of
all internal hosts simultaneously. In order to deploy the system,
a network administrator needs to collect and label encrypted
network traffic in the internal network to create a training set.
However, due to the scarcity of malware samples and encrypted
traffic payloads, the training set is usually of low quality, i.e.,
the amount of training data is limited and the data is with
non-negligible label noises. Since training sample collection
requires manual inspection, the number of training samples is
much smaller than the testing data and the samples may be
wrongly labeled.

Formally let (xi, yi) be the pair of an encrypted sample xi

(e.g., a flow or a session between two hosts) and its true label
yi ∈ {0, 1}, where 0 or 1 represents a normal or a malicious
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one, respectively. The inputs of a detection system are a low-
quality training set D̃train = {(xi, ỹi)}Ni=1 and a testing set
Dtest = {xtest}, where N ≪ |Dtest| and ỹi is a noisy label
that may be inconsistent with yi. Our goal is to accurately
infer the label of xtest by using D̃train.

Our goal is to address the limitations of existing encrypted
malicious traffic detection methods [2], [3], [23], [41], [42],
[43], [69], [73], [79], [84], [87], [88], and develop an encrypted
malicious traffic detection system that is applicable in more
realistic scenarios. First, we consider two problems in the
training data, namely, insufficient data and non-negligible label
noises, whereas prior works only try to solve one problem.
Second, our system does not require additional data to improve
detection performance, except for a low-quality training set.
Recent works [41], [87] utilize extra large-scale unlabeled
training sets to transfer the knowledge for detection. How-
ever, collecting such large-scale traffic for training is time-
consuming and may incur privacy leakage (e.g., an attacker can
infer attributes of training data from a trained ML model [35]).
We do not consider the scenario in which malicious traffic
exhibits identical distributions as benign traffic over time.
This is an extreme version of concept drift [45] and is better
addressed by introducing more fine-grained features and re-
collecting the entire training set.

IV. DETECTING ENCRYPTED MALICIOUS TRAFFIC

A. Overview

We design our system based on a critical observation that
the distribution of benign and malicious data is different. First,
the normal (i.e., benign) traffic is relatively representative.
Previous studies on malicious traffic detection regularly use
this characteristic of normal traffic when designing their mod-
els [33], [49], [68]. Second, since network hosts can be infected
by a variety of malware, the malicious traffic is relatively
manifold. Thus, we observe that the distribution of normal
data tends to be similar and denser, while that of malicious
data (which may be generated by an amount of malware) tends
to be more sparse. Thereby, given a noisy training set, we can
infer the true labels of training samples located in the densest
and sparsest parts of its data distribution and use them as a
basis for correcting other training samples’ labels. Moreover,
the distribution of new malicious data may move closer to
normal data over time since sophisticated attackers are likely
to imitate normal behaviors to avoid detection. Thus, we can
infer the distribution of new malicious data and then synthesize
new training data to improve the performance of ML-based
detectors on new unseen testing data.

RAPIER consists of three main components, including a
feature extraction module, a label noise correction module,
and a data augmentation module, as shown in Figure 1.
The feature extraction module utilizes an improved auto-
encoder architecture to convert the raw encrypted traffic into
feature vectors that represent fine-grained behaviors while
eliminating the negative influence of label noise on feature
extraction. Next, the label noise correction module applies
an auto-regressive generative model to accurately estimate the
distribution of limited yet high-dimensional training data and
revise the training samples’ labels based on their distribution
characteristics. Then, with the label-corrected training data,

the data augmentation module infers the possible distribution
regions of new malicious data and applies an improved GAN
model to synthesize new malicious training data that is located
in these target regions. Meanwhile, to prevent the newly
generated malicious data from amplifying the degree of data
imbalance, this module synthesizes new normal training data
that can maintain the decision boundary of ML models. Finally,
our system utilizes an ML-based detector built upon Co-
teaching [29] and Multilayer Perceptron (MLP) that is trained
on the synthetic training data and the label-corrected original
training data, to detect the encrypted malicious traffic. Here, we
apply Co-teaching to eliminate impacts of the small amount of
the remaining label noises in the training set. Other techniques
robust to label noises, e.g., decoupling [47], are also applicable.
In the testing stage, the encrypted traffic is inspected by the
built ML-based detector directly after being converted into
feature vectors.

B. Feature Extraction

The feature extraction module converts raw encrypted
traffic into feature vectors, which facilitates label noise cor-
rection and data augmentation afterward. It needs to handle
payloads encrypted by various types and versions of encryp-
tion protocols [15]. The traditional encrypted traffic detection
methods [2], [3], [42] that extract features for specific versions
of TLS handshake metadata or message types cannot capture
features representing fine-grained behaviors of network traffic.
Moreover, existing automatic traffic profiling methods [1],
[13], [57], [60], [62] based on supervised models are ill-suited
because the non-negligible label noises in the low-quality
training set will result in inaccurate feature selection.

To profile fine-grained behaviors of encrypted network
traffic while eliminating the impacts of label noises, our
feature extraction module uses an Auto-Encoder architecture
(AE) to automatically learn the most representative features
of input data in an unsupervised manner and minimize the
effects of label noises. It consists of an embedding layer, an
encoder, a decoder, and a reconstruction layer. We divide raw
encrypted traffic into network flows based on the five-tuple
information (i.e., source and destination IP addresses, source
and destination ports, and the transport layer protocol) and
use the sequence of packet lengths of each flow as the input
data for feature extraction. Compared with the TLS handshake
metadata and message type information, the packet length
sequence is more general and can capture the subtle differences
among different flows. The encoder and decoder in AE are
built based on the bi-directional Gated Recurrent Unit (bi-
GRU) [10], which allows profiling sequential data in AE.

We use l = [l1, l2, ..., ln] to denote the packet length
sequence of n packets in a flow, where li is the length of
the i-th packet. The embedding layer is a learnable matrix
M ∈ RL×V , where L is the number of individual packet
lengths and V is the dimension for embedding. We convert
l into an embedding sequence v = [v1, v2, ..., vn], where vi is
a V -dimensional vector by retrieving the li-th row of M .

The encoder stacks multiple bi-GRUs to learn representa-
tive features from the embedding sequence. GRU is one of the
most popular neural networks for sequential data. It regards the
input sequence as a time series and computes a hidden state
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Fig. 1: The overview of our robust encrypted malicious traffic detection system RAPIER.

at each time step, to represent the key information about the
sequence before the time step. The hidden state ht at time step
t is derived from the hidden state ht−1 at time step t− 1 and
the input vt at time step t. For simplicity, we only emphasize
the major computation process formalized as follows:

ht = GRU (ht−1, vt) . (1)

where ht, ht−1 ∈ RH and H is the hidden size of GRU layers.

The bi-GRU in the first layer processes the embedding
sequence v through two individual GRUs: the forward

−−−→
GRU

whose input is from v1 to vn and the backward
←−−−
GRU whose

input is from vn to v1. Then their hidden states
−→
h t and

←−
h t

at time step t (t ∈ {1, 2, . . . , n}) can be computed as follows:
−→
h t =

−−−→
GRU

(−→
h t−1, vt

)
,
←−
h t =

←−−−
GRU

(←−
h t+1, vt

)
. (2)

Note the bi-GRU in the i-th layer uses the hidden states of
the (i − 1)-th layer as the input data and computes its own
hidden states. Since the hidden state at the final time step
captures the key information of the whole input sequence,
our encoder concatenates the hidden states at the final time
steps of all bi-GRU layers as the feature vector fencoder of
the length sequence l. Assume that the encoder contains B
bi-GRU layers, fencoder can be represented as:

fencoder =
(−→
h (1)

n ,
←−
h

(1)
1 , ...,

−→
h (B)

n ,
←−
h

(B)
1

)
∈ R(2BH) = Rd,

(3)
where d = 2BH is the dimension of the feature vector.

The decoder applies similarly stacked bi-GRUs to convert
the feature vector back to the original embedding sequence.
In particular, the bi-GRU in the first layer uses fencoder as
the input data for each time step, while the bi-GRUs in other
layers work the same way as the ones in the encoder. The
output of the decoder is a sequence in length n, where the
i-th element is the hidden state of the bi-GRU in the last
layer at time step i. Finally, the reconstruction layer restores
the packet length sequence l̂ from the output of the decoder
via a multi-layer perception. In the training stage of our
feature extraction module, we compute the reconstruction loss
based on l and l̂ and apply the stochastic gradient descent
optimization algorithm, which allows the encoder to learn
accurate representations of encrypted network traffic.
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Fig. 3: The basic idea of our label noise correction module.
The samples with high (resp. low) densities are more likely to
be the true normal (resp. malicious) samples.

FS-Net [43] is also built upon Auto-Encoder; however,
it introduces an additional classification layer and adopts
supervised learning via the cross-entropy loss. Thus, it is
sensitive to label noises in the training data. In contrast, our
system does not require any label information for training and
thus enables accurate feature extraction from low-quality data.

C. Label Noise Correction

The label noise correction module corrects incorrect labels
in low-quality training sets by taking advantage of the differ-
ence in distribution between normal and malicious data. This
approach is based on our observation that normal data tends
to have a denser distribution than malicious data. We validated
this observation on three public datasets: DoHBrw2020 [50],
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IDS2018 [59] and AAGM2017 [38]. For each dataset, we
randomly selected 500 benign and 500 malicious network
flows. We extracted feature vectors for each flow using our
feature extraction module. Next, we used the TSNE [71]
algorithm to reduce the dimensionality of the feature vectors
to 1. Finally, we estimated the distribution of each type of
data using kernel density estimation [70]. Figure 2 shows the
density of normal data is higher than that of malicious data.

Therefore, we can estimate the distribution of the low-
quality training data and then identify the training samples
that are located in the densest and sparsest regions of the
distribution, as shown in Figure 3. These samples can then
be labeled as normal and malicious, respectively. However,
there are a number of challenges to achieving this goal. First,
the training data after feature extraction is in the form of high-
dimensional feature vectors. To ensure the accuracy of data dis-
tribution estimation, it is not appropriate to reduce the feature
dimension of the training data. However, traditional statistical
methods like kernel density estimation [70] cannot accurately
estimate the distribution of high-dimensional data. Second, the
difference between normal and malicious data distributions
may not be significant, especially for the less frequent normal
operations. It becomes difficult to infer the true labels of all
training samples solely based on their distributions.

We develop our label noise correction module to overcome
these issues. First, we estimate the distribution of training data
based on the deep generative model [36], which can capture
the probability distribution of observable variables. Benefiting
from the deep architectures, the deep generative model can
learn the latent correlation between different features and
model high-dimensional data accurately. According to the
estimated distribution, we relabel part of the training samples
that have the most significant distributions and then utilize
them as a basis to infer the true labels of other training data
through ensemble learning.

Specifically, we leverage MADE [24], a highly efficient
auto-regressive generative model, for distribution estimation.
MADE models the distribution of input data by learning
its probability density function. Assume that X is the input
data set for MADE and x = (x1, x2, ..., xd) ∈ Rd is
an sample belonging to X . MADE will output a series of
conditional probability densities p(x1), p(x2|x1), p(x3|x1x2),
. . . , p(xd|x1x2x3 . . . xd−1) for x. Then, the joint probability
density of x can be computed as:

p(x) =

d∏
i=1

p(xi|x1 . . . xi−1)

with p(xi|x1 . . . xi−1) = pM(xi|ζi). (4)

where pM is a Gaussian mixture function with learnable
parameters ζi. MADE learns the probability density function of
X by maximizing the likelihood of each sample via stochastic
gradient descent. The probability density of a sample approx-
imately reflects a sample’s position in the data distribution,
e.g., in the densest or the sparsest region, which is helpful for
inferring the sample’s true label.

We select the set of training samples having normal labels
(denoted as w̃train) from the original low-quality training set
D̃train and only use w̃train as the input data set for MADE.

Since w̃train usually contains less true malicious data than
D̃train

1, this strategy prevents MADE from assigning high-
density values to the true malicious data. It also effectively
enlarges the difference between truly normal and malicious
data. Then, we obtain the probability density values of each
training sample in D̃train and take the following steps to
relabel some samples. First, we select a set H̃train from
D̃train, where the samples in H̃train have higher probability
density values than the ones outside the set. The size of H̃train

is set to α ·
∣∣∣D̃train

∣∣∣ and α ∈ (0, 1) is a pre-defined parameter.
Second, we measure its average Euclidean distance to others
for each sample in H̃train and select half samples with smaller
distance values. The selected samples, denoted as Ns, are
located in the densest regions of the data distribution and
are similar to each other. Thereby, we can relabel them to
be normal training data with high confidence. Third, for each
sample in D̃train−Ns, we also compute its average Euclidean
distance to all samples in Ns and select another set of samples
Ms with larger distances. The samples in Ms are located in
the sparse regions of the data distribution and are least similar
to Ns. Thus, we relabel Ms to be malicious training data.
Meanwhile, we set the size of Ms the same as Ns to prevent
data imbalance in inferring the true labels of other samples.

Finally, with the label-corrected sets Ns and Ms, we infer
the true labels of other samples in D̃train through ensemble
learning. Instead of applying a single classifier, we choose
ensemble learning since it can improve the classification
accuracy under limited training data and is more robust to
label noises. We build an ensemble of seven classical machine
learning classifiers based on Ns and Ms, including Linear
Discriminant Analysis, AdaBoost, Random Forest, Logistic
Regression, Gaussian Naive Bayes, SVC, and XGBoost, to
predict the true label (i.e., normal or malicious) of each sample
in D̃train−Ns−Ms. This ensemble classifier uses the feature
vectors extracted by the feature extraction module. Thus, we
can obtain the label-corrected training set Dtrain, and the
training samples with corrected labels are denoted as Dnormal

and Dmalicious, respectively.

D. Data Augmentation

The data augmentation module aims to synthesize new
training data that can improve the detection performance on
unseen testing data according to the label-corrected original
training set Dtrain, which is non-trivial due to the following
reasons: (i) We should ensure the diversity of the new training
data. Otherwise, the machine learning model may still overfit
the new training data, limiting its generalizability. (ii) The
distribution of the testing data is likely to be inconsistent with
the training data because malware is always evolving. As a
result, the traditional data oversampling methods [8], [30], [31]
and the popular GAN-based data synthesis approaches [18],
[27] are not applicable. Specifically, the oversampling methods
essentially replicate the original training data, while the vanilla
GAN model can only generate new data that follows the dis-
tribution of the original training data. To address these issues,
we predict possible distribution regions of new malicious data

1Here, we do not consider datasets with over 50% data mislabeled (worse
than random labeling). Please see Section VI for discussion on this issue.
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and sample from these target regions to synthesize new diverse
training data.

Our data augmentation module augments training data by
synthesizing both normal and malicious data according to data
distributions. We argue that new malicious data may be located
in two specific regions following the data distribution. First,
considering that sophisticated attackers tend to imitate normal
behaviors to evade detection, new malicious data may become
more similar to normal data over time. Therefore, in the data
distribution, some new malicious data may be located in the
boundary region outside the normal data and yet very close
to it (denoted as MB). Second, since new attack methods
are emerging, e.g., Zero-day attacks, new malicious data may
be different from both normal and original malicious data,
i.e., locating in the region outside all original training data
(denoted as MO). However, we cannot simply synthesize new
malicious training data in these two areas, not exacerbating
data imbalance. For example, when there is far more malicious
data than normal data in the region, the decision boundary of
the machine learning model will move toward the region of
normal data and the model is more likely to predict malicious
results, i.e., generating more false alarms. Thus, our module
chooses the boundary region inside the original normal data to
guide the generation of normal data (denoted as NB), which is
essential for maintaining the decision boundary of the machine
learning model. We visualize these strategies in Figure 4.

Since the probability density can reflect a sample’s location
in the distribution, we use probability density functions to
describe the target regions. In particular, we estimate the data
distribution of Dnormal and Dmalicious via MADE and use
pN (·) and pM (·) to denote the corresponding probability den-
sity functions, respectively. The target regions corresponding
to the three augmentation strategies can be represented as:

MB = {x|pM (x) < γ, ω1 ≤ pN (x) < ω2},
MO = {x|pM (x) < γ, 0 ≤ pN (x) < ω1},
NB = {x|pM (x) < γ, ω2 ≤ pN (x) < ω3},

(5)

where x ∈ Rd, ω1, ω2, ω3, γ are pre-defined thresholds to
control the sizes and locations of the target regions. Then, we
represent the new training data sampled from each target region
in the form of distribution, which can be uniformly defined as:

P (x) =


C pM (x) < γ, θ1 ≤ pN (x) < θ2,

τ1 · 1
pM (x) pM (x) ≥ γ,

τ2 · pN (x) pM (x) < γ, pN (x) < θ1,

τ3 · 1
pN (x) pM (x) < γ, pN (x) ≥ θ2,

(6)
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Fig. 5: The overview of our data augmentation module. We
use three generators to generate samples (GMB , GMO, GNB)
based on three strategies (MB , MO, NB), respectively. The
˜MB indicates the generator that fits the target distribution
region of MB , and the same goes for ˜MO and ˜NB .

where C is a constant and τ1, τ2, τ3 are regularization terms.
When applying this distribution to represent the data sampled
from a specific target region, θ1 and θ2 will be replaced with
the parameters relevant to this region, e.g., ω1 and ω2 for MB .
This distribution means that we perform uniform sampling
in the target region to generate new data while reducing the
probability of new data being sampled from the areas outside
the target region.

To synthesize new data that follows the distributions of
the three target regions, we develop an improved GAN [27]
model for data augmentation, as shown in Figure 5. Unlike
the vanilla GAN model approximating the distribution of
the original training data, our model utilizes customized loss
functions to learn the target data distributions. It consists of
three generator networks and a discriminator network. Each
generator is responsible for synthesizing new data that follows
a target distribution, and the discriminator categorizes the
newly generated data to perform adversarial training. We use
XG to denote the distribution of the new data generated by one
generator. The training goal of this generator is to minimize
the Kullback-Leibler (KL) divergence between XG and P (x):

LKL(XG||P ) =−H(XG)

+ Ex∈XG,pM (x)≥γ [log pM (x)]

− Ex∈XG,pM (x)<γ,pN (x)<θ1 [log pN (x)]

+ Ex∈XG,pM (x)<γ,pN (x)≥θ2 [log pN (x)] ,

(7)

where H is the entropy function that can be approximated
by the pull-away term [86]. Note that the minimum pN (x)
threshold of MO is 0 (shown in Eq (5)), which means that
all areas in the feature space without normal samples located
in the MO region. This allows us to generate new samples in
the area containing no existing samples and makes our data
augmentation method superior to the vanilla GAN.

Since network traffic always follows specific protocol spec-
ifications, we need to prevent newly synthesized data from
deviating from the original training data. Thereby, for one
generator, we select the original training samples that already
locate in the corresponding target region, i.e., Xin = {x|x ∈
Dtrain, pM (x) < γ, θ1 ≤ pN (x) < θ2}, and minimize their
difference with the new data generated by this Generator. This
goal can be defined as:

Lf = ||Ex∈XG
[Df (x)]− Ex∈Xin

[Df (x)] ||2, (8)
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where E is the expectation function and Df is the first layer
of the discriminator. Then, the complete loss function for one
generator is as follows:

LG = LKL(XG||P ) + Lf . (9)

We denote the new data generated by three generator
networks (i.e., ˜MB , ˜MO and ˜NB) as GMB , GMO and GNB ,
respectively. They are fed into the discriminator with Dtrain

(including Dnormal and Dmalicious). Similar to the vanilla
GAN, our generator generates new data that follows target
distributions with high diversity. Our discriminator is designed
to classify all data, including the original and synthesized data,
into malicious and normal categories. This allows the genera-
tor to generate new data that can improve the classification
performance of machine learning models. In particular, we
define D(x) as the prediction of x. D(x) ∈ [0, 1], which will
be higher if x is more likely malicious. The loss function for
our discriminator is defined as:
LD = Ex∈Dnormal

[log(D(x))] + Ex∈Dmalicious
[log(1−D(x))]

+ Ex∈GMB
[log(1−D(x))] + Ex∈GMO

[log(1−D(x))]
+ Ex∈GNB

[log(D(x))] .
(10)

Our GAN model is trained with the label-corrected original
data Dtrain by adversarial training. When the model con-
verges, the new data synthesized by the generator networks
will be regarded as the new training data. Besides, to avoid the
model collapse problem [7] and further increase the diversity of
synthesized data, our data augmentation module trains several
independent GAN models and combines all their synthesized
data as the new training data. Then, we can fully train a
machine learning model based on new training data and Dtrain

to perform accurate detection.

Our method addresses the limitations in the ODDS-based
data augmentation method [33] that generates new malicious
data outside the distribution of original training data. Our
model synthesizes new malicious data located in the bound-
ary region outside the normal data to effectively detect new
attack methods that mimic normal behaviors. Also, our model
synthesizes new normal samples that maintain the decision
boundary of machine learning models, reducing false alarms.
Furthermore, we train multiple GAN models independently to
avoid the model collapse problem, ensuring the diversity of
new data.

V. EVALUATION

We evaluate the effectiveness of our detection system using
public and real-world datasets. We also compare the perfor-
mance of our work with representative encrypted malicious
traffic detection methods.

A. Experimental Setup

Datasets. We use the following public datasets for evaluation:

• CIRA-CIC-DoHBrw-2020 (DoHBrw) [50] includes nor-
mal and malicious DNS-over-HTTPS (DoH) encrypted traf-
fic. The normal traffic is generated by querying benign
DNS servers, e.g., Cloudflare and Google, using the DoH
protocol. The malicious DoH traffic is generated by three

TABLE I: The number of normal and malicious encrypted
network flows in the public datasets. The flows generated on
the first day of the dataset are regarded as T1 and the rest is as
T2. We randomly select a small amount of training data from
T1 in each experiment and the whole T2 is used for testing.

Dataset T1 T2

Normal Malicious Normal Malicious

DoHBrw 4381 10,298 304,313 138,449
IDS 430,974 6,446 1,502,583 47,186

different DNS tunneling tools including dns2tcp, DNSCat2,
and Iodine. It encapsulates the DNS tunnel data communi-
cating with malicious DNS servers. The dataset is collected
at a location between clients and the gateway, and all data
is HTTPS traffic.
• CSE-CIC-IDS2018 (IDS) [59] is a widely-used intrusion

detection dataset that records the network traffic generated
by hundreds of hosts in an internal network and includes
seven attack scenarios. We extract the encrypted traffic from
this dataset as our evaluation data. However, it has only
a small amount of malware’s encrypted traffic. Thus, we
use the CIC-InvesAndMal2019 [67] dataset, which contains
the malicious encrypted traffic generated by 426 malware
samples in six malware types (i.e., Adware, Botnet, Premi-
umSMS, Ransomware, Scareware, and SMS) to supplement
our evaluation data. Besides, to ensure the normal encrypted
traffic used for evaluation is correctly labeled, we filter it
based on the Alexa Top list and remove the traffic generated
during the attacking time.

Table I shows each dataset is divided into two sets accord-
ing to the timestamps of traffic. We put all the traffic generated
on the first day of the dataset into set T1 and the remaining
data into set T2. In each experiment, we randomly select a
small amount of traffic from T1 as the training set and utilize
the entire T2 as the testing set.

Baselines. We choose several state-of-art malware detection
methods and two representative machine learning methods that
can deal with low-quality training data, to design the baselines:

• Malicious Encrypted Traffic Detection Methods. We se-
lect two state-of-the-art flow-level malicious traffic detection
methods: ETA [3] and FS-Net (FS) [43]. ETA utilizes
the features relevant to packet length information and TLS
handshake metadata and performs detection based on the
random forest algorithm. FS is an end-to-end deep learning
model that profiles encrypted traffic via time-serial features
and performs well in multiple encrypted traffic classification
tasks. More crucially, except for a labeled training set,
these two methods do not need extra data, e.g., a large-
scale unlabeled training set, such that we can make fair
comparisons with our system.
• Robust Malware Detection Methods. We select two mal-

ware detection methods robust to low-quality training data:
Differential Training (DT) [80] and ODDS [33]. These
two methods handle label noises and insufficient training
data, respectively. In particular, DT is a generic framework
to reduce label noises for Android malware detection. It
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characterizes malware samples via host-level features, e.g.,
API calls, identifies mislabeled malware training samples by
applying several outlier detectors, revises their labels, and
then builds ML-based malware detectors based on the label-
corrected training set. Besides, ODDS targets the malicious
network request launched by bot malware. It synthesizes
new malicious data via GAN to improve the performance
of the ML-based detector with limited training data.

• Robust Machine Learning Methods. We also choose two
representation machine learning methods that can handle
low-quality training data: SMOTE [8] and Co-teaching
(Co) [29]. These methods can handle low-quality training
data in different domains. Specifically, SMOTE is a data
augmentation technique that is widely used to address the
problem of insufficient training data. SMOTE works by
generating synthetic data points that are similar to the
minority class. Co-teaching is a general machine learning
framework that is robust to label noise. Co-teaching works
by training two identical models in parallel. The models are
then compared to each other, and any data points that are
misclassified by both models are removed from the training
set. This helps to improve the accuracy of the models by
removing noisy data points.

Among the above methods, only ETA and FS are designed
for encrypted malicious traffic detection. For comprehensive
comparisons, we produce more baselines by enhancing ex-
isting methods with ETA and FS. Specifically, since DT is
a general framework for malware detection, we replace its
original host-level features and malware detector with the
time-serial features used by FS and the FS-based detector,
respectively, to create the baseline DT+FS. Also, we enhance
ODDS with FS in a similar way to obtain the baseline
ODDS+FS. Moreover, we design a more powerful baseline
DT+ODDS+FS based on DT, ODDS, and FS. For a low-
quality training set, DT+ODDS+FS corrects the label noise by
utilizing DT and synthesizes new training data through ODDS,
and then it trains FS based on the quality-improved training
set. We also generate another baseline DT+ODDS+ETA by
integrating DT, ODDS, and ETA in a similar way. Besides,
the baselines SMOTE+FS and Co+FS utilize SMOTE and
Co to improve the quality of the training set, respectively, and
then train FS to perform detection.

TABLE II: The Parameter Settings of RAPIER. In Data Aug-
mentation, γ = 0.05 means γ is the 5th percentile of the set
{pM (x)|x ∈M}. ω1 = 0.1, ω2 = 0.2 and ω3 = 0.3 represent
the 10th, 20th and 30th percentile of the set {pN (x)|x ∈ N}.

Module Para. Value Description

Feature
Extraction

n 50 Number of used head packets
V 32 Embedding size of GRU-AE
H 8 Hidden size of each GRU layer
B 2 Number of GRU layers
d 32 Dimension of feature vector (d = 2BH)

Label
Correction α 0.5 Filtering proportion at the first step

Data
Augmentation

γ 0.05
Thresholds to control the size and location

of target regions for synthesizing new training data
ω1 0.1
ω2 0.2
ω3 0.3
η 5 Number of independent GAN models

Implementation2. We implement our detection system and
all baselines by using Python 3.8.5, and the used libraries
include NumPy 1.21.2, Pytorch 1.7.1, Tensorflow 2.10.0, and
Cuda 11.7. We run these models on a Linux server (5.4.0-126-
generic) with Intel(R) Xeon(R) E5-2650 v4 CPU and NVIDIA
GeForce RTX 2080Ti GPU. We list all the parameters used
by our system in Table II. In particular, we set n = 50
because the head packets of each flow usually contain rich
information, e.g., the handshake process between the client and
server sides, which is beneficial for distinguishing malicious
and benign encrypted traffic. We set d = 32 to make a balance
between the complexity of the feature extraction module and
its capability of capturing fine-grained behaviors of network
traffic. Then, we apply Grid Search to find the appropriate
values for α, γ, ω1, ω2, and ω3. In particular, we set 0.5 for
α, and the values of γ, ω1, ω2, and ω3 are 0.05, 0.1, 0.2,
and 0.3, respectively. Besides, we set η = 5 for synthesizing
more diverse training data. In § V-E, we perform additional
experiments to evaluate the performance of our system under
different parameter values.

Metrics. We utilize three common metrics to evaluate the
performance of our detection system, including precision, re-
call, and F1 score. We regard malicious and normal encrypted
network flows as positive and negative samples, respectively.
With the detection result and the ground truth of one testing
set, we can calculate the number of true positive samples (TP),
the number of false positive samples (FP), and the number of
false negative samples (FN). Then, the three metrics can be
computed as follows: precision = TP

TP+FP , recall = TP
TP+FN ,

and F1 Score = 2×precision×recall
precision+recall .

B. Overall Detection Performance

We first evaluate the detection performance of our system
and all baselines on the two public datasets, i.e., DoHBrw
and IDS. Further, to evaluate RAPIER an extreme scenario
of malware evolution, we create a new dataset IDS/DoHBrw.
In particular, we combine all the malicious samples in the
DoHBrw dataset with the whole IDS dataset and split it into
a new training set and a new testing set according to the
timestamp of each network flow. Note that, since the generation
time of the DoHBrw dataset (2020) is later than that of the
IDS dataset (2018-2019), all the malicious samples of the
DoHBrw dataset are put in the new testing set, while the new
training set is the same as the original training set of IDS.
This setting simulates an extreme case that the new malware
samples evolve to be irrelevant to the training data. All packets
in the DoHBrw and IDS datasets are encapsulated by the TLS
protocol. Our framework extracts features from each TSL flow.
Thus, the features generated from these datasets are the same.

We set three training sizes, 250, 500, and 1000. Each
size represents the number of malicious and normal training
samples randomly selected from T1 in each experiment. This
random selection strategy ensures the diversity of the training
samples. More importantly, for fair comparisons, we follow
the label noise ratio settings used in Co [29] and DT [80]. In
particular, the label noise ratio is defined as the proportion of
mislabeled samples in all training samples and there are six

2The source code of RAPIER is publicly available at
https://github.com/XXnormal/RAPIER.
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Fig. 6: The F1 score of all methods under different noise ratios on three evaluation datasets.

TABLE III: The F1 score of all methods under different training sizes with the noise ratio of 30%. The F1 score is shown in
the form of ”Avg ± Std”, where Avg is the average F1 score and Std is the standard deviation.

Method FS Co+FS DT+FS ODDS+FS SMOTE+FS DT+ODDS+FS ETA DT+ODDS+ETA Ours

Training Size on
DoHBrw

250 .18 ± .02 .21 ± .06 .41 ± .02 .42 ± .05 .17 ± .00 .34 ± .10 .56 ± .27 .44 ± .21 .71 ± .02
500 .28 ± .04 .23 ± .06 .44 ± .03 .42 ± .07 .17 ± .00 .52 ± .04 .39 ± .24 .44 ± .23 .78 ± .02

1000 .30 ± .03 .27 ± .05 .54 ± .02 .57 ± .06 .17 ± .00 .58 ± .05 .40 ± .23 .29 ± .07 .78 ± .02

Training Size on
IDS

250 .26 ± .05 .66 ± .19 .34 ± .01 .46 ± .04 .17 ± .00 .38 ± .03 .57 ± .10 .53 ± .15 .75 ± .04
500 .28 ± .04 .71 ± .06 .45 ± .04 .43 ± .06 .17 ± .00 .46 ± .08 .66 ± .27 .67 ± .24 .79 ± .02

1000 .35 ± .01 .73 ± .08 .51 ± .03 .51 ± .08 .17 ± .00 .54 ± .05 .66 ± .27 .69 ± .23 .77 ± .02

Training Size on
IDS/DoHBrw

250 .31 ± .13 .66 ± .19 .51 ± .10 .58 ± .12 .17 ± .01 .53 ± .11 .59 ± .12 .57 ± .15 .82 ± .09
500 .39 ± .14 .76 ± .06 .64 ± .13 .64 ± .15 .17 ± .00 .62 ± .14 .62 ± .27 .70 ± .27 .86 ± .05

1000 .38 ± .13 .73 ± .08 .68 ± .09 .69 ± .13 .17 ± .00 .72 ± .13 .69 ± .24 .73 ± .19 .81 ± .07

different noise ratios (20%, 25%, 30%, 35%, 40%, and 45%)
for evaluations.

For each training size value s and label noise ratio value,
we create 10 independent low-quality training sets. Each
training set consists of s malicious and s normal training
samples randomly selected from T1. The labels of the training
samples are then symmetrically flipped according to the label
noise ratio. For example, when the label noise ratio is 20%, we
change the label of 20% malicious training samples to normal
and 20% normal training samples to malicious. Symmetric
label flipping is used in Co [29] and DT [80]. And we also
use this label flipping method in § V-D, V-E and V-F. Then,
for each low-quality training set, we randomly sample five
individual testing subsets from T2, where the size of each one
is half of T2. We set the ratio of malicious to normal samples
in each testing subset to 1:10, as recommended by Pendlebury
et al. [55] in their large-scale malware measurement study.
Given a low-quality training set, we train RAPIER and all
baselines based on it, evaluate their detection performance on
the corresponding five testing subsets, and compute the average
performance of each method. The performance of each method
under a specific combination of training size and noise ratio is
measured by the method’s average result on the corresponding
ten low-quality training sets.

Impact of Noise Ratio. We show the F1 score of all methods
under different noise ratios in Figure 6 and the training size
is set to 500 (i.e., 500 normal and 500 malicious training
samples, 1000 samples in total). It can be seen that our
system outperforms all baselines with significant margins in all
settings. For instance, when the noise ratio is as high as 45%,
our system still achieves the best F1 scores of 0.770, 0.776,
and 0.855 on the DoHBrw, IDS, and IDS/DoHBrw datasets, re-
spectively, showing average improvements of 352.6%, 284.3%,
and 214.9% over the baselines. Note that, the average improve-

ment is the mean value of the improvement of our system to
each baseline. Besides, we observe that the varying noise ratio
only slightly affects our detection performance. In particular,
when the noise ratio increases from 20% to 45%, the F1
score fluctuations of our system on the DoHBrw, IDS, and
IDS/DoHBrw datasets are only about 0.052, 0.024, and 0.045,
respectively. By contrast, the average F1 score fluctuations of
all baselines except SMOTE are above 0.3. The F1 score of
SMOTE keeps lower than 0.2 such that we do not compute
its performance fluctuations. These results indicate that when
facing highly insufficient training data, our system is much
more robust to label noise than all baselines. This is because
our system effectively corrects the incorrectly labeled samples
based on their distinctive distribution characteristics, which is
less relevant with the number of correctly labeled samples.
In specific, the number of label noises after label correction
is stable as the origin noise ratio changes, and the detailed
performances and explanation of the label-correction module
are discussed in § V-D.

Impact of Training Size. We show the F1 score of all methods
under different training sizes in Table III. The noise ratio is
set to 30%. Our system outperforms baselines in all settings.
When the training size is as small as 250, our system achieves
the F1 scores of 0.705, 0.751, and 0.817 on the DoHBrw,
IDS, and IDS/DoHBrw datasets, respectively, with average im-
provements of 148.5%, 113.0%, and 101.1% to all baselines. It
shows that even when plenty of training samples are incorrectly
labeled, our system can synthesize new useful training data for
improving detecting performance. In contrast, the baselines
that solely utilize existing data augmentation methods, e.g.,
ODDS+FS and SMOTE+FS, cannot deal with the negative
impacts of label noise. Moreover, our system remains stable
under different training sizes. The F1 score fluctuations of our
system on the DoHBrw, IDS, and IDS/DoHBrw datasets are
0.077, 0.036, and 0.053, respectively. It shows that our data
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augmentation strategies are applicable to different low-quality
training sets. In contrast, the baselines’ performance shows
significant degradations as the training size varies, e.g., the F1
scores of DT+ODDS+FS are reduced by 0.24, 0.16, and 0.19
on the three datasets when training size decreases from 1000
to 250. We also notice that all methods can achieve higher
detection performance on the IDS/DoHBrw dataset than on the
IDS dataset since the malicious samples in the DoHBrw dataset
are less similar to the normal samples in the IDS dataset. In this
case, our system still outperforms all baselines by a significant
margin. This is because the new training data synthesized by
our system is more representative of the malware samples in
the DoHBrw dataset, allowing our system to learn more about
the characteristics of malicious traffic.

We supplement the detection performance of all methods
with each training size and noise ratio setting in Appendix A.
Our system achieves the best performance in most cases. The
reason behind this is that our system accurately corrects label
noises within low-quality training data and synthesizes new
training data that can represent unseen malware samples.

Impact of smaller malicious-to-normal ratios. We further
measure the performance of our framework with smaller ratios
of malicious to normal samples in the testing sets. We select
three ratios: 1:20,1:30, and 1:50. The training size is 500 and
the noise ratio is 30%. The results are shown in Table IV. We
can see that when the ratio increases from 1:10 to 1:30, the F1
scores of our framework only decrease approximately by 6%
and 8% on the IDS and IDS/DoHBrw datasets, respectively.
Even when the ratio reaches 1:50, our framework still achieves
about 0.52, 0.68, and 0.75 F1 scores on the DoHBrw, IDS,
and IDS/DoHBrw datasets, respectively. This demonstrates
that our framework can effectively detect encrypted malicious
traffic in real-world networks where malicious traffic is rare.
Additionally, the F1 score decreases due to low precision
scores. For example, the precision on the DoHBrw dataset
decreases from 0.68 to 0.49 when the ratio rises from 1:10
to 1:30, indicating that more false alarms are reported. We
will discuss this issue in § VI.

TABLE IV: The F1 scores of RAPIER with smaller ratios of
malicious to normal samples. The training size is 500 and the
noise ratio is 30%.

Dataset DoHBrw IDS IDS/DoHBrw

Malicious Ratio
(malicious : normal)

1:10 .78 ± .02 .79 ± .02 .86 ± .05
1:20 .71 ± .02 .75 ± .04 .82 ± .04
1:30 .63 ± .03 .74 ± .05 .79 ± .05
1:50 .52 ± .05 .68 ± .10 .75 ± .03

C. Various Settings of Label Noises

To evaluate the performance of our system under more
realistic label noise settings, we create label noise based on
two common scenarios where malicious and normal encrypted
traffic can be mislabeled. First, unseen domain names: Since
network administrators usually identify normal traffic based on
domain names [4], they may regard an unseen domain name as
malicious. Second, absent threat intelligence: When the threat
intelligence about certain types of malware is absent, network
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Fig. 7: The F1 scores under realistic label noise settings.

administrators may not be able to identify the malware’s
malicious traffic, i.e., mislabel the traffic as normal.

For the T1 set of each dataset, we change the label of
the normal network flows to malicious if their domain names
are not in the Alexa-Top-1m list. Also, we change the label
of the malicious network flows to normal if they belong
to a chosen malware type (i.e., dns2tcp, DNSCat2, Iodine
for the DoHbrw dataset and Adware, Botnet, PremiumSMS,
Ransomware, Scareware, SMS for the IDS dataset). These
network flows with modified labels are considered label noises.
Given a training size and a noise ratio, we choose a malware
type to generate the label noises and then create 10 independent
low-quality training sets from T1. Each set consists of the
label noises and the correctly labeled network flows randomly
sampled from T1 according to the given training size and noise
ratio. We then train our system and all baselines on each low-
quality training set. We create the testing sets using the same
method as in § V-B and evaluate each method’s performance.

We set the training size to 500 and the noise ratio to
20%, 30%, and 40%. For each training size and noise ratio
setting, we choose one malware type at a time and calculate
the average detection performance of each method under all
malware types. As shown in Figure 7, our system outperforms
all baseline models. Specifically, our system achieves average
F1 scores (among all settings) of 0.797, 0.800, and 0.867 on
the DoHBrw, IDS, and IDS/DoHBrw datasets, respectively,
achieving average improvements of 166.5%, 154.6%, and
165.2% over all baselines. This indicates that our system can
perform robust encrypted malicious network detection when
trained with the low-quality training data generated in realistic
circumstances. We notice that most baselines’ performance
decreases compared to their results in § V-B (when samples
are randomly selected to be label noises). For instance, the
F1 score of ETA declines 30% on average. In contrast, our
method maintains similar detection accuracy, where the F1
score fluctuations are less than 0.03.

D. Evaluating Individual Components

Feature Extraction. We first compare our feature extraction
module with two representative feature extraction methods
ETA [2] and CICFlowMeter [37]. We replace our feature
extraction module with these two methods while keeping our
label noise correction and data augmentation modules.

The F1 score reduces to 0 when we use these two new
feature extraction methods in all settings and we inspect the
results of two modules. CICFlowMeter has recall scores of 0,
meaning that it is unable to identify encrypted malicious traffic.
This is likely because the coarse-grained statistical features
extracted by CICFlowMeter are not able to distinguish between
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encrypted malicious and normal traffic. Besides, ETA extracts
feature vectors of much higher dimensions (386) than our
system (32). This makes it difficult for the deep generative
model (MADE) to estimate the distribution of such high-
dimensional data. As a result, the remaining components of
our system depending on the data distribution cannot function
properly. In contrast, we extract more important sequential fea-
tures that represent fine-grained behaviors, where the extracted
feature vectors are of lower dimensions, facilitating accurate
distribution estimation performed by the MADE model.

Label Correction. Now we compare our label correction
module with two SOTA label noise correction methods DT and
Co. For a noisy training set, we use our module and these two
methods to correct the label noises and calculate the remaining
noise ratio and the proportion of corrected noises (i.e., the
number of corrected noises divided by the total number of
noises) as the evaluation metrics. The training size is set to 500
and the noise ratios are consistent with the settings in § V-B.
Recall that the IDS and IDS/DoHBrw datasets share the same
training set, we only perform label correction experiments on
the DoHBrw and IDS datasets.

The label noise correction results are shown in Figure 8.
Our module can reduce the original noise ratio to lower
levels. It can reduce the noise ratio to 8.54% and 15.81%
on the DoHBrw and IDS datasets, respectively. Our module
is also stable at correcting noise. The standard deviations of
the remaining noise ratios corresponding to our module are
only 0.92% and 0.52% on the DoHBrw and IDS datasets,
respectively. In contrast, the noise correction performance of
the other two methods degrades as the original noise ratio
increases. When the original noise ratio is 45%, the proportion
of noises corrected by our module is 76.8% on the DoHBrw
dataset, which is 19.97 times higher than DT and 2.21 times
higher than Co; our noises correction proportion on the IDS
dataset is 67.4%, which is 8.92 times higher than DT and
is 1.52 times higher than Co. We notice the performance
of all methods on the IDS dataset is inferior to that on the
DoHBrw dataset, mainly due to the difference between the
two datasets. In summary, our label correction module can
effectively correct the incorrect labels under different noise
rates, and its performance outperforms the SOTA methods.

Data Augmentation. We compare our data augmentation
module with NONE (refers to perform detection without data
augmentation), ODDS [33], SMOTE [8], and the vanilla
GAN [27] model. Each method (except for NONE) generates

TABLE V: The detection performance after data augmentation.
P, R, and F represent precision, recall, and F1 score.

Dataset Metrics NONE ODDS SMOTE GAN Ours

DoHBrw
P .88 ± .11 .86 ± .03 .82 ± .10 .85 ± .09 .88 ± .03
R .93 ± .06 .93 ± .02 .95 ± .02 .93 ± .04 .98 ± .01
F .90 ± .07 .89 ± .01 .87 ± .06 .88 ± .07 .93 ± .01

IDS
P .67 ± .15 .44 ± .04 .46 ± .06 .48 ± .04 .69 ± .12
R .86 ± .04 .89 ± .03 .89 ± .03 .87 ± .04 .89 ± .02
F .77 ± .06 .74 ± .09 .59 ± .03 .60 ± .05 .77 ± .06

IDS/DoHBrw
P .54 ± .14 .34 ± .10 .37 ± .08 .36 ± .06 .56 ± .02
R .75 ± .09 .93 ± .02 .92 ± .00 .87 ± .04 .94 ± .01
F .55 ± .09 .49 ± .11 .53 ± .07 .51 ± .05 .70 ± .02

new training data, combines it with the original training data,
and trains the final detection model in our system. We obtain
the detection performance on the testing set as the metric to
measure each data augmentation method. We exclude the label
noises for fair comparisons, so the training set does not contain
label noises and the training and testing sets follow the settings
in § V-B.

We show the detection performance when the training size
is 500 in Table V. Our data augmentation module can achieve
the highest F1 score on each dataset, namely, 0.93, 0.77, and
0.70 on the DoHBrw, IDS, and IDS/DoHBrw datasets, respec-
tively. It achieves average improvements of 5.1%, 22.3%, and
34.9% over other data augmentation methods. More crucially,
compared with the no augmentation strategy, our module
improves both the precision and recall scores. This means our
module can identify more unseen malicious testing samples
without generating more false alarms. On the IDS/DoHBrw
dataset where the difference between the training and testing
malicious data is most obvious, our module significantly
improves the recall from 0.75 to about 0.94 and the precision
from 0.54 to about 0.56. In contrast, the recall improvements
of other augmentation approaches are all at the expense of
serious precision degradation. More seriously, in some cases,
the detection performance of ODDS, GAN, and SMOTE
is worse than that of the no augmentation strategy. This is
because the new training data synthesized by these baselines
are not effective at improving the precision or recall scores. We
also observe that a small number of normal samples exhibiting
infrequent normal behaviors can lead to lower precision in
some cases. This is likely because these samples are located
outside dense distribution regions of the normal data and are
falsely identified as malicious. Besides, the benefits of the
augmentation method vary on different datasets due to the
different packet types present in each dataset. For example, the
IDS dataset generated by hundreds of hosts contains a wider
variety of packet types than the DoH dataset which mainly
contains DNS requests. The increased diversity of packet types
can lead to more false alarms and lower precisions.

We supplement the experiment results with the training
size of 250 and 1000 in Appendix B and our module also
achieves the best F1 score in these settings. In summary,
our data augmentation module can effectively improve the
detection capability of ML models built upon limited training
data against evolving malware samples.
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E. Parameter Deep Dive

Filtering Ratio α. We evaluate the impacts of different
filtering ratio α values. Recall that α controls the proportion of
high-confidence normal samples filtered at the first step of label
correction (see § IV-C). We set five different α values (0.40,
0.45, 0.50, 0.55, and 0.60). Then, we perform label correction
experiments with different noise ratios. Specifically, we set the
training size to 500 and make the noise ratio in the range of
20% to 45%. Figure 9 shows the remaining noise ratio results.
Our label correction module can always achieve low remaining
noise ratios (i.e., good label correction results) under different
α settings. In particular, the average remaining noise ratios
on the DoHBrw and IDS datasets are 8.63% and 16.84%,
respectively. Moreover, the variance of the results regarding
different α settings is relatively low (0.90% and 0.78% on the
DoHBrw and the IDS dataset, respectively), demonstrating the
stability of our label correction module.

Thresholds ω1, ω2 and ω3. We also evaluate the impacts of
different thresholds ω1, ω2, and ω3 values. These thresholds
control the size and location of target regions for generated
samples (see § IV-D). We use ω1 = x to denote the value of
ω1 as the (100·x)th percentile of the generated samples, where
x ∈ [0, 1], and we use similar notations to present the values of
ω2 and ω3. Besides, we make ω3 = ω2+0.1 to ensure the new
normal samples are generated near the boundary controlled by
ω2. Thus, we only set different values for ω1 and ω2. Also, we
set ω1 and ω2 to less than 0.5 to avoid samples generated inside
the region of normal samples, which violates our augmentation
strategy. In the experiments, the training size is also set to 500
and the noise ratio is in the range of 20% to 45%. We show the
F1 scores of our system in Figure 10. It can be seen that our
system achieves relatively stable detection performance when
these thresholds vary. For instance, when the noise ratio is
45%, the standard deviations of F1 scores corresponding to
different ω1 and ω2 combinations are only 0.025 and 0.016 on

25% 35% 45%
The noise ratio

0.2
0.4
0.6
0.8

F1
-s

co
re

DoHBrw dataset

η = 3 η = 4 η = 5 η = 6 η = 7

25% 35% 45%
The noise ratio

0.2
0.4
0.6
0.8

IDS dataset

Fig. 11: The F1 score of different number of GAN models η.

20% 25% 30% 35% 40% 45%
The noise ratio

0%

15%

30%

45%

C
or

re
ct

ed
la

be
lr

at
io

Ours
DT
Co

Corrected noise ratio
Remaining noise ratio

Fig. 12: The corrected and remaining noise ratios under
different original noise ratios on the real-world dataset.

the DoHBrw and IDS datasets, respectively.

Number of GAN models η. We evaluate the impacts of dif-
ferent η values, which represent the number of GANs trained
independently for data augmentation. We set the training size
to 500 and the noise ratio in the range of 20% to 45%.
Figure 11 shows the detection performance of our system
under different η values. The changing η values slightly impact
the detection performance. When the noise ratio is 30%, the
standard deviations of F1 scores corresponding to different η
values on the two datasets are only 0.016 and 0.015. Also,
the detection performance improves slightly as η increases. In
particular, when η increases from 3 to 7, the average F1 scores
on the DoHBrw and IDS datasets improve by 2.8% and 3.4%,
respectively. It validates that more independent GAN models
can enhance the diversity of the generated training samples,
leading to better detection performance. Thus, we can choose
either a large η value for better detection performance or a
moderate η value to balance the detection performance and
training overhead. The overall performance of RAPIER is not
sensitive to parameter choices. Its good detection capability is
attributed to our design, rather than specific parameters.

TABLE VI: The detection performance after data augmenta-
tion. P, R, and F represent precision, recall, and F1 score.

Training size Metrics NONE ODDS SMOTE GAN Ours

250
P .44 ± .22 .38 ± .04 .45 ± .06 .50 ± .03 .64 ± .12
R .14 ± .02 .24 ± .01 .24 ± .02 .14 ± .01 .90 ± .11
F .16 ± .03 .22 ± .02 .34 ± .02 .17 ± .02 .74 ± .09

500
P .43 ± .16 .45 ± .22 .27 ± .06 .58 ± .01 .64 ± .06
R .21 ± .02 .35 ± .09 .71 ± .02 .34 ± .02 .96 ± .05
F .26 ± .02 .32 ± .13 .34 ± .01 .37 ± .02 .77 ± .05

1000
P .79 ± .10 .69 ± .14 .52 ± .12 .61 ± .24 .80 ± .08
R .38 ± .03 .49 ± .03 .64 ± .22 .34 ± .08 .96 ± .05
F .47 ± .04 .54 ± .06 .53 ± .05 .38 ± .01 .87 ± .04
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F. Real-World Experiments

To evaluate RAPIER in real-world cyberspace, we collabo-
rate with a network security enterprise to obtain a large amount
of real network data, including both benign and malicious
samples. In particular, the dataset is collected on the Internet by
the enterprise within its service area. All the traffic samples are
labeled with high confidence based on a considerable quantity
of threat intelligence collected by the enterprise and further
calibrated by experts. In total, we obtain over 2.9M benign
and 790K malicious encrypted traffic flows with timestamps
ranging from Nov. 2017 to Feb. 2021.

We use the traffic data collected in 2017 as the training set
and the rest as the testing set. Then we follow the settings in
§ V-B to conduct experiments. We supplement the detection
performance on the real-world dataset under all settings in
Appendix C. Overall, our system outperforms all baselines
with non-trivial margins in nearly all cases. When the training
size is 500, our system achieves the best F1 score of about
0.773, improving existing methods from 89.2% to 445.5%,
at an average of 272.5%. We also evaluate our label noise
correction module on this real-world dataset and show the
results in Figure 12. Specifically, our label noise correction
module achieves a steadily low remaining noise ratio (less than
4.3%) given different noise ratios in the training data and the
peak ratio for noise removal is 93%. Besides, we further eval-
uate our data augmentation module on this real-world dataset,
and the results are shown in Table VI. Compared with other
augmentation approaches, the new training data synthesized
by our module brings in the largest detection performance
improvement, especially in the recall. Specifically, the recall
score achieved by our data augmentation module outperforms
that of other augmentation approaches by around 238.8% (on
average). Meanwhile, the precision score of our module is
also higher than all baselines. It shows our data augmentation
module enables ML-based detectors to detect more realistic
malicious samples unseen in the training data.

VI. DISCUSSION

Extreme Label Noises. The performance of our system will
degrade inevitably when more than 50% of the data is mis-
labeled (worse than random labeling). However, benefiting
from our dedicated design, our system is still more robust
than other baselines in such extreme cases. For instance, on
the IDS dataset, when the training size is 500 and the label
noise ratio is set to 60%, 75%, and 90%, the F1 score of
our system still remains at about 0.752, 0.637, and 0.447,
respectively. Meanwhile, the performance of DT+ODDS+FS
and DT+ODDS+ETA dramatically reduces to about (0.009,
0.010), (0.016, 0.017), and (0.003, 0.000), respectively. Be-
sides, such extreme cases are rare in practice because we can
pre-process the collected traffic data to reduce the label noise
ratio to a reasonable level, e.g., less than 50%. For instance, we
can filter the collected malicious encrypted traffic through the
Alexa Top list and only preserve the normal encrypted traffic
communicated with well-known benign servers, to reduce the
incorrectly labeled traffic mixed in.

Training Overhead. Typically, deep learning models involve
large training time requirements, yet it is not a critical concern
for our system. Since the low-quality training set for our

system is usually of limited size, the deep learning mod-
els used by our system can be trained fast. For instance,
when the number of training samples is 500, the feature
extraction module, the label noise correction module, and
the data augmentation module consume about 4032, 7.5, and
156 seconds, respectively. Besides, some components in our
system, e.g., the ensemble classifiers for label noise correction
and the multiple GAN models for data augmentation, can be
trained in parallel to boost efficiency. Even if the training size
becomes larger, we can enhance our system with the recent
efficiency improvement techniques, like over-specification [44]
and dropout training [65].

Performance under Long-term Deployment. We observe
that, over the long term, the deployment of our framework
will lead to a gradual increase in both the diversity and the
volume of normal traffic. This will result in more normal
testing traffic exhibiting unseen normal behaviors. These new
normal traffic may be detected as malicious. A simple yet
effective solution is re-collecting the training set to re-train
the whole system periodically or when observing obvious
performance degradation. As we have evaluated, the training
overhead of our system is small (4032, 7.5, and 156 seconds
on our three modules, respectively). We can also cluster these
detected malicious samples based on their temporal intervals
and filter out the isolated false alarms [22]. Besides, the fresh
diverse normal data collected under long-term deployment may
affect the effectiveness of our label correction module. To
handle this issue, we can pre-process the normal training data
via clustering, i.e., aggregating the normal data sharing similar
behavior into the same training set, and then correct the label
noises in each set individually. We leave detailed exploration
in this regard to future work.

Evading Detection. Sophisticated attackers may try to bypass
our system. One common strategy is generating adversarial
examples by adding well-crafted perturbation in the encrypted
network traffic of malware. Our system has built-in designs to
handle adversarial examples. In particular, unlike traditional
deep learning models designed for end-to-end tasks, our sys-
tem uses deep generative models and GAN models to improve
the quality of training data before training the subsequent ML-
based detector. This creates an extra barrier for the adversary to
construct adversarial examples for these models. In addition,
existing art has demonstrated that both label correction and
data augmentation can improve the robustness of learning-
based models under different attack scenarios [52], [56].
Thus, the ML-based detector in our system is less affected
by adversarial examples. The second strategy is to mimic
the normal network traffic behavior. The pattern/behavior of
network flows fundamentally reflects their intent. It is unclear
to what extent is this strategy able to retain attack effectiveness
while exhibiting identical flow distributions as the benign
traffic. We leave exploration for both strategies to future work.

VII. RELATED WORK

Traditional Malicious Traffic Detection. Identifying the ma-
licious network traffic of malware has been extensively studied.
Traditional arts [6], [33], [51], [54], [58], [74] mainly focus on
malicious traffic in plain text like URLs and HTTP requests,
such that they typically extract attack signatures or features
from traffic payloads. For instance, the Execscent method [51]
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extracted five types of features from the URL and HTTP
header information and detected malware communication traf-
fic through a template-matching approach. Wang et al. [74]
extracted N-gram semantic features from HTTP headers and
selected the most essential features by applying the chi-square
test. Besides, to detect the malicious network requests launched
by bot malware, Jan et al. [33] convert network traffic into
feature vectors based on the frequency of the URL, Referer,
and Browser version information. However, these traditional
methods are unable to detect encrypted malicious traffic.

Encrypted Malicious Traffic Detection. Recently a series
of malicious encrypted traffic detection methods [2], [3],
[23], [41], [42], [43], [69], [73], [79], [84], [87], [88] have
been developed. Most of them share a similar design that
profiles the behavior of encrypted traffic via manual feature
engineering or automatic feature extraction and builds an ML-
based detector. For example, the ETA method [3] extracted
386 statistical features from the packet length information and
TLS handshake metadata and then trained a random forest-
based detector. FS-Net [43] converted encrypted traffic into
sequences of packet lengths and then utilized a novel deep-
learning model to classify the traffic into different applica-
tion categories. However, the effectiveness of these methods
relies on a high-quality training set, where the training data
is sufficient and correctly labeled. ET-BERT [41] and MT-
Flowformer [87] classify encrypted network traffic under a
limited amount of labeled training data by transferring knowl-
edge from large-scale unlabeled training data. However, it
is time-consuming to collect such training data, which also
increases the possibility of privacy leakage from training data.
The detailed comparison of malicious traffic detection methods
can be found in Appendix D.

VIII. CONCLUSION

We develop an encrypted malicious traffic system RAPIER
that fully utilizes the different distributions of normal and
malicious traffic data in the feature space to augment new data
for model training. To the best of our knowledge, RAPIER is
the first malware traffic detection system that simultaneously
overcomes the challenges of training data insufficiency and
label noises. We implement RAPIER and perform extensive
evaluations based on two public datasets. The experimental
results show average improvements of 352.6%, 284.3%, and
214.9% over the SOTA methods on three datasets. We experi-
ment RAPIER with the dataset from a security enterprise and
it effectively achieves malicious traffic detection with the best
F1 score of 0.773 and on average 272.5% improvements of
the F1 score over the existing methods.
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APPENDIX

A. The Detection Performance of All Methods

We evaluate the detection performance of all methods when
the training sizes are 250 and 1000 and the label noise changes
from 20% to 45%. We show the results of all methods on
the DoHBrw, IDS, and IDS/DoHBrw dataset in Table VII,
Table VIII and Table IX, respectively. In general, our system
achieves the best F1 score in almost all cases. In particular,
when the training size is 250 and the noise ratio is 45%, the
F1 score of our system is 0.59, 0.80, and 0.82 on the DoHBrw,
IDS, and IDS/DoHBrw datasets, respectively. This shows an
average improvement of 222.5%, 1330.0%, and 1523.6% over
all baselines. The reason why our system outperforms other
methods is that our system implements label noise correction

and three different strategies of data augmentation for more
accurate and robust malicious traffic detection.

B. The Comparison of Different Data Augmentation Methods

We compare the performance of different data augmenta-
tion methods when the training size is set to 250 and 1000.
We utilize each method (except for NONE) to generate new
training data, combine it with the original training data, and
train the final detection model in our system to perform
detection. The results on the three datasets are shown in
Table XI, Table XII and Table XIII. It can be seen that our data
augmentation module significantly outperforms other methods.
The best F1 score of our module is about 0.95, 0.73, and 0.72
on the three datasets.

C. The Detection Performance on the Real-World Dataset

We conduct experiments on the real-world dataset with
various training sizes (250, 500, and 1000) and noise ratio
(20%, 25%, 30%, 35%, 40%, and 45%) settings, and the results
are shown in Table X. Overall, our system achieves the highest
F1 score in almost all cases.

D. More Comparisons with Existing Methods

Malicious traffic detection has been extensively studied [2],
[3], [6], [23], [33], [41], [42], [43], [51], [54], [58], [69], [73],
[74], [79], [84], [87], [88]. A number of detection methods
have been developed. They detect malicious traffic by using
different information. Unfortunately, they are unable to detect
malicious traffic under limited training data with label noises.
The detailed comparisons can be found in Table XIV.
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TABLE VII: The F1 score of each method on the DoHBrw dataset.

Training size Noise Ratio FS Co+FS DT+FS ODDS+FS SMOTE+FS DT+ODDS+FS ETA DT+ODDS+ETA Ours

250

20% .24 ± .07 .24 ± .04 .53 ± .02 .52 ± .03 .16 ± .00 .30 ± .17 .62 ± .26 .37 ± .07 .74 ± .03
25% .20 ± .03 .20 ± .05 .48 ± .02 .47 ± .02 .16 ± .00 .52 ± .07 .53 ± .28 .37 ± .09 .83 ± .04
30% .18 ± .01 .20 ± .05 .41 ± .01 .41 ± .04 .16 ± .00 .33 ± .10 .56 ± .27 .44 ± .21 .69 ± .01
35% .16 ± .01 .20 ± .04 .35 ± .02 .32 ± .02 .16 ± .00 .25 ± .08 .41 ± .23 .29 ± .08 .68 ± .01
40% .15 ± .00 .18 ± .04 .27 ± .02 .27 ± .02 .16 ± .00 .30 ± .02 .47 ± .21 .26 ± .06 .54 ± .06
45% .14 ± .00 .15 ± .07 .19 ± .00 .18 ± .02 .16 ± .00 .17 ± .00 .32 ± .25 .26 ± .22 .59 ± .03

1000

20% .44 ± .01 .20 ± .09 .66 ± .01 .63 ± .06 .17 ± .00 .57 ± .15 .44 ± .20 .36 ± .17 .58 ± .03
25% .35 ± .01 .28 ± .06 .62 ± .02 .64 ± .02 .17 ± .00 .62 ± .04 .55 ± .24 .34 ± .03 .58 ± .01
30% .29 ± .02 .27 ± .05 .54 ± .02 .56 ± .05 .16 ± .00 .57 ± .05 .39 ± .22 .29 ± .06 .64 ± .01
35% .25 ± .03 .26 ± .04 .38 ± .05 .46 ± .02 .16 ± .00 .49 ± .04 .57 ± .32 .28 ± .11 .62 ± .02
40% .20 ± .01 .22 ± .06 .30 ± .01 .32 ± .02 .16 ± .00 .28 ± .09 .41 ± .30 .28 ± .14 .62 ± .02
45% .15 ± .00 .24 ± .05 .20 ± .02 .18 ± .05 .16 ± .00 .20 ± .02 .46 ± .31 .30 ± .13 .65 ± .02

TABLE VIII: The F1 score of each method on the IDS dataset.

Training size Noise Ratio FS Co+FS DT+FS ODDS+FS SMOTE+FS DT+ODDS+FS ETA DT+ODDS+ETA Ours

250

20% .35 ± .02 .73 ± .10 .44 ± .02 .45 ± .05 .16 ± .00 .48 ± .05 .70 ± .16 .67 ± .13 .79 ± .03
25% .28 ± .03 .70 ± .10 .44 ± .01 .42 ± .05 .16 ± .00 .46 ± .06 .60 ± .24 .61 ± .20 .81 ± .01
30% .26 ± .04 .65 ± .18 .06 ± .00 .45 ± .04 .16 ± .00 .15 ± .00 .57 ± .10 .52 ± .14 .75 ± .03
35% .19 ± .02 .61 ± .17 .34 ± .01 .34 ± .05 .16 ± .00 .38 ± .02 .39 ± .22 .41 ± .23 .80 ± .01
40% .15 ± .01 .34 ± .15 .25 ± .02 .24 ± .02 .16 ± .00 .21 ± .04 .38 ± .12 .40 ± .15 .79 ± .02
45% .13 ± .01 .25 ± .19 .00 ± .00 .19 ± .02 .16 ± .00 .08 ± .07 .26 ± .15 .29 ± .13 .80 ± .01

1000

20% .49 ± .04 .77 ± .04 .59 ± .04 .60 ± .04 .17 ± .00 .62 ± .02 .83 ± .14 .83 ± .13 .77 ± .00
25% .39 ± .02 .73 ± .05 .56 ± .06 .61 ± .05 .16 ± .00 .53 ± .07 .78 ± .23 .75 ± .27 .78 ± .01
30% .35 ± .00 .72 ± .07 .50 ± .03 .50 ± .08 .16 ± .00 .54 ± .04 .65 ± .27 .68 ± .23 .77 ± .01
35% .29 ± .00 .67 ± .09 .45 ± .02 .43 ± .07 .16 ± .00 .51 ± .12 .61 ± .31 .63 ± .31 .75 ± .03
40% .23 ± .00 .63 ± .12 .37 ± .01 .34 ± .06 .16 ± .00 .39 ± .01 .45 ± .18 .42 ± .20 .77 ± .01
45% .16 ± .01 .39 ± .13 .22 ± .01 .25 ± .04 .16 ± .00 .26 ± .02 .40 ± .22 .38 ± .21 .78 ± .00

TABLE IX: The F1 score of each method on the IDS/DoHBrw dataset.

Training size Noise Ratio FS Co+FS DT+FS ODDS+FS SMOTE+FS DT+ODDS+FS ETA DT+ODDS+ETA Ours

250

20% .33 ± .03 .73 ± .10 .43 ± .01 .53 ± .03 .16 ± .00 .47 ± .02 .70 ± .23 .62 ± .15 .81 ± .07
25% .19 ± .01 .70 ± .10 .42 ± .03 .40 ± .04 .16 ± .00 .48 ± .04 .62 ± .19 .57 ± .20 .81 ± .09
30% .16 ± .00 .65 ± .18 .08 ± .04 .42 ± .03 .16 ± .00 .15 ± .00 .58 ± .11 .57 ± .15 .81 ± .08
35% .16 ± .01 .61 ± .17 .34 ± .02 .36 ± .01 .16 ± .00 .39 ± .02 .43 ± .22 .34 ± .14 .81 ± .10
40% .13 ± .01 .34 ± .15 .16 ± .02 .24 ± .02 .16 ± .00 .17 ± .03 .37 ± .16 .38 ± .12 .81 ± .08
45% .08 ± .00 .25 ± .19 .00 ± .00 .11 ± .03 .16 ± .00 .05 ± .05 .30 ± .21 .31 ± .17 .82 ± .07

1000

20% .43 ± .03 .77 ± .04 .61 ± .03 .59 ± .04 .17 ± .00 .61 ± .06 .87 ± .14 .79 ± .14 .77 ± .07
25% .28 ± .03 .73 ± .05 .59 ± .02 .56 ± .09 .16 ± .00 .57 ± .09 .80 ± .24 .79 ± .17 .83 ± .04
30% .23 ± .00 .72 ± .07 .51 ± .03 .49 ± .04 .16 ± .00 .52 ± .08 .68 ± .24 .72 ± .19 .75 ± .09
35% .19 ± .00 .67 ± .09 .45 ± .04 .44 ± .07 .16 ± .00 .39 ± .14 .62 ± .27 .57 ± .28 .81 ± .04
40% .13 ± .00 .63 ± .12 .33 ± .03 .36 ± .06 .16 ± .00 .34 ± .02 .48 ± .20 .43 ± .18 .79 ± .08
45% .11 ± .00 .39 ± .13 .22 ± .03 .19 ± .03 .16 ± .00 .27 ± .02 .30 ± .16 .37 ± .21 .80 ± .06

TABLE X: The F1 score of each method on the real-world dataset.

Training size Noise Ratio FS Co+FS DT+FS ODDS+FS SMOTE+FS DT+ODDS+FS ETA DT+ODDS+ETA Ours

250

20% .14 ± .20 .05 ± .16 .32 ± .28 .38 ± .19 .17 ± .06 .31 ± .25 .73 ± .28 .78 ± .30 .72 ± .04
25% .30 ± .17 .08 ± .25 .26 ± .22 .23 ± .22 .16 ± .04 .22 ± .18 .49 ± .26 .65 ± .27 .70 ± .05
30% .24 ± .13 .07 ± .20 .23 ± .15 .29 ± .15 .18 ± .04 .23 ± .13 .64 ± .34 .67 ± .30 .71 ± .06
35% .23 ± .13 .25 ± .31 .24 ± .15 .25 ± .15 .18 ± .02 .21 ± .16 .47 ± .39 .49 ± .38 .67 ± .04
40% .23 ± .12 .16 ± .23 .18 ± .13 .20 ± .11 .16 ± .03 .22 ± .13 .54 ± .33 .60 ± .35 .86 ± .04
45% .20 ± .09 .15 ± .11 .22 ± .09 .18 ± .09 .16 ± .02 .21 ± .09 .38 ± .32 .45 ± .35 .70 ± .08

500

20% .15 ± .18 .15 ± .15 .22 ± .14 .15 ± .16 .15 ± .05 .37 ± .25 .68 ± .39 .68 ± .39 .72 ± .05
25% .22 ± .19 .20 ± .36 .15 ± .18 .11 ± .10 .13 ± .06 .16 ± .20 .51 ± .30 .58 ± .31 .76 ± .06
30% .24 ± .17 .11 ± .28 .24 ± .19 .23 ± .16 .13 ± .05 .25 ± .18 .48 ± .30 .58 ± .28 .75 ± .04
35% .20 ± .14 .19 ± .38 .25 ± .18 .19 ± .20 .15 ± .03 .19 ± .16 .31 ± .34 .47 ± .32 .71 ± .02
40% .18 ± .09 .17 ± .29 .19 ± .14 .28 ± .19 .11 ± .06 .18 ± .16 .36 ± .33 .45 ± .35 .76 ± .04
45% .20 ± .09 .12 ± .15 .17 ± .10 .17 ± .09 .13 ± .05 .17 ± .11 .16 ± .25 .17 ± .27 .77 ± .06

1000

20% .30 ± .27 .00 ± .01 .29 ± .34 .27 ± .23 .13 ± .06 .24 ± .21 .73 ± .31 .66 ± .28 .81 ± .02
25% .36 ± .21 .00 ± .00 .29 ± .25 .23 ± .20 .15 ± .04 .21 ± .21 .55 ± .27 .44 ± .26 .64 ± .05
30% .13 ± .15 .32 ± .46 .18 ± .15 .12 ± .16 .12 ± .05 .16 ± .14 .68 ± .34 .43 ± .33 .61 ± .01
35% .20 ± .15 .41 ± .42 .28 ± .21 .25 ± .16 .12 ± .05 .30 ± .19 .50 ± .35 .45 ± .34 .69 ± .04
40% .29 ± .14 .19 ± .30 .32 ± .21 .24 ± .18 .15 ± .01 .22 ± .18 .35 ± .33 .42 ± .37 .63 ± .02
45% .14 ± .09 .04 ± .07 .22 ± .16 .17 ± .10 .14 ± .02 .17 ± .09 .25 ± .26 .35 ± .30 .68 ± .02
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TABLE XI: The detection performance when using different data augmentation methods on the DoHBrw dataset.

Training size Method Precision Recall F1 score

250

NONE .66 ± .20 .91 ± .04 .74 ± .12
ODDS .54 ± .08 .96 ± .02 .69 ± .06

SMOTE .54 ± .15 .95 ± .02 .68 ± .12
GAN .58 ± .20 .93 ± .04 .69 ± .14
Ours .77 ± .04 .97 ± .01 .86 ± .02

1000

NONE .86 ± .06 .92 ± .05 .89 ± .01
ODDS .69 ± .16 .93 ± .03 .78 ± .10

SMOTE .61 ± .11 .95 ± .02 .74 ± .08
GAN .64 ± .14 .95 ± .02 .75 ± .10
Ours .94 ± .03 .96 ± .02 .95 ± .01

TABLE XII: The detection performance when using different data augmentation methods on the IDS dataset.

Training size Method Precision Recall F1 score

250

NONE .42 ± .03 .82 ± .05 .55 ± .01
ODDS .37 ± .04 .83 ± .02 .52 ± .03

SMOTE .21 ± .01 .93 ± .02 .35 ± .01
GAN .35 ± .02 .86 ± .03 .49 ± .02
Ours .44 ± .03 .92 ± .01 .60 ± .03

1000

NONE .55 ± .05 .89 ± .01 .67 ± .04
ODDS .47 ± .06 .89 ± .02 .62 ± .05

SMOTE .30 ± .02 .95 ± .00 .45 ± .02
GAN .48 ± .07 .88 ± .02 .62 ± .06
Ours .63 ± .05 .87 ± .02 .73 ± .03

TABLE XIII: The detection performance when using different data augmentation methods on the IDS/DoHBrw dataset.

Training size Method Precision Recall F1 score

250

NONE .34 ± .01 .83 ± .04 .48 ± .02
ODDS .37 ± .00 .90 ± .01 .53 ± .00

SMOTE .19 ± .00 .93 ± .01 .31 ± .00
GAN .35 ± .02 .85 ± .06 .50 ± .02
Ours .59 ± .08 .92 ± .00 .72 ± .05

1000

NONE .55 ± .10 .79 ± .13 .63 ± .03
ODDS .46 ± .08 .83 ± .08 .58 ± .04

SMOTE .26 ± .02 .93 ± .02 .41 ± .03
GAN .48 ± .15 .76 ± .17 .55 ± .02
Ours .55 ± .03 .87 ± .02 .67 ± .01

TABLE XIV: The comparison of malicious traffic detection methods. Stats and Metadata mean statistics features and TLS
handshake metadata, respectively.

Malicious traffic detection methods Granularity Input Robustness under label noises Limited training data

Traditional
malicious

traffic detection

[6], [51], [74] HTTP Request Payload % %

[33] HTTP Request Payload % "

[54] Flow Payload % %

[58] Packet Payload % %

Encrypted
malicious

traffic detection

[2] Flow Stats & Metadata % %

[3] Flow Stats & Packet Sequence & Metadata % %

[23] Flow Set Metadata % %

[41] Flow Traffic Raw Byte % "

[42] Flow Packet Sequence & Metadata % %

[43], [79] Flow Packet Sequence % %

[69], [73] Flow Stats % %

[84] Flow Set Packet Sequence % %

[87], [88] Flow Packet Sequence % "

RAPIER Flow Packet Sequence " "
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