
From Interaction to Independence:
zkSNARKs for Transparent and

Non-Interactive Remote Attestation
Shahriar Ebrahimi

IDEAS NCBR
shahriar.ebrahimi@ideas-ncbr.pl

Parisa Hassanizadeh
IDEAS NCBR / Polish Academy of Science

parisa.hassanizadeh@ideas-ncbr.pl

Abstract—Remote attestation (RA) protocols have been widely
used to evaluate the integrity of software on remote devices.
Currently, the state-of-the-art RA protocols lack a crucial fea-
ture: transparency. This means that the details of the final
attestation verification are not openly accessible or verifiable by
the public. Furthermore, the interactivity of these protocols often
limits attestation to trusted parties who possess privileged access
to confidential device data, such as pre-shared keys and initial
measurements. These constraints impede the widespread adoption
of these protocols in various applications.

In this paper, we introduce zRA, a non-interactive, transpar-
ent, and publicly provable RA protocol based on zkSNARKs.
zRA enables verification of device attestations without the need
for pre-shared keys or access to confidential data, ensuring a
trustless and open attestation process. This eliminates the reliance
on online services or secure storage on the verifier side. Moreover,
zRA does not impose any additional security assumptions beyond
the fundamental cryptographic schemes and the essential trust
anchor components on the prover side (i.e., ROM and MPU).
The zero-knowledge attestation proofs generated by devices have
constant size regardless of the network complexity and number
of attestations. Moreover, these proofs do not reveal sensitive
information regarding internal states of the device, allowing ver-
ification by anyone in a public and auditable manner. We conduct
an extensive security analysis and demonstrate scalability of zRA
compared to prior work. Our analysis suggests that zRA excels
especially in peer-to-peer and Pub/Sub network structures. To
validate the practicality, we implement an open-source prototype
of zRA using the Circom language. We show that zRA can be
securely deployed on public permissionless blockchains, serving
as an archival platform for attestation data to achieve resilience
against DoS attacks.

I. INTRODUCTION

Remote attestation (RA) acts as a basis in protocols that
depend on the integrity of network devices. Consequently, RA
protocols find extensive application across different domains,
including secure boot verifications, network security, access
control (particularly within organizations), safeguarding crit-
ical infrastructure, data rights management (DRM), ensuring
supply-chain security, and facilitating the secure implementa-
tion of the internet of things (IoT) protocols.

In traditional RA, the verifier possesses privileged knowl-
edge about the internal states of the device. To initiate the
attestation process, the verifier sends a random challenge to
the device. The device’s response is expected to align with
the verifier’s prediction, which is based on their knowledge of
confidential data and reference measurements of the device.

However, as the number of connected devices increases and
networks become more complex, the scalability of interactive
RA protocols becomes a major concern. In addition to the
scalability challenges, such protocols suffer from a significant
drawback: they require privileged access to confidential data
and prior knowledge of pre-shared keys in order to complete
the verification process. This limitation hinders end users from
independently verifying the integrity of devices, as they are
dependent on a limited number of trusted entities who possess
such confidential data.

Prior research efforts have made significant progress in
addressing the scalability concerns of RA protocols. Many
have explored the use of blockchain technologies [1], [2], [3],
[4], [5], [6], [7], [8] or the integration of proxy verifiers [2].
However, the inherent interactivity of attestation mechanisms
and the need for privileged access to confidential data during
the attestation finalization process continue to hinder signif-
icant scalability improvements. This limitation stems from
the limited number of trusted entities capable of performing
the attestation, which may not be practical in certain real-
world scenarios. To address this, some of the recent work
has explored non-interactive RA protocols [9], [10]. However,
these approaches often rely on the continuous availability of
dedicated brokers or private Hyperledger full-nodes [11], [2],
[1], throughout the lifespan of the devices. Any failure or
temporary unavailability of these servers would result in the
suspension of the entire RA protocol. Therefore, maintaining
the availability of these servers becomes a critical and costly
aspect, which may not be justifiable for many businesses
seeking to provide RA. As a result, achieving the desired
scalability and trustlessness remains an ongoing challenge in
the field of remote attestation.

We propose a fundamental paradigm shift in RA protocols
by introducing a transparent and non-interactive approach. Our
goal is to overcome the limitations of previous RA techniques
that rely on interactive communications, pre-shared knowledge
of device, or trusted parties for verification of RA requests.
The proposed protocol, called zRA, eliminates the need for
real-time interactions and allows devices to be attested without
querying the manufacturer or any other trusted party.

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.24815
www.ndss-symposium.org

zRA leverages the power of zero-knowledge succinct
non-interactive arguments of knowledge (zkSNARKs) [12]
to provide provable and scalable attestation. By employing
zkSNARKs, the protocol achieves excellent scalability, unaf-
fected by the number of devices or attestations. We introduce,
for the first time, (1) transparency and (2) independent public
verifiability as essential aspects. 1) Transparency ensures that
the attestation process can be verified by anyone, enabling
stakeholders to independently validate the integrity and authen-
ticity of attested devices. 2) Independent public verifiability
allows secure verification of attestation requests without pos-
sessing any knowledge of the device. In addition, the protocol
provides resistance against denial of service (DoS) attacks by
design without the need for any type of countermeasures.

While zRA presents several advantages over prior work,
it is important to note that it may not be universally suit-
able for all scenarios, particularly those involving Swarm or
mesh networks [13], [14], [15]. Our analysis indicates that
zRA excels in network structures where each node has some
connections to specific network resources, such as peer-to-peer
or Pub/Sub networks. However, in network types like mesh
networks, characterized by devices solely connected to their
immediate neighbors, the protocol’s performance may face
challenges, necessitating further investigation.

To demonstrate the practicality of zRA, we have devel-
oped an open-source1 prototype implementation that involves
creating verifiable circuits using the Circom [16] and deploy-
ing autonomous verifier smart contracts (using Solidity [17])
on Ethereum [18]. Devices submit their attestation requests
along with zkSNARKs proofs directly to the contract, which
autonomously verifies the attestation without relying on trusted
parties or accessing any confidential data. We have successfully
executed all phases of the protocol on Ethereum Sepolia
testnet [18], and report performance measurements for ex-
ecuting the attestation phase on resource-constraint devices,
such as raspberry pi Zero 2W [19]. This indicates zRA’s
easy integration with existing blockchain infrastructures and
its applicability in real-world scenarios.

The contributions of our research are as follows:

• zRA: We introduce zRA as the first transparent and
non-interactive remote attestation protocol based on zk-
SNARKs, providing following key features: 1) Trans-
parency: enables anyone to verify the integrity and au-
thenticity of the attestation process without requiring any
prior knowledge or access to confidential information about
the device being attested. This introduces a new paradigm
in the context of public verifiability that we call trustless
public verifiability.

2) Zero-trust and server-free: zRA eliminates the
reliance on trusted centralized entities and enhances the
overall security by minimizing the attack surface.

3) Global Challenges: zRA introduces the concept of
global challenges, where a single challenge can be securely
used for the attestation of all registered devices. This sim-
plifies the communication overhead for the manufacturer,

1Github: https://github.com/zero-savvy/zk-remote-attestation and Zenodo
DOI: https://zenodo.org/doi/10.5281/zenodo.8391637. Additional information
is provided in Artifact Appendix.

as they only need to periodically publish a single global
challenge, regardless of the number of devices.

4) Platform-Independence: From the verifier’s per-
spective, the non-interactive nature of zRA makes it
well-suited for a broad spectrum of infrastructures, includ-
ing limited and permissionless blockchains like Bitcoin.
Moreover, zRA can be implemented in various network
environments, such as Pub/Sub or p2p, providing flexi-
bility in deployment scenarios. On the prover side, the
security of zRA relies solely on the minimum trust anchor
requirements, which consist only of ROM and MPU.
Consequently, no additional security mechanisms or trusted
environments (e.g., TEE) are necessary.

5) Resilience to DoS Attacks : The protocol has
inherent resilience to DoS attacks due to its design, as
none of the entities in the network handle direct messages.
All queries are performed on publicly accessible and un-
restricted data structures, which helps mitigate the impact
of DoS attacks.

6) Trust Distribution: The setup phase of zRA allows
for the distribution of trust in generating and handling
challenge vectors among multiple stakeholders. This can
be achieved through a trusted setup mechanism, where the
responsibility is shared among different parties. Distribut-
ing trust mitigates the risk of a single point of failure or
malicious behavior by any individual entity.

• Security Analysis: We conduct a comprehensive security
analysis of zRA, considering various attack vectors.

• Proof-of-concept Implementation: We provide a practical
and open-source proof-of-concept implementation of zRA.

The remaining sections of the paper are organized as follows.
Section II provides the necessary background to understand
the concepts discussed in the paper. Section III discusses the
motivation behind our work, outlining the challenges and gaps
in the current RA protocols. In Section IV, we introduce zRA,
detailing its design principles and cryptographic foundations.
Section V analyzes the security of the proposed protocol w.r.t.
the adversary model. Section VI provides in-depth technical
details of the prototype implementation. Section VII evaluates
zRA against the most related previous work from different
aspects, while Section VIII provides a comprehensive overview
of recent studies in the field of RA.

Finally, in Section IX, we conclude the paper, summarizing
contributions and limitations of zRA, while outlining potential
future research directions.

II. PRELIMINARIES

We begin by defining the terminologies used in this paper.
Then, we provide an overview of the main concepts covered,
including zkSNARKs proof systems, Merkle tree structure, and
commitment schemes.

Table I presents the terminology used in the paper. Cer-
tain symbols and notations will be elaborated upon in their
respective sections, providing a more detailed description of
their usage and significance.

1) Zero-Knowledge Proofs (ZKP): are cryptographic tools
that enable proving the validity of a statement without re-
vealing any additional information beyond the truth of the

2

https://github.com/zero-savvy/zk-remote-attestation
https://zenodo.org/doi/10.5281/zenodo.8391637

TABLE I. TERMINOLOGY OF THE PAPER

Notation Description
Zp Zp :

⋃
i, 0 ≤ i < p, i ∈ N = {0, 1, ..., p}

B Denotes one bit: B ∈ Z2

Hk
pos Poseidon [20] hash function with k inputs and one value

output. Hk
pos : Zk

p → Zp

T Merkle tree [21] that has the height of ⌈log m⌉ if con-
structed with m leaves. For every non-leaf node, the value
is equal to H2

pos of left and right children.
RT The root of T

O(T , i) Merkle opening (path) for the i-th leaf of T . List of
⌈log m⌉ values of sister nodes on the way from i-th leaf
up to the root RT .

ci i-th challenge broadcasted by the manufacturer.

ri i-th valid attestation response of a device w.r.t. ci.

(sk , pk) Pair of secret and its relative public key for the device k.

S[ω1, ..., ωm] Statement of knowledge with m public values
⋃

ωi

D=(dp, dv) The pair of proving and Verifying keys for S created using
some trusted setup procedure [12].

Prove(dp,...) Proof generator for S using dp: Prove(dp,...) → π∈ Zp

Verify(dv ,π,...) Proof verifier of the statement S using dv and π:
Verify(dv ,π,...) → {0, 1}

statement itself. ZKP schemes possess three important proper-
ties [22]:

• Soundness: ensures that each verifier only accepts valid
proofs. It guarantees that only a prover with a valid
witness can successfully convince the verifier, preventing
false or incorrect proofs being accepted.

• Completeness: guarantees that all verifiers accept all
valid proofs. If the statement is true, a prover can convince
the verifier of its truthfulness, demonstrating that a correct
solution exists.

• Zero-knowledge: is a property that guarantees the ver-
ifier learns nothing beyond the validity of the proven
statement. During the interaction between the prover and
verifier, no additional information is revealed except for
the confirmation of the statement status, ensuring the
confidentiality of the underlying data or solution.

2) zkSNARKs: which stands for Zero-Knowledge Succinct
non-interactive Argument of Knowledge, are an extension
of SNARKs that incorporate zero-knowledge properties [12],
[23]. SNARKs are cryptographic protocols used to efficiently
prove the correctness of a computation in a non-interactive
manner, providing succinct proofs [24].

By adding zero-knowledge properties to SNARKs, one can
enhance the privacy-preserving aspect of the protocol. They of-
fer non-interactive efficient and succinct proofs while ensuring
that the privacy of sensitive information is maintained during
the verification process. This makes zkSNARKs particularly
useful in scenarios involving decentralized systems, privacy-
preserving computations, and blockchain technology.

3) Merkle Tree: is a binary tree-based data structure
that allows efficient verification of data integrity and consis-
tency [21]. It is constructed by recursively hashing data blocks
and combining the results to form higher-level hashes until
a single root hash is obtained. One important feature of the
Merkle tree is the concept of a Merkle path, which is the

sequence of ⌈log n⌉ (height of a binary tree with n leaves)
hash values from a leaf node to the root. It provides a compact
proof of inclusion of a specific leaf within the tree. To verify
the integrity of a particular data block, a participant can provide
the Merkle path along with the root value. By recomputing the
hashes along the path and comparing the resulting root hash
with the target root hash, the integrity of the provided data can
be verified efficiently in O(log n) steps.

4) Commitment Schemes: are cryptographic tools that
enable one party to commit to a chosen value or message
while keeping it hidden from others, ensuring its integrity and
enabling later reveal. Commitment schemes play a vital role
in various applications, such as secure multiparty computation,
zero-knowledge proofs, and privacy-preserving protocols.

The fundamental idea behind commitment schemes is to
bind the committed value to a specific commitment without
revealing its content until the committer decides to do so.
This is achieved through the use of cryptographic primitives
allowing the creation of commitments that are computationally
infeasible to reverse or forge. Commitment schemes offer two
properties. 1) hiding: the committed value remains secret until
revealing, and 2) binding: it cannot be changed without de-
tection. Some of the most well-known commitment schemes
include: Pedersen [25], and ElGamal [26]. Different types of
commitment schemes provide trade-offs in terms of security
assumptions and computational complexity. Moreover, any
collision-resistant hash function can be used as a commitment
method. However, there are a few hash functions that are
proven to be easier to implement and evaluate in a verifiable
setup, such as Poseidon [20] or Pedersen [27] hash functions.

III. MOTIVATION

Table II provides a comprehensive comparison between
previous work and the proposed RA protocol (zRA). Here, we
discuss the motivations behind zRA from different aspects:

Prerequisites of verifiers: Typically, RA protocols neces-
sitate certain knowledge of device keys, as well as initial states
and measurements in order to verify attestation responses. In
contrast, zRA employs commitment mechanisms to address
this requirement. The manufacturer commits to all the accurate
future responses of each device for every challenge. Subse-
quently, devices are tasked with proving their knowledge of the
correct responses to each challenge, when globally broadcasted
by the manufacturer. This approach enables anyone to verify
the correctness of the attestation claim, without knowing the
actual response of device. Instead, they only verify that the
device can convincingly demonstrate it possesses the correct
response, leading to the successful reveal of the commitment.

Availability and maintenance costs: Interactive protocols
require a continuous dependency on manufacturer or trusted
servers throughout the lifespan of devices. However, ensuring
the high availability of these servers can be costly and may not
be justifiable in practical scenarios. zRA eliminates the reliance
on active and highly available servers by offering independent
and direct public verifiability, coupled with transparency. Users
can now verify attestations without depending on a centralized
authority, leading to increased network availability and signif-
icantly reduced maintenance costs.

3

TABLE II. COMPARISON WITH PREVIOUS WORK

scheme
Traditional Remote Attestations Transparent and Provable

Remote AttestationSARA [28] PASTA [29] SeED [9] Leg-IoT [1] SCRAPS [2] PROVE[10]
Device Heterogeneity ✓ ✓ ✓ ✓ ✓ ✓ ✓

On-demand Attestation ✓ ✓ ✓ ✓ ✓ ✓✸ ✓✸

Async. Communication ✓ ✗ ✗ ✗ ✓ ✓ ✓

Sleeping devices ✗ ✗ ✗ ✗ ✓ ✓ ✓

Configuration Update ✗ ✗ ✗ ✓ ✗ ✓ ✓

Public Verifiability♠ ✗ ✗ ✗ trusted trusted ✓ trustless ✗ relative ✓ trustless ✓ independent
Attestation Transparency ✗ ✗ ✗ ✗ ✗ ✓✸ ✓

Infrastructure Requirements✛ ROM, MPU
ROM, MPU, RTC,
Attest. Triggers [9]

ROM, MPU,
permissioned blockchain

(privileged smart contracts)

ROM, MPU,
secure log storage
Trustworthy events

ROM, MPU

Trustless verification❑ ✗ ✗ ✗ ✗ ✗ ✓ ✓

Distributed Setup❖ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Resistance Against DDoS ✗ ✗ ✗ ✗ ✗ ✗ ✓ resistant by design

Network Complexity▼ ✗ Dependent on
the number of devices

N/A❉ ✗ Dependent on the number of devices
✓ Independent from

number of devices

✓✸
Indicates a partial support. ♠ Indicates whether it is possible for everyone to publicly query status and verify latest attestation of a device.

✛ Highlights the infrastructural dependencies that a scheme relies on for ensuring a secure remote attestation mechanism. ❑ None of steps in verification rely on trusted parties.
❖ Indicates whether the setup phase of the RA protocol can be executed in a multi-party computation (MPC) manner. ❉ In Swarm-oriented protocols, network complexity depends
on the maximum number of neighbors for attestation verification. ▼ Measured as the maximum number of transmitted messages from a single entity in network.

Infrastructural and device assumptions: Previous work
often rely on specific infrastructures to achieve a secure
attestation process. These prerequisites may involve the use of
permissioned blockchains (e.g., Hyperledger) [2], [1] or privi-
leged servers and databases [10], which demand provisioning
and ongoing maintenance themselves. However, the associ-
ated costs and resource requirements for such infrastructures
can be substantial, posing considerable challenges to achieve
scalability. In contrast, zRA guarantees the robustness and
security of the RA protocol independent of the infrastructure.
Notably, it does not impose any additional secure mechanisms
on the verifier side. Its attestation verification process is
transparent, lightweight and can be implemented on various
platforms, including limited and permissionless blockchains
such as Bitcoin.

It is worth emphasizing that from the prover’s perspec-
tive (device), zRA operates without assuming any supplemen-
tary secure mechanisms beyond the essential trust anchor2,
which consists solely of ROM and MPU components. In the
context of zRA, all the computational processes needed to
generate attestation proofs can be carried out within untrusted
environments. As a result, zRA does not necessitate the
presence of specialized Trusted Execution Environment (TEE)
infrastructure within the device, aside from the trust anchor.

Distributed trust model: The transparency and indepen-
dent public verifiability of attestation proofs in zRA enables
users to independently validate attestations without interactions
with the manufacturer or authorized parties. Additionally, as
discussed in Section IV-B, These characteristics provides an
opportunity, where the setup phase can be distributed among
stakeholders using an MPC protocol, further enhancing trust
distribution in zRA.

2The minimum trust anchor comprises two key components: 1) Read-only
memory (ROM): for storing essential code for handling device measurements,
such as memory checksums; and 2) Memory Protection Unit (MPU): enforcing
secure access control to a restricted portion of memory, ensuring the protection
of sensitive data.

1 M

5 M

9 M

13 M

17 M

 0 200 K 400 K 600 K 800 K 1 M

N
um

be
r o

f T
ra

ns
m

iss
io

ns

Number of Devices

5m-Man [SCRAP]

15m-Man [SCRAP]

5m-prxV [SCRAP]

15m-prxV [SCRAP]

5m-Brk [PROVE]

15m-Brk [PROVE]

Fig. 1. Communication cost in terms of number of transmitted messages
based on the number of devices. 15m and 5m show attestation intervals in
minutes. Man and prxV indicate the manufacturer and proxy verifier entities
from [2], while Brk represents the broker entity from [10].

Scalability: Fig. 1 illustrates the average number of re-
quests per hour transmitted by trusted parties in previous
work [2] and [10] relative to the number of devices where
each device undergoes attestation every 5 or 15 minutes. The
figure demonstrates that as the number of devices in the
network rises, the interactions between these entities intensify.
We note that as reported in [10], the middle broker takes
around 8 seconds to handle 1000 attestation requests (at
max 150 attestations per second). This means that in these
scenarios, the previous work [10] practically reaches its limit
after 100,000 devices. As elaborated in Section VII, the zRA
protocol remains unaffected by the number of devices since all
attestation requests are validated using zkSNARKs and global
challenges. This approach enables direct proofs of knowledge
for the correct response to a previously committed challenge,
which are publicly verifiable without requiring any type of
privilege or trust.

4

Blockchain Prover Verifier

Merkle Root

Create Merkle Path Proof

Collect Measurements
& Create RA Response

Se
tu

p
Ph

as
e

A
tte

st
at

io
n

New Challenge

(Periodically)U
pd

at
e

C
ha

lle
ng

e

Build Merkle Tree

Submit

Ve
rif

ic
at

io
n
/

Q
ue

ry
 S

ta
tu

s Query Blockchain

Get Latest Attestation
Latest Status

or Latest Proof

If a blockchain has the
computational capability to
verify a zkSNARKs proof,
verification in the verifier's
side is not necessary.

Verify the Proof

Verify the Proof(e.g. Ethereum
 or HyperLedger)

Query new Challenge(s)

Same challenge is used
for attesting all devices
within this period.

Manufacturer

Based on attestation interval

Fig. 2. General overview of zRA.

IV. PROPOSED METHOD

In this section, we introduce zRA, which is, to the best
of our knowledge, the first transparent and non-interactive
remote attestation protocol based on zkSNARKs. We start by
presenting an overview of the zRA protocol, explaining its core
concept, and detailing its design. Next, we propose a trusted
setup ceremony for the setup phase that enables distributing
trust and challenge generation among stakeholders.

A. Protocol Details

Fig. 2 presents a general overview of zRA. The protocol
consists of four phases: 1) setup, 2) update global challenge,
3) attestation, and 4) verification.

1) Setup: This phase is performed offline by the manu-
facturer and only needs to be done once. For each device
k, the manufacturer calculates a set of m future responses
Rk = [r1, r2, ..., rm] to the m attestations, based on a sequence
of pseudo-random challenges C = [c1, c2, ..., cm]. Next, the
manufacturer calculates the values Lk =

⋃m
i=1 H

3
pos(pk|ri|ci)

for each device k. Here, pk represents the unique public key
of the device, and H3

pos refers to the Poseidon hash [20] with
three inputs. Then, the manufacturer builds a Merkle tree Tk
of height ⌈log m⌉ using the values of Lk for each device k.
This results in each device having a unique Merkle root RTk

.

Finally, the manufacturer constructs a new Merkle tree
T with n leaves and the height of ⌈log n⌉. The leaves of
this tree are the roots of previously generated Merkle trees:⋃n

i=1RT i. Fig. 3 provides an illustration of the computation
involved in creating the final Merkle tree. It is important to note
that the resulting structure is a Merkle tree with the height of
⌈log m⌉+⌈log n⌉. This structure ensures that each attestation
of each device has a unique path, which will be utilized in the
attestation phase during the zero-knowledge proof for inclusion
of a leaf within the final tree T .

Merkle Tree

Merkle Path

Merkle Root

Publish/Submit
B

lockchain

Pe
r D

ev
ic

e
M

er
kl

e
Tr

ee
s

M
er

kl
e

Tr
ee

 o
f

M
er

kl
e

Tr
ee

 ro
ot

s

ri-1

Leaves are roots of
lower Merkle trees

Leaves are commitments
to the values [pk | ri | ci]

⌈lo
g

n⌉
⌈lo

g
m
⌉

cici-1pk ripk

Fig. 3. Setup phase.

Note that all of the leaves are commitments of the values ri
binded by the unique pair of pk and ci. The Merkle tree does
not reveal any information regarding the challenges C =

⋃
ci

and their related responses
⋃

ri. Therefore, the manufacturer
can periodically publish a new challenge from the list of
pseudo-random challenges to introduce fresh randomness to
the protocol, which is a key aspect in RA methods. These
settings indicate that the resulting Merkle tree contains no
confidential data and can be revealed publicly.

Algorithm 1 provides the computation steps performed by
the manufacturer during the setup phase. The algorithm takes
three inputs, including the list of devices public keys (pk []),
the list of necessary and confidential data (dev []) that the
manufacturer may need for calculating future responses, and
the total number of attestations (numAtts) that the resulting
Merkle tree will support. The outputs of the algorithm are
the final Merkle tree (Tfinal) and an array of future chal-
lenges (c []).

The algorithm begins by creating an array of size numAtts
to store the future challenges (lines 1 to 4). The manufacturer
can construct this array using a trusted setup as described
in Section IV-B, rather than relying on a single pseudo-
random number generator (PRNG) function. Furthermore, the
manufacturer calculates the commitments for each device w.r.t.
its response to every challenge, resulting in a two-dimensional
array called commit (lines 5 to 11). These commitments
are computed using the H3

pos hash function with the inputs
set as the device public key (pk[i]), the challenge (c[j]), and
the corresponding response (r[i]). It is important to note that
the protocol is designed to be independent of the specific
attestation method implemented in the devices, thus allowing
flexibility in how the calcResp() function operates and what
type of data dev [] array may contain. Nonetheless, we provide
example realizations of calcResp() in Appendix B using the
minimal trust anchor assumption.

The algorithm proceeds to initialize and populate Merkle
trees, as depicted in Fig. 3, (lines 12 to 17). Additionally, lines
18 and 19 calculate the final Merkle tree. Lastly, the algorithm
returns the final Merkle tree and the sequence of challenges.

5

While the Merkle tree is intended to be publicly accessible,
the sequence of challenges must be kept confidential and pe-
riodically published based on the desired attestation intervals.

Algorithm 1: Setup Phase
Data: pk[], dev[], numAtts
Result: Tfinal, c []

1 c←array [numAtts]
2 for i← 0 to numAtts do
3 c[i] ← PRNG(i)
4 end
5 commit←array [len(pk)][numAtts]
6 for i← 0 to len(pk) do
7 for j ← 0 to numAtts do
8 r[i] ← calcResp(pk[i], dev[i], c[j])
9 commit[i][j] ← H3

pos(pk[i] | r[i] | c[j])
10 end
11 end
12 Tdev ←array [len(pk)]
13 RTdev

←array [len(pk)]
14 for i← 0 to len(pk) do
15 Tdev [i] ← buildTree(commit[i])
16 RTdev [i] ← getRoot(Tdev [i])
17 end
18 Tfinal ← buildTree(RTdev

)
19 RTfinal

← getRoot(Tfinal)
20 return Tfinal, c

2) Update Global Challenge: In order to achieve timed
randomness, the sequence C (generated during the setup
phase) is not revealed at once, but periodically published one ci
at a time. This is one of the phases that employing a blockchain
becomes handy. Instead of providing a server or an API to
service devices, all manufacturer needs to do is to publish
the latest challenge to the blockchain. This way, each device
has unconditional access to the latest challenge along with all
previously published ones.

3) Attestation: The attestation phase begins with the prover
(device) querying the blockchain to retrieve the latest global
challenge. Once the challenge is obtained, the device proceeds
to compute the attestation evidence, denoted as ri. Subse-
quently, the device constructs a proof using zkSNARKs, which
asserts its knowledge of ri that has a commitment that belongs
to a specific Merkle tree T . Then, the device submits its
proof along with the public input and output of the circuit,
i.e. challenge ci, public key pk, and resulting final root RT to
the blockchain.

Let h be the height of the Merkle Tree T and let
S[RT , l, ci, i, pk] be the following statement of knowledge
with public values RT , l, ci, pk:

S[RT , l, ci, i, pk] =

{ I know ri ∈ B248, i ∈ Bh,

such that l = H3
pos(pk|ri|ci) and O(T , i) is the

opening (path) of l at position i to the rootRT }

(1)

To be more precise, the device proves its knowledge of ri,
such that the hash result of it concatenation with pk and ci

using H3
pos, i.e., l = H3

pos(pk|ri|ci), belongs to the Merkle
tree with root RT .

Let D = (dp, dv) be the zkSNARK [12] proving and
verifying key pair for S. The proof constructor, denoted as
Prove(dp, O(T , i), ci, pk, ri), utilizes the proving key dp to
generate the proof π. On the other hand, the proof verifier,
denoted as Verify(dv, π,RT , ci, pk), uses the verification key
dv to verify the correctness of the proof with respect to the
Merkle tree root RT . Note that D is public and neither of dp
or dv necessitate secure storage or any type of special care.

Algorithm 2 outlines the computation steps that the
prover (device) needs to perform during the attestation phase.
Initially, the device calculates the corresponding response
based on the provided challenge (line 1). It is worth mentioning
that the algorithm is designed to be independent of the specific
implementation of the devCalcResp() function, allowing
flexibility in how the device computes the response based on
the challenge. We provide further details on potential imple-
mentations of the devCalcResp() function in Appendix B.
Subsequently, lines 2 to 9 of the algorithm are executed within
a verifiable circuit, which generates the attestation proof π.
This proof serves to verify the correctness and completeness
of the computations performed by the device. It is crucial to
implement this circuit using a verifiable computation (VC)
framework, such as Circom [16] or Cairo [30], to ensure
the integrity and transparency of the attestation process. The
genVCProof() function is provided by the VC frame-
work (e.g. Circom) and generates a SNARKs proof regarding
the successful computation of lines 3 to 8.

It is important to highlight that the entire ZK circuit (lines
2 to 10) can be effectively realized in various environments
without requiring secure execution. This is due to the nature
of the inputs to the ZK circuit, which are not confidential and
can be made public.

Algorithm 2: Attestation
Data: (sk, pk), O(Tfinal, i), RTfinal

, ci, dp
Result: π, sigπ

1 ri ← devCalcResp(ci)
2 begin circuit (pk, O(Tfinal, i), RTfinal

, ci, dp):→ π
3 leaf ← H3

pos(pk | ri | ci)
4 val← leaf
5 foreach item ∈ O(Tfinal, i) do
6 val← H2

pos(val, item)
7 end
8 assert val == RTfinal

9 set π ← genVCProof()
10 end
11 sigπ ← sign(⟨π, ci, pk, RT ⟩, sk)
12 return π, sigπ

In line 3 of the algorithm, the prover calculates the value of
leaf , which acts as the commitment in the attestation process.
The hash function acts as a hiding factor while committing
to the ri value, which is known exclusively to the legitimate
prover. It is important to emphasize that the exact value of
the resulting H3

pos hash is utilized as the initial point for
constructing the Merkle path proof. Therefore, due to the
integrity guarantee provided by the final proof π, the prover

6

So
ftw

ar
e

La
ye

r

Tr
us

t A
nc

ho
rR
O

M
M

PU

ZK
 C

ircuit
C

ontroller

ci

ri π
measurements

internal states

Network

B
lockchain

C
ontract

Fu
ll

N
od

e A
PI

ci

Device (Prover)
Trusted Untrusted

Fig. 4. Data flow during the Attestation phase.

can only successfully pass the final assertion in line 8 if and
only if the correct response is set for ri. This technique is
commonly employed in state-of-the-art protocols that utilize
zkSNARKs as a proving mechanism, as demonstrated by
protocols like Tornado-Cash [31].

After generating the proof π in the verifiable circuit, the
prover signs the proof along with all the necessary public
inputs of the circuit. Line 11 of the algorithm denotes the
process of creating the signature. Subsequently, the prover
submits the proof π, the public inputs, and the generated
signature sigπ to a network of choice, such as a blockchain.
Importantly, this submission does not involve any interactions
with a third party (or manufacturer), and anyone with access
to public information can verify the validity of proof.

Fig. 4 illustrates the overall data flow during the attestation
phase and presents the infrastructural requirements within the
device, where the trust anchor consists solely of a ROM
and an MPU. It is important to emphasize that the only
confidential variable in Algorithm 2 is sk, used exclusively
for signing and broadcasting the final message containing the
proof π. Importantly, sk does not affect the generation of the
attestation proof (π) itself. Additionally, ri is also considered
non-confidential because the attacker cannot extract any mean-
ingful information from ri (more details in Appendix B).

4) Verification: The verification phase in the proposed
protocol is designed to be straightforward and accessible to
anyone, without requiring privileged access to authorized data.
The Algorithm 3 provides necessary computations in this
phase. The verifier initiates the process by checking the validity
of the latest submitted proof πi by a target device using the
Verify(dv, πi,RT , ci, pk) method.

In addition to the basic validity check, the verifier performs
three additional verification steps. Firstly, the authenticity of
the provided proof is examined, ensuring that the public key
pk used in the proof matches the public address of the prover.
For example, in a blockchain platform, pk can correspond to
the public address of the prover. Secondly, the verifier checks
whether the RT is a valid root published by the manufacturer,
ensuring the integrity and origin of the Merkle tree root.
Finally, the verifier validates the freshness and correctness of
the employed ci in the proof, which should correspond to the
latest challenge published by the manufacturer.

Algorithm 3: Attestation Verification
Data: ⟨π, ci, pk, RT ⟩, sigπ , dv , validRoots[]
Result: true or false

1 vzkp ← verifyZkSnarks(dv, π,RT , ci, pk)
2 pksig ← recoverPubKey(sigπ)
3 if vzkp ̸= true then
4 return false

5 else if pksig ̸= pk then
6 return false

7 else if RT /∈ validRoots then
8 return false

9 else if ci ̸= latestChallenge then
10 return false

11 else
12 return true

B. Possible Trust Distribution

In zRA, all challenges are generated offline during the setup
phase. This approach reduces reliance on the manufacturer,
during the attestation phase. However, it still suffers from the
possibility of a single point of failure if the manufacturer is
unable to periodically publish upcoming challenges. Moreover,
if all future challenges are revealed, the freshness property of
future attestations is compromised, requiring execution of a
new setup phase.

To address these concerns, we propose a trusted setup
ceremony to generate a sequence of threshold challenges.
Fig. 5 provides an overview of the proposed ceremony for
distributing trust among multiple parties. In this ceremony, all
stakeholders participate in a threshold trusted setup, resulting
in a (t, n)−threshold random sequence of challenges, denoted
as Ctresh =

⋃
cti. To reconstruct each cti, at least t partici-

pants must publish their share of the challenge. This resolves
the aforementioned concerns in two ways. Firstly, in terms of
availability, a temporary stall in the attestation process would
require at least (n−t) participants to be unavailable. Secondly,
to invalidate the freshness property of future attestations, at
least t participants must reveal all their future challenges.

This approach effectively distributes the trust, which is
required to maintain the protocol’s availability and ensure
freshness of challenges. Another notable advantage is the
flexibility it offers, allowing each group of devices to have
their own designated stakeholders participating in the setup
phase. This enhances the practicality and adaptability of zRA.

V. ADVERSARY MODEL AND SECURITY ANALYSIS

This section starts with defining the adversary model, then
we analyze the protocol-level threats that can be posed by
adversaries, both non-invasive and invasive, accordingly.

A. Adversary Model

We consider a probabilistic polynomial time (PPT) adver-
sary who has the ability to overhear, intercept, or manipulate
any number of messages. We assume that following crypto-
graphic tools remain secure under any PPT adversary:

7

Threshold
Challenge

Manufacturer

Blockchain

Setup
PhaseThreshold

Publish

Trusted
Setup

Pe
rio

di
ca
lly

Fig. 5. Distributing the trust in setup phase.

• Collision-resistance hash functions: Poseidon hash
functions [20], which we specifically utilize, are proven
to be secure and efficient within the zkSNARKs setting.

• Digital signature schemes: The security of digital sig-
nature schemes, such as ECDSA or EdDSA, is crucial
for establishing a secure channel or enabling asymmetric
authentication within the protocol.

• Succinct proving systems: The zRA protocol is not
restricted to a specific proving system, but in our imple-
mentation, we utilize Groth16 [12] from the zkSNARKs
family. We assume that forging a false proof in such
systems is not computationally possible.

Furthermore, in the context of employing blockchains,
we make the standard assumptions for permissionless public
blockchain-based protocols. These assumptions include the
trustless and publicly verifiable executions of smart contracts
that ensure consistent behavior across all full nodes. It is
important to note that zRA does not require any specific
features from the underlying blockchain and can be imple-
mented even in constrained blockchains like Bitcoin. However,
we do assume that the underlying blockchain is secure and
that an adversary cannot forge malformed blocks without
being rejected by the consensus protocol, thus maintaining the
integrity of the blockchain [32].

Moreover, the adversary can compromise functionality of
a device, thereby gaining full control over it, except for the
trust anchor, which remains secure due to its tamper-evident
configurations. This assumption is consistent with prior re-
search [2], [10], [1], [28], [9] and forms a critical foundation
for the RA protocol. It is worth noting we do not consider
physical attacks like device capture or hardware tampering,
as these aspects are beyond the scope of our investigation. In
contrast, some related work, such as [29], [33], [34], propose
absence detection protocols to spot device capture and hard-
ware tampering, making them less suitable for asynchronous
networks due to their demand for devices being available for
specific timeframes during their operation.

B. Security Analysis

1) Denial of Service (DoS): Traditional interactive RA
protocols often face DoS attacks due to the requirement of
at least one available trusted server throughout the protocol.
In contrast, zRA is non-interactive and eliminates the need for
trusted parties to run servers at any stage of the protocol. After
the setup phase, the manufacturer does not serve any requests

for a device, and all other services rely on the blockchain,
where attestation can be performed by anyone. Additionally,
blockchains, especially permissionless ones like Ethereum
or Bitcoin, inherently possess countermeasures against DoS
attacks, as running a full node is feasible for any participant.
It is worth noting that DoS attacks can be implemented on
top of the blockchain layer to overwhelm smart contracts with
time-consuming transactions. However, countermeasures to
address such attacks exist, some of which have been proposed
in previous works or are currently implemented in platforms
like Ethereum. These attacks and their countermeasures are
outside the scope of this paper.

2) False Attestation: This is the case where the attacker
tries proposing a proof without knowing the correct ri or using
a challenge other than ci. The proposed attestation method,
enforces ri as an input for ZK circuits and ensures that its
concatenation with two public inputs (i.e. ci and pk that act
as binding values of the commitment) is a valid revealing
value to the commitment li. Therefore, it is impossible to
generate a proof without having ri, as long as the soundness
property of the underlying proof system (e.g., Groth16 [12] or
PLONK [35]) holds.

3) Replay Attacks: In the ZK statement, both the ci and
pk are public inputs to the prover circuit. These two values
work as binding properties of the commitment scheme used in
zRA. The verifier can verify the exact values used for ci and
pk during proof generation. Therefore, submitting a previously
valid proof or replaying another device’s proof would not result
in successful verification.

4) Message Manipulation: The integrity of submitted mes-
sages to the blockchain is verified by full nodes through digital
signatures. Thus, when zRA is built on a blockchain, it is
considered secure against message manipulation attacks as
long as the underlying cryptographic primitives remain secure
and unbroken. Moreover, zRA employs zkSNARK-based proof
systems, which are assumed to be secure and non-malleable
once created.

5) Manipulate ZK circuit execution: A fundamental ad-
vantage of zkSNARKs proving systems is their ability to
ensure the exact execution of a circuit without relying on trust
or authentication in the execution environment itself. When
a zkSNARKs proof is successfully verified, it provides an
ironclad guarantee that the prover has executed the circuit ac-
curately and comprehensively. Consequently, if all the inputs of
a zkSNARKs circuit are non-confidential (exposable to public),
the entire proof generation process can be safely carried out
on an untrusted device without jeopardizing security. Since all
of the inputs in our ZK circuit (pk|ri|ci) are non-confidential,
the execution of it demands no secure infrastructures.

6) Access to the Private Key sk: As elaborated in Sec-
tion IV-A3, the private key sk does not necessitate specialized
secure storage. Its sole purpose is to sign the final message
before broadcasting it to the blockchain. Nevertheless, it is
worth mentioning that, as we assumed the presence of an
MPU for constructing the trust anchor, the same MPU can be
employed to securely store sk in situations where the device
uses the same secret key for signing messages other than the
attestation protocol. However, it is essential to emphasize that,
purely for the sake of the attestation protocol itself, sk does

8

not require secure storage. Even if compromised, adversaries
can only sign false messages on behalf of the device, but they
are incapable of fabricating proofs that would successfully
attest a compromised device. The soundness property of the
zkSNARKs proving system guarantees that forging a false
proof is computationally impossible without knowledge of the
correct ri, which is considered unavailable on a compromised
device due to the tamper-evident trust anchor assumption.

7) Blockchain Update Delay (Block-time): Integrating
zRA with blockchain introduces a potential attack vector where
an adversary might compromise a device within the blockchain
block-time window. To mitigate this, it is advisable to adjust
the target blockchain block-time based on the application
requirements and the minimum time frame between two at-
testations. However, it is noteworthy that currently, in most
blockchains like Ethereum, the average block-time is under 10
seconds, resulting in a finalization less than a minute. Given
that the average time between two attestations in the literature
is at least around 5 to 10 minutes (in most extreme cases),
the existing RA standards remain robust against blockchain
block-time limitations.

8) Software updates and rollback attacks: In zRA, the
entirety of codes, circuits, and Merkle tree are considered
public data. This implies that for software updates, the manu-
facturer can effortlessly publish/broadcast new binaries, deploy
new contract, integrate fresh Merkle root, and initiate issuing
new challenges. Moreover, to prevent rollback attacks, the
manufacturer can seamlessly update new Merkle root within
the contract and initiate distribution of new public challenges.
Given that these new challenges would not yield valid Merkle
path proofs for the old (obsolete) Merkle root, compromised
devices will not be able to produce valid proofs.

VI. PROTOTYPE IMPLEMENTATION DETAILS

This section presents implementation results of the zRA
protocol, highlighting its ease of use and practicality. The com-
plete implementation, including the Circom circuits, prover and
manufacturer codes, and Solidity smart contracts, is openly
available on GitHub as an open-source project3. The protocol
has been implemented using the Circom platform [16] for
proof generation and verification, JavaScript for client and
manufacturer scripts, and Solidity [17] for smart contracts,
leveraging their respective strengths and features in the im-
plementation process. This choice of technologies was made
to demonstrate the compatibility and practicality of zRA. The
resulting prototype is fully compatible with the Ethereum
blockchain, and various experimental transactions have been
successfully broadcasted on Ethereum Sepolia Testnet [18].

A. Circom Circuits

We implemented the verifiable circuits of zRA protocol us-
ing Circom, a widely used zkSNARKs compiler in both indus-
try and research [16]. The circuit for checking the membership
of a leaf in a Merkle tree, called MerkleTreeChecker,
was adapted from the audited code of Tornado-Cash [31],
a community-trusted project. Listing 1 provides the details
of the MerkleTreeChecker circuit. It follows a simple

3Github: https://github.com/zero-savvy/zk-remote-attestation and Zenodo
DOI: https://zenodo.org/doi/10.5281/zenodo.8391637.

logic: computing the hashes along the Merkle path provided
and verifying that the final hash matches the given root. The
circuit requires both the values of the path elements and their
positions (left or right sibling), which are supplied through the
PathIndices array. The for loop in line 10 to 18 calculates
the hash chains in the Merkle path. Lines 11 to 14 prepare the
correct order of inputs for the hash function and the lines 16
to 18 compute the hash result. Finally, the assertion in line
20 ensures the equality of the final hash with the given root.
Failure of this assertion results in termination of the proof
generation process.

1 template MerkleTreeChecker(levels) {
2 signal input leaf;
3 signal input root;
4 signal input pathElements[levels];
5 signal input pathIndices[levels];
6
7 component selectors[levels];
8 component hashers[levels];
9

10 for (var i = 0; i < levels; i++) {
11 selectors[i] = DualMux();
12 selectors[i].in[0] <== i == 0 ? leaf :

hashers[i - 1].hash;
13 selectors[i].in[1] <== pathElements[i];
14 selectors[i].s <== pathIndices[i];
15
16 hashers[i] = HashLeftRight();
17 hashers[i].left <== selectors[i].out[0];
18 hashers[i].right <== selectors[i].out[1];
19 }
20 root === hashers[levels - 1].hash;
21 }

Listing 1. MerkleTreeChecker circuit, proposed by [31]

In Listing 2, the top layer attestation circuit of zRA is
presented. Lines 10 to 14 calculate the hash of the value
pk|ci|ri, which represents the proof of revealing the corre-
sponding commitment of the response ri. This hash result is
then used as the leaf input for the MerkleTreeChecker
circuit.

1 template Attest(levels) {
2 signal input root;
3 signal input pubAddr;
4 signal input response;
5 signal input challenge;
6 signal input pathElements[levels];
7 signal input pathIndices[levels];
8 signal hashValue;
9

10 component hasher = Poseidon(3);
11 hasher.inputs[0] <== pubAddr;
12 hasher.inputs[1] <== challenge;
13 hasher.inputs[2] <== response;
14 hashValue <== hasher.out;
15
16 component tree = MerkleTreeChecker(levels);
17 tree.leaf <== hashValue;
18 tree.root <== root;
19 for (var i = 0; i < levels; i++) {
20 tree.pathElements[i] <== pathElements[i];
21 tree.pathIndices[i] <== pathIndices[i];
22 }
23 }
24 component main {public [root, pubAddr, challenge]} =

Attest(20);

Listing 2. zRA Attestation circuit.

9

https://github.com/zero-savvy/zk-remote-attestation
https://zenodo.org/doi/10.5281/zenodo.8391637

To verify the leaf membership in the Merkle tree, lines
16 to 21 instantiate the MerkleTreeChecker circuit and
provide it with the necessary inputs. It is important to note
that if the assertion within the MerkleTreeChecker circuit
fails, the upper-level circuits will also terminate. Therefore, a
proof can only be generated if the final assertion is successful,
ensuring the leaf indeed belongs to the specified Merkle root.
Finally, line 24 instantiates the Attest circuit as the main
circuit that Circom will compile and generate a proof for. In
this particular example, the height of the Merkle tree is 20.

B. Smart Contract

The smart contract implemented in the prototype serves as
an autonomous and trustless verifier within the zRA protocol.
It precisely implements the logic described in Algorithm 3. The
implementation details of the verifier prototype in Solidity [17]
language are provided in Listing 3.

In lines 5 to 8 of the code, the main assets of the
contract are defined. The validRoots variable represents
a list of all valid Merkle roots that can be set by the
manufacturer. The latestChallenge value is updated
whenever the manufacturer publishes a new challenge to
the blockchain. The complete Solidity code, including the
addRoot and publishChallenge functions, can be found
in Appendix A.

1 pragma solidity >=0.7.0 <0.9.0;
2 import "./verifier.sol";
3
4 contract Attest {
5 address private owner;
6 uint256[] public validRoots;
7 uint256 public latestChallenge;
8 Groth16Verifier public verifier;
9

10 function attest(_pA, _pB1, _pB2, _pC,
_pubSignals) public {

11
12 address convertedAddress = address(uint160(

_pubSignals[1]));
13
14 // check authenticity of the device address
15 if (convertedAddress != msg.sender)
16 { revert(); }
17
18 // check validity of the Merkle root
19 if (!checkRoot(_pubSignals[0]))
20 { revert(); }
21
22 // check if the challenge is up-to-date
23 if (_pubSignals[2] != latestChallenge)
24 { revert(); }
25
26 // verify zkSNARK proof
27 bool proofVerification;
28 proofVerification = verifier.verifyProof(_pA

, [_pB1, _pB2], _pC, _pubSignals);
29 if (!proofVerification)
30 { revert(); }
31 }
32 }

Listing 3. Solidity code for EVM-compatible verifier smart contract of zRA
prototype.

The verifier object defined within the contract is
responsible for verifying the zkSNARKs proof from the prover.
The Groth16Verifier class is generated using the snarkjs
command export solidityverifier [16], [36].

The Attest function takes the zkSNARKs proof as
input, encoded as polynomials _pA, _pB1, _pB2, and _pC.
Additionally, it requires the public inputs of the Circom circuit
specified in line 25 of Listing 2, which are provided as an array
of size three (root, pubAddr, and challenge).

Lines 14 to 30 of the contract perform all verifications
outlined in Algorithm 3. These verifications include checking
the authenticity of the device address, validating the resulting
Merkle root, ensuring the freshness and validity of the em-
ployed challenge, and verifying the correctness of the provided
zkSNARKs proof. If any of these checks fail, the transaction
is immediately rejected using the revert() function.

C. Experimental Results

We have deployed and publicly verified the smart con-
tract (from Listing 3) on Ethereum Sepolia Testnet4 [18].
The following transactions were executed: addRoot5 and
publishChallenge6 by the owner of the contract (the
manufacturer). Finally, an attest7 transaction was success-
fully broadcasted from a device with the correct response and
proof. To evaluate the practicality of the prototype, we tested it
on different platforms. Table III provides detailed information
about the benchmark systems used, including a Dell Latitude
5531 laptop, a Raspberry Pi Zero 2W with 512 MB of RAM,
and ASUS Tinkerboard with 2 GB of RAM.

Table IV and Table V present the required storage and
time in the prover device to complete the attestation phase,
respectively. The height of the final Merkle tree directly affects
the number of devices (denoted as numDev) and attestations
(denoted as numAtt) supported by the tree. Specifically, a
tree of height h can support any combination that satisfies
numDev × numAtt ≤ 2h. For example, a Merkle tree of
height 40 can support a scenario where 1 million devices are
attested 1 million times each.

As shown in Table IV, the proposed Circom circuit occu-
pies less than 10K constraints even for the extreme case of a
tree height of 40. This results in a proving key size of only
6.0 MB and a witness size of 321 KB. The proof size (π)
remains constant at around 805 Bytes.

Table V presents the witness and proof generation times
for the attestation phase. It is important to note that for each
new attestation, the device needs to generate a new witness
and use it to generate the proof using the proving key dp.
The table shows that the laptop with an average Intel CPU
can complete the proof generation for the most extreme case
in less than 4 milliseconds, while the Raspberry Pi Zero with
an ARM Cortex-A processor requires around 25 seconds for
the same task. It is worth mentioning that one key difference
between the two devices is the availability of an optimized
witness generator version for Intel CPUs, which significantly
reduces witness generation time to only a few milliseconds

4https://sepolia.etherscan.io/address/0x5a0f87fdfc22523ad72b3ea759abe80
20903bb72.

5https://sepolia.etherscan.io/tx/0xe9725c4b1ff4c5b763a02250e46c95eb0edf
e04dee267cc75e4a27040543677b

6https://sepolia.etherscan.io/tx/0xc120a8ff605280cbe2b971a079649e1ccac
68097b02fde2d63c10a49506f245a

7https://sepolia.etherscan.io/tx/0x7e0424a2c63a811a1debde708392c5e073
80c256a3b619755ac7071986559278

10

https://sepolia.etherscan.io/address/0x5a0f87fdfc22523ad72b3ea759abe8020903bb72
https://sepolia.etherscan.io/address/0x5a0f87fdfc22523ad72b3ea759abe8020903bb72
https://sepolia.etherscan.io/tx/0xe9725c4b1ff4c5b763a02250e46c95eb0edfe04dee267cc75e4a27040543677b
https://sepolia.etherscan.io/tx/0xe9725c4b1ff4c5b763a02250e46c95eb0edfe04dee267cc75e4a27040543677b
https://sepolia.etherscan.io/tx/0xc120a8ff605280cbe2b971a079649e1ccac68097b02fde2d63c10a49506f245a
https://sepolia.etherscan.io/tx/0xc120a8ff605280cbe2b971a079649e1ccac68097b02fde2d63c10a49506f245a
https://sepolia.etherscan.io/tx/0x7e0424a2c63a811a1debde708392c5e07380c256a3b619755ac7071986559278
https://sepolia.etherscan.io/tx/0x7e0424a2c63a811a1debde708392c5e07380c256a3b619755ac7071986559278

TABLE III. EXPERIMENTAL SETUP CONFIGURATION

Dell
Latitude 5531

Raspberry Pi
Zero 2W

ASUS
Tinker board

Memory 16.0 GiB 512MB SDRAM 2.0 GiB LPDDR3

Processor
12th Gen Intel®

Core™ i5-12500H
1GHz quad-core
Arm Cortex-A53

1.8GHz Quad-core
ARM Cortex-A17

Storage 512 GB 16 GB SanDisk SD Card

Operating
System

Ubuntu
22.04.2 LTS

Raspberry Pi
OS Lite (64-bit)

Tinker Board Debian
Stretch V2.2.9

Power
Source

USB-C
Thunderbolt: 45W

Micro USB
power: 12W (5V)

Micro USB
power: 15W (5V)

IoT
Compatible

✗ ✓♦ ✓❇

♦ Dimensions: 65mm×30mm. ❇ Dimensions: 85mm×54mm.

TABLE IV. PROVER STORAGE REQUIREMENTS

Height
of tree

Proof
(B)

Witness
(KB)

Proving Key
(MB)

Constraints
(# of Gates)

10 806 86.6 1.6 2691

20 807 164.7 3.1 5121

30 805 242.8 4.3 7551

40 804 320.9 6.0 9981

Samples of each configuration can be found in the
benchmarking directory of the available repository on GitHub.

in our benchmarks [16]. Compared to the Raspberry Pi, the
Tinkerboard benefits from larger memory size, which results
in up to 2x better performance.

It is important to emphasize that this prototype imple-
mentation serves as a proof of concept to demonstrate the
practicality and flexibility of the zRA protocol. The current
limitation lies in the computational complexity, which restricts
the target devices for zRA. This opens up an interesting
research area and provides motivation for further optimization
of proof generation in the zkSNARKs family for resource-
constrained devices, benefiting from efficient hardware and
software implementations.

VII. EVALUATION AND COMPARISON

In this section, we evaluate the performance of the proto-
type by conducting a comparative analysis with the most recent
related work [2], [10] that specifically targets the same network
types as zRA (i.e., Pub/Sub or p2p), in terms of encompassing
communication, storage, and computation costs.

A. System Model

While zRA is adaptable to various network types, its
effectiveness is particularly notable in networks where every
device has direct access to certain public nodes. As a result,
we find that zRA is most applicable in Pub/Sub or peer-to-peer
networks. To assess the performance of zRA and contrast it
with prior RA protocols in these network environments, we
establish the following evaluation metrics:

Communication cost: Quantifies the communication over-
head in terms of the number of all transmitted messages by
one entity. It helps assess the efficiency and scalability of the
protocol by considering the communication bottlenecks of the
network.

TABLE V. WITNESS-GENERATION AND PROOF-GENERATION TIME

Merkle Tree Height
10 20 30 40

Operation WIT▼ PRF★ WIT▼ PRF★ WIT▼ PRF★ WIT▼ PRF★

Rasp. Pi
Zero 2W

11.3 8.4 11.2 10.6 11.3 12.0 11.3 14.9

Tinker
Board

3.85 6.16 3.90 8.03 3.82 9.26 3.83 11.8

Core™
i5-12500H

0.01 0.51 0.01 0.59 0.01 0.64 0.01 0.76

▼ witness generation time (in seconds) ★ proof generation time (in seconds)

Number of Attestation

Fig. 6. The impact of the number of attestations per device on network
entities in a scenario with 10,000 devices.

Storage cost: When considering storage, two key aspects
to take into account are: accessibility that indicates the level
of confidentiality (private or public) and storage mode (offline
or online). public data can be openly published and accessed
by anyone, while secret data requires authorized access by
trusted parties. On the other hand, offline storage is typically
used for archiving purposes, while online storage requires
ongoing maintenance costs, especially when the availability
or authenticity of the data is crucial.

Computational cost: This metric provides insights into the
resource requirements of executing the protocol. It measures
the computational complexity associated with each phase of
the protocol for different entities involved, including the prover
(device), the manufacturer, and other trusted parties such as a
proxy verifier [2] or a broker [10].

B. Communication Cost and Scalability

The transparency of the zRA protocol not only contributes
to the establishment of a trustless system but also significantly
impacts the communication costs and scalability of the proto-
col. To compare zRA with previous RA protocols, we consider
two distinct scenarios, focusing on the number of devices and
the number of attestations.

Fig. 6 illustrates the effect of the number of attestations on
the network entities in a scenario involving 100,000 devices.
zRA demonstrates a clear advantage over previous RA proto-
cols, as the only required transmission of the manufacturer is to
publish global challenges for each attestation interval. Conse-
quently, regardless of the number of devices, the manufacturer
only sends m global messages (every global challenge is used

11

Number of Device

Fig. 7. The impact of the number of devices on network entities in a scenario
with 100,000 attestations per device.

for attestation of all devices in the network) for m attestations.
In contrast, other protocols incur significant communication
costs as the number of attestations increases.

Fig. 7 examines the impact of the number of devices in RA
protocols while keeping the number of attestations at 10,000
per device. In zRA, the manufacturer only needs to periodically
publish total of 10,000 global challenges (based on the attes-
tation intervals), and therefore, the number of devices does
not affect the manufacturer. However, in previous protocols,
certain entities such as brokers [10] or proxy verifiers [2]
would need to transmit over 200 billion messages to handle
10,000 attestations from 1 million devices.

C. Storage Cost

Traditional interactive RA protocols typically demand priv-
ileged access to secure databases for verification, leading to the
establishment of dedicated and secure storage infrastructures
with associated maintenance costs. Recent strategies, such as
secure key chains [10] or ledger-based publication of verified
outcomes [1], [2], have aimed to address this concern; however,
they still rely on specialized and privileged storage systems.

In contrast, zRA has minimal storage requirements. The
transparency property eliminates the need for additional data
to verify a device attestation request. The sole private storage
requisite for zRA pertains to the sequence of challenges (on
the manufacturer side), which can be shared among trusted
entities, as detailed in Section IV-B. Consequently, the size
of this private storage is determined solely by the number
of attestations and not the number of devices. To provide
perspective, even under an extreme scenario in which 1 million
devices are attested a million times (once every 5 minutes
over a decade), the collective storage for challenges would
be 1, 000, 000 × 32 Bytes (approximately 3 MB). In such a
context, each device necessitates access to its relative Merkle
tree to furnish the accurate Merkle path proof, amounting to
approximately 6 MB. Notably, the entire Merkle tree is public
and can be partially stored on devices for optimized storage
efficiency. Beyond this storage, only public data, such as an
array of valid Merkle roots issued by the manufacturer, is
required, which is handled by the blockchain (e.g., in public
storage of smart contract).

TABLE VI. PERFORMANCE AND ENERGY CONSUMPTION

Prover Prx.Vrf. [2]
Broker [10]

Verifier
Device Time Energy

SCRAPS [2] Cortex M-33● 1.07 s N/A 55.4 ms -

PROVE [10] Virtex-7■ 4.6 ms N/A ≈7 ms -

zRA
Core™ i5✪ 0.6 s 479 mJ▲

- <1 msCortex-A53✣ 21.8 s 14.46 J♥

Cortex-A17★ 11.9 s 53.08 J♥

● LPC55S69-EVK evaluation board ■ Xilinx VC707 FPGA board
✪ Dell Latitude 5531 ✣ Raspberry Pi Zero 2W ★ Asus Tinker Board v1.2
▲ Estimated using powertop tool ♥ Calculated using precise USB voltmeter

D. Computational Cost

Table VI outlines performance details of different schemes
for one attestation, focusing on online and recurring phases
(attestation and verification). The key differentiator for zRA
lies in its decentralized and transparent verification approach.
zRA eliminates scalability issues present in prior work that
relied on centralized verification entities, acting as performance
bottlenecks. To illustrate, the ProxyVerifier [2] and Broker [10]
models necessitate substantial time (100 minutes and 11
minutes, respectively) for verifying 100k attestation requests,
primarily due to their centralized verification mechanisms. In
contrast, zRA empowers any participant to directly and non-
interactively verify attestations, effectively removing the need
for intermediaries.

Nevertheless, zRA does introduce higher computational
complexity on the prover side when compared to previous
approaches. However, this increase in computational load does
not impede scalability, as each device independently conducts
zkSNARKs proofs for each attestation. These computations,
while still exceptionally fast (typically taking only a few
hundred milliseconds) on general-purpose CPUs, do exhibit
relatively greater computational intensity compared to earlier
methods (as indicated in Table VI). Consequently, zRA does
consume more energy on the prover side due to these computa-
tions. However, it is important to note that zRA’s reduced need
for interactions results in lower energy consumption during
communication.

Implementing efficient ZK circuits on constrained devices,
such as boards with ARM Cortex series, can be challenging
and requires further research, opening a key area for future
research of this work. The Tinker board (with A17) encom-
passes 4x higher RAM compared to the raspberry pi zero (with
A53) and as a result it has almost 2x performance. The higher
computational power, however, results in much higher power
consumption and as a result, according to our measurements
using precise USB voltmeters, consumes more than 3x en-
ergy compared to the raspberry pi. We have benchmarked
our measurements using multiple voltmeter devices to ensure
consistency in our final measurements.8

VIII. RELATED WORK

Initially, RA was based on establishing a direct interactive
communication channel between the prover and verifier (typ-

8Unlike the scenario with tiny boards that are powered by USB, measuring
the exact energy consumption of a program in general purpose computers
can be challenging and requires very high-end and precise power source
with measuring capabilities. Therefore, we estimated the overall energy
consumption in the laptop using powertop tool.

12

ically the manufacturer). Nevertheless, researchers recognized
the impracticality of this approach in real-world situations,
where a reliable and continuous connection between the two
parties might not always be attainable. Moreover, synchronous
RA protocols face the challenge of potential DoS attacks.

As a result, many studies suggested modifications to the
core protocol, e.g., supporting asynchronous communication
between provers and verifiers. In this regard, the SARA proto-
col [28] was one of the first to propose a secure asynchronous
RA in IoT systems. Another recent work that emphasises on
supporting asynchronous communications is SCRAPS [2] ,
which proposes a collective RA in Pub/Sub network. SCRAPS
outsources verification process to a private smart contract and
eliminates synchronous communication between prover and
verifier. The public verifiability of the attestation in SCRAPS
requires trust on the proxy verifier, limiting SCRAPS to only
permissioned blockchains, such as Hyperledger.

Prior to SCRAPS, the concept of integrating blockchain
to improve scalability in RA had been explored in earlier
research. LegIoT [1] introduces a trust management system tai-
lored for IoT networks. LegIoT lacks support for asynchronous
connections and operates solely interactively, necessitating
direct interactions between involved parties. BARRETT [37] is
another proposal focused on safeguarding IoT prover devices
against computational DoS attacks by enhancing the Ethereum
blockchain. This enhancement allows the prover to submit at-
testation requests exclusively through blockchain transactions,
rendering DDoS attacks prohibitively costly. Nonetheless, a
significant drawback of the BARRETT scheme is that the
verifiers are confined to the actual nodes of the Ethereum.
This hampers the scalability and availability of attestation, as
not all verifiers can act as full nodes in the Ethereum.

Another set of investigations target specialized networks,
such as swarms, introducing different performance require-
ments for RA protocols. In the work of [13], the authors
introduce SEDA, one of the earlier RA schemes tailored for
swarms. It aims to effectively validate software integrity within
large interconnected device swarms, although it lacks support
for asynchronous interactions. In a similar vein, [38] introduces
two practical attestation protocols, namely LISAa and LISAs,
designed specifically for mobile swarms. SHeLA (scalable
heterogeneous layered attestation) [14] is a proposal for swarm
attestation, focusing on remotely attesting a collection of
interconnected devices, or in other words, a swarm of devices.
In a different approach, SANA [15] employs a unique signature
scheme enabling efficient and constant-time verification of
collective attestation across a potentially unlimited number of
devices. ESDRA [39] outlines a distributed RA scheme crafted
for IoT swarms. It implements a many-to-one attestation
approach for device swarms, mitigating the risk of a single
point of failure in the verifier, thereby enhancing the overall
system robustness.

Addressing the concern of physical attacks on embedded
devices within a network, [33] proposes a lightweight rem-
edy utilizing absence detection to detect devices potentially
affected by such attacks. Similarly, SCAPI [40] achieves
this by recognizing compromised devices under the premise
that physical attacks necessitate the adversary to capture and
disable devices for a discernible period. A recent contribution
emphasizing defense against physical attacks is PASTA [29].

This protocol is tailored for autonomous embedded systems,
allowing low-end prover devices to attest their integrity to
potentially untrustworthy low-end verifier devices. In [41], a
hybrid RA is proposed, ensuring the high availability of IoT
devices during the software attestation process using physically
unclonable functions (PUFs).

SALAD [34] presents a collective remote attestation (CRA)
protocol for highly dynamic and disruptive networks. It adopts
a distributed approach to incrementally establish a common
view of device integrity. HolA [42] extends the concept of
CRA to broader topologies (other than mesh networks), where
devices are distributed in a much wider environment, which
can be seen as an internet-like IoT network. The protocol
provides resistance against attacks targeting both network
infrastructure and nodes themselves.

Some of the recent work have also proposed non-interactive
RA protocols to address issues related to interaction in tra-
ditional RA mechanisms. ERASMUS [43] suggests initiating
the attestation process by the device itself. In this approach,
devices attest to their own integrity periodically, using a Reli-
able Read-Only Clock (RROC) mechanism. SeED [9] follows
a similar route but incorporates a public key infrastructure.
SeED relies on real time clocks (RTC) that act as synchronous
properties within the network. PROVE [10] presents a publicly
verifiable attestation scheme with leveraging power of one-way
key-chains. To address issues related to SeED, it triggers
attestations using events. However it relies on trustworthy
event capture and a secure log storage to provide verifiers with
the chained MACs in attestation proofs.

IX. DISCUSSION AND FUTURE WORK

In this paper, we introduce zRA, a transparent and non-
interactive RA protocol based on zkSNARKs. zRA generates
publicly verifiable attestation messages without the need for
prior knowledge of the device. It offers inherent resilience
to DoS attacks and reduces communication and storage costs
compared to previous approaches.

While zRA offers numerous advantages for attesting re-
mote devices within specific networks like Pub/Sub and
peer-to-peer, it is not universally applicable to all scenarios
such as Swarm or mesh networks. Our experiments proof
that zRA eliminates the computational and infrastructure con-
straints that hindered scalability in prior work, but on the other
hand, it does necessitate certain computations on the prover
side. In many cases, where the prover employs a generic CPU,
these computations are inconsequential. However, for highly
constrained microcontrollers like Atmel’s 8-bit and 16-bit AVR
or ARM Cortex-M series, these computations are infeasible
due to resource constraints.

One of the main future directions for this work is to explore
practical implementations of the zkSNARKs proving phase on
extremely constrained devices that lack a full-fledged operating
system. Alternatively, one can investigate other proving mech-
anisms like STARKs [44], or securely outsourcing the proof
generation [45]. Another follow up of this work is to develop
efficient hardware solutions for zkSNARKs/STARKs proving,
specifically designed for lightweight devices. Such hardware
implementations have the potential to outperform software-

13

based approaches and offer energy and power consumption
reduction benefits.

ACKNOWLEDGMENTS

The authors would like to thank Prof. Stefan Dziembowski
for his invaluable guidance and support through this project.

REFERENCES

[1] Jens Neureither, Alexandra Dmitrienko, David Koisser, Ferdinand
Brasser, and Ahmad-Reza Sadeghi. Legiot: Ledgered trust management
platform for iot. In Computer Security–ESORICS 2020: 25th Euro-
pean Symposium on Research in Computer Security, ESORICS 2020,
Guildford, UK, September 14–18, 2020, Proceedings, Part I 25, pages
377–396. Springer, 2020.

[2] Lukas Petzi, Ala Eddine Ben Yahya, Alexandra Dmitrienko, Gene
Tsudik, Thomas Prantl, and Samuel Kounev. SCRAPS: Scalable
collective remote attestation for Pub-Sub IoT networks with untrusted
proxy verifier. In 31st USENIX Security Symposium (USENIX Security
22), pages 3485–3501, 2022.

[3] Nikolaos Alexopoulos, Jörg Daubert, Max Mühlhäuser, and
Sheikh Mahbub Habib. Beyond the hype: On using blockchains
in trust management for authentication. In 2017 IEEE
Trustcom/BigDataSE/ICESS, pages 546–553. IEEE, 2017.

[4] Nikolaos Alexopoulos, Emmanouil Vasilomanolakis, Natália Réka
Ivánkó, and Max Mühlhäuser. Towards blockchain-based collaborative
intrusion detection systems. In Critical Information Infrastructures
Security: 12th International Conference, CRITIS 2017, Lucca, Italy,
October 8-13, 2017, Revised Selected Papers 12, pages 107–118.
Springer, 2018.

[5] Mandrita Banerjee, Junghee Lee, Qian Chen, and Kim-Kwang Raymond
Choo. Blockchain-based security layer for identification and isolation
of malicious things in IoT: A conceptual design. In 2018 27th
International Conference on Computer Communication and Networks
(ICCCN), pages 1–6. IEEE, 2018.

[6] Axel Moinet, Benoı̂t Darties, and Jean-Luc Baril. Blockchain based
trust & authentication for decentralized sensor networks. arXiv preprint
arXiv:1706.01730, 2017.

[7] Jaemin Park and Kwangjo Kim. TM-Coin: Trustworthy management of
TCB measurements in IoT. In 2017 IEEE international conference on
pervasive computing and communications workshops (PerCom Work-
shops), pages 654–659. IEEE, 2017.

[8] Cheng Xu, Hongzhe Liu, Peifeng Li, and Pengfei Wang. A remote
attestation security model based on privacy-preserving blockchain for
V2X. Ieee Access, 6:67809–67818, 2018.

[9] Ahmad Ibrahim, Ahmad-Reza Sadeghi, and Shaza Zeitouni. Seed:
secure non-interactive attestation for embedded devices. In Proceedings
of the 10th ACM Conference on Security and Privacy in Wireless and
Mobile Networks, pages 64–74, 2017.

[10] Edlira Dushku, Md Masoom Rabbani, Jo Vliegen, An Braeken, and
Nele Mentens. Prove: Provable remote attestation for public verifiability.
Journal of Information Security and Applications, 75:103448, 2023.

[11] Hyperledger foundation. https://www.hyperledger.org. Accessed:
2023-05-29.

[12] Jens Groth. On the size of pairing-based non-interactive arguments.
In Marc Fischlin and Jean-Sébastien Coron, editors, Advances in
Cryptology – EUROCRYPT 2016, pages 305–326, Berlin, Heidelberg,
2016. Springer Berlin Heidelberg.

[13] Nadarajah Asokan, Ferdinand Brasser, Ahmad Ibrahim, Ahmad-Reza
Sadeghi, Matthias Schunter, Gene Tsudik, and Christian Wachsmann.
Seda: Scalable embedded device attestation. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security,
pages 964–975, 2015.

[14] Md Masoom Rabbani, Jo Vliegen, Jori Winderickx, Mauro Conti, and
Nele Mentens. Shela: Scalable heterogeneous layered attestation. IEEE
Internet of Things Journal, 6(6):10240–10250, 2019.

[15] Moreno Ambrosin, Mauro Conti, Ahmad Ibrahim, Gregory Neven,
Ahmad-Reza Sadeghi, and Matthias Schunter. Sana: secure and scalable
aggregate network attestation. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pages 731–
742, 2016.

[16] Marta Bellés-Muñoz, Miguel Isabel, Jose Luis Muñoz-Tapia, Albert
Rubio, and Jordi Baylina. Circom: A circuit description language for
building zero-knowledge applications. IEEE Transactions on Depend-
able and Secure Computing, pages 1–18, 2022.

[17] Solidity language. https://github.com/ethereum/solidity. Accessed:
2023-05-29.

[18] Ethereum sepolia testnet. https://sepolia.etherscan.io/. Accessed:
2023-05-29.

[19] Raspberry pi zero 2 w. https://www.raspberrypi.com/products/raspber
ry-pi-zero-2-w/. Accessed: 2023-06-15.

[20] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab
Roy, and Markus Schofnegger. Poseidon: A new hash function for zero-
knowledge proof systems. In USENIX Security Symposium, volume
2021, 2021.

[21] Ralph C Merkle. Protocols for public key cryptosystems. In 1980 IEEE
symposium on security and privacy, pages 122–122. IEEE, 1980.

[22] Charles Rackoff, Shafi Goldwasser, and Silvio Micali. The knowledge
complexity of interactive proof-systems. Symposium on the Theory of
Computing, Dec 1985.

[23] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-
knowledge and its applications (extended abstract). In Janos Simon,
editor, Proceedings of the 20th Annual ACM Symposium on Theory of
Computing, May 2-4, 1988, Chicago, Illinois, USA, pages 103–112.
ACM, 1988.

[24] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From
extractable collision resistance to succinct non-interactive arguments of
knowledge, and back again. In Proceedings of the 3rd Innovations in
Theoretical Computer Science Conference, pages 326–349, 2012.

[25] Torben Pryds Pedersen. Non-interactive and information-theoretic
secure verifiable secret sharing, in “advances in cryptology—crypto’91:
Proceedings”, 1992.

[26] Taher ElGamal. A public key cryptosystem and a signature scheme
based on discrete logarithms. IEEE transactions on information theory,
31(4):469–472, 1985.

[27] Pedersen hash. https://iden3-docs.readthedocs.io/en/latest/iden3 repos
/research/publications/zkproof-standards-workshop-2/pedersen-hash/pe
dersen.html. Accessed: 2023-06-14.

[28] Edlira Dushku, Md Masoom Rabbani, Mauro Conti, Luigi V Mancini,
and Silvio Ranise. Sara: Secure asynchronous remote attestation for
iot systems. IEEE Transactions on Information Forensics and Security,
15:3123–3136, 2020.

[29] Florian Kohnhäuser, Niklas Büscher, and Stefan Katzenbeisser. A
practical attestation protocol for autonomous embedded systems. In
2019 IEEE European Symposium on Security and Privacy (EuroS&P),
pages 263–278. IEEE, 2019.

[30] Lior Goldberg, Shahar Papini, and Michael Riabzev. Cairo–a turing-
complete stark-friendly cpu architecture. Cryptology ePrint Archive,
2021.

[31] Alexey Pertsev, Roman Semenov, and Roman Storm. Tornado cash
privacy solution version 1.4. 2019.

[32] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
Decentralized business review, page 21260, 2008.

[33] Ahmad Ibrahim, Ahmad-Reza Sadeghi, Gene Tsudik, and Shaza
Zeitouni. Darpa: Device attestation resilient to physical attacks. In
Proceedings of the 9th ACM Conference on Security & Privacy in
Wireless and Mobile Networks, pages 171–182, 2016.

[34] Florian Kohnhäuser, Niklas Büscher, and Stefan Katzenbeisser. Salad:
Secure and lightweight attestation of highly dynamic and disruptive
networks. In Proceedings of the 2018 on Asia Conference on Computer
and Communications Security, pages 329–342, 2018.

[35] Ariel Gabizon and Zachary J Williamson. plookup: A simplified
polynomial protocol for lookup tables. Cryptology ePrint Archive, 2020.

[36] snarkjs, a JavaScript and Pure Web Assembly implementation of

14

https://www.hyperledger.org
https://github.com/ethereum/solidity
https://sepolia.etherscan.io/
https://www.raspberrypi.com/products/raspberry-pi-zero-2-w/
https://www.raspberrypi.com/products/raspberry-pi-zero-2-w/
https://iden3-docs.readthedocs.io/en/latest/iden3_repos/research/publications/zkproof-standards-workshop-2/pedersen-hash/pedersen.html
https://iden3-docs.readthedocs.io/en/latest/iden3_repos/research/publications/zkproof-standards-workshop-2/pedersen-hash/pedersen.html
https://iden3-docs.readthedocs.io/en/latest/iden3_repos/research/publications/zkproof-standards-workshop-2/pedersen-hash/pedersen.html

zkSNARK and PLONK schemes. https://github.com/iden3/snarkjs.
Accessed: 2023-05-29.

[37] Michail Bampatsikos, Christoforos Ntantogian, Christos Xenakis, and
Stelios CA Thomopoulos. Barrett blockchain regulated remote attesta-
tion. In IEEE/WIC/ACM International Conference on Web Intelligence-
Companion Volume, pages 256–262, 2019.

[38] Xavier Carpent, Karim ElDefrawy, Norrathep Rattanavipanon, and Gene
Tsudik. Lightweight swarm attestation: a tale of two lisa-s. In
Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security, pages 86–100, 2017.

[39] Boyu Kuang, Anmin Fu, Shui Yu, Guomin Yang, Mang Su, and Yuqing
Zhang. Esdra: An efficient and secure distributed remote attestation
scheme for iot swarms. IEEE Internet of Things Journal, 6(5):8372–
8383, 2019.

[40] Florian Kohnhäuser, Niklas Büscher, Sebastian Gabmeyer, and Stefan
Katzenbeisser. Scapi: a scalable attestation protocol to detect software
and physical attacks. In Proceedings of the 10th ACM Conference on
Security and Privacy in Wireless and Mobile Networks, pages 75–86,
2017.

[41] Muhammad Naveed Aman, Mohamed Haroon Basheer, Siddhant Dash,
Jun Wen Wong, Jia Xu, Hoon Wei Lim, and Biplab Sikdar. Hatt: Hybrid
remote attestation for the internet of things with high availability. IEEE
Internet of Things Journal, 7(8):7220–7233, 2020.

[42] Alessandro Visintin, Flavio Toffalini, Eleonora Losiouk, Mauro Conti,
and Jianying Zhou. Hola: Holistic and autonomous attestation for iot
networks. In Applied Cryptography and Network Security Workshops,
pages 277–296, Cham, 2022. Springer International Publishing.

[43] Xavier Carpent, Gene Tsudik, and Norrathep Rattanavipanon. Eras-
mus: Efficient remote attestation via self-measurement for unattended
settings. In 2018 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pages 1191–1194. IEEE, 2018.

[44] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev.
Scalable zero knowledge with no trusted setup. In Advances in
Cryptology–CRYPTO 2019: 39th Annual International Cryptology Con-
ference, Santa Barbara, CA, USA, August 18–22, 2019, Proceedings,
Part III 39, pages 701–732. Springer, 2019.

[45] Makoto Nakamura, Takeshi Miyamae, and Masanobu Morinaga. A
privacy-preserving outsourcing scheme for zero-knowledge proof gen-
eration. Journal of Information Processing, 30:151–154, 2022.

APPENDIX A
SOLIDITY CODE FOR THE VERIFIER

The complete version of the Solidity code for the imple-
mented verifier smart contract is presented in the Listing 4.

1 pragma solidity >=0.7.0 <0.9.0;
2
3 import "./verifier.sol";
4
5 contract PublicAttestor {
6 address private owner;
7 uint256[] public valitRoots;
8 uint256 public latestChallenge;
9 Groth16Verifier public verifier;

10
11 modifier onlyOwner() {
12 require(owner == msg.sender);
13 _;
14 }
15 constructor() {
16 owner = msg.sender;
17 verifier = Groth16Verifier(address(0x4FB0A3f

d2e36A50C1854f638074dd30525802711));
18 }
19
20 function checkRoot(uint256 value) public view

returns (bool) {
21 for (uint256 i=0; i<valitRoots.length; i++)

{
22 if (valitRoots[i] == value) {
23 return true;

24 }
25 }
26 return false;
27 }
28 function attest(uint[2] calldata _pA, uint[2]

calldata _pB1,uint[2] calldata _pB2, uint[2]
calldata _pC, uint[3] calldata _pubSignals)
public {

29
30 address convertedAddress = address(uint160(

_pubSignals[1]));
31
32 // check authenticity of the device address
33 if (convertedAddress != msg.sender) { revert

(); }
34
35 // check validity of the Merkle root
36 if (!checkRoot(_pubSignals[0])) { revert();

}
37
38 // check if the challenge is up-to-date
39 if (_pubSignals[2] != latestChallenge) {

revert(); }
40
41 // verify zkSNARK proof
42 bool proofVerification;
43 proofVerification = verifier.verifyProof(_pA

, [_pB1, _pB2], _pC, _pubSignals);
44 if (!proofVerification) { revert(); }
45 }
46
47 function publishChallenge(uint256 challenge)

external onlyOwner {
48 latestChallenge = challenge;
49 return;
50 }
51
52 function addRoot(uint256 newRoot) external

onlyOwner {
53 valitRoots.push(newRoot);
54 return;
55 }
56 }

Listing 4. Complete Solidity code for EVM-compatible verifier smart contract
of zRA prototype.

APPENDIX B
REMOTE ATTESTATION

Remote attestation is a technique used to verify the in-
tegrity and authenticity of the remote devices. It involves a
verifier node confirming the trustworthiness of a prover node
before establishing further trust. Traditionally, the RA process
begins with the verifier sending a challenge ci to the prover as
is shown in Fig. 8. However, in asynchronous scenarios, the
prover can initiate the process by requesting a challenge [2].

Upon receiving the challenge, the prover generates
a response ri by combining specific memory measure-
ments (known only to the manufacturer) and the provided
challenge ci. Note that the generation of the response is usually
independent from the RA protocol itself. The RA protocol han-
dles the submission, processing, and verification of attestation
requests, while the specific approach to generate the response
from the challenge can vary based on the implementation
method.

Generating response in prover side has three gen-
eral approaches: software-based, hardware-based, and hy-
brid. Software-based approaches offer greater flexibility, while

15

https://github.com/iden3/snarkjs

Reference
Measurements

Random
Generator

ENV
measurements

Challenge

Extend

Attestation keys

Predict
Response

=?

TPM

Evidence

Update

Verifier Prover

Fig. 8. General overview of a remote attestation scheme using trusted
platform module (TPM).

hardware-based approaches are considered more secure due to
their implementation restrictions. The hybrid methods combine
the advantages of both software and hardware approaches
through a co-designed strategy. The RA protocol itself can
be implemented using any of these three types of approaches,
as it is independent of the method of implementation.

APPENDIX C
EXAMPLE REALIZATIONS OF CALCRESP AND

DEVCALCRESP FUNCTIONS

As per our system model, we assume the presence of
two core components within the trust anchor: a ROM (Read-
Only Memory) and an MPU (Memory Protection Unit). In
the following, we illustrate how a simple response generation
method can be implemented using these components to create
the calcResp and devCalcResp functions.

During the setup phase, the manufacturer initializes the
trust anchor of each device with a random value as the initial
internal state. These initial internal states are only accessi-
ble (facilitated by the MPU) to the attestation program that is
implemented within the ROM module. The following example
function demonstrates how these internal states are used to
generate unique and secure responses for each challenge,
denoted as ci:

Setup phase (by the manufacturer):
ri = CalcResp(Si, ci,mi) = Hash(Si|ci|mi)

Attestation phase (by the device):
ri = devCalcResp(ci) = Hash(Si|ci|mi)

The values Si and mi represent the internal state and measure-
ment checksum of the device, respectively. The only distinction
between the devCalcResp and CalcResp functions lies in
the environment in which they are executed. CalcResp is
utilized by the manufacturer in the setup phase (offline), and
the caller of the function, i.e., the manufacturer, already has
access to all the internal states and measurements (denoted as
Si and mi). On the other hand, devCalcResp is invoked by
the attestation software within the device during the attestation
phase, and it is executed within the trust anchor. The caller
of this function, namely the attestation software, lacks access
to Si and mi, as these values are solely available to the

trust anchor. Consequently, before calculating the final hash to
derive ri, the trust anchor also executes its device measurement
program to obtain mi.

It is important to note that the adversary has no access
to Si, thanks to the tamper-resistant assumption for the trust
anchor. Consequently, since ri is the result of hashing the
concatenation of these values, even if the adversary possesses
knowledge of both ci and mi, they would still need to find
the pre-image of this hash to discover the exact value of Si.
This is considered computationally impossible because the ad-
versary is bound by the Probabilistic Polynomial-Time (PPT)
adversary model.

ARTIFACT APPENDIX

We introduce zRA, a non-interactive method for con-
structing a transparent remote attestation (RA) protocol based
on zkSNARKs. This protocol eliminates the need for online
and trusted services during attestation. It provides a publicly
verifiable attestation mechanism with generating ZK proofs
for pre-image solutions for commitments within a specialized
Merkle tree. In other words, zRA requires the device (prover)
to demonstrate knowledge of specific values (challenge,
response, and public_key) that when combined and
hashed, result in a leaf within the Merkle tree. In practice, this
approach can be viewed as an adaptation of the Tornado-cash
protocol to enhance remote attestation.

We have made available and comprehensive open-source
prototype implementation of zRA, which is hosted on a
publicly accessible GitHub repository. Within this repository,
you will find all the necessary code to facilitate the implemen-
tation of zero-knowledge circuits using the Circom language.
Furthermore, it includes Solidity source code to create a smart
contract. This smart contract is designed for attestation veri-
fication on EVM-based blockchains like Ethereum, Arbitrum,
etc.

Further developments: In addition to the above, if some-
one wishes to personalize the protocol, the repository also
offers JavaScript code designed for executing the setup phase
intended for the manufacturer. To further assist developers,
we have provided Python scripts for interacting with the
deployed contract on the blockchain, enabling the submission
of attestation requests with ease.

A. Description & Requirements

1) How to access: The implementation of zRA proto-
col is publicly accessible in open-source format via Github:
https://github.com/zero-savvy/zk-remote-attestation and Zen-
odo DOI: https://zenodo.org/doi/10.5281/zenodo.8391637.

2) Hardware dependencies: None.

3) Software dependencies: All of the experiments con-
ducted in our research are easily reproducible using readily
available commodity hardware and Linux-based operating sys-
tems. To facilitate the benchmarking process, we have included
pre-built executable and binary files within our repository.
The only prerequisite for executing these benchmarks is the
installation of two components: Node js and the snarkjs
package. For those interested in extending or modifying the

16

https://github.com/zero-savvy/zk-remote-attestation
https://zenodo.org/doi/10.5281/zenodo.8391637

project, the installation of Circom is also necessary9 to
facilitate the development and compilation of zero-knowledge
circuits. We have used bc command in our automated bench-
marking script that may not be installed by default in some of
Linux distributions, but can be installed easily with standard
package managers (e.g. apt-get)

4) Benchmarks: To facilitate the benchmarking process,
we have included pre-built executable and binary files within
our repository, available at the benchmarking directory of the
repository.

B. Artifact Installation & Configuration

The only preparation that is required to execute benchmarks
is installing ”node js and snarkjs package” that can be done
in any OS easily as follows:

• For Installing Node JS:

curl -o- https://raw.githubuserconten
t.com/nvm-sh/nvm/v0.39.3/install.sh |
bash

source ˜/.bashrc

nvm install v16.20.0

• For installing snarkjs:

npm install -g snarkjs

• For installing bc (if was not available by default):

sudo apt-get install bc

C. Experiment Workflow

Figure 9 offers a comprehensive overview of the proto-
type implementation. The setup phase is done once by the
manufacturer and therefore, is not considered in the overall
performance evaluations. It’s important to note that all of the
experiments detailed in our research pertain to the reproduction
of the attestation phase, which is executed within the target
devices themselves. Our performance and energy consumption
evaluations for this phase are presented in Table III, Table IV,
Table V, and Table VI within the paper. During the attestation
phase, devices generate proofs of knowledge in regards to their
correct response for attestation challenge.

D. Major Claims

The primary claims presented in our work revolve around
the protocol and theoretical aspects rather than the prototype
implementation. Nonetheless, as indicated in Table V of the
original manuscript, we do provide specific execution times
for various devices, including a commodity hardware (DELL
Latitude laptop). These claims can be easily verified and
reproduced using the pre-built binaries and the benchmarking
script provided in our open-source repository.

9The complete installation guide for Circom language is accessible through
the official documentation: https://docs.circom.io/getting-started/installation/

 device.js
 manufacturer.js
 utils.js

Circom

prover.js (wasm)

devices

attest.sol

Deploy

JS setup_phase.js

main_merkle
_tree.json

challenges.json

device_"i"_me
rkle_tree.json

Add root

Publish
periodically

Su
bm

it
pr

oo
f

verifier.sol

Setupphase phase
Atte

sta
tion

Fig. 9. High-level overview of the implementation structure

E. Evaluation

1) Experiment (E1): [Witness and Proof Generation]
[2 human-minutes + 1 compute-minutes]

[How to] Since we have provided the benchmarking bina-
ries and script, is it fairly easy and fast to reproduce the results
reported in Table V of the paper.

[Preparation] Follow the steps below:

1) clone the repository with following command:

git clone git@github.com:zero-savvy/
zk-remote-attestation.git

2) go to the benchmark directory:

cd zk-remote-attestation/benchmarking

3) We have prepared a script for benchmark. Simply give it
execution permissions:

chmod +x script.sh

[Execution] The script takes two inputs: 1) number of tests,
and 2) the test name [choose from “ra10”, “ra20”, “ra30”, and
“ra40”].

• Example 1: running proofs of attestation tree with height
of 30 for 10 times:
./script.sh 10 ra30

• Example 2: running proofs of attestation tree with height
of 20 for 5 times:
./script.sh 5 ra20

NOTE: Please note that depending on the system, generating
witnesses and proofs can take time. since the generation times
are usually consistent, we suggest trying the benchmark with
small number of tests (e.g. 5 or 10) before running higher
number of tests.

[Results] The script reports the average time for generating
witness and the proof. Below is a sample output:

Average witness generation time:
0.4152 seconds
Average proof generation time:
0.7881 seconds

17

https://docs.circom.io/getting-started/installation/

F. Customization

To facilitate further development of the protocol, it is
essential to have Circom installed to compile ZK circuits
and generate the verifier.sol contract. Note that the
verifier.sol contract must be regenerated if any changes
are made to the proving keys or the ZK circuit itself. This can
be accomplished using the following command:

snarkjs zkey export solidityverifier
[new-zRA-key].zkey verifier.sol

Developers can locate the top-level ZK circuit in the
circom/zRA.circom file. ile. Additionally, the contracts
are situated in the same directory, and the top-level contract
can be found in circom/attest.sol. It’s important to
mention that the verifier.sol contract should be deployed
before the top-level contract, and its address must be updated
within the top-level contract. This is done to optimize gas
usage in on-chain attestation calls.

The js directory contains the code for the setup phase of
the protocol, which should be executed by the manufacturer.

The python directory includes utility scripts for interact-
ing with EVM-based blockchains and facilitating communica-
tion with the deployed contract.

18

	Introduction
	Preliminaries
	Zero-Knowledge Proofs (ZKP)
	zkSNARKs
	Merkle Tree
	Commitment Schemes

	Motivation
	Proposed Method
	Protocol Details
	Setup
	Update Global Challenge
	Attestation
	Verification

	Possible Trust Distribution

	Adversary Model and Security Analysis
	Adversary Model
	Security Analysis
	Denial of Service (DoS)
	False Attestation
	Replay Attacks
	Message Manipulation
	Manipulate ZK circuit execution
	Access to the Private Key sk
	Blockchain Update Delay (Block-time)
	Software updates and rollback attacks

	Prototype Implementation Details
	Circom Circuits
	Smart Contract
	Experimental Results

	Evaluation and Comparison
	System Model
	Communication Cost and Scalability
	Storage Cost
	Computational Cost

	Related Work
	Discussion and Future Work
	References
	Appendix A: Solidity Code for the Verifier
	Appendix B: Remote Attestation
	Appendix C: Example Realizations of calcResp and devCalcResp Functions
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Artifact Installation & Configuration
	Experiment Workflow
	Major Claims
	Evaluation
	Experiment (E1)

	Customization

