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Abstract— Intel’s Software Guard Extensions (SGX) offers
an isolated execution environment, known as an enclave, where
everything outside the enclave is considered potentially malicious,
including non-enclave memory region, peripherals, and the oper-
ating system. Despite its robust attack model, the code running
within enclaves is still prone to common memory corruption
vulnerabilities. Moreover, such an attack model may introduce
new threats or amplify existing ones. For instance, any direct
memory access to untrusted memory from within an enclave
can lead to Time-of-Check-Time-of-Use (TOCTOU) bugs since
attackers are capable of controlling the whole untrusted memory.
Moreover, null-pointer dereference may have a more severe
security impact since the zero page controlled by the operating
system is also considered malicious. Current fuzzing solutions,
such as SGXFuzz and FuzzSGX, have limitations detecting such
SGX-specific vulnerabilities.

In this paper, we propose EnclaveFuzz, a multi-dimension
structure-aware fuzzing framework that analyzes enclave sources
to extract input structures and correlations, then generates fuzz
harnesses that can produce valid inputs to pass sanity checks.
To conduct multi-dimensional fuzzing, EnclaveFuzz creates data
for all three input dimensions of an enclave, including both
parameters and return values that enter an enclave, as well as
direct untrusted memory access from within an enclave. To detect
more types of vulnerabilities, we design a new sanitizer to detect
both SGX-specific vulnerabilities and typical memory corruption
vulnerabilities. Lastly, we provide a custom SDK to accelerate
the fuzzing process and execute the enclave without the need for
special hardware. To verify the effectiveness of our solution, we
applied our work to test 20 real-world open-source enclaves and
found 162 bugs in 14 of them.

I. INTRODUCTION

The Trusted Execution Environment (TEE) is an important
security mechanism to protect modern systems. With the
help of hardware, TEEs could provide enforced isolation for
critical code and data. SGX is one of the most popular TEEs
developed by Intel, which provides a secure enclave running
within a host application. The enclave is protected by the
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CPU and could remain secure even if the host application
is compromised. More importantly, the attack model of SGX
even assumes that everything except the CPU itself could be
malicious, including the operating system, peripherals, etc.
Such assumptions make SGX attractive for users seeking top-
level security. For example, Signal [1] application utilizes
SGX for contact discovery service to protect private contact
information.

Although SGX provides such a robust attack model at the
system level, many SGX applications are developed in C/C++,
which are prone to memory vulnerabilities like buffer overflow,
use-after-free, etc. What is worse, the special attack model
may bring new vulnerabilities to SGX applications or make
some vulnerabilities more prevalent. For example, null pointer
dereference, which usually considered as a bug, can potentially
transform into a vulnerability within the SGX environment.
The reason is that the zero address falls under the control
of an untrusted operating system. Such a subtle, yet crucial
difference in SGX’s attack model amplifies the security risks
of such common bugs.

Consequently, researchers and developers are actively pur-
suing automated techniques for bug detection within SGX
applications. Fuzzing is one of the most powerful techniques to
find bugs in software. However, current fuzzing solutions meet
several roadblocks while testing enclaves. To test an enclave,
SGXFuzz [2] tests enclave binaries as a black box and tries to
recover the input structure from page-fault feedback. However,
it may fail for the following reasons. First, the SGX SDK
will encapsulate the developer’s code and automatically add
sanity checks for enclave inputs. More specifically, the SGX
SDK generates bridge code according to Enclave Definition
Language (EDL) files provided by developers for both host
application and enclave. The bridge code contains input sanity
checks and will reject illegal inputs, which makes fuzz ineffi-
cient. A fuzzer without knowledge of the exact input structure
may waste time to bypass those checks or even worse never
reach the developer’s code. Also, although SGXFuzz could
guess input parameter structures with page fault feedback,
it may still lead to insufficient fuzzing due to a lack of
input dimensions. As one SGX application is consisted of
two components, host application and enclave, those two parts
rely on two special types of function calls to communicate
with each other, which are ECalls (call from host appli-
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cation to enclave) and OCalls (call from enclave to host
application). More importantly, both parameters and return
values of ECalls and OCalls are directional. Specifically,
both parameters of ECalls and return values of OCalls
are considered as inputs of enclave. Besides that, the enclave
shares the same process memory space with host application
and any direct untrusted memory access is also considered as
input of enclave. FuzzSGX [3] tries to extract input structures
and test enclaves via host mutations but both of them do not
consider untrusted memory access.

Second, the whole fuzzing process heavily relies on bug
oracles to monitor the program execution state and identify
potential bugs. However, SGXFuzz relies solely on page fault
signals for error detection, which inevitably introduces false
negatives. And the sanitizers utilized by FuzzSGX cannot
detect SGX-specific vulnerabilities well.

Lastly, although the enclave is loaded by the host application
during startup, the enclave maintains its own separate heap
and stack memory regions. To make it possible, each enclave
contains redundant memory management routines as well as
context-switching mechanisms, which will greatly slow down
the fuzzing process.

To address these challenges, we propose EnclaveFuzz, a
multi-dimension structure-aware fuzzing framework, which
extracts input structures from enclave sources and performs
fuzzing across multiple input dimensions of an enclave.
Specifically, to achieve more code coverage, EnclaveFuzz
extracts input structures and automatically generates harnesses
capable of creating valid inputs that bypass sanity checks.
To trigger more bugs, EnclaveFuzz analyzes enclave’s trust
boundaries to identify input dimensions of enclaves and feeds
fuzzing to all three input dimensions of enclaves, including
ECall input, returned value of OCall, and untrusted mem-
ory access from enclave. Also, to detect more types of bugs,
EnclaveFuzz incorporates a sanitizer that could detect both
memory corruption bugs and SGX-specific vulnerabilities, in-
cluding null pointer dereference and Time-of-Check-Time-of-
Use (TOCTOU). Moreover, to speed up fuzzing, EnclaveFuzz
provides an optimized SGX SDK which is compatible with
Intel’s official one and eliminates the redundant memory man-
agement and context switch routines, and it also encapsulates
the enclave as a standard shared object (.so) to perform fuzzing
without special SGX hardware requirements.

Our experiment shows structure-aware inputs of Enclave-
Fuzz can enhance the success rate of reaching developers’
code, achieving an average success rate of nearly 99%, which
is 2.94 times higher than that of SGXFuzz. Additionally, it
leads to a 3.62 times increase in code coverage compared
to SGXFuzz. Moreover, the optimized SDK could speed up
fuzzing by 6.91 times on average. As a result, EnclaveFuzz
finds 162 bugs across 14 SGX applications, including both
memory corruption bugs and SGX-specific vulnerabilities.

In summary, we have made the following contributions:
1) We propose a multi-dimensions structure-aware fuzzing

framework EnclaveFuzz, that can effectively find the
vulnerabilities for the SGX applications.

2) We optimize the SGX SDK to speed up fuzzing, improv-
ing the efficiency of fuzzing in detecting vulnerabilities.

3) We design and implement an SGX-specific sanitizer that
can detect both memory corruption and SGX-specific
vulnerabilities.

II. BACKGROUND

With the rapid growth of cloud computing services, people
tend to build their applications on shared resources. Nev-
ertheless, potential attacks from other tenants or even the
service provider can raise concerns. A TEE is an isolation
solution to such problems. SGX is Intel’s implementation of
the TEE, which provides users with a hardware-protected user
mode enclave to process sensitive data. SGX holds a robust
threat model that anything except the enclave itself and CPU
is untrusted, including the operating system (OS), peripheral
devices, et al.

This section will briefly explain how SGX works and intro-
duce the fuzzing technique to help understand EnclaveFuzz.

A. Intel Software Guard Extensions (SGX)

Fundamentally, SGX is a set of instructions that can es-
tablish a CPU-protected memory area for the execution and
storage of critical code and data. To streamline the devel-
opment of SGX applications, Intel provides an SGX SDK
for developers, which contains enclave management routine
code, C/C++ runtimes, and other auxiliary tools. A developer
needs to specify interfaces using Enclave Definition Language
(EDL) and generate bridge code for both the host application
and enclave. Subsequently, the host application and enclave
are compiled into two separate binaries. The host application
binary is a standard executable file depending on the OS,
for example, ELF (executable and linkable format) under the
Linux platform. The enclave binary image will be signed cryp-
tographically and the booted enclave instance can be attested
remotely, which means developers can verify the enclave’s
executing environment is trusted by querying Intel’s attestation
servers or their own ones. Those mechanisms ensure the
security of enclaves while transferring and loading. While
enclave creating, it is loaded into Enclave Page Cache (EPC),
which is in Processor Reserved Memory (PRM). The contents
of EPC memory are encrypted and can only be decrypted
within the CPU, which enforces the enclave security during
runtime, as Figure 1 shows.

SGX memory model and runtime routines: The memory
model of an SGX application differs from a standard user-
space program. As Figure 1 shows, the enclave shares the same
virtual address space with the host application during runtime.
The whole enclave, including its control structures, sensitive
data et al., is placed in a contiguous virtual memory space
named Enclave Linear Address Range (ELRANGE). The SGX
Enclave Control Structure (SECS) represents the identification
of each enclave, the number of Thread Control Structures
(TCS) decides the maximum number of concurrent threads
running at the same time. More importantly, the enclave holds
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Fig. 1: SGX memory model and runtime routines

its own stack and heap memory regions since the host memory
is untrusted and unprotected.

Although the host application and the enclave share the
same virtual address space, they do have several limitations
while accessing each other’s memory regions. An enclave
could access the whole host application’s memory, but could
not execute any code within the host memory. The host
application cannot access anything within enclave’s memory.
For the host application, EENTER and ERESUME instructions
are the only way to execute the code of enclave. All classical
subroutine instructions, like call or jump, will fail if the
target is within enclave.

SGX provides several instructions for enclave creation,
execution, and return and the Intel SGX SDK [4] wraps those
instructions into runtime routines to provide C-compatible
interfaces for developers. A developer needs to specify 2
sets of interfaces using Enclave Definition Language, named
enclave call (ECALL) and outside call (OCALL). As one
SGX application is split into two parts, host application,
and enclave, sgx_edger8r generates bridge code for them
according to EDL, named untrusted bridge (uBridge) and
trusted bridge (tBridge), respectively. The bridge functions
are wrapped interfaces that will be invoked by the host
application and enclave.

To be more specific, the host application firstly invokes the
uBridge function, then the untrusted runtime system (uRTS)
switches context and transfers control to the trusted runtime
system (tRTS) within the enclave. The tBridge will simply
check the input and pass all data to the real ECALL function if
valid. Similarly, enclave calls the tBridge firstly to execute
functions in the host application.

In summary, an SGX application has a special memory
model and highly relies on the routine provided by SDK to
manage its lifecycle and execute trusted code.

Enclave Interface Definition: As mentioned before, SGX
SDK will generate bridge code for both the host application
and enclave according to the EDL from the developer. More
specifically, the bridge code helps to transfer data between
enclave and the host application.

List 1 shows an example of an EDL file. Line 2 and
Line 8 indicate interfaces defined within the curly brackets

1 enclave {
2 trusted {
3 public int ecall_demo(
4 [in, count=10] int* arg1,
5 [out,size=arg3] char* arg2,
6 size_t arg3);
7 };
8 untrusted {
9 int ocall_demo([user_check] struct* arg1);

10 };
11 };

Listing 1: EDL Example

are ECALLs and OCALLs. Take the ECALL in Line 3 as
an example, its definition is based on C language function
declaration, plus with the attributes defined within square
brackets. Those attributes are the most important part of an
EDL definition, which indicates the direction and size of the
pointer parameter. It may be safe to pass a pointer as a
parameter in traditional programs, but that is not the case
for enclaves. Enclave can only use C language to declare
interfaces in EDL, and parameters only will be shallow copied,
which means for pointers, only the address value will be
passed into the enclave. The pointer still points to the untrusted
memory region belonging to the host application. It makes the
enclave prone to TOCTOU attacks if the pointer is used after
being checked without deep copy since content outside the
enclave can be modified by the untrusted host at any time.
One possible solution is to deep copy each pointer, which will
inevitably slow the execution due to a large number of memory
operations. As a result, Intel’s SGX SDK provides additional
attributes to handle pointers. Developers can determine the
size and direction of copied data. For ECALLs, attribute in
indicates that the pointed-to memory content needs to be
copied into the enclave and out for out to the enclave.
For OCALLs, attribute in means to copy buffer to the host
application’s memory and vice versa.

List 2 shows the bridge code of the ECALL from List 1
generated by SGX SDK, the listed code is simplified for better
understanding. The bridge code uses a generated structure
ms_ecall_t to pack data transferred between enclave and
the host application, including all parameters and the return
value. The uBridge (Line 9 to 17) packs data into structure
ms and calls uRTS function sgx_ecall to enter enclave.
The uRTS then executes EENTER instruction and passes the
pointer of ms to tRTS, followed by several tRTS routines,
and finally passes to the tBridge (Line 20-42). Next, the
tBridge performs a sanity check of the input data, shown
in Line 32 and will throw errors if failed. In the end, the
tBridge executes the real ECALL function (Line 41) from the
developer.

Additionally, the count attribute can be used to denote
the number of elements, which means the total copied bytes
are count * sizeof(*ptr). The EDL also supports
pointers with dynamic length, as Line 5 in List 1 shown.
The size of arg2 is dynamically determined by the value of

3



1 typedef struct ms_ecall_demo_t {
2 int ms_retval;
3 int* ms_arg1;
4 char* ms_arg2;
5 size_t ms_arg3;
6 } ms_ecall_demo_t;
7

8 /* Enclave_u.c */
9 sgx_status_t ecall_demo(sgx_enclave_id_t eid,

10 int* retval, int* arg1,
11 char* arg2, size_t arg3) {
12 // marshall inputs
13 ms_ecall_demo_t ms;
14 ms.ms_arg1 = arg1;
15 // call uRTS to enter enclave
16 sgx_ecall(eid, 0, &ocall_table_Enclave, &ms);
17 }
18

19 /* Enclave_t.c */
20 static sgx_status_t SGX_CDECL sgx_ecall_demo(
21 void*pms)
22 // check marshalled data outside enclave
23 CHECK_REF_POINTER(pms, sizeof(ms_ecall_demo_t)

);
24 // unmarshall inputs
25 ms_ecall_demo_t* ms =
26 SGX_CAST(ms_ecall_demo_t*, pms);
27 int* _tmp_arg1 = ms->ms_arg1;
28 size_t _len_arg1 = 10 * sizeof(int);
29 // check size
30 if (sizeof(*_tmp_arg1) != 0
31 && 10 > (SIZE_MAX / sizeof(*_tmp_arg1))) {
32 return SGX_ERROR_INVALID_PARAMETER; }
33 // check parameter 1 outside enclave
34 CHECK_UNIQUE_POINTER(_tmp_arg1, _len_arg1);
35 // allocate enclave memory
36 _in_arg1 = (int*)malloc(_len_arg1);
37 // copy data into enclave memory
38 memcpy_s(_in_arg1,_len_arg1,_tmp_arg1,

_len_arg1);
39 // call uRTS to execute the real ECALL

function
40 ms->ms_retval =
41 ecall_demo(_in_arg1,_in_arg2,_tmp_arg3);
42 }

Listing 2: Generated Bridge Code

arg3. For other complicated pointer types, such as structures
with nested pointers, the developer can explicitly state using
user_check attribute. This indicates that only the pointer
will be passed and developers need to perform manual checks,
otherwise will introduce potential security risk.

In summary, developers can use in or out to denote the
direction and specify the length of copied data using count
and size. Also, developers can use user_check and then
perform manual checks.

Intel SGX Software Development Kit (SDK): Besides
the above-mentioned bridge code, SGX SDK contains context
switch routines. While initializing an enclave, SGX SDK will
copy enclave code and data from the enclave image to EPC,
arrange the layout of enclave memory, measure the legality
of loaded code and data, and set metadata. Also, the SDK
needs to recover EPC and prune metadata while destroying an
enclave.

Specifically, SGX SDK executes EENTER and EEXIT

instructions while entering and exiting the enclave, which
costs about 3,800 and 3,300 cycles according to Eleos [5].
Moreover, SDK needs to clean the register status and per-
form context switches every time executing ECALL/OCALL
functions, as well as manage the separated enclave memory,
including both stack and heap. Such routines may tamper the
efficiency of fuzzing.

Additionally, the SDK generates a table g_ecall_table
that maps each ECALL function ID to its respective function
body, as well as ocall_table that maps OCALLs functions.
When the host applications makes an ECALL, it specifies the
ECALL’s function ID. The SGX runtime will use this ID to
look up the corresponding function pointer, and then call the
corresponding function inside the enclave and vice versa.

B. Finding Bugs Using Fuzzing Technique

Fuzzing is an efficient and automatic technique to discover
vulnerabilities in software. A naive fuzzer executes a Program
Under Test (PUT) with randomly generated data and observes
the execution status. AFL [6] utilizes code coverage as feed-
back to retain test cases that trigger new code as good seeds.
Tools like SanitizerCoverage [7] are widely used in fuzzing.
Subsequent works [8]–[11] improve the fuzzing process by
guiding fuzzers with data-flow feedback. To enable fuzzing
on targets with complex inputs, structure-aware fuzzing has
been proposed, which constructs well-formed data instead of
a buffer of raw bytes as test cases. Unstructured fuzzers have
to rely on brute force to bypass input validations or sanity
checks within PUT, while structure-aware fuzzer [12], [13]
could generate more valid inputs.

However, AFL-like fuzzers are unsuitable to fuzz API-based
targets, including library code, system calls, ECALLs of an
enclave and et al. A fuzz harness is needed to connect the fuzz
engine and the functions under test. A harness can be either
generated from templates or manually written. Syzkaller [14]
is a system call based fuzzer that uses pre-defined system call
templates to generate harness for the Linux kernel. Difuze [12]
and KSG [15] automatically extract system call interfaces and
generate templates to facilitate kernel fuzzing. LibFuzzer [16]
is a fuzzing engine to test user space library code and can
be easily linked to the target library with a manually written
harness. OSS-Fuzz project [17] from Google has already
found 28,000 bugs from 850 projects with libFuzzer and
harnesses from developers. Further, some researchers also
propose solutions to automatically generate fuzz harnesses.
FUDGE [18] tries to construct a harness from existing code
by code slicing. FuzzGen [19] automatically abstracts an API
dependence graph from libraries and then synthesizes the
harness for testing.

To efficiently detect bugs, fuzzing is often coordinated
with sanitizers. AddressSanitizer (ASan) [20] is one of the
most widely used sanitizers to detect commonly seen memory
corruption bugs, including stack/heap overflow, use-after-free
and et al. ASan instruments memory operations within the
target program, surround memory objects with red zone, and
constructs a shadow memory map to check if the visited mem-
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ory region is valid during runtime. Any memory operations on
the red zone will result in an ASan alert to notify potential
bugs. UBSan [21] can detect undefined behavior per C/C++
standards, and thread sanitizer [22] can detect data race bugs
in concurrent systems. In addition to ASan, fuzzing can also
be combined with other sanitizers [23]–[25] that can detect
various types of bugs. SGXBOUNDS [26] proposes a sanitizer
for SGX, which can detect out-of-bound bugs. However, it
only supports 32bit memory access, which greatly limits its
usage.

In order to fuzzing enclave, SGXFuzz [2] tries to recover
input structures from black-box enclave binaries and may
fail on complex structures. Also, SGXFuzz may generate
invalid test cases that fail to pass the sanity checks within the
enclave and thus wastes fuzzing time. Besides that, SGXFuzz
only focuses on a single dimension of input during fuzzing
process, which can lead to false negatives. FuzzSGX [3] shares
the same limitation with SGXFuzz that is not aware of the
boundary between trusted and untrusted memory and does not
consider untrusted memory access as an input dimension to
trigger TOCTOU. Moreover, both of them lack a sanitizer for
SGX-specific vulnerabilities.

Generally, there are three challenges that need to be ad-
dressed to perform efficient fuzzing on SGX enclaves.

1) Insufficient understanding of the input structures
and dimensions: Since SGX SDK encapsulates the
developer’s code and automatically adds sanity checks
for enclave inputs, a fuzzer without knowledge of the
exact input structure may waste time bypassing these
checks or might not even reach the developer’s code.
Also, the special communication pattern between the host
application and the enclave exposes new input dimension.

2) Limited Bug Oracle Capabilities: The effectiveness of
the fuzzing process greatly depends on bug oracles, which
check program execution states and identify potential
bugs. However, current solutions [26] can only detect lim-
ited types of vulnerabilities and overlook SGX-specific
ones.

3) Slow fuzzing process due to redundant management
routines: Each enclave contains redundant routine code
for memory management and context switching, which
hampers the efficiency of the fuzzing process.

III. DESIGN

To overcome the aforementioned challenges in fuzzing en-
claves, we propose a multi-dimension structure-aware fuzzing
framework EnclaveFuzz, with a fuzzing-optimized SGX SDK,
and an SGX-specific sanitizer, as Figure 2 shows.

EnclaveFuzz firstly extracts the security boundaries of en-
claves from EDL, then automatically generates a harness
for multi-dimension structure-aware fuzzing. Second, Enclave-
Fuzz provides an optimized SGX SDK to seamlessly build
enclave under test into a Virtual Enclave, which aims
to speed up fuzzing. Third, to detect more vulnerabilities,
EnclaveFuzz is embedded with a sanitizer to detect SGX-
specific vulnerabilities and commonly seen memory corruption
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Fig. 2: Overview of Enclave

TABLE I: Data flow direction of pointer parameters

Type Dir. Attr. Size Attr. Direction Bytes allocated

ECALL
IN Fixed:

size | count = val.

Dynamic:
size = param.
user_check

enter enclave " Fixed:
value specified

Dynamic:
runtime decided

OUT exit enclave %

OCALL
IN exit enclave %

OUT enter enclave "

bugs. Next, we elaborate on the design of each part in the
following subsections.

A. Multi-dimension Structure-aware Fuzzing

As there are sanity checks in the enclave trusted bridge,
such as memory range check, size check, etc., fuzzers that
directly feed random data may fail to pass those checks.

As Figure 2 shows, EnclaveFuzz firstly extracts the security
boundaries of the enclave, as described in the EDL file, by
analyzing attributes of the arguments and return values of
ECALLs and OCALLs. During the extraction process, En-
claveFuzz parses the EDL file per enclave to get basic type
information of each parameter and return value. For improved
structure-awareness, EnclaveFuzz iteratively analyzes nested
type, like pointer, structure and array. For opaque pointers,
EnclaveFuzz tries to search for a matched structure definition.

More importantly, EnclaveFuzz needs to determine how
those data will be transferred since the data flow between
the host application and the enclave can be directional. For
parameters passing by value, it is relatively straightforward
to determine the direction according to the type of interface,
parameters of ECALLs are copied into the enclave, while
return values of OCALLs are also copied into the enclave.

When dealing with pointer parameters, EnclaveFuzz utilizes
the direction attributes (in/out) in EDL. Specifically, En-
claveFuzz follows the rules from Table I to allocate data for
pointer parameters. Only pointers that will be deep copied into
the enclave are assigned data by EnclaveFuzz, as allocating
data that will not enter the enclave is meaningless. As for size,
EnclaveFuzz uses the explicitly defined value from EDL for
pointers with a fixed size. For pointers specified as size =
parameter, the length of copied data is dynamically deter-
mined by the value of parameter, and it forms a correlation
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between the pointer parameter and size parameter. In such
cases, EnclaveFuzz records the correlation of two parameters
and prepares the size parameter firstly, and then allocates
data accordingly during run-time.

A special case is user_check, as Line 9 from List 1
shown, which means only the pointer itself will be transferred
into the enclave. Under such circumstances, it is hard to infer
the direction and size needed from EDL since the developer
could use the pointer freely. EnclaveFuzz treats those pointers
as input since they are potential inputs of an enclave and
allocates data with a randomly generated count value. That
means totally count * sizeof(*ptr) bytes are prepared
for the parameter. Also, to test if the enclave is prone to
the null pointer dereference vulnerability, EnclaveFuzz also
passes the null value to pointer parameters with a manually
set probability.

More importantly, EnclaveFuzz needs to prepare data for
all three input dimensions: ECALL, OCALL, and untrusted
memory access. As for OCALLs, EnclaveFuzz employs a
hook-based strategy, which intercepts the return value of an
OCALL function and parameters used in the enclave. The
reason is that typically an enclave relies on the OCALL
function to interact with the untrusted OS, and may check data
from OCALLs. The randomly generated data may make those
checks fail and thus make the fuzzer incapable of exploring
deeper code. As the host application and the enclave share
the same virtual process memory, there is a chance that the
enclave directly loads data from the untrusted host memory
regions. EnclaveFuzz alters specific host memory addresses
that reported by the TOCTOU sanitizer to trigger potential
bugs.

In summary, EnclaveFuzz extracts the security boundary
from EDL and automatically generates a structure-aware
fuzzing harness, which feeds data from all three input dimen-
sions to test the target enclave.

B. Fuzzing-optimized SGX SDK and Virtual Enclave

As aforementioned, an enclave runs within the same virtual
process memory as the application on the host while holding
its own stack and heap. To make it possible, SGX SDK needs
to manage the isolated memory and switch contexts while
entering and leaving the enclave, which inevitably slows down
the fuzzing. Such a special memory layout is optimal for
hardware enclaves since the enclave must be placed within
the separated EPC memory to protect sensitive information.
However, such a design is unnecessary for fuzzing and the
management routines also slow down the fuzzing. To eliminate
redundant routines and speed up fuzzing, EnclaveFuzz pro-
vides a fuzzing-optimized SGX SDK that packs tBridge code
as well as the enclave code from the developer into a standard
shared library (.so), named Virtual Enclave, shown in
Figure 3(a). Since the fuzzing-optimized SGX SDK does not
rely on any SGX hardware instructions, EnclaveFuzz can test
enclaves without specific hardware requirements.

Specifically, EnclaveFuzz utilizes one bit from the shadow
map used by SGX-specific sanitizer to distinguish host mem-

ory and enclave memory within the same heap and stack mem-
ory regions. With the help of such a design, there is no need
to manage isolated memory regions, enabling faster creation
and destruction of Virtual Enclaves. More importantly,
EnclaveFuzz does not execute any expensive context switch
routines while entering and leaving the enclave, which directly
looks up the function tables and transfers the control flow
to the corresponding code. The tBridge is retained in the
Virtual Enclave, as it contains sanity checks generated
from EDL and may lead to false positives if removed.

In summary, the Virtual Enclave shares the same
heap and stack with the host application (fuzzer) and Enclave-
Fuzz relies on shadow maps to distinguish between them.

C. Vulnerability Detection

A well-designed sanitizer could save a lot of human effort
to analyze crashes and identify the root causes of bugs, as well
as report vulnerabilities that do not trigger crashes. However,
previous work [26] has several limitations, supporting only
32-bit memory space and incapable of detecting SGX-specific
vulnerabilities.

EnclaveFuzz provides a sanitizer that supports four types of
vulnerabilities, as shown in Figure 3(b). In general, Enclave-
Fuzz supports detecting both memory corruption bugs and
SGX-specific vulnerabilities, which are out-of-bound memory
access, dangling pointer dereference, null pointer dereference
and TOCTOU. We elaborate on the policies used to detect
each type of vulnerability in the following subsections.

Detect out-of-bound and dangling pointer dereference.
EnclaveFuzz follows a similar design with ASan to detect
memory corruption bugs, which utilizes a shadow map and
red zones to detect invalid memory access. EnclaveFuzz also
utilizes an 8-bit shadow memory to record memory allocation
status and checks during memory access operations. Besides,
EnclaveFuzz uses the higher bit of the shadow byte to differen-
tiate between the memory associated with the host application
and that of the enclave.

Detect null pointer dereference. As null pointer deref-
erences in a regular program typically results in undefined
behavior, developers may consider it as a bug rather than a
vulnerability. However, the zero address is under the control
of the untrusted OS and can be mapped to place malicious
content. To detect such a problem, EnclaveFuzz marks the
zero address page inaccessible as a guard page and registers
a signal handler to report any zero address access.

Detect TOCTOU vulnerability. Time-of-Check-Time-of-
Use (TOCTOU) is a temporal flaw often originating from race
conditions in multi-process programs. Existing solutions [27]–
[30] focus on identifying race conditions that operate on the
same memory and rely on task scheduling to trigger potential
TOCTOU bugs, overlooking the issue of untrusted memory
access in SGX applications. Midas [31] mitigates double-fetch
bugs in system-calls via a snapshot-based strategy which does
not work for SGX applications since OS is untrusted.

However, the unique threat model of SGX applications
makes such vulnerability more commonly seen in enclaves.
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The reason is that the attacker is assumed to control the
whole untrusted memory, as well as manipulate the OS’s
thread scheduling. For an enclave, any direct use of host
memory within checks may lead to security concerns. To
detect TOCTOU, EnclaveFuzz performs a two-stage analy-
sis. Firstly, we perform compile time analysis. EnclaveFuzz
collects all load instructions and utilizes define-use chains
to determine if a load instruction could be used by a sub-
sequent compare instruction. If so, those load instructions
are marked as comparison-loads. Secondly, at run-time, En-
claveFuzz hooks all load instructions and maintains a FIFO
queue to record memory addresses visited by comparison-
loads. When other load instructions are executed, EnclaveFuzz
checks for any overlapping between the visited address and
those recorded in the queue. Any overlaps are considered as a
potential TOCTOU vulnerability. More importantly, to validate
those potential bugs, EnclaveFuzz employs a fuzzing strat-
egy. Specifically, EnclaveFuzz checks whether the overlapped
address belongs to the untrusted host application’s memory
region and mutates its value if so before the second load
instruction executed.

IV. IMPLEMENTATION

The software architecture of EnclaveFuzz is shown in
Figure 4. In the pre-processing stage, EnclaveFuzz analyzes
both the EDL file and the source code to extract the security
boundary and type information, and then generates the har-

ness including ECALL wrappers and OCALL hook functions.
During fuzzing run-time, the fuzzer loads the enclave as a
dynamic shared library and provides data for all three input
dimensions of the enclave. We will open-source EnclaveFuzz*

to facilitate further research in this domain.

A. Pre-process

Modified sgx_edger8r To accurately extract security
boundary information of an enclave from the EDL, we
extended the Intel SGX Edger8r tool (sgx_edger8r) to
analyze both the EDL and source code to gather attributes
of both ECALLs and OCALLs, including the type information,
nested type, size, direction, the correlation between arguments,
as well as array dimensions.

Opaque Type Recovery As developers can declare and
use incomplete types (e.g. typedef struct Struct*
StructPtr;) in ECALLs, making it impossible to extract
structure layout information directly from these interface. To
address this, EnclaveFuzz uses an LLVM IR pass to extract all
structure layouts from the enclave source code during compile-
time. The host application(fuzzer) then queries these results
when encountering an opaque pointer to get the layout of the
pointed structure.

Harness Generator We implemented an LLVM IR Pass to
generate the harness for fuzzing, including ECALL wrappers
and OCALL hooks. EnclaveFuzz firstly creates a function

*https://github.com/LeoneChen/EnclaveFuzz

7



declaration in IR and then inserts instructions to prepare
data for a specific interface. For parameters with basic type,
EnclaveFuzz allocates as much data as the size of the type.
For structures, EnclaveFuzz recursively allocates data for each
field of the structure, where the maximum recursion depth can
be set by the user. As for opaque data types, EnclaveFuzz
utilizes saved opaque type information and attempts to match
them by name. Additionally, EnclaveFuzz provides the option
to specify a probability to modify the return value of OCALL.

B. libFuzzer

We used libFuzzer as fuzz engine. In the fuzz loop,
EnclaveFuzz begins by using dlopen to create a Virtual
Enclave and then tests enclave interfaces within the gen-
erated harness. The ECALL wrapper retrieves data from the
data provider run-time and subsequently invokes the ECALLs.
This process includes input packing in uBridge, function
table lookup, and finally entering the Virtual Enclave.
The OCALL hooks are executed when the enclave makes
OCALLs to modify return values. Last, EnclaveFuzz calls
dlclose to destroy Virtual Enclave and unmap its
memory. This step ensures that the start of each fuzz round is
stateless and deterministic, which is crucial for reproducing
crashes. We constructed data provider run-time based on
LLVM FuzzedDataProvider to generate structure-aware
inputs. As enclave can access host memory, EnclaveFuzz
instruments load instructions and relies on the data provider to
generate data to manipulate untrusted memory region, guided
by the TOCTOU sanitizer.

C. Virtual Enclave

We developed a fuzzing-optimized SGX SDK to construct
a Virtual Enclave. The SDK is based on Intel SGX
SDK simulation mode but eliminates isolated enclave memory
management, context switches, and internal state management.
Instead, it incorporates standard shared library creation and
destruction procedures, along with function table lookup for
entering and exiting Virtual Enclave. The rest of the
SGX SDK remains unchanged to ensure compatibility and
consistency.

The optimized SDK has the same interface abstraction
as Intel’s SDK, the user only needs to modify the build
system, such as the Makefile, to link SGX applications with
the optimized SDK, then recompile their project to apply
EnclaveFuzz.

In addition, we implement a sanitizer of EnclaveFuzz
named SGXSan to detect the vulnerabilities aforementioned.
We made modifications to the AddressSanitizer LLVM pass
and developed a sanitizer run-time to perform out-of-bound,
dangling pointer dereference checks within the Virtual
Enclave. As for TOCTOU, EnclaveFuzz analyzes load and
compare instructions and then instruments load instructions
to perform untrusted memory mutation during run-time. To
distinguish between memory associated with the enclave and
the host application, we redesigned the layout of the shadow

byte in ASan, which utilizes the higher bit of the shadow byte
to mark memory ownership.

V. EVALUATION

In this section, we evaluated EnclaveFuzz on real-world
SGX applications to answer the following research questions:

• RQ1: Can EnclaveFuzz find new vulnerabilities from real-
world enclaves, especially for SGX specific vulnerabili-
ties, like TOCTOU or null pointer Dereference?

• RQ2: Does the structure-aware fuzzing strategy contribute
to code coverage improvement? Specifically, can Enclave-
Fuzz generate more valid inputs to pass the sanity checks
and explore more unique code than existing tools?

• RQ3: Does the multi-dimension inputs contribute to trig-
ger more bugs?

• RQ4 Does the optimized SDK increase the speed of
fuzzing enclaves?

• RQ5: What is the overhead of the sanitizer?

A. Evaluation Setup

1) Target Enclaves: We select 20 open-sourced SGX appli-
cations from both Intel and third-party developers. The chosen
applications have a wide range of functionalities and complex-
ities to provide a comprehensive and diverse evaluation of our
solution. The specific applications used in the evaluation are
detailed in Table II, both the number of ECall and basic
blocks of each enclave are listed to help understand the scale
and complexity of tested applications. Also, we include the
specific version used for evaluation.

2) Experiment Setup: We conducted evaluation using a
server equipped with an Intel Xeon(R) 8358 CPU and 1024GB
of RAM. Each enclave was tested for a duration of 24 CPU
core hours and the experiment was repeated three times. The
evaluation started with an empty seed and each fuzzing process
is bind to a single CPU core per target.

B. Vulnerability Findings in Real-world Enclaves

1) Overall Result: In summary, EnclaveFuzz reported hun-
dreds of crashes among 14 enclaves during test. Since a single
bug can potentially cause multiple crashes, it was necessary
to deduplicate these crashes. We deduplicated crashes by
comparing the PC value, stack trace, and error message from
sanitizer and then carried out a manual analysis of the unique
crashes. Through this analysis, we were able to identify a
total of 162 distinct bugs. Table III shows detailed information
about bugs found by EnclaveFuzz.

A significant number of vulnerabilities were discovered in
TaLoS [40], which ports libressl [49] into enclave and expo-
sures 207 ECALL interfaces to the host application. However,
it annotates most of the pointer parameters of ECALL and
OCALL as user_check and thus the SGX SDK does not
generate any sanity checks for those pointers. But only few
security checks are implemented by the developer and thus
results in a huge number of bugs.

Among all bugs detected by EnclaveFuzz, null-pointer
dereference and TOCTOU contributes the most cases, we
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TABLE II: Target Enclaves

Enclave Version #ECALLs #BBs Publisher #Bugs

intel-sgx-ssl [32] c2c75f 2 86k Intel 1†+ 2‡

Launch Enclave (LE) [33] 8abc6d 2 4.6k Intel 0
Prov.Cert.Enclave
(PCE) [33]

8abc6d 3 6.8k Intel 0

Prov.Enclave (PVE) [33] 8abc6d 4 10.5k Intel 0
Quoting Enclave (QE) [33] 8abc6d 2 10.1k Intel 0
ehsm [34] 190b9a 32 89k Intel 11†+ 1‡

trusted-function-
framework [35]

1c5ab9 3 116k Ant
Group

3*

wasm-micro-runtime [36] 5fb511 2 32k Bytecode
Alliance

15†+ 1‡

wolfssl [37] 2b670c 22 33k wolfssl 0
sgxwallet [38] 22d6c9 22 9.9k SKALE

Network
3†

SGX SQLite [39] c470f0 3 33k 3rd party 3*

TaLoS [40] 9c9599 207 75k 3rd party 96*

mbedtls-SGX [41] eab8e3 6 30k 3rd party 4*

sgx-wallet [42] 8d15df 5 3.5k 3rd party 10♯

sgx-dnet [43] 0fe09c 3 6.6k 3rd party 2*

plinius [44] a25162 3 3rd party 2*

BiORAM-SGX [45] d86dab 10 10k 3rd party 2*

bolos enclave [46] 573464 10 18k 3rd party 0
SGXCryptoFile [47] 92f3cd 2 2.8k 3rd party 2*

sgx-reencrypt [48] 6f0659 5 4.6k 3rd party 4*

Total 162

* reported to developers
† already confirmed by developers
‡ already fixed by developers
♯ project has been archived, bugs cannot be submitted

believe this trend indicates a general lack of awareness among
developers regarding the unique security assumptions of SGX,
especially when handling pointers that across the enclave
security boundaries. This underscores the importance of both
a comprehensive understanding of security boundaries and
an automatic detection tool to catch those bugs before they
become a part of the production codebase.

Additionally, to compare the bug detection capabilities of
EnclaveFuzz with the current state-of-the-art SGX fuzzing
tool, SGXFuzz, we conducted a 24-hour experiment. We
used the default setting shipped with SGXFuzz and also
deduplicated crashes using its own analysis script. The results
are listed in Table IV.

The results show that EnclaveFuzz can find vulnerabilities
from real-world enclaves. More importantly, EnclaveFuzz suc-
cessfully found SGX-specific vulnerabilities and commonly
seen memory corruption bugs.

2) Responsible Disclosure: When we detect and manually
verify a bug, we follow a 90-day disclosure period and notify
the affected vendor through email or repository issues. The
detailed disclosure status is listed in Table II.

3) Case Study: Next, we elaborate on several bugs to show
the effectiveness of EnclaveFuzz.

Case Study 1: Stack Overflow in SGX SQLite As
List 3 shows, a stack variable zDbHeader is allocated
by sqlite3BtreeIoeb and used in unixRead. And
the value of variable got comes from untrusted OCALL
osRead. An attacker could manipulate the return value of
seekAndRead to trigger a stack overflow.

Case Study 2: Double Fetch in TaLoS List 4 demonstrates

1 SQLITE_PRIVATE int sqlite3BtreeOpen(...) {
2 unsigned char zDbHeader[100];
3 rc = sqlite3PagerReadFileheader(...,zDbHeader);
4 //unixRead is called, zDbHeader is passed to pBuf
5 }
6 static int unixRead(..., void *pBuf, ...) {
7 got = seekAndRead(...);
8 memset(&((char*)pBuf)[got],0,amt-got);//overflow
9 }

10 static int seekAndRead(...) {
11 // OCALL to get got from host
12 got = osRead(id->h, pBuf, cnt);
13 return got;
14 }

Listing 3: Stack Overflow in SGX SQLite

1 // EDL: public void ecall_EVP_MD_CTX_destroy(
2 // [user_check] EVP_MD_CTX *ctx);
3 void ecall_EVP_MD_CTX_destroy(EVP_MD_CTX *ctx) {
4 return EVP_MD_CTX_destroy(ctx);
5 /*ctx is annotated as user_check, thus only the

pointer itself will be copied into enclave*/
6 // call EVP_MD_CTX_cleanup
7 }
8 int EVP_MD_CTX_cleanup(EVP_MD_CTX *ctx) {
9 if (ctx->digest && ctx->digest->cleanup && ...)

10 ctx->digest->cleanup(ctx);
11 }

Listing 4: Double Fetch in TaLoS

a classic double fetch bug in SGX, where a user_check
pointer parameter, ctx, is sourced from the untrusted host
without properly deep-copying its content. Specifically, an
attack can alter ctx->digest its initial verification but prior
to the subsequent check on Line 9, leading to a potential crash.
Moreover, an attacker can manipulate ctx->digest after
both checks on Line 9 but before the function invocation on
Line 10 to hijack the control-flow.

Case Study 3: Use After Free in mbedtls-SGX An
ECALL ssl_conn_teardown can be used to destroy the
handler. The vulnerable class, TLSConnectionHandler,
incorporates a destructor that executes mbedtls_pk_free.
If an attacker invokes the ECALL consecutively, the
connectionHandler is freed during the first invocation.
On the second invocation, the destructor will be called, which
accesses ctx->pk_info, resulting in a use-after-free bug.

C. Input Validity and Code Coverage

As discussed earlier, the bridge code generated by the SGX
SDK includes sanity checks that reject invalid inputs. It is a
waste of time if the inputs never reach the developer’s enclave
code under test. Also, it is meaningless to simply remove these
sanity checks during fuzzing, which will introduce a significant
number of false positives. To verify if the input generated
by our fuzzer could pass sanity checks and eventually be
processed by the developer’s enclave code, we instrumented
the target enclaves to include a log function at the beginning
of each ECALL function. As for SGXFuzz, which runs the
enclave within a minimal Linux environment nested in a
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1 class TLSConnectionHandler { // vulnerable class
2 private:
3 mbedtls_pk_context pkey;
4 public:
5 ˜TLSConnectionHandler( mbedtls_pk_free(&pkey)

);
6 }
7 void ssl_conn_teardown(void){ // ECALL
8 delete connectionHandler; // free
9 }

10 void mbedtls_pk_free( mbedtls_pk_context *ctx ) {
11 if( ctx == NULL ctx->pk_info == NULL ) // use
12 return;
13 }

Listing 5: Use After Free in mbedtls-SGX

TABLE III: Vulnerabilities and Bugs found by EnclaveFuzz

Type Enclave #Bugs Total

Null-Pointer Dereference

sgx-wallet 7

68

intel-sgx-ssl 1
mbedtls-SGX 2

TaLoS 44
sgx-dnet 1
plinius 1

sgxwallet 2
sgx-reencrypt 4

trusted-function-framework 1
wasm-micro-runtim 4

BiORAM-SGX 1

Use After Free
intel-sgx-ssl 2

6SGX SQLite 2
mbedtls-SGX 2

TOCTOU TaLoS 37 38wasm-micro-runtim 1

Stack Overflow

SGX SQLite 1

5ehsm 1
BiORAM-SGX 1
SGXCryptoFile 2

Heap Overflow

sgx-wallet 3

18
TaLoS 2

sgxwallet 1
ehsm 11

wasm-micro-runtim 1

Int Overflow
TaLoS 13

15sgx-dnet 1
plinius 1

Arbitrarily Read/Write/Execute trusted-function-framework 1 11wasm-micro-runtim 10

Unchecked Size trusted-function-framework 1 1

Total 14 Apps 162

QEMU-emulated machine, we leveraged hprintf (hypercall
printf) to log tested ECALL functions to the serial output of
QEMU. In both cases, if any sanity check fails, execution
terminates before reaching the ECALL function, thereby not
generating the corresponding log messages. In the end, we
used scripts to calculate how many times such log mes-
sages occurred and then divided by the total execution times
recorded by fuzzer engines to get the successful execution rate
of ECALLs. Table IV shows the detailed results, and all values
presented in the table are arithmetic averages of three repeated
experiments. For SGXFuzz, there is a significant proportion of
cases in which the input does not even enter the enclave. In

1 public void sgxDecryptFile(
2 [in,size=len] unsigned char *encMessageIn,
3 size_t len,
4 [out,size=lenOut] unsigned char *decMessageOut,
5 size_t lenOut);

Listing 6: Interface with multiple-sized parameters from
SGXCryptoFile

contrast, the input from EnclaveFuzz manages to enter the
enclave almost every time. We manually analyze cases from
SGXCryptoFile and find that SGXFuzz infers the wrong
size on interfaces that have multiple-sized parameters, shown
in List 6. We consider it cannot determine whether len is the
size of encMessageIn or decMessageOut and thus infer
the wrong size.

In addition to the success rate experiments, we also con-
ducted experiments to evaluate if EnclaveFuzz could cover
more code blocks compared with the existing solution, SGX-
Fuzz. As an enclave binary contains not only the code from
developers but also the SGX SDK, including the trusted
bridge code, memory management routines, etc., it may not
be enough to perform a comprehensive evaluation to com-
pare only the coverage of the whole enclave. In addition,
we presented three metrics of coverage evaluation results,
enclave coverage, effectiveness, and interesting coverage to
demonstrate the code coverage performance of EnclaveFuzz,
listed in Table IV.

Enclave coverage indicates total coverage of enclave binary,
which includes SGX SDK. The formula is shown as follows:

EnclaveCoverage =
BB′

SDK +BB′
Developer

BBSDK +BBDeveloper

BB′
Developer indicates covered basic blocks belong to the

developer’s enclave code, BB′
SDK indicates covered basic

blocks belong to SGX SDK, BBDeveloper indicates all basic
blocks belong to developer’s enclave code, and BBSDK

indicates all basic blocks belong to SGX SDK.
In addition to enclave coverage, we also introduce a new

measurement metric, indicated as effectiveness, which is cal-
culated as the proportion of covered code blocks within the
developer’s enclave code relative to all covered code. The
formula is shown as follows:

Effectiveness =
BB′

Developer

BB′
SDK +BB′

Developer

Effectiveness could illuminate how much of the fuzzer
attention is paid to explore the developer’s enclave code, which
is the primary area of interest.

Lastly, we use interesting coverage to denote the coverage
of the developer’s enclave code specifically. The formula is
shown as follows:

InterestingCoverage =
BB′

Developer

BBDeveloper

This measure provides a clearer picture of how effectively our
testing solution is at testing developer’s code.
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TABLE IV: Experiment Results

Enclave Name
Code Coverage1

Input Validity Bug FindingsEnclave Cov. Interesting Cov. Effectiveness
SGXFuzz EnclaveFuzz SGXFuzz EnclaveFuzz SGXFuzz EnclaveFuzz SGXFuzz EnclaveFuzz SGXFuzz EnclaveFuzz

intel-sgx-ssl 0.75% 18.04% 0.02% 18.39% 1.66% 99.66% 0% 100% 0 3
AE LE 3.85% 11.67% 14.29% 32.08% 1.98% 15.25% 26.89% 100% 0 0

AE PCE 4.10% 13.94% 22.53% 45.34% 3.49% 15.30% 17.48% 100% 0 0
AE PVE 2.36% 8.63% 10.05% 16.95% 6.32% 22.62% 33.15% 100% 0 0
AE QE 2.64% 3.20% 13.23% 6.68% 3.60% 16.13% 5.52% 100% 0 0

SGX SQLite 2.39% 6.78% 1.45% 7.20% 26.64% 99.96% 30.39% 100% 0 3
TaLoS 5.86% 9.78% 4.66% 10.00% 36.56% 99.58% 53.50% 100% 90 96

mbedtls-SGX 6.54% 30.64% 8.16% 32.64% 53.68% 99.66% 21.23% 100% 1 4
wolfssl 3.64% 42.44% 0.38% 45.00% 7.72% 99.78% 38.27% 99.99% 0 0

sgx-wallet 8.52% 33.10% 12.68% 79.39% 1.42% 39.72% 30.06% 99.99% 1 10
sgx-dnet 5.64% 0.97% 1.13% 0.51% 7.00% 34.92% 69.15% 100% 2 2
plinius 3.07% 2.24% 1.10% 2.19% 7.41% 73.47% 68.41% 100% 2 2

sgxwallet 6.33% 51.81% 7.21% 43.50% 7.74% 25.44% 20.74% 100% 2 3
BiORAM-SGX 4.30% 17.95% 0.55% 1.08% 5.45% 1.66% 48.43% 82.95% 0 2
bolos-enclave 6.71% 7.85% 1.17% 0.48% 4.86% 4.01% 40.10% 84.09% 0 0

ehsm 3.69% 16.91% 3.81% 15.00% 76.97% 81.60% 0% 91.79% 0 12
sgx-reencrypt 8.60% 33.31% 14.92% 31.26% 20.26% 28.26% 84.38% 100.00% 2 4

SGXCryptoFile 5.85% 17.62% 15.04% 80.56% 4.15% 5.88% 0% 100.00% 0 2
trusted-function-frame 2.53% 1.97% 2.13% 1.53% 75.64% 75.22% 0% 100.00% 0 3
wasm-micro-runtime 3.95% 1.67% 2.08% 0.94% 32.64% 46.04% 78.04% 100.00% 5 15

average 4.57% 16.53% 6.83% 23.54% 19.26% 49.21% 33.29% 97.94% 5.25 8.05
1 For SGXFuzz, the coverage is gathered by the Ghidra script shipped with kAFL fuzzer.

For EnclaveFuzz, the coverage is collected by clang’s source-based code coverage feature [50].

To gather the necessary data for these metrics, for En-
claveFuzz, we utilized the llvm-cov tool to display the
basic block coverage per file and then calculated effectiveness
and interesting coverage. On the other hand, SGXFuzz is a
binary fuzzer and incompatible with LLVM’s coverage tool,
we turned to collect coverage information from the execution
traces generated by the fuzzer via Intel Processor Trace (PT).
And then, we modified the analysis scripts shipped with
SGXFuzz to calculate effectiveness and interesting coverage.

In Table IV, the effectiveness of EnclaveFuzz is higher than
SGXFuzz on most of enclaves, indicating EnclaveFuzz wastes
less time testing SGX SDK. In interesting coverage, Enclave-
Fuzz covers more developer’s enclave code than SGXFuzz
in most applications, but for sgx-dnet [43], plinius [44] and
BiORAM-SGX [45], both fuzzers showed poor performance
on code coverage. We manually reviewed those enclaves’
sources and tried to find out the reason. Sgx-dnet is an
SGX ported version of a machine learning library Darknet,
which can be used to train or test neural networks. All three
exposed ECALLs from sgx-dnet take complicated structures
as input. For example, the first input of ecall_classify
takes a user_check double-linked list and the third input
is structural image data, which makes both fuzzers hard to
recover the input structure. The coverage over time graphs are
placed in Appendix A.

D. Multi-dimension Inputs

As aforementioned, the input dimension of an enclave
includes not only the arguments of ECALL functions but also
returns values of OCALL functions and untrusted memory
access. Under the attack model of SGX, an attacker is capable
to take control of all three input dimensions to perform attacks.

TABLE V: Ablation Study: sanitizer & multi-dimension inputs

Enclave Name EnclaveFuzz Fuzzer NoSan Fuzzer 1D

unique crashes generated during experiments

intel-sgx-ssl 3 2 2
AE LE 0 0 0

AE PCE 0 0 0
AE PVE 0 0 0
AE QE 0 0 0

SGX SQLite 3 0 2
TaLoS 96 76 59

mbedtls-SGX 4 1 3
wolfssl 0 0 0

sgx-wallet 10 5 6
sgx-dnet 2 1 1
plinius 2 1 1

sgxwallet 3 1 1
BiORAM-SGX 2 2 2
bolos-enclave 0 0 0

ehsm 12 0 11
sgx-reencrypt 4 2 4

SGXCryptoFile 2 2 2
trusted-function-frame 3 3 3
wasm-micro-runtime 16 13 13

Total 162 109 110

Consequently, an effective fuzzing tool needs to evaluate all
possible input vectors. To evaluate the effectiveness of multi-
dimension inputs from EnclaveFuzz, we conducted an ablation
study. This experiment sets up a one-dimension fuzzer, named
Fuzzer_1D, which only generates inputs for ECALL func-
tions, while keeping all other aspects of the system constant.
The results are presented in Table V, which proves that multi-
dimension inputs is helpful to find bugs. Specifically, input
for untrusted memory access is necessary to trigger and detect
potential TOCTOU bugs.
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TABLE VI: Ablation Study: fuzzing-optimized SDK

Enclave Name EnclaveFuzz-
SIM

EnclaveFuzz-
HW

EnclaveFuzz
(Opt.SDK)

ECALLs executed in 24 hours

intel-sgx-ssl 18K 217 19K
AE LE 155M 63M 454M

AE PCE 153M 58M 483M
AE PVE 123M 44M 11M
AE QE 42M 27M 50M

SGX SQLite 40M 15M 160M
TaLoS 448K 194K 120K

mbedtls-SGX 1M 122K 1M
wolfssl 370K 17K 23K

sgx-wallet 86M 21M 137M
sgx-dnet 354k 94k 504k
plinius 71k 54k 501k

sgxwallet 430k 218k 1.9M
BiORAM-SGX 1M 26K 9M
bolos-enclave 96M 30M 505M

ehsm 227K 163K 212K
sgx-reencrypt 14M 10M 15M

SGXCryptoFile 2M 467K 18M
trusted-function-frame 13M 3M 3M
wasm-micro-runtime 4M 1M 40M

Speedup rate 2.67× 1× 6.91×

TABLE VII: Optimized SDK Performance

Item Opt.SDK Sim w. HW w. Sim. HW.

1K Create 0.14s 1.89s 28.27s 1.50s 25.63s
1K Destroy 0.11s 0.46s 1.38s 0.39s 1.06s
5M ECALL 0.46s 22.89s 34.30s 16.04s 25.49s
5M SwitchlessE-
CALL

0.46s 1.46s 1.41s 1.28s 1.59s

5M OCALL 0.05s 3.45s 11.40s 3.37s 12.05s
5M SwitchlessO-
CALL

0.06s 3.06s 4.62s 1.38s 1.42s

E. Fuzzing-optimized SGX SDK

To verify if the fuzzing-optimized SGX SDK helps to speed
up fuzzing, we conducted an ablation study.

Firstly, we evaluated performance differences in creating
and destroying enclave as well as ECALL and OCALL which
contain an empty payload, in order to evaluate how much can
fuzzing-optimized SDK speed up basic operations.

In Table VII, we evaluated the performance of basic op-
erations run on five modes. Since fuzzing-optimized SGX
SDK still relies on shadow map to determine whether the
memory is located in enclave, for the purpose of fairness,
we modify EnclaveFuzz and run enclave in both simulation
mode and hardware mode Intel SGX SDK with a sanitizer
that has same functionality as control groups, and also choose
simulation mode and hardware mode Intel SGX SDK without
sanitizer as another control groups. We found Intel SGX
SDK simulation mode is faster than the hardware mode in
creating and destroying enclave as well as ordinary ECALL
and OCALL, but about the same in switchless ECALL and
OCALL. Besides, Intel SGX SDK with sanitizer runs slower
than without sanitizer. Importantly, fuzzing-optimized SGX
SDK ran far faster than others in all basic operations.

In order to evaluate how much can fuzzing-optimized SGX

SDK speed up fuzzing, we statistic number of ECALLs
executed in 24 hour on real world SGX applications. Ac-
cording to Table VI, EnclaveFuzz-SIM run 2.67× faster
than EnclaveFuzz-HW, and EnclaveFuzz(Opt.SDK) run 6.91×
faster than EnclaveFuzz-HW. In some special enclave, En-
claveFuzz(Opt.SDK) can run slower than EnclaveFuzz-SIM,
it’s due to these enclaves often need OCALL to get untrusted
time and check if a period of time has elapsed, since time can
be input with random data, then enclave may always find time
not expired in a loop.

In order to prove fuzzing-optimized SGX SDK is correct
in functionality, we test it with Intel SGXSSL test routine,
and Wolfssl benchmark, and finally show it’s correctness. All
crash inputs found by EnclaveFuzz with optimized SDK is
reproducible in EnclaveFuzz hardware mode.

F. Sanitizer Overhead

As Figure 5 shows, we evaluated EnclaveFuzz on the
WolfSSL benchmark. SGX version benchmark result is similar
to the non-SGX version, SGXSan cost an extra 68.07% which
is similar to ASan’s 48.22%.

VI. DISCUSSION

A. Future Work

1) Support more SDK: Those make it possible to extract
security boundaries from more applications relying on dif-
ferent SDKs and generate harnesses for fuzzing. The imple-
mentation of EnclaveFuzz is currently related to the official
Intel SGX SDK. Besides that, many third-party SGX SDKs
have been published, like Microsoft OpenEnclave [51] and
Google Asylo [52]. These SDKs, while being unique in their
implementation, share a common design philosophy, making
them potential targets for future integration with EnclaveFuzz.
For instance, Asylo uses the same tool (edger8r) as Intel
SDK to generate bridge code for enclaves and provides remote
procedure calls (RPCs) for top-level applications, while Ope-
nEnclave offers a similar tool (oeedger8r) for the same
purpose. Our future plans include extending EnclaveFuzz’s
capabilities to harness these SDKs and generate effective
fuzzing schemes.

2) Explore deeper code: Although EnclaveFuzz outper-
forms the current solution, there is still room for improvement.
EnclaveFuzz primarily focuses on the interfaces to extract
input structures. Meanwhile, an area of potential enhance-
ment is in the deeper exploration of both enclave code and
application code. These codes may contain valuable constraint
information that can guide the generation of more meaningful
inputs, enabling EnclaveFuzz to investigate deeper layers of
code and uncover more intricate or elusive bugs.

B. Limitation

The reliability of the optimized SGX SDK may lead to
false positives. To accelerate the fuzzing process as more as
possible, EnclaveFuzz only simulates the necessary control
structures required to make the Virtual Enclave work,
such as the thread control structure (TCS) used for concurrent
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Fig. 5: WolfSSL Benchmark Results

1 sgx_status_t sgx_create_report(
2 const sgx_target_info_t *target_info,
3 const sgx_report_data_t *report_data,
4 sgx_report_t *report) {
5 /* call EREPORT Instruction */
6 }

Listing 7: SGX Instruction Wrapper Functions

executions within an enclave. However, some SGX function-
alities may depend on structures that are not yet supported by
EnclaveFuzz or are even impractical to simulate. For instance,
List 7 shows an example of a wrapper function from SGX
SDK, which actually wraps an SGX hardware instruction that
can be used to verify the authenticity of enclave. EnclaveFuzz
is incapable and unnecessary to simulate such functions. How-
ever, the developer may use sgx_verify_report to verify
the report and abort execution if failed. To make fuzz run
continuously, EnclaveFuzz patches sgx_verify_report
and always return true. That breaks the security mechanism
of SGX and may lead to false positive results.

C. Related Work

1) Fuzzing enclaves: Several works have applied fuzzing
to find bugs within enclaves. SGXFuzz [2] targets enclave
binaries and applies a binary fuzzer [53] with snapshot sup-
ported [54], [55], which tries to recover the expected layout
of input incrementally with the feedback information from
page faults but may fail on some targets with multiple-sized
parameters as aforementioned. Also, SGXFuzz can only detect
specific types of vulnerabilities due to the lack of sanitizers
for the enclave binary.

FuzzSGX [3] generates mutated host applications to test
the enclaves, which incorporates program(C/C++) mutations
within the fuzzing loop, leading to considerable overheads.
The lack of untrusted memory input as well as SGX-specific
sanitizer also limits its capability to uncover more bugs. More
importantly, FuzzSGX still runs in simulation mode, which
includes redundant routines detrimental to fuzzing efficiency.

2) Memory safety of enclaves: Memory safety is crucial
for enclaves, and several works have shed light on this topic.
DarkROP [56] presents the first memory corruption attack
against SGX applications based on return-oriented program-
ming (ROP). SGX-Shield [57] proposes an address space lay-
out randomization (ASLR) mechanism for SGX applications.
Guard’s Dilemma [58] then shows that even ASLR protection
can be compromised. Smashex [59] leverages SGX asyn-
chronous exceptions, leading to enclave memory disclosures
and ROP attacks. In order to automatically find vulnerabili-
ties in enclaves, TeeRex [60] utilizes symbolic execution to
analyze enclave binary code and checks symbolic states to
report potential vulnerabilities. Coin Attacks [61] summarizes
attack surfaces of an enclave and applies concolic execution to
detect bugs with manually written policies. These solutions are
incapable of analyzing large-scale programs due to intrinsic
limitations of symbolic execution, including state explosion
and unsolved constraints.

3) Fuzz other TEEs: TEEzz [62] focuses on fuzzing trusted
application in ARM TrustZone. It employs dynamic binary
instrumentation and captures trace information from multiple
layers of interfaces to deduce the relationships between low-
level interfaces and high-level APIs, as well as recovering the
essential type information to achieve type-awareness. How-
ever, there’s a caveat when applying this solution to SGX
applications: if the host application doesn’t engage all of
the available ECALLs of an enclave, it may not capture
representative run-time traces. This limitation is critical as
attackers could potentially exploit these untouched ECALLs
using a malicious host application.

SGXBOUNDS [26] uses high 32 bits to store boundary
information and causes only 32-bit programs can run on 64-
bit machines, and it can’t detect dangling pointers.

As for the attack model, Iago [63] reveals it’s hard to protect
applications from malicious OS. Emilia [64] fuzz enclave
OCALL to find possible Iago bugs.
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VII. CONCLUSION

The present focus of fuzzing solutions is predominantly
on testing enclave binaries, often bypassing the potential to
harness information from the source code to enhance fuzzing
effectiveness. EnclaveFuzz addresses this issue by systemat-
ically extracting interface structures from bridge code, thus
automating the generation of more precise fuzzing harnesses.

In addition, EnclaveFuzz implements an optimized version
of the original Intel SGX SDK to expedite fuzzing, contribut-
ing to the efficiency of the security testing procedure. En-
claveFuzz also integrates sanitizers to detect a wide spectrum
of vulnerabilities, reinforcing its comprehensive approach to
the testing of enclave binaries.
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APPENDIX

A. Coverage over time

We collect enclave coverage, interesting coverage, and ef-
fectiveness over 24 hours for 20 enclaves, and demonstrate
them in Figure A.6.
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(a) BiORAM-SGX
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(d) intel-sgx-ssl
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(f) mbedtls-SGX
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(k) SGX SQLite
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(l) SGXCryptoFile
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(o) sgx-wallet

0 5 10 15 20 25
0

20

40

En
cla

ve
 C

ov
. (

%
)

EnclaveFuzz
SGXFuzz

0 5 10 15 20 25
0

10

20

30

40

In
te

re
st

 C
ov

. (
%

)

EnclaveFuzz
SGXFuzz

0 5 10 15 20 25
Time (Hour)

0

10

20

Ef
fe

ct
ive

ne
ss

 (%
)

EnclaveFuzz
SGXFuzz

(p) sgxwallet

0 5 10 15 20 25
0

2

4

6

8

En
cla

ve
 C

ov
. (

%
)

EnclaveFuzz
SGXFuzz

0 5 10 15 20 25
0

2

4

In
te

re
st

 C
ov

. (
%

)

EnclaveFuzz
SGXFuzz

0 5 10 15 20 25
Time (Hour)

0

20

40

60

Ef
fe

ct
ive

ne
ss

 (%
)

EnclaveFuzz
SGXFuzz

(q) TaLoS

0 5 10 15 20 25
0.0

0.5

1.0

1.5

En
cla

ve
 C

ov
. (

%
)

EnclaveFuzz
SGXFuzz

0 5 10 15 20 25
0.0

0.5

1.0

1.5

In
te

re
st

 C
ov

. (
%

)

EnclaveFuzz
SGXFuzz

0 5 10 15 20 25
Time (Hour)

0

20

40

60

80

Ef
fe

ct
ive

ne
ss

 (%
)

EnclaveFuzz
SGXFuzz

(r) trusted-function-frame

0 5 10 15 20 25
0

1

2

3

En
cla

ve
 C

ov
. (

%
) EnclaveFuzz

SGXFuzz

0 5 10 15 20 25
0.0

0.5

1.0

1.5

In
te

re
st

 C
ov

. (
%

) EnclaveFuzz
SGXFuzz

0 5 10 15 20 25
Time (Hour)

0

20

40

Ef
fe

ct
ive

ne
ss

 (%
)

EnclaveFuzz
SGXFuzz

(s) wasm-micro-runtime

0 5 10 15 20 25
0

10

20

30

40

En
cla

ve
 C

ov
. (

%
) EnclaveFuzz

SGXFuzz

0 5 10 15 20 25
0

10

20

30

40

In
te

re
st

 C
ov

. (
%

) EnclaveFuzz
SGXFuzz

0 5 10 15 20 25
Time (Hour)

0

25

50

75

100

Ef
fe

ct
ive

ne
ss

 (%
)

EnclaveFuzz
SGXFuzz

(t) wolfssl

Fig. A.6: Code coverage Over Time
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