
DYNPRE: Protocol Reverse Engineering via
Dynamic Inference

Zhengxiong Luo∗, Kai Liang†, Yanyang Zhao∗, Feifan Wu∗, Junze Yu∗, Heyuan Shi‡ and Yu Jiang∗B
∗KLISS, BNRist, School of Software, Tsinghua University

†School of Computer Science and Engineering, ‡School of Electronic Information, Central South University

Abstract—Automatic protocol reverse engineering is essential
for various security applications. While many existing techniques
achieve this task by analyzing static network traces, they face
increasing challenges due to their dependence on high-quality
samples. This paper introduces DYNPRE, a protocol reverse en-
gineering tool that exploits the interactive capabilities of protocol
servers to obtain more semantic information and additional traffic
for dynamic inference. DYNPRE first processes the initial input
network traces and learns the rules for interacting with the server
in different contexts based on session-specific identifier detection
and adaptive message rewriting. It then applies exploratory re-
quest crafting to obtain semantic information and supplementary
samples and performs real-time analysis. Our evaluation on
12 widely used protocols shows that DYNPRE identifies fields
with a perfection score of 0.50 and infers message types with
a V-measure of 0.94, significantly outperforming state-of-the-art
methods like Netzob, Netplier, FieldHunter, BinaryInferno, and
Nemesys, which achieve average perfection and V-measure scores
of (0.15, 0.72), (0.16, 0.73), (0.15, 0.83), (0.15, -), and (0.31, -),
respectively. Furthermore, case studies on unknown protocols
highlight the effectiveness of DYNPRE in real-world applications.

I. INTRODUCTION

Protocol reverse engineering facilitates the understanding
of unknown protocol specifications and thus serves as the
basis for various security analyses, including fuzzing [14],
[20], model checking [18], [16], [28], automatic exploit gen-
eration [35], [2], and code generation [54]. For example,
recovering the protocol format and state machine enables the
generation of legitimate packet sequences for protocol fuzzing
and forms the foundation for model checking.

Existing protocol reverse engineering methods can be di-
vided into two main categories: program analysis based and
network trace based. Program analysis based approaches em-
ploy techniques such as taint analysis to dynamically monitor
the internal execution of a protocol application and track
the processing of received messages [7], [11], [27]. These
methods can achieve high accuracy due to the availability of
rich runtime semantics. However, they typically require access
to the source code or binary of the protocol implementation,

B Yu Jiang is the corresponding author.

which is not always available. For instance, analyzing pro-
tocols in embedded systems presents challenges in acquiring
and emulating firmware. Network trace based approaches, on
the other hand, take static network traces as input and perform
statistical analysis [53], [6], [9], [12], [3]. They use techniques
such as message sequence alignment to mine the format
characteristics messages exhibit in the traces. While easy to
use, these approaches often suffer from low accuracy due to the
limited information available in the network traces. First, their
effectiveness relies on high-quality network traces that contain
diverse protocol messages and cover most protocol features.
Providing such traces requires protocol knowledge and is not
always feasible due to the distributional biases present in real-
world network messages. Second, they frequently encounter
difficulties in capturing field semantics not manifested in value
changes across messages, which is a blind spot for their
employed statistical analysis.

This paper presents DYNPRE, a network trace based proto-
col reverse engineering tool that introduces dynamic inference
for more accurate analysis. Unlike traditional methods that
require high-quality static network traces for comprehensive
statistical analysis, DYNPRE establishes active communication
with the server using carefully constructed probe messages to
extract insightful information and acquire additional samples
as needed, making it well-suited for input traces with limited
information. To achieve this approach, we need to address
two challenges. (i) The first challenge is how to interact with
the server in the absence of protocol specifications. Since the
server is a stateful system that requires well-formed messages
in a specific sequence, randomly constructing requests is
ineffective. (ii) The second challenge is to design a strategy that
is applicable to various protocols while being able to induce
diverse server behaviors to facilitate protocol understanding.

For the first challenge, we leverage the initial input traces –
records of actual client-server conversations – as a reference. In
some cases, simply acting as a client and replicating requests
from the input traces is sufficient for proper interaction. How-
ever, this approach falls short with protocols that use session-
specific identifiers such as cookies. The server dynamically
assigns these identifiers to keep track of contextual information
that may vary from session to session. Using outdated values
from previous dialogues may cause the server to reject the
request. It is therefore crucial to ensure the validity of these
identifiers during live sessions. To this end, we take a two-stage
approach. First, we leverage heuristics to detect all locations
where session-specific identifiers occur and determine how
subsequent requests reference these values, i.e., their constraint
relationships. Based on these inferred rules, we then implement

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.24083
www.ndss-symposium.org

on-the-fly message rewriting to dynamically detect and extract
these identifiers from server responses and adaptively update
the corresponding values in requests during the interaction.

To address the second challenge, we perform modifications
to the original requests in the initial traces and observe the
server’s responses, which serve two purposes. (i) First, these
responses reveal the server’s interpretation of the requests it
receives, providing valuable feedback for request analysis.
Since different fields usually exhibit distinct semantics, we
approach field identification to identify semantically analogous
successive message bytes. To achieve this, DYNPRE modifies
each message byte individually and scrutinizes the correspond-
ing server response, the content of which mirrors the internal
execution results of the modified message and can, therefore,
serve as a semantic indicator of the byte for further field
recovery. Meanwhile, to improve the accuracy, we minimize
noises stemming from random nonces in the responses and
eliminate positional effects of different bytes by analyzing the
value propagation under modification. Moreover, considering
that the server’s input space is tightly regulated by its state,
we employ a preprocess to drive the server into the state of
accepting the message M to be analyzed, thus maximizing
the exposure of insightful feedback regarding M ’s variants.
We achieve this by exploiting the input network trace and
the online message rewriting established in the first stage.
(ii) Second, these responses can enrich the samples available
for statistical analysis. Unlike the traditional passive network
trace acquisition through manual operation on protocol par-
ties, which is restricted by protocol specification and runtime
context, our proposed active probing approach offers more
flexibility. It can cover cases not commonly found in standard
conversations, thus helping to uncover hidden nuances for
a deeper understanding of the underlying protocol structure.
Finally, we introduce a refinement process to further improve
the accuracy of the inferred protocol format by synthesizing
the results of dynamic inference and statistical analysis. During
this process, we also infer the type for each message, facili-
tating downstream analysis such as state machine inference.

We implement DYNPRE and evaluate it against five state-
of-the-art protocol reverse engineering tools on 12 widely
used public protocols. The experimental results demonstrate
that DYNPRE outperforms prior approaches in both field
identification and message type inference. Specifically, DYN-
PRE identifies fields with a perfection score of 0.50 and
infers message types with a V-measure of 0.94, whereas
Netzob [6], Netplier [53], FieldHunter [3], BinaryInferno [9],
and Nemesys [22] achieve on average (0.15, 0.72), (0.16,
0.73), (0.15, 0.83), (0.15, -), and (0.31, -), respectively. Even
when these tools are given datasets enhanced with dynamic
interaction, DYNPRE is still superior. In addition, we apply
DYNPRE to several unknown protocols employed in real IoT
devices to validate its generality. The results show that the
messages generated based on the format inferred by DYNPRE
effectively trigger behaviors not observed in the initial network
traces, demonstrating its effectiveness in practical applications.
In summary, our main contributions are as follows:

• We propose the idea of dynamic inference, which ex-
ploits the interactive capabilities of the server to obtain
additional traffic for protocol reverse engineering.

• We design the adaptive message rewriting to allow

proper interaction with the server and propose an
intelligent request crafting method to obtain semantic
information and supplementary samples for analysis.

• We implement DYNPRE1 and evaluate it on both
public and unknown protocols. The results show that
DYNPRE outperforms the state-of-the-art and proves
effective in real-world applications.

II. MOTIVATION

We use the SMB2 protocol [29] to illustrate the limitations
of traditional network trace based approaches and our work’s
basic idea and challenges. An example SMB2 message, which
typically consists of three main parts as indicated by the
different background colors, is shown in Figure 1.

f edcba9876543210

0000000000000040424D53FE6A0000000000h:

000000030000000000000000000100030010h:

DB9954550000000000000000000000000020h:

000000000000000000000000000000000030h:

005C005C0022004800000009000000000040h:

0030002E00370031002E0032003700310050h:

0024004300500049005C0033002E0060h:

Type Length ProtocolID

StructureSize Flags BlobOffset BlobLength

Command
Credits
Requested Flags ChainOffset MessageID

ProcessID TreeID SessionID

Signature

Tree: \\172.17.0.3\IPC$

HeaderLength
Credits
Charge

Channel
Sequence Reserved

SMB2 HeaderNetBIOS Session SMB2 Data Session-Specific

Fig. 1: An example SMB2 request message

Static Network Trace Analysis. Traditional approaches
based on static analysis of network traces have two problems:

First, the optimal performance of these approaches usually
necessitates high-quality network traces with various proto-
col messages and extensive feature coverage. For instance,
Netzob’s partitioning of this message’s first four bytes as
|0x0000|0x006A|misplaces the highest byte of the Length field
into the Type field. This is because the value of the Length
field in all input messages is always less than 0x010000.
As a result, M [0..1] (where M [a] denotes the a-th byte and
M [a..b] indicates the bytes from index a to b) remains 0x0000,
while M [2..3] varies. This difference in distribution causes
Netzob to erroneously treat M [0..1] as a constant field and
M [2..3] as a variable field. Such misidentification of field
boundaries can negatively impact protocol comprehension and
downstream tasks such as protocol testing and traffic auditing.
For instance, misinterpreting the highest byte of a length
field as a constant could compromise fuzzing since the length
field typically affects the memory behavior of a program.
Analogous misidentification also occurs in fields such as the
HeaderLenghth and CreditCharge fields. This problem can
be mitigated by increasing message diversity, i.e., providing
messages with various values of these fields. However, this
process presents significant challenges as it necessitates man-
ual operation in controlled environments based on protocol
knowledge and is not always feasible due to the uneven
distribution of messages (e.g., some message types are rarely
used and observed in practice).

Second, statistical network trace analysis lacks precision
in capturing field semantics, especially when these are not

1DYNPRE is available at https://github.com/DynPRE/DynPRE

2

https://github.com/DynPRE/DynPRE

evident in value changes across messages. For instance, the
valid values of the Command field are drawn from a fixed
set. Its highest byte (i.e., M [17] in little-endian) is reserved
for customization, and its value is 0x00 in any well-formed
SMB2 message, meaning that the semantic of this field is only
partially reflected in the value change. As a result, Netzob
splits this field into two independent fields, with the M [17]
field being considered a constant field. This misinterpretation
can hinder misunderstanding the protocol design in code
generation [54] or further user extension. Moreover, these
methods perform analysis based on byte-value distribution and
similarity, which can be misleading since identical or differing
byte values do not necessarily indicate semantic similarity or
difference. This gap between field semantics and field value’s
statistical characteristics presents an additional challenge to
statistical methods.

Basic Idea of DYNPRE. In most protocol reverse engi-
neering application scenarios, integrating a dynamic approach
to exploit the interactive capabilities of the existing server is
beneficial. DYNPRE is inspired by two observations:

First, dynamic interaction with the protocol server can
generate supplementary samples on top of the original input.
By actively generating various probe requests and sending
them to the server, we can obtain the response messages, which
are legitimate and can enrich the message set for analysis.
Unlike the passive generation of input network traces through
manual operation on protocol parties, this active probing
approach offers more flexibility in ensuring message coverage.
In particular, it can cover certain cases not commonly found in
standard conversations, which are constrained by the protocol
specification and session context. For example, the MessageID
field M [28..36] uniquely identifies a request/response pair
within a session. This field is normally initialized with zero
and incremented by one for each new request, so its high
bytes are often zero in real conversations. Instead, by actively
assigning different values to the MessageID field in requests
and observing the server’s responses, diverse values for this
field can be showcased, making it easier for traditional sta-
tistical analysis (e.g., Netzob [6]) to uncover hidden nuances
and gain a deeper understanding of the underlying structure. In
addition, exceptional MessageID values can prompt the server
to respond with different CreditsGranted field values, further
increasing message diversity.

Second, dynamic interaction allows for acquiring field
semantic information from the server, which already encodes
the protocol logic and thus understands the message. Different
fields convey distinct semantics, which can be explored by
modifying the field content and observing the corresponding
server response. For example, consider the request packet in
Figure 1. Modifying the Reserved field does not affect the
server response because it is ignored. For the Command field,
which specifies the message type, different values of this
field can cause the server to respond with different types of
messages. Changing the CreditsRequested field can affect the
number of credits granted by the server, as reflected in the
CreditsGranted field in the response. These three adjacent
fields in the message convey different semantics, which is also
reflected in the different server responses to the modifications.

Challenges. To exploit the server’s interactive capabilities
to obtain valuable information for a more accurate analysis of

the target protocol, we must address two challenges:

C.1: Proper interaction with the server. As discussed in
Section I, the initial input network traces provide a guideline
for interaction, but the session-specific identifiers used in some
protocols present additional challenges.

We use an example SMB2 session (Figure 2) to introduce
the concept of session-specific identifiers employed in network
protocols. This session is initiated with a NEGOTIATE ex-
change (1 - 2) followed by a SESSION_SETUP exchange (3 -
4). In particular, the value a of the SessionID field in message
4 is randomly assigned by the server to identify this unique
session and is essential for subsequent communication. All
subsequent requests (e.g., n1 and n3) in the session must use
the same value a for the SessionID field; otherwise, the server
will reject the request. Once connected, the client can access
server resources organized into shares (e.g., file shares) through
a TREE_CONNECT request (n1), to which the server responds
with a message assigning a unique value b for the TreeID field
to identify this share #n (n2). Similar to the SessionID field, all
subsequent requests on share #n must use TreeID value b until
the client disconnects from this share (n3). For the next share
#(n+1), the server would assign a new, different value for the
TreeID field. In this example, the SessionID and TreeID fields
are session-specific identifiers randomly assigned by the server
to identify specific resources within a session. Their values
vary from session to session. For a session-specific identifier,
we define the source as the location that first introduces its
dynamic value and the references as the subsequent locations
that consume that value. In this example, the sources for the
SessionID and TreeID fields are 4 and n2, respectively, and
their references are [n1, n2, n3] and [n3].

TREE_DISCONNECT Request
[SessionID=a, TreeID=b]

NEGOTIATE Request

NEGOTIATE Response
(SystemTime=Now)

SESSION_SETUP Request

SESSION_SETUP Response
[SessionID=a]

TREE_CONNECT Request
[SessionID=a]

TREE_CONNECT Response
[SessionID=a, TreeID=b]

…

Connection Setup

Tree Connect #n

Tree Connect #(n+1)

…
…

Client Server

①

③

②

④

n1

n2

n3

Fig. 2: An example SMB2 session, with session-specific iden-
tifiers in brackets and random fields in parentheses.

The session-specific identifier is a common mechanism
applied in network protocols. By examining 30 public and
20 proprietary protocols, we found that 10 public and 6 pro-
prietary protocols contain session-specific identifiers. Typical
examples include TCP’s SequenceNumber field [40], HTTP’s
Cookie field [39], SSL’s SessionID field [38], and FTP’s Pas-
sivePort field [41]. Our experiments on real-world proprietary
protocols in Section IV-E also show their use in practice.
Without knowing the protocol specification, correctly detecting
all identifiers and adjusting them to the valid value in a live

3

session is challenging due to their unpredictable sources and
references, diverse constraint relationships between sources
and references, and discrepant lifetimes (e.g., the SessionID
and TreeID fields in Figure 2). The large number of sources and
references detected in real sessions, as shown in Section IV-D,
further demonstrates this.

C.2: Effective exploration of the interactive server for
protocol understanding. The second challenge is to effec-
tively elicit and analyze diverse server behaviors. On the one
hand, constructing the probe requests to elicit diverse server
behaviors is challenging for two reasons. First, to obtain in-
depth semantic feedback on the probe messages, we must
ensure that the server is in the appropriate state. Otherwise,
the server may reject the requests due to state mismatch before
analyzing the request in detail. Second, since the protocol
messages are highly structured, arbitrary modifications to the
existing messages tend to destroy the structure and are less
likely to provide valuable results. On the other hand, analyz-
ing the server responses is also challenging. Although these
responses contain rich semantic information, this information
remains opaque as a comprehensive interpretation requires
protocol knowledge. In addition, random noise in the server
responses can disrupt the analysis. For example, in Figure 2,
the SystemTime field in the NEGOTIATE response (2) records
the server time, which is unrelated to the protocol semantics
but varies over time and may interfere with the analysis.

III. SYSTEM DESIGN

In this section, we first introduce the workflow of DYNPRE
and then present the attack model and design details.

Overview. Figure 3 gives an overview of DYNPRE: Given
the captured network traces of the target protocol, DYNPRE
interacts with the protocol server to infer the protocol format
and state machine.

Filtering and Slicing. We first pre-process the input net-
work traces to extract the relevant messages and group them
into different traces. The input traces are typically captured
during the communication between the protocol server and the
client. These traces usually contain messages from irrelevant
protocols and multiple sessions of the target protocol. Since
the target protocol is typically in the application layer and
the underlying layers (e.g., TCP, IP) are standardized, we
can leverage the known information of these underlying lay-
ers (e.g., IP address, port number, and timestamp) for filtering
to focus on analyzing the target protocol. For example, for
TCP-based protocols, we can use the TCP port associated
with the target protocol to filter out the relevant messages and
partition them into different traces based on TCP sessions.

After pre-processing, DYNPRE analyzes each network
trace sequentially. At a high level, DYNPRE consists of two
main components. We use the example SMB2 session in
Figure 2 to illustrate them as follows.

Session-Specific Identifier Detection. For the trace Γ under
analysis, this module recognizes all embedded identifiers and
extracts their detailed attributes through recursive analysis
and validation. Essential attributes of each session-specific
identifier include its source, references, and their constraint
relationship. These details form Γ ’s message rewrite rules,

which are then passed to the dynamic inference module. Table I
shows the derived message rewrite rules for the example SMB2
session, where two identifiers are recognized and they corre-
spond to the SessionID and TreeID fields, respectively. For the
first, the source is the bytes M [44..51] in message 4 , and the
corresponding references are identical bytes in messages n1,
n2, and n3. The constraint relationship between the source and
its three references is y = x, indicating that the value of these
references should be consistent with that of the source.

TABLE I: Example message rewrite rules
No. Source References Constraint
1 4 : [44..51] n1: [44..51], n2: [44..51], n3:[44..51] y = x
2 n2: [40..43] n3: [40..43] y = x

Dynamic Inference. Based on the message rewrite rules,
DYNPRE establishes an on-the-fly message rewriting mecha-
nism that enables proper interaction with the server by mim-
icking the network trace Γ . The dynamic inference module
infers the protocol format by modifying the initial requests in
Γ , retrieving their corresponding responses, and performing
real-time analysis. These responses serve as semantic feedback
for the request analysis and provide additional samples for
the response analysis. Based on the inferred respective format
results of the requests and responses, DYNPRE employs a
mapping based refinement to improve the overall format results
and recognize the message types.

Finally, we employ established methods [19], [5], [53] to
infer the state machine. These methods are efficient when the
message types are well defined. The basic idea is to derive the
message type sequence for each network trace and regard it
as a state transition sequence. These sequences are combined
to form an original state machine, which is later minimized
for conciseness. We omit the details as they are not our
contribution. The quality of the inferred state machine depends
on the accuracy of the message type inference, for which we
provide an evaluation in Section IV.

Attack Model. We assume an active attacker model for
our approach. First, aligning with the passive attacker model
used in traditional network trace based approaches, our active
attacker can sniff traffic to obtain the initial network traces
for analysis. Second, our active attacker can actively commu-
nicate with the server, i.e., send arbitrary requests and obtain
responses. This assumption is realistic because even passive
attackers, after analyzing the static network traces, usually
need to achieve their goals through active attacks, e.g., sending
maliciously crafted messages.

A. Session-Specific Identifier Detector

For a network trace Γ , this module detects session-specific
identifiers within Γ and learns a set of message rewrite rules
Υ for live communication with the server.

Algorithm 1 provides an overview of the process. The
session-specific identifier detector starts with an empty rule
set (Line 2) and incrementally learns the rewrite rules
via the inferAndVerify procedure (Lines 3-21). Each
time this procedure is invoked, the detector establishes a
new session with the server and stores live responses in
LiveResponsePool. In each session, it tries to replay the
network trace Γ with the current rewrite rules Υcur (Line 5-
19). For a request M in Γ (e.g., n1 in Figure 2), before

4

Protocol
Format

State
Machine

Protocol	Server Under	Learning

Filtering	
and	Slicing

On-the-Fly	Message Rewriting Increased
Samples

Message	
Probing

Request	
Analysis

Response	
Analysis

Control

Enhance

Recursive	
Analysis	and	
Validation

Message
Rewrite
Rules

Mapping
Based

Refinement

Network	
Traces

Dynamic	InferenceSession-Specific	
Identifier	Detector

Trace
#n

Fig. 3: DYNPRE Overview. For each network trace #n, the Session-Specific Identifier Detector first recognizes all session-specific
identifiers and derives message rewrite rules. Based on this, the Dynamic Inference module interacts with the server to gain
semantic information and additional samples via message probing and applies mapping based refinement to improve the results.

Algorithm 1: Recursive analysis and validation for
session-specific identifiers

Input : Γ - network trace under analysis
Server - protocol server under learning

Output: Υ - learned set of message rewrite rules
1 Algorithm
2 inferAndVerify(∅)

3 Procedure inferAndVerify(Υcur)
4 LiveResponsePool← []
5 foreach message M in Γ do
6 if M is request then
7 Pr = REWITE(M,Υcur, LiveResponsePool)
8 SENDTO(Server, Pr)
9 else

10 M ′ = RECVFROM(Server)
11 if not IDENTICAL(M,M ′) then
12 if ISRECORDED(M,Υcur) then
13 LiveResponsePool.append(M ′)
14 else if CHECKCOMPATIBILITY(M,M ′) then
15 ΥM = calculateRules(M,M ′)
16 foreach rewrite rule υ in ΥM do
17 if inferAndVerify(Υcur ∪ υ) then
18 return True

19 return False

20 Υ = Υcur
21 return True

22 Procedure calculateRules(M , M ′)
23 ΥM ← ∅
24 DynRegions = GETDIFFREGIONS(M,M ′)
25 foreach region R in DynRegions do
26 ΥR = SOLVEANDDERIVERULES(Γ,R)
27 ΥM = COMBINATION(ΥM , ΥR)

28 return ΥM

sending it, the detector rewrites it to Pr by using the rules
recorded in Υcur and leveraging the live responses from
LiveResponsePool (Lines 6-8). If there is no recorded rule
for M , Pr remains the same as M . For a response M in Γ ,
the detector attempts to emulate by receiving the live response
M ′ from the server and verifying that whether M and M ′ are
identical (Lines 10-11). If they differ, M may contain session-
specific identifiers. For example, for 4 in Figure 2, the mes-
sage recorded in Γ differs from the corresponding one in the
live session since the SessionID field is dynamically assigned.
In this case, the session-specific identifier detector first checks
if M is recorded in the rewrite rules Υcur (Line 12). If it is, this

indicates that the session-specific identifiers of M have been
inferred in a previous procedure, and the associated rewrite
rules need further validation. Hence, the session-specific iden-
tifier detector adds M ′ to LiveResponsePool for subsequent
message rewriting and proceeds to the following messages in
Γ (Line 13). Otherwise, the session-specific identifier detector
checks the compatibility between messages M and M ′, i.e.,
whether they are of the same length and whether their differing
bytes are concentrated in a few continuous segments rather
than randomly scattered throughout. (Line 14). If compatible,
the session-specific identifier detector calculates all possible
message rewrite rules involving M , namely ΥM , using the
calculateRules procedure (Lines 15, 22-28). Then, the
session-specific identifier detector iterates through each rule
suite υ in ΥM , attempting to recursively validate and infer with
an updated rule set, Υcur∪υ (Line 17). If all attempts to replay
Γ fail (Lines 16-18) or M and M ′ are incompatible (Line 14),
the session-specific identifier detector returns False (Line 19),
indicating that the given rewrite rules Υcur are incorrect. When
the session-specific identifier detector successfully replays all
messages in Γ with Υcur, it records Υcur as the learned final
set of rewrite rules and returns True (Lines 20-21).

The calculateRules procedure takes as input two
messages, the original M in Γ and its variant M ′ in live
communication, and computes the rules involved, ΥM . It
compares M and M ′, identifies the differing byte regions
between them (Line 24), and analyzes these regions one by
one (Lines 25-27). For each region R, the procedure solves
constraints on R based on the analysis of Γ and derives a
set of feasible rewrite rules ΥR (Line 26). Through our initial
study of session-specific identifiers, we find that the constraint
relationships between the source and references are typically
additive or multiplicative. Therefore, we define a constraint-
solving list lc with five terms: [x, x + 1, px, px + 1, null].
Specifically, given the value vR of R in M , we infer the
possible reference of this value in the messages following M in
Γ by trying each term in lc and endianness (i.e., big- or little-
endian). In particular, we add the term null for the constraint-
solving list to indicate that no constraint is needed for the
corresponding region, which is designed to reduce noise from
fields with random values, such as the SystemTime field in
Figure 2. Finally, the procedure combines the existing rules ΥM
of analyzed regions with the newly derived rules ΥR (Line 27).
For example, assume there are two dynamic regions α and β
by comparing M and M ′, and their feasible rules are [Υ 1

α, Υ
2
α]

5

and [Υ 1
β , Υ

2
β], respectively, then the derived rules ΥP for the

message M are [Υ 1
α ∪ Υ 1

β , Υ
1
α ∪ Υ 2

β , Υ
2
α ∪ Υ 1

β , Υ
2
α ∪ Υ 2

β].

B. Dynamic Inference

The message rewrite rules allow DYNPRE to interact
seamlessly with the server and perform dynamic inference.
For the input network trace Γ , DYNPRE sequentially analyzes
each request/response pair (M , M◦) within Γ . Specifically,
DYNPRE crafts probe messages by subtly modifying M ,
then monitors the server’s responses to these modifications,
which allows DYNPRE to infer the format of M . Meanwhile,
these newly triggered responses, which are retrieved directly
from the server without modification and are therefore legit-
imate (instead of being modified like the probe messages),
can be considered as additional samples for analyzing M◦.
Given that the server generates M◦ and the increased samples
in response to marginally different requests under the same
server state, these responses are likely to be roughly similar but
with specific variations. This resemblance facilitates traditional
statistical analysis, such as sequence alignment, to uncover hid-
den nuances for format analysis. In this process, requests are
analyzed by active probing, and responses are analyzed using
statistical analysis. To synthesize the results of both analyses
for further improvement, DYNPRE performs a mapping based
refinement that simultaneously recognizes the message types.

On-the-Fly Message Rewriting. Following the message
rewrite rules Υ , the dynamic inference module establishes an
adaptive message rewriting mechanism that extracts the value
of session-specific identifiers and adjusts the corresponding
byte regions in the requests during live interaction. Specifically,
(i) for a response α from the server, if α serves as the source of
a particular session-specific identifier, this submodule extracts
and stores the corresponding value for future use. For example,
as shown in Figure 2 and Table I, [44..51] in message 4 is
the source of the SessionID identifier and its value should be
recorded for subsequent request rewriting; (ii) for a request β
to be sent, if β contains references to certain session-specific
identifiers (e.g., [44..51] in n1 in Table I), this submodule
adjusts the relevant byte regions in β using the recorded values
and associated constraints before transmission.

Message Probing. We analyze the format of each request
M in Γ using byte-level flip modifications. This is based on
three insights: (i) The smallest field unit in most protocols
is the byte, so byte-level field identification is appropriate.
To our knowledge, all existing tools use bytes as the basic
unit for field identification. (ii) Modifying content, rather than
adding or deleting, preserves the overall message structure
and can provide deeper semantics. For example, for a shallow
sanity check such as length field (e.g., M [1..3] and M [8..9]
in Figure 1), a request constructed by modifying some other
byte in M can pass this check. (iii) Since the semantics of the
responses are opaque to us, we focus on detecting semantic
changes across varied modifications. Thus, we assign a value
that markedly differs from the original to maximize semantic
exposure. Having obtained the field boundary, we can obtain
further information by applying random modifications at the
field level and observing the corresponding responses.

Moreover, given the server’s stateful nature, when ana-
lyzing a request M , DYNPRE first employs the preceding

requests in Γ along with the established message rewriting
mechanism to drive the server into the state receptive to M .
This ensures richer feedback on the variants of M .

Request Analysis. To facilitate the illustration, we first
introduce the following definitions. Let M be a request in the
network trace Γ , M◦ represents its corresponding response in
Γ . Γ[:M] denotes the sequence of requests in Γ that precede M .
For illustration, consider Figure 2. If the request (i.e., M) is n1,
its corresponding response M◦ is n2, and the set Γ[:M] contains
the requests 1 and 3 . Besides, we use M[i] to denote the
probe request constructed by flipping the i-th byte of M and
M[a..b] to represent the probe request constructed by randomly
modifying the a-th to b-th bytes in M . Further, we define
Q〈M[i]〉 as the output from the function SENDRECV. This
function establishes a new session with the server, sends the
requests Γ[:M] to drive the server into the appropriate state,
and sends M[i], taking the corresponding response to M[i]’s
as a return value. Notably, the message rewriting is applied to
each request to ensure session-specific identifiers’ validity.

Q〈M[i]〉 = SENDRECV(Γ[:M],M[i])

For a byte in M at index i, i.e., M [i], we define its response
pool R[i] as the set of responses to the probe request M[i], i.e.,
R[i] = {Q〈M[i]〉}n. Note that the responses in R[i] might vary,
as the server may respond differently to identical requests due
to the session-specific identifiers or random fields. To further
explore these potential variations, we send the crafted request
M[i] to the server multiple times to elicit these random nonces.
Based on this, we introduce mask[i], which denotes exhibiting
differences across the responses in R[i]. We have:

mask[i] = {j | ∃r1, r2 ∈ R[i], r1[j] 6= r2[j]}

Algorithm 2 gives an overview of the request analysis. For
a request M , it outputs the inferred format L. Each field in L
is represented as a tuple M [s..e] � T , indicating that the field
lies in the bytes indexed from s to e, and its type is T .

Algorithm 2: Request Analysis
Input : M - request message under analysis
Output: L - inferred message format

1 Algorithm
2 L← []; s← 0
3 INITWITHEMPTYSET(R); INITWITHEMPTYSET(mask)
4 R[0] = {Q〈M[0]〉}
5 for 0 < i < |M | do
6 R[i] = {Q〈M[i]〉}2
7 mask[i] = CALCULATEMASK(R[i])
8 R[s].append(Q〈M[s]〉)
9 mask[s] = CALCULATEMASK(R[s])

10 if (not COMPATIBLE(mask[i],mask[s])) or
DISCREPANT(R[i], R[s],mask[s]) then

11 e = i− 1
12 T = INFERTYPE({Q〈M[s..e]〉}n,M◦)
13 L.append(M [s..e] � T)
14 s = i

15 return L

For Algorithm 2 in detail, we sequentially analyze each
byte in M and determine whether it is the start of a new field.
We use s to denote the start byte of the current field. Initially,
we set s to zero, since the zeroth byte is always the start of
the first field (Line 2), and initialize its response pool R[0] (for
M[0]) for further use (Line 4). We then iterate the remaining

6

bytes in M by comparing their semantics with that of byte s.
For a byte at index i, we first initialize its response pool, R[i],
with the two responses to M[i] by sending M[i] twice, which
enabling the calculation of mask[i] (Lines 6-7). Then, we
employ a similar method to acquire an additional response for
R[s] (Line 8) and update the associated mask[s] (Line 9). This
ensures the time interval between the first and last responses
in R[s] encompasses the period between the first and last
responses in R[i], which is designed to eliminate the effects
of random fields like timestamps (e.g., the SystemTime field in
Figure 2) in the responses.

To check whether byte i and byte s are semantically
identical, we use a two-step check: first, we compare their
masks (Line 10). The mask[i] is expected to be a subset of
the mask[s] since the latter covers a longer period; otherwise,
it indicates that the random fields exhibited in R[i] are different
from those in R[s], and thus the responses in R[i] and
R[s] are not semantically identical. We then compare their
corresponding response pools, i.e., R[s] and R[i], without
considering the regions in mask[s] (Line 10). A simple
comparison of the content may miss the differences caused
by their position differences instead of semantic differences.
For example, Figure 4 shows the initial response M◦ for
the request M in Figure 1 and two responses for M[10] and
M[11]. However, these two bytes belong to the same field,
i.e., the CreditsCharge field. Since the server will return a
response that contains the same value for the CreditsCharge
field as the request, separately flipping these two bytes can
cause the server to return responses with different content.
However, these responses are semantically identical. Therefore,
the differences introduced by their different locations should
be ignored. We achieve this by observing the value propagation
between the request and response under request modification.
In this example, if the 10th byte in the request M is flipped,
the 10th byte in its corresponding response, i.e., Q〈M[10]〉, will
also be flipped. This is also the case for the 11th byte. These
two bytes are consecutive in M , and we can conclude they are
semantically identical. Following the above steps, if the check
fails, we argue that byte s and byte i belong to different fields
and byte i is the start of a new field (Lines 11-14).

M◦ : 00000050fe534d424000000000000000
Q(M[10]) : 00000050fe534d424000ff0000000000
Q(M[11]) : 00000050fe534d42400000ff00000000

Fig. 4: A comparison of the first 16 bytes of the responses to
the original and the modified requests.

For the newly identified field M [s..e], we identify its
semantics by determining basic field type information, i.e.,
whether a field is constant or variable, given our lack of prior
protocol knowledge. (Line 12). This design is consistent with
similar work like Netzob [6] and Netplier [53]. We achieve this
by randomly modifying the value of this field in the request to
obtain multiple responses, i.e., {Q〈M[s..e]〉}n. Then, using a
semantic check similar to the one above, we check whether all
these responses are semantically identical and different from
the initial response M◦. If so, the field is constant, otherwise it
is variable. This is based on the observation that a constant field
takes a fixed value, and modifying it will incur the same error
response or no response. In contrast, a variable field can take
different values, and modifying it can cause diverse messages.
For example, the ProtocolID field in Figure 1 is constant, and

assigning other values to it can always result in no response.
However, the Command field is a variable field whose valid
values are taken from a finite set. Assigning different values
to it can lead to different scenarios.

Response Analysis. Unlike the request, which the client
actively sends, the response is usually received passively and
is hard to probe. We use a statistical method to analyze the
response. To analyze the response M◦, we use the additional
responses obtained from modifying each byte of M , i.e., the
responses in R. In practice, the byte-level modifications (which
are tiny) to the request M can yield many responses of
the same type as M◦, and these responses have slightly
different details. Alignment-based approaches work well to
uncover hidden nuances when clusters of messages of the
same type are well-defined. For example, Figure 5(a) shows the
alignment results for two messages. We can infer the format by
merging consecutive bytes that are either identical or variable,
as shown in Figure 5(b), and obtain the primary field types
simultaneously. Due to a lack of protocol knowledge, we filter
R and retain these responses with the same length as M◦,
i.e., R′ = {r | r ∈ R, |r| = |M◦|}, since these responses are
more likely to be of the same type as M◦. We then apply the
alignment algorithm to R′ to infer the format of M◦.

F9F8F7F6F5F4F3F2F1
099A92A4158F3DD6800D620001020FFF140000000D00

099A92A4158F3DD6800D930901ACF0FF100000000E00

099A92A4158F3DD6800D620001020FFF140000000D00

099A92A4158F3DD6800D930901ACF0FF100000000E00
Alignment
Result

Inferred
Format

Constant Variable

(a)

(b)

Fig. 5: An example of the inferred format for two messages
derived from the alignment results.

Mapping Based Refinement. In the steps above, we ana-
lyze the formats of the requests and responses independently.
However, the formats of these messages often correlate, as
evidenced by the mapping relationships of their field values.
Specifically, protocol messages typically have a consistent
header structure, and some fields in this header exhibit a
one-to-one mapping relationship between the requests and
responses. For instance, SMB2 requests and responses share
the same header structure shown in Figure 1. The ProtocolID
field specifies the protocol version and is constant in both
requests and responses. The Command field identifies the
message type, and its request value corresponds to its response
value. Based on these observations, we explore the mapping
relationships between the requests and responses to search for
their common fields and refine the overall format, coupling
their results to achieve improvement.

To achieve this, we first examine the field that appears
most frequently in all inferred message formats. Assume its
index range is [s, e]. We then determine whether this field
exhibits a correlation property in the network trace Γ , i.e.,
looking for an injective function satisfying: f(M [s..e]) →
M◦[s..e],∀(M,M◦) ∈ Γ . If so, we refine the request and
response formats by treating this field as a common field.
We repeat these steps until no common field can be found.
Meanwhile, during this process, we consider the first common
field found to be the message type field of the protocol. This is
based on the observation that the request and response message
types have an intense correspondence, as illustrated in the
SMB2 session in Figure 2.

7

C. Implementation

We implement a prototype of DYNPRE using Python 3.
It consists of two components: the session-specific identifier
detector and the dynamic inference module. The session-
specific identifier detector implements Section III-A’s recur-
sive analysis and validation algorithm. It derives a set of
message rewrite rules in JSON format with the attributes
listed in Table I, facilitating manual inspection and further
extension. The dynamic inference module uses these rules to
establish the on-the-fly message rewriting and implements the
dynamic inference algorithm from Section III-B. In particular,
the response analysis submodule is built upon the sequence
alignment algorithm implemented in Netzob [6]. Besides, we
implement DYNPRE-, a version without the mapping based
refinement strategy from Section III-B, specifically to evaluate
the strategy’s effectiveness.

IV. EVALUATION

In this section, we evaluate DYNPRE to answer the fol-
lowing four research questions:

RQ1 How does DYNPRE’s performance compare to state-
of-the-art tools on static datasets of different sizes for
public protocols? (Section IV-B)

RQ2 Does DYNPRE demonstrate superiority when provid-
ing other state-of-the-art tools with datasets enhanced
by dynamic interaction? (Section IV-C)

RQ3 Do the session-specific identifier detector and the
refinement strategy contribute to the effectiveness of
DYNPRE? (Section IV-D)

RQ4 How effective is DYNPRE in reverse engineering real-
world proprietary protocols? (Section IV-E)

A. Experiment Setup

Subjects. Table II shows the protocols selected for evalua-
tion. We selected them by referring to prior research [53], [9]
and considering various characteristics. Regarding ownership,
S7comm, SMB, and SMB2 are proprietary, initially closed
protocols, while the others are open protocols. Concerning
content, HTTP is a textual protocol, whereas DNS and TFTP
are mixed binary and textual protocols, and the remaining are
binary protocols. Regarding field composition, NTP features
fixed field lengths, while the others exhibit variable lengths.

Moreover, since DYNPRE employs session-specific identi-
fier detection for dynamic interaction initialization and utilizes
server responses for analysis, we selected protocols with
session-specific identifiers and varying response granularity to
evaluate the effectiveness and scalability of DYNPRE. Among
the selected protocols, SMB, SMB2, HTTP, BGP, and TFTP
contain session-specific identifiers. The scenarios in SMB
and SMB2 are pretty complicated. Within a single session,
multiple fields can serve as session-specific identifiers, each
with different lifetimes, as illustrated in Figure 2. Although
these two protocols are related, they differ in their fields, so
we chose both for evaluation. Regarding response granularity,
we selected MQTT and AMQP because of their specific
characteristics. MQTT provides several levels of Quality of
Service (QoS) to achieve different objectives. Under different

QoS levels, the granularity of responses varies. We introduce
two instances of MQTT, represented as MQTT-QoS1/QoS2, to
measure the impact of message granularity on the performance
of each tool. Besides, the AMQP server rarely responds
to a client’s publish request after connection establishment,
resulting in a relatively small response sample.

For the protocol server under learning, we utilize off-the-
shelf server utilities provided by typical open-source protocol
projects or publicly accessible services (e.g., the public NTP
time server), as shown in Table VIII. To simulate real-world
usage scenarios, we prepared the message dataset using various
client utilities provided by each project to interact with the
protocol server while capturing the network traces. Meanwhile,
for each protocol, we prepared datasets of 10, 100, and 1000
messages to measure the impact of dataset size on the perfor-
mance of each tool. Further details are given in Appendix B.

Compared Tools. We select five state-of-the-art proto-
col reverse engineering tools widely used in academia and
industry as baselines, including Netzob [6], Netplier [53],
FieldHunter [3], BinaryInferno [9], and Nemesys [22]. Their
approaches are diverse. Netzob and Netplier represent the
alignment-based approach. They use different message cluster-
ing algorithms. The former employs message similarity based
clustering, while the latter uses keyword based clustering.
Nemesys adopts a heuristic approach that identifies field
boundaries based on the bit-level congruence of successive
byte pairs. FieldHunter identifies fields by leveraging statis-
tical characteristics specific to general fields, such as hostID.
BinaryInferno ensembles several field boundary detectors and
applies heuristics to identify fields. All these tools are publicly
available [4], [33], [32], [51], except for FieldHunter, for which
we use a public re-implementation version [52].

Metrics. We evaluate the effectiveness of each tool in
terms of format inference and message type inference, two
critical tasks in protocol reverse engineering. Format inference
allows for understanding transmitted messages, and message
type inference is the basis for the subsequent protocol automata
construction [5]. We use tshark [50] for message format
ground truth. Based on this, we obtain the truth of the message
type by manually inspecting the official protocol documents.

Perfect
13AC86030000EC0600E3

13AC86030000EC0600E3

987654321

TP FPTN FN
Inferred Fields

True Fields

Boundary Offset

Fig. 6: Illustration of the format inference metrics.

Metrics for format inference. We employ metrics from
recent work [53], [9] and divide them into two categories, i.e.,
one- and two-dimensional metrics, categorized by whether they
are from a byte or field perspective. (i) The one-dimensional
metric evaluates each byte boundary individually as either
a field boundary or not (i.e., a binary classification). The
inferred result for a message M is a binary vector V of length
|M | − 1, with each element signifying a byte boundary’s
status. For instance, Figure 6 shows a message with nine
adjacent byte boundaries. The inferred result identifies the
3rd, 6th, and 8th byte boundaries as field boundaries, i.e.,
V = [0, 0, 1, 0, 0, 1, 0, 1, 0]. Moreover, for the ground truth, we
define a positive as a true field boundary and a negative as a

8

byte boundary within a true field. Based on these concepts, we
represent each adjacent byte boundary in the inferred format
using the four outcomes of the binary classification, i.e., true
negative (TN), false negative (FN), true positive (TP), and false
positive (FP). For the inferred format in Figure 6, the outcomes
are [TN,FN, TP, TN, TN, TP, TN,FP, FN]. (ii) The two-
dimensional metric assesses both byte boundaries of a field,
where a field is considered perfect if it exactly matches the
ground truth. Thus, in Figure 6, the inferred field with two
boundaries indexed 3 and 6 is perfect.

Based on the concepts above, we use two one-dimensional
metrics, accuracy and F1-score (a combination of precision
and recall), and a two-dimensional metric, perfection, for
evaluation. They are calculated as Formula 1-5. As discussed
in Section II, incorrect format inference – such as incorrect
partitioning of a true field, treating multiple true fields as
one, or redistributing portions of bytes from one field to
other fields – can confuse protocol understanding and affect
various subsequent analyses, such as interpreting relational
constraints between fields like length constraints. Therefore,
perfect inference of field boundaries is essential for evaluating
the performance of protocol reverse engineering tools.

Accuracy =
Correctly Inferred Boundaries (TP + TN)

All Byte Boundaries (TP + TN + FP + FN)
(1)

Precision =
Inferred True Field Boundaries (TP)

Inferred Field Boundaries (TP + FP)
(2)

Recall =
Inferred True Field Boundaries (TP)

True Field Boundaries (TP + FN)
(3)

F1-score =
2× Precision× Recall
Precision+ Recall

(4)

Perfection =
Perfectly Inferred Fields

True Fields
(5)

Metrics for message type inference. Different tools employ
varied methods for message type inference. Netzob uses a
similarity based clustering approach, while DYNPRE, Net-
plier, and FieldHunter identify the fields that represent the
message type. For a uniform comparison, we treat message
type inference as a clustering problem, i.e., each group of
messages of the same type corresponds to a cluster, in line with
similar work [53]. We evaluate clustering performance using
widely accepted metrics: homogeneity and completeness [42].
Homogeneity measures how well each cluster contains only
messages of a single type, while completeness measures how
well all messages of the same type are assigned to the
same cluster. These metrics derive from conditional entropy
analysis. Specifically, for a message set of size N , nt denotes
the number of messages of type t, nk represents messages
assigned to cluster k, and nt,k indicates messages of type t
within cluster k. The entropy of message types E(T) and the
conditional entropy of types considering clustering E(T |K)
are defined in Formula 6. The cluster entropy E(K) and the
conditional entropy of clusters given the message type E(K|T)
are symmetrically established. From this, the homogeneity (H),
completeness (C), and their harmonic mean V-measure (V) are
calculated as in Formula 7.

E(T) = −
∑
t

nt

N
log
(nt

N

)
, E(T |K) = −

∑
t,k

nt,k

N
log

(
nt,k

nk

)
(6)

H = 1−
E(T |K)

E(T)
, C = 1−

E(K|T)

E(K)
, V =

2 ∗ H ∗ C
H+ C

(7)

B. Comparison with Prior Work on Static Dataset

Given that the existing tools perform analysis on static
network traces, we first compare DYNPRE against these tools

using static datasets (as described in Section IV-A). DYNPRE
starts with the same datasets but performs dynamic interaction
to gather more insights and samples for analysis.

Format Inference Results. Table II shows the performance
of each tool across different protocols and dataset sizes, and
Figure 7 plots the average performance for each tool.

DYNPRE substantially outperforms the other tools, achiev-
ing the upper bound of both one-dimensional (i.e., accuracy
and F1-score) and two-dimensional (i.e., perfection) metrics
across all dataset sizes. On average, DYNPRE achieves an
accuracy of 0.83, an F1-score of 0.70, and a perfection score
of 0.50 across the three dataset sizes, compared to (0.66, 0.35,
0.15) for Netzob, (0.77, 0.33, 0.16) for Netplier, (0.73, 0.36,
0.15) for FieldHunter, (0.70, 0.36, 0.15) for BinaryInferno,
and (0.75, 0.55, 0.31) for Nemesys. Notably, on the most
important metric – perfection (as discussed in Section IV-A),
DYNPRE’s score is 3.3×, 3.1×, 3.3×, 3.3×, and 1.6× of
Netzob, Netplier, FieldHunter, BinaryInferno, and Nemesys,
respectively, enabling more precise downstream analysis.

0 0.2 0.4 0.6 0.8 1
Accuracy

0

0.2

0.4

0.6

0.8

1

F1
-s

co
re

DynPRE

Ideal Value

0 0.2 0.4 0.6 0.8 1
Perfection

FieldHunter

BinaryInferno

Netzob

Netplier

Nemesys

DynPRE

Ideal Value

0.15

0.15

0.15

0.16

0.31

0.50

1

Fig. 7: Plots of average accuracy, F1-score, and perfection for
each tool across different protocols and dataset sizes. Results
closer to ground truth (i.e., Ideal Value) are better.

For the DNS protocol, Nemesys exhibits notable perfor-
mance, attributed to its strategy of exploiting typical patterns
of value changes in messages as a heuristic for identifying
field boundaries. This approach is especially effective for DNS,
which features mixed binary and text fields, thereby making
value changes between fields more obvious and facilitating
boundary identification. This scenario also explains the supe-
rior performance of Nemesys in analyzing NTP.

DYNPRE’s performance for the AMQP protocol is not
consistently the best due to the lack of server response after
connection establishment. This means that DYNPRE cannot
extract detailed semantic information from server responses
and is limited to observing basic server behaviors, such as
disconnections, for coarse-grained semantic insights. Never-
theless, DYNPRE achieves the highest perfection on the 1000-
message dataset and ranks second on the 10- and 100-message
datasets, highlighting the importance of semantic information
in protocol reverse engineering. Experiments on different in-
stances of the MQTT protocol also demonstrate this. DYN-
PRE performs better on MQTT-QoS2 than on MQTT-QoS1,
attributed to more reliable message delivery in the former.
This reliability provides more feedback for constructed re-
quests, allowing DYNPRE to capture richer semantics. Despite
challenges with coarse-grained responses, DYNPRE remains

9

TABLE II: Format inference results of each tool on various protocols with different dataset sizes. Bold indicates the best.

Protocol #msg DYNPRE Netplier BinaryInferno Netzob Nemesys FieldHunter
Acc. F1 Perf. Acc. F1 Perf. Acc. F1 Perf. Acc. F1 Perf. Acc. F1 Perf. Acc. F1 Perf.

IEC61850-MMS 10 0.68 0.59 0.23 0.69 0.28 0.08 0.63 0.37 0.08 0.52 0.27 0.03 0.62 0.46 0.14 0.66 0.37 0.07
S7comm 10 0.76 0.72 0.33 0.72 0.48 0.24 0.49 0.33 0.04 0.52 0.40 0.11 0.66 0.61 0.23 0.56 0.49 0.13
Modbus 10 0.70 0.75 0.54 0.78 0.56 0.38 0.67 0.67 0.25 0.51 0.52 0.13 0.50 0.47 0.21 0.67 0.67 0.25

MQTT-QoS1 10 0.98 0.94 0.82 0.65 0.07 0.13 0.62 0.41 0.26 0.60 0.45 0.32 0.74 0.56 0.22 0.63 0.52 0.26
MQTT-QoS2 10 0.99 0.96 0.89 0.62 0.03 0.07 0.51 0.46 0.29 0.49 0.44 0.32 0.69 0.61 0.28 0.51 0.46 0.29

AMQP 10 0.75 0.58 0.37 0.78 0.56 0.32 0.71 0.38 0.12 0.65 0.28 0.16 0.79 0.65 0.45 0.66 0.21 0.00
SMB2 10 0.85 0.58 0.24 0.77 0.38 0.05 0.79 0.35 0.03 0.73 0.43 0.10 0.72 0.36 0.07 0.80 0.27 0.00
SMB 10 0.82 0.55 0.35 0.70 0.37 0.19 0.77 0.32 0.07 0.76 0.34 0.08 0.71 0.41 0.13 0.81 0.41 0.18
HTTP 10 0.89 0.79 0.71 0.68 0.11 0.12 0.97 0.00 0.00 0.91 0.50 0.50 0.69 0.61 0.60 0.88 0.10 0.10
NTP 10 0.71 0.44 0.21 0.85 0.05 0.00 0.75 0.54 0.27 0.78 0.08 0.00 0.77 0.35 0.14 0.81 0.18 0.00
DNS 10 0.62 0.46 0.27 0.79 0.36 0.08 0.76 0.26 0.00 0.72 0.42 0.13 0.79 0.64 0.41 0.80 0.38 0.14
BGP 10 0.93 0.73 0.56 0.87 0.26 0.09 0.90 0.62 0.52 0.79 0.24 0.13 0.84 0.55 0.27 0.90 0.62 0.52
TFTP 10 0.92 0.77 0.66 0.81 0.23 0.00 0.67 0.00 0.00 0.71 0.37 0.00 0.80 0.73 0.58 0.81 0.00 0.00

Average-10 0.82 0.68 0.48 0.75 0.29 0.14 0.71 0.36 0.15 0.67 0.36 0.15 0.72 0.54 0.29 0.73 0.36 0.15

IEC61850-MMS 100 0.67 0.49 0.18 0.67 0.30 0.09 0.63 0.35 0.08 0.57 0.30 0.04 0.62 0.44 0.12 0.67 0.41 0.08
S7comm 100 0.80 0.75 0.41 0.69 0.48 0.24 0.61 0.48 0.14 0.47 0.29 0.07 0.64 0.58 0.19 0.58 0.47 0.12
Modbus 100 0.71 0.65 0.46 0.72 0.50 0.10 0.58 0.48 0.13 0.56 0.46 0.12 0.58 0.49 0.31 0.75 0.64 0.34

MQTT-QoS1 100 0.99 0.94 0.83 0.66 0.09 0.16 0.62 0.40 0.25 0.62 0.48 0.33 0.78 0.56 0.25 0.62 0.40 0.25
MQTT-QoS2 100 0.99 0.97 0.91 0.63 0.06 0.08 0.48 0.45 0.29 0.48 0.48 0.33 0.72 0.61 0.29 0.48 0.45 0.29

AMQP 100 0.78 0.65 0.44 0.78 0.56 0.37 0.68 0.22 0.13 0.60 0.19 0.13 0.78 0.64 0.45 0.68 0.22 0.00
SMB2 100 0.88 0.67 0.33 0.79 0.38 0.03 0.79 0.34 0.02 0.67 0.40 0.07 0.70 0.29 0.05 0.80 0.27 0.00
SMB 100 0.86 0.60 0.33 0.73 0.46 0.19 0.76 0.45 0.13 0.67 0.38 0.10 0.70 0.46 0.10 0.79 0.51 0.22
HTTP 100 0.93 0.87 0.83 1.00 0.47 0.47 0.99 0.00 0.00 0.89 0.29 0.28 0.91 0.71 0.72 0.87 0.00 0.00
NTP 100 0.72 0.42 0.17 0.85 0.09 0.00 0.81 0.61 0.18 0.76 0.12 0.00 0.79 0.39 0.32 0.81 0.18 0.00
DNS 100 0.62 0.50 0.22 0.86 0.43 0.12 0.74 0.33 0.00 0.74 0.49 0.11 0.80 0.60 0.32 0.59 0.24 0.11
BGP 100 0.97 0.85 0.74 0.93 0.05 0.02 0.96 0.85 0.80 0.85 0.40 0.25 0.91 0.64 0.33 0.96 0.85 0.80
TFTP 100 0.91 0.79 0.71 0.76 0.25 0.00 0.43 0.00 0.00 0.62 0.21 0.01 0.90 0.88 0.82 0.78 0.00 0.00

Average-100 0.83 0.70 0.51 0.77 0.32 0.14 0.70 0.38 0.17 0.65 0.34 0.14 0.76 0.56 0.33 0.72 0.36 0.17

IEC61850-MMS 1000 0.68 0.48 0.19 0.80 0.30 0.09 0.59 0.26 0.05 0.51 0.23 0.01 0.65 0.48 0.10 0.61 0.31 0.05
S7comm 1000 0.78 0.73 0.39 0.79 0.50 0.28 0.53 0.39 0.05 0.52 0.36 0.11 0.61 0.54 0.18 0.58 0.50 0.12
Modbus 1000 0.74 0.70 0.49 0.76 0.51 0.09 0.58 0.50 0.14 0.60 0.50 0.20 0.58 0.50 0.28 0.69 0.61 0.23

MQTT-QoS1 1000 0.99 0.94 0.83 0.70 0.33 0.34 0.79 0.65 0.50 0.98 0.87 0.67 0.78 0.53 0.23 0.79 0.50 0.25
MQTT-QoS2 1000 1.00 0.97 0.92 0.69 0.39 0.25 0.48 0.45 0.29 0.48 0.50 0.33 0.72 0.61 0.29 0.48 0.45 0.29

AMQP 1000 0.80 0.67 0.50 0.77 0.52 0.38 0.68 0.23 0.13 0.64 0.20 0.13 0.79 0.67 0.49 0.68 0.23 0.00
SMB2 1000 0.92 0.70 0.35 0.79 0.38 0.03 0.79 0.33 0.00 0.62 0.38 0.08 0.72 0.31 0.06 0.82 0.36 0.05
SMB 1000 0.87 0.67 0.37 0.76 0.45 0.15 0.70 0.37 0.12 0.63 0.36 0.08 0.67 0.43 0.07 0.78 0.47 0.17
HTTP 1000 0.99 0.93 0.93 1.00 0.91 0.91 0.99 0.00 0.00 0.86 0.14 0.14 0.88 0.58 0.58 0.97 0.00 0.00
NTP 1000 0.73 0.43 0.18 0.83 0.08 0.00 0.77 0.42 0.09 0.76 0.12 0.00 0.81 0.43 0.32 0.81 0.18 0.00
DNS 1000 0.60 0.49 0.22 0.74 0.29 0.11 0.74 0.33 0.00 0.74 0.56 0.11 0.84 0.66 0.43 0.71 0.31 0.11
BGP 1000 0.91 0.69 0.49 0.90 0.12 0.05 0.89 0.59 0.45 0.78 0.00 0.00 0.83 0.54 0.28 0.89 0.59 0.45
TFTP 1000 0.95 0.88 0.84 0.61 0.04 0.00 0.43 0.00 0.00 0.58 0.22 0.03 0.94 0.91 0.86 0.78 0.00 0.00

Average-1000 0.84 0.72 0.51 0.78 0.37 0.21 0.69 0.35 0.14 0.67 0.34 0.15 0.76 0.55 0.32 0.74 0.35 0.13

effective, as evidenced by its superior performance on MQTT-
QoS1 and its capability with the less responsive AMQP.

Moreover, to demonstrate DYNPRE’s scalability with lim-
ited input data, we utilize common statistical measures, includ-
ing mean, median, and percentiles, to present the results for
the 10-message dataset using box plots, as depicted in Fig-
ure 11 in Appendix C. DYNPRE shows impressive perfection,
surpassing Nemesys, the runner-up in mean perfection. These
statistical visualizations demonstrate DYNPRE’s capacity to
handle small inputs, highlighting its practical utility.

Message Type Inference Results. Among the selected
tools, Nemesys and BinaryInferno focus on protocol format
inference and do not support message type inference. There-
fore, we use the remaining three tools for comparison.

Figure 8 plots the average V-measure for each tool on
different protocols, and the detailed results are provided in
Table XI in Appendix C. On average, DYNPRE achieves a
V-measure of 0.94, while Netzob, Netplier, and FieldHunter
achieve 0.72, 0.73, and 0.83, respectively. Of the 13 protocol
instances (including two instances for MQTT), DYNPRE
achieves 100% V-measure in 9 instances, while Netzob, Net-

plier, and FieldHunter achieve this in only 1, 1, and 3 instances,
respectively. Because these methods use static analysis of
network traces, they face the challenge of discerning deep
semantic information to identify message types. Instead, DYN-
PRE uses dynamic analysis to obtain semantic information,
enabling more perfect field identification. It also uses the
semantic-aware refinement strategy to improve format results
further and infer message types, allowing it to identify true
type fields in the messages more effectively.

0.72
0.73

0.94
0.83

MM
S
S7c

ommMod
bus

MQ
TT-

QoS
1

MQ
TT-

QoS
2
AM

QP SM
B2 SM

B
HTT

P NTP DN
S

BG
P

TFT
P

Protocol

0

0.2

0.4

0.6

0.8

1

V-
m
ea
su
re

Netzob Netplier FieldHunter DynPRE Average

Fig. 8: Plot of average V-measure for each tool on various
protocols across different dataset sizes (higher is better).

10

TABLE III: Average results for format and message type inference of DYNPRE compared to other tools on the datasets enhanced
with SDYNPRE or SBooFuzz, with their original results shown in brackets. Underlined for decreases, bold for best.

DYNPRE Netplier BinaryInferno Netzob Nemesys FieldHunter

Accuracy 0.84 0.77, 0.78 (0.78) 0.71, 0.69 (0.69) 0.70, 0.70 (0.67) 0.76, 0.77 (0.76) 0.71, 0.74 (0.74)
F1-score 0.72 0.44, 0.44 (0.37) 0.34, 0.29 (0.35) 0.42, 0.42 (0.34) 0.56, 0.57 (0.55) 0.27, 0.34 (0.35)

Perfection 0.51 0.25, 0.28 (0.21) 0.14, 0.13 (0.14) 0.23, 0.23 (0.15) 0.34, 0.35 (0.32) 0.09, 0.14 (0.13)

V-measure 0.88 0.62, 0.68 (0.62) - 0.72, 0.72 (0.66) - 0.79, 0.79 (0.81)

Netzob outperforms the other tools in analyzing the DNS
protocol. Upon inspection, we discovered that DNS samples
typically contain many messages of the same type and exhibit
high similarity – a feature intrinsic to DNS functionality.
Using a message similarity based clustering approach, Netzob
successfully recognizes and groups these messages into a
cluster, thereby boosting its V-measure. Instead, other tools
identify the type field for message type inference and use the
byte as the minimal field unit. Such an approach is not optimal
for DNS, which uses several bits (rather than bytes) to denote
its type – replacing the type field with alternative multiple
bytes leads to incorrect clustering and a lower V-measure.
However, most protocols use the byte as the minimum field
unit and use type fields instead of message content similarity
to identify message types. Tools like DYNPRE, Netplier, and
FieldHunter work on this principle and achieve an overall
better V-measure than Netzob.

C. Comparison with Prior Work on Enhanced Dataset

To further enrich our comparative analysis, we provide the
five compared tools with datasets enhanced by dynamic inter-
action. Specifically, we enrich the initial 1000-message dataset
Sinitial by providing two types of additional datasets: (i) the
additional message samples derived by DYNPRE, denoted as
SDYNPRE, and (ii) the additional message samples derived by
a protocol fuzzer – BooFuzz [20], denoted as SBooFuzz. For
SBooFuzz in detail, we initialize BooFuzz with the 1000-message
dataset Sinitial, let it interact with the protocol server in a setup
identical to that of DYNPRE, and capture the traffic during this
interactive phase to obtain additional samples. For BooFuzz
initialization, we use the message order recorded in the input
network traces to construct the session graph for BooFuzz, and
define the message structure by treating each recorded message
as a byte sequence [21], since we are format agnostic when
reverse engineering the protocol. In addition, since BooFuzz
performs mutations randomly, the messages it generates are
not necessarily semantically valid. To avoid confusing the
compared tools, we filter the traffic and retain only the server
responses for the extension, as the responses are legitimate
messages. This treatment is consistent with DYNPRE, which
adds only the server responses to the dataset for statistical
analysis. Meanwhile, for each protocol, we restrict the size of
SBooFuzz to be the same as SDYNPRE to ensure a fair comparison.

Results. Table III shows the average performance of the
compared tools when provided two enhanced datasets, com-
pared to their original performance and the performance of
DYNPRE. Detailed results are given in Tables IX and X in
Appendix C. To ensure that the results after enhancement are
comparable to the original ones, we calculate only the average
performance of the compared tools on the Sinitial part, even

when they are provided with additional datasets. From the
results, Netplier and Netzob showed slightly more improve-
ment than the other three tools on the enhanced datasets.
This is because they employ alignment-based approaches, and
providing more samples for alignment often leads to better
results. However, certain tools perform worse on the enhanced
datasets, such as BinaryInferno’s F1-score and FieldHunter’s
V-measure. This can be attributed to the inherent uncertainty
of the underlying statistical analysis. Overall, the performance
of the static tools on the SDYNPRE enhanced dataset and the
SBooFuzz enhanced dataset show a slight difference, and their
improvements over the original results both remain limited,
with DYNPRE consistently outperforming them. The main
reason lies in their different strategies for exploring interactive
traffic. DYNPRE explores by correlating the modification oper-
ations with the server feedback, thus ensuring precise inference
of byte semantics. In contrast, the other tools rely exclusively
on statistical analysis that explores byte-value distribution and
similarity. This is less accurate because bytes with identical
or different values do not inherently imply semantic similarity
or difference. This gap between the semantics of the field and
its statistical characteristics limits the performance of the static
tools and cannot be overcome by providing additional samples.

D. Module Evaluation

In our proposed approach, the accurate detection of
session-specific identifiers is critical, as the derived set of
message rewrite rules forms the basis of the subsequent dy-
namic inference. Meanwhile, DYNPRE’s refinement strategy
is designed to improve the overall format accuracy. In this
section, we evaluate the effectiveness of these two modules.

TABLE IV: Number of (sources / references) of derived mes-
sage rewrite rules for protocols with session-specific identifiers

Protocol 10 messages 100 messages 1000 messages

HTTP 1 / 3 3 / 42 7 / 477
SMB 2 / 9 3 / 149 9 / 410
SMB2 3 / 8 12 / 163 87 / 1093
BGP 1 / 1 1 / 1 4 / 8
TFTP 3 / 3 15 / 39 105 / 339

Session-Specific Identifier Detection Accuracy. For an
input network trace Γo, we use a dynamic approach to measure
the correctness of the derived message rewrite rules Υ by
checking whether we can successfully replay Γo. Specifically,
we replay Γo using the on-the-fly message rewriting configured
with Υ (as shown in Section III-B) and obtain the replayed Γr.
We then check whether Γr is identical to Γo, excluding byte
regions associated with the sources or references documented
in Υ . If they are identical, the derived Υ is correct. Otherwise,

11

TABLE V: The inferred message format of the protocol used in different devices and the behaviors triggered by the messages
generated from this format (with behavior-determining bytes in bold, * means the protocol employs the session-specific identifiers).

Device Behaviors of Input Messages Message Format # Triggered Behaviors

Yeelight LED Screen
Light Bar Pro

Turn On V(18) V(9) C(13) V(2) V(3) V(6) V(7) C(2) Turn On, Brighten,
Turn Off, DimBrighten V(18) V(10) C(12) V(2) V(2) C(6) V(7) C(2)

Philips Hue Bridge Create Group V(7) C(28) V(15) V(9) V(57) C(1) V(11) V(7) V(1) V(3) V(36) Set Name, Create Group,
Output Name, Delete GroupSet Name V(57) V(57) C(1) V(7) V(1) V(5) V(5) V(1) V(1) V(2) V(21)

Broadlink Smart Plug Turn Off V(32) V(4) C(2) C(2) V(2) C(10) C(1) V(1) V(2) V(4) V(2) V(26) Turn On, Turn Off

Xiaomi Mijia Smart Camera* Turn On C(12) V(4) V(9) V(7) V(21) C(9) V(4) V(1) V(2) V(3) C(5) V(2) C(4) Turn On, Turn Off

Tplink Router Add Forbidden Domain C(2) C(10) C(12) C(13) C(10) V(15) C(11) C(6) C(3) V(13) C(14) V(3) C(2)
Add Forbidden Domain,

Clear Forbidden Domains,
Output Forbidden Domains

we need to investigate whether the discrepancy between Γr and
Γo stems from random nonces, whose values also vary between
different sessions. We manually check the semantics of the
relevant regions by consulting the protocol specification. If the
discrepancy is solely due to random nonces, we can conclude
that the derived Υ is accurate. We repeat the above steps three
times to confirm the correctness of the derived constraint for
each rewrite rule, thus eliminating chance factors.

Following the procedure above, we confirm that DYNPRE
accurately identifies all potential session-specific identifiers in
the network traces within the dataset. Specifically, among the
subject protocols, DYNPRE detects five protocols that contain
session-specific identifiers, i.e., HTTP, SMB, SMB2, BGP, and
TFTP. Table IV summarizes the message rewrite rules derived
for their identifiers. By manually inspecting the results, we
find the derived message rewrite rules consistent with the
respective protocol specifications. In the HTTP, TFTP, and
BGP protocols, all detected session-specific identifiers belong
to the same type of field, i.e., the Cookie, DestinationPort,
and MyAS fields, respectively. Conversely, the scenarios in the
SMB and SMB2 protocols are more complicated. The detected
session-specific identifiers in these protocols include various
fields, including the SessionID, TreeID, and ServerGuid fields.
Furthermore, their lifetime within the session varies, demon-
strating the ability of our method to handle complex situations.

Effectiveness of the Refinement Strategy. This strategy
aims to improve the overall format results and to infer message
field types, with the latter being evaluated in Section IV-B. We
evaluate the format inference results by comparing DYNPRE
and DYNPRE- (a variant without the refinement strategy).
Table VII in Appendix C shows the format inference results of
DYNPRE-. With the help of the refinement strategy – which
synthesizes the results from dynamic analysis through inter-
actions and static analysis on increased samples – DYNPRE
achieves an average improvement of 0.05 in accuracy, 0.10
in F1-score, and 0.13 in perfection compared to DYNPRE-,
demonstrating the effectiveness of the refinement strategy.
Overall, DYNPRE- achieves an accuracy of 0.78, an F1-score
of 0.60, and a perfection of 0.37, which still significantly
outperforms the state-of-the-art tools, demonstrating the effec-
tiveness of our proposed dynamic inference approach.

E. Proprietary Protocol Analysis

In this section, we apply DYNPRE to proprietary protocols
used in IoT devices. However, evaluating protocol reverse

engineering tools on unknown protocols is challenging due
to their proprietary nature, which makes it difficult to obtain
specifications and establish ground truth (as performed in
Sections IV-B and IV-C). Considering the protocol’s appli-
cation, we design a three-step evaluation process: (1) Input
message construction. First, we activate various behaviors
on the target IoT device via the official APP. Meanwhile,
we capture the network traffic during activation, label the
messages corresponding to each behavior, and use them as
input for DYNPRE. (2) Protocol reverse engineering. We then
use DYNPRE to infer the message format associated with
each behavior through dynamic interaction with the device.
(3) Application of the inferred formats. To evaluate the results,
we use the inferred formats to generate messages and send
them to the device. We then observe whether these newly
generated messages can (i) trigger the same behavior as the
original input messages and (ii) trigger additional behaviors
beyond those triggered by the input messages.

Following the described procedure, we select five widely
used IoT devices with diverse functionalities for evaluation,
including a light, two controllers (a bridge and a smart plug),
an IP camera, and a router. Table V provides their detailed
information and the corresponding analysis results. Some
devices use encrypted communication, and we decrypt them
using the device’s private key when adapting DYNPRE to
focus our study on protocol reverse engineering. The second to
fourth columns summarize the information for each evaluation
step. As indicated in the second column, we activate different
behaviors according to the device type, such as turning on
or brightening the light, creating a new control group for the
bridge, and adding a forbidden domain for the router. The third
column presents the inferred message format for each activated
behavior. We show only the type and length for each field as
FieldType(FieldLength), where ‘C’ denotes constant
fields and ‘V’ variable fields. Notably, DYNPRE detects a
session-specific identifier in the protocol used by the Xiaomi
camera, demonstrating its capacity to handle intricate scenarios
in real-world protocols.

For format evaluation, we generate new messages based on
the inferred formats and send them to the device. Following the
strategy used in protocol fuzzers [14], we employ a structure-
aware message generation approach that integrates two levels
of operations: (i) random field content modification – specif-
ically, we leave constant field values unchanged, while for
variable fields we consider existing values from network traces

12

as well as random content; and (ii) random field deletion.
The fourth column of Table V shows the behaviors triggered
by the newly generated messages. We observe that these
messages not only initiate the original behaviors triggered by
the input messages but can also trigger additional behaviors
beyond the originals. These include turning off and dimming
the light, deleting the control group in the bridge, removing
the forbidden domain in the router, and so on. In summary,
based on the original 7 types of behaviors initiated on the
selected devices, the newly generated messages can trigger 15
different behaviors, demonstrating the validation of the formats
inferred by DYNPRE. For further study, we analyze the bytes
determining the behaviors triggered by the new messages, as
shown in bold in the third column. We find that these bytes are
usually command fields or fields carrying command arguments,
and that these bytes are all identified as variable fields by
DYNPRE. Below, we provide two case studies.

Hello	Message

fn,n+1,...
Stamp

0x000007d5
DeviceID
0x3fe42a91 f1,2,...

Command	Message #1

Hello	Response
DeviceID
0x3fe42a91

Stamp
0x000007d4 fn,n+1,...f1,2,...

Source

Reference

①

③

②

Command	Response #1

Command	Message #2
④

…⑤

1680 12

081216

Fig. 9: The usage of the session-specific identifiers in the
Xiaomi smart camera.

Case Studies. Figure 9 presents the startup session of the
Xiaomi smart camera. The startup session is initiated by a
Hello Message sent from the client to the device (1).
In response, the device sends a Hello Response contain-
ing two session-specific identifiers, the DeviceID and Stamp
fields (2). The Stamp field is an increasing counter designed
to prevent replay attacks and to trace the session. Specifically,
if the device’s response message assigns a value x to this field,
the subsequent request message should present a value of x+ 1
in this field. If not, the device will reject the request. This rule
also applies to subsequent request/response pairs throughout
the session, including 4 and 5 . For this identifier, DYNPRE
generates a rule presented in the first row of Table VI. The
rule states that the source is bytes M [12..15] in message
2 , with references including bytes M [12..15] in message
3 under constraint y = x+ 1. The third rule is similarly
derived. The DeviceID field serves as a unique identifier for the
device. The device will reject any request message containing
a mismatched DeviceID. This field is not always categorized
as a session-specific identifier. Consider the following two
scenarios: (i) If the device on which the input network traces
are captured and the device from which DYNPRE learns are
the same, then the DeviceID field is not deemed a session-

specific identifier because the device accepts the DeviceID
value recorded in the input network traces. (ii) If the device
on which the input network traces are captured and the device
from which DYNPRE learns are different, the DeviceID field
is recognized as a session-specific identifier. In this scenario,
DYNPRE must rewrite the DeviceID field in the probe request
messages to the appropriate value provided in response 2 .
DYNPRE successfully detects these identifiers in our experi-
ment and derives the corresponding message rewrite rules, as
shown in Table VI. Based on this, DYNPRE establishes on-the-
fly message rewriting to dynamically adjust the values of these
fields in the probe requests, which prevents early rejection
of the probe requests and enables more profound semantic
feedback for accurate protocol analysis.

TABLE VI: The derived message rewrite rules for the Xiaomi
camera startup session.

No. Source References Constraint
1 2 : [12..15] 3 : [12..15] y = x+ 1

2 2 : [8..11] 3 : [8..11], 5 : [8..11] y = x

3 4 : [12..15] 5 : [12..15] y = x+ 1

Figure 10 shows a snippet of a Yeelight light’s brightening
message in hex format. We highlight its behavior-determining
bytes, which correspond to the second and fourth inferred
fields as shown in Table V. The precise field identification
of DYNPRE allows us to observe the correlation between the
change in the field’s values and the light’s behaviors, assisting
us in determining the fields’ semantics. The second field, in
the blue background, is the command field. Different values of
this field can instruct the light to perform different behaviors,
including turning on/off and brightening/dimming the light
shown in our experiment. The fourth field, in the orange back-
ground, carries the command arguments. For the command
to set the brightness, this field carries the target brightness
that a user wants to set. In our experiment, manipulating this
field allowed us to change the brightness of the light directly.
Besides, successfully detecting this field allows us to fuzz the
light effectively by assigning abnormal values to the field for
attack vectors such as integer overflow.

73 65 74 5F 62 72 69 67 68 74 22 2C 22 70...

Command
f2: V(10) f3: C(12)

61 72 61 6D 73 22 3A 5B 31 30 2C 22 ...

Arguments

f4: V(2) f5: V(2)

0 1 2 3 4 5 6 7 8 9 a b c d e f

0001h:

0002h:

Fig. 10: A snippet of a Yeelight light’s brightening message.

V. DISCUSSION

A. Performance Overhead

Since DYNPRE performs dynamic analysis by interacting
with the server, it may not be faster than tools that only perform
static analysis on network traces. However, considering that
the protocol reverse engineering is generally a one-time effort
and affects many downstream applications, a slightly longer
execution time for better results is a worthwhile trade-off, as
errors in the results can propagate and accumulate through the

13

application chain. In our experiments, for the largest dataset
size of 1000 messages, DYNPRE takes an average of 259
minutes to reverse engineer a protocol, with an average of
50344 connection attempts and 3976443 exchanged messages
with the protocol server. This overhead is acceptable because
DYNPRE provides a more accurate understanding of the target
protocol. The detailed overhead statistics are given in Table XII
in Appendix C.

Since DYNPRE requires interaction with the server, its
execution time is affected by the response time of the protocol
server. Low server throughput or denied requests after frequent
connections can hinder the connection frequency of DYNPRE,
thus affecting the analysis efficiency. We can employ static
tools, e.g., those compared tools shown in Section IV-A, for
initial analysis and screening to migrate this. On the one hand,
the static analysis helps to identify obvious features, allowing
us to skip analyzing unnecessary bytes. For instance, in the
SMB2 protocol, the ProtocolId field (M [4..7] in Figure 1)
in the header is consistently set to “\xFESMB” to denote
this protocol, so we can avoid analyzing these bytes in each
message. On the other hand, by analyzing the initial format
derived by static tools, we can determine byte regions of
interest, i.e., regions likely to contain essential fields like
command fields, and use DYNPRE to dynamically re-analyze
these specific byte regions with high precision.

B. Impact of Active Probing

DYNPRE analyzes protocols using active probing. How-
ever, as the protocol server is stateful, the probing process may
change its internal state, affecting the subsequent exploration
process. DYNPRE addresses this by establishing a new session
with the server for each probe, as most network protocols
maintain states separately for different sessions. Yet, problems
arise with protocols that have global states shared across ses-
sions. For instance, in IoT protocols with global device states,
previous requests like power on/off can affect the validity
of subsequent requests, potentially reducing feedback quality.
However, DYNPRE can still get feedback on message parsing,
as servers typically parse before state checking. Besides, it is
beneficial to control the server where possible; analyzers can
reset its state via restarts or APP control, mitigating the effects
of previous exploration and providing more accurate results.

VI. RELATED WORK

A. Protocol Reverse Engineering

Program Analysis Based Approach. These techniques
utilize dynamic program analysis methods such as taint anal-
ysis to trace the program execution of given well-formed
messages [23], [8], [11] or perform static program analysis on
the source code [44], [43]. Despite their high accuracy, they
require access to the source code or binary, which may not be
feasible in practice. Instead, DYNPRE requires only network
access to the server and can be conducted in a black-box set-
ting. Meanwhile, unlike the dynamic program analysis based
on well-formed messages, DYNPRE employs an intelligent
approach to modify well-formed messages to reveal diverse
server behaviors for semantic information extraction.

Network Trace Based Approach. These techniques ana-
lyze static network traces to mine features such as message

bytes [22], sequences [53], [6], and common field seman-
tics [3], [9]. Some techniques, such as Netzob [6] and Net-
plier [53], employ an alignment-based approach that classifies
messages into distinct clusters and summarizes cluster-specific
structures based on alignment [12]. These techniques rely on
high-quality network traces containing diverse messages to
recognize differences between clusters and data commonalities
between messages within each cluster. Obtaining such traces
is often difficult in practice due to the uneven distribution
of messages in real conversations. DYNPRE uses alignment
to analyze responses and addresses this limitation by actively
generating many slightly different requests to obtain multiple
response variants that are generally similar but with different
details, providing natural clustering and more granular insight
into the format. DYNPRE also incorporates a dynamic ap-
proach to obtaining semantics from the server for analysis.

Some work also incorporates semantic information into
statistical analysis to infer protocol formats. Discoverer [12]
uses token type patterns provided by the analyst to tok-
enize bytes using simple semantics, e.g., textual or binary,
and then clusters messages based on the tokenized results.
FieldHunter [3] uses the general semantics and features of
specific common fields, e.g., message length or host ID,
and identifies fields by establishing a statistical correlation
between these types and byte values. BinaryInferno [9] uses
an ensemble of detectors to search for semantically meaningful
explanations using serialization patterns. The semantics used
by these techniques are based on prior knowledge and are still
inferred through the statistical analysis of the static messages,
which may face challenges in capturing semantics partially
reflected in the supplied value or in dealing with message
content with noise. Instead, DYNPRE uses dynamic inference
to obtain more precise semantics from interactions and identify
fields by automatically recognizing semantic changes.

B. Protocol Fuzzing

Protocol fuzzing is a widely adopted dynamic testing
technique that continuously generates and sends messages to
the server while monitoring for anomalies [56], [36], [25],
[57], [10]. Due to the highly complex protocol structure and
interaction logic, effective fuzzing requires knowledge of the
protocol model, including the acceptable message formats and
ordering [20], [14], [24], [46], [26]. However, constructing
protocol models requires significant manual effort and exper-
tise. Protocol reverse engineering can automate this process,
especially for protocols without specifications or source code.
WEIZZ [15] identifies field boundaries by analyzing the de-
pendencies between input bytes and comparison instructions,
which requires the source code or binary. Pulsar [17] performs
a simple combination of protocol reverse engineering and
fuzzing. It statically analyzes the input network traces to
infer the protocol model and uses it to initialize fuzzing.
Pulsar does not recognize and utilize semantic information
during dynamic fuzzing to improve the protocol model, so
it faces the same challenges as existing approaches. Instead,
DYNPRE utilizes the interactive capability of the server to
obtain more semantic information and samples for analysis and
can provide a more accurate protocol format and state machine
than existing approaches, thus improving the effectiveness of
downstream applications like fuzzing.

14

VII. CONCLUSION

In this paper, we present DYNPRE, a network trace based
protocol reverse engineering tool that is fully automatic and
requires no prior knowledge of the protocol under analysis.
Rather than relying exclusively on the statistical analysis of the
input network traces, DYNPRE integrates a dynamic approach
that intelligently interacts with the protocol server to extract
insightful information, allowing for a more accurate under-
standing of the underlying protocol structure and semantics.
Our experiments show that DYNPRE substantially outperforms
state-of-the-art tools in field identification and message type
inference. Furthermore, the successful application of DYNPRE
to real-world proprietary protocols showcases its versatility and
potential to address challenges in security applications.

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their construc-
tive feedback and suggestions. This research is sponsored
in part by the National Key Research and Development
Project (No. 2022YFB3104000) and NSFC Program (No.
62022046, 92167101, U1911401, 62021002).

REFERENCES

[1] 8051Enthusiast. (2023) delsum: A reverse engineer’s checksum toolbox.
https://github.com/8051Enthusiast/delsum.

[2] T. Bao, R. Wang, Y. Shoshitaishvili, and D. Brumley, “Your exploit is
mine: Automatic shellcode transplant for remote exploits,” 2017 IEEE
Symposium on Security and Privacy (SP).

[3] I. Bermudez, A. Tongaonkar, M. Iliofotou, M. Mellia, and M. M.
Munafò, “Automatic protocol field inference for deeper protocol un-
derstanding,” 2015 IFIP Networking Conference, 2015.

[4] binaryinferno. (2023) Implementation of binaryinferno. https://github.
com/binaryinferno/binaryinferno.

[5] G. Bossert, “Exploiting semantic for the automatic reverse engineering
of communication protocols.” 2014.

[6] G. Bossert, F. Guihéry, and G. Hiet, “Towards automated protocol
reverse engineering using semantic information,” Proceedings of the
9th ACM symposium on Information, computer and communications
security, 2014.

[7] J. Caballero, P. Poosankam, C. Kreibich, and D. X. Song, “Dispatcher:
enabling active botnet infiltration using automatic protocol reverse-
engineering,” in ACM CCS, 2009.

[8] J. Caballero, H. Yin, Z. Liang, and D. X. Song, “Polyglot: automatic
extraction of protocol message format using dynamic binary analysis,”
in ACM CCS 2007.

[9] J. Chandler, A. Wick, and K. Fisher, “Binaryinferno: A semantic-driven
approach to field inference for binary message formats,” NDSS 2023.

[10] Y. Chen, F. Ma, Y. Zhou, Y. Jiang, T. Chen, and J. Sun, “Tyr: Finding
consensus failure bugs in blockchain system with behaviour divergent
model,” in IEEE Symposium on Security and Privacy (SP), 2023.

[11] P. M. Comparetti, G. Wondracek, C. Krügel, and E. Kirda, “Prospex:
Protocol specification extraction,” 2009 30th IEEE Symposium on
Security and Privacy.

[12] W. Cui, J. Kannan, and H. J. Wang, “Discoverer: Automatic protocol
reverse engineering from network traces,” in USENIX Security Sympo-
sium, 2007.

[13] eclipse. (2023) Eclipse mosquitto - an open source mqtt broker. https:
//github.com/eclipse/mosquitto.

[14] M. Eddington. (2023) Peach fuzzing platform. https://gitlab.com/
gitlab-org/security-products/protocol-fuzzer-ce.

[15] A. Fioraldi, D. C. D’Elia, and E. Coppa, “Weizz: automatic grey-box
fuzzing for structured binary formats,” 29th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, 2019.

[16] P. Fiterău-Broştean, R. Janssen, and F. Vaandrager, “Combining model
learning and model checking to analyze tcp implementations,” in
Computer Aided Verification: 28th International Conference, CAV 2016.

[17] H. Gascon, C. Wressnegger, F. Yamaguchi, D. Arp, and K. Rieck,
“Pulsar: Stateful black-box fuzzing of proprietary network protocols,”
in Security and Privacy in Communication Networks, 2015.

[18] M. E. Hoque, O. Chowdhury, S. Y. Chau, C. Nita-Rotaru, and N. Li,
“Analyzing operational behavior of stateful protocol implementations
for detecting semantic bugs,” 2017 47th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks (DSN).

[19] M. Isberner, F. Howar, and B. Steffen, “The open-source learnlib - a
framework for active automata learning,” in International Conference
on Computer Aided Verification, 2015.

[20] jtpereyda. (2023) BooFuzz: Network protocol fuzzing for humans. https:
//github.com/jtpereyda/boofuzz.

[21] jtpereyda. (2023) BooFuzz Quickstart. https://boofuzz.readthedocs.io/
en/stable/user/quickstart.html?highlight=session.connect#quickstart.

[22] S. Kleber, H. Kopp, and F. Kargl, “Nemesys: Network message syntax
reverse engineering by analysis of the intrinsic structure of individual
messages,” in WOOT @ USENIX Security Symposium, 2018.

[23] Z. Lin, X. Jiang, D. Xu, and X. Zhang, “Automatic protocol format
reverse engineering through context-aware monitored execution,” in
NDSS 2008.

[24] Z. Luo, J. Yu, F. Zuo, J. Liu, Y. Jiang, T. Chen, A. Roychoudhury,
and J. Sun, “Bleem: Packet sequence oriented fuzzing for protocol
implementations,” 2023 32nd USENIX Security Symposium.

[25] Z. Luo, F. Zuo, Y. Jiang, J. Gao, X. Jiao, and J. Sun, “Polar: Function
code aware fuzz testing of ICS protocol,” ACM Trans. Embed. Comput.
Syst., 2019.

[26] Z. Luo, F. Zuo, Y. Shen, X. Jiao, W. Chang, and Y. Jiang, “ICS protocol
fuzzing: Coverage guided packet crack and generation,” ACM/IEEE
Design Automation Conference (DAC), 2020.

[27] R. Marcovich, O. Grumberg, and G. Nakibly, “Pise: Protocol inference
using symbolic execution and automata learning,” Proceedings 2023
Workshop on Binary Analysis Research.

[28] K. L. McMillan and L. D. Zuck, “Formal specification and testing of
QUIC,” ACM Special Interest Group on Data Communication, 2019.

[29] Microsoft, “Server message block (smb) protocol versions 2,”
2023, https://learn.microsoft.com/en-us/openspecs/windows protocols/
ms-smb2/5606ad47-5ee0-437a-817e-70c366052962.

[30] msoulier. (2023) Pure python tftp library. https://github.com/msoulier/
tftpy.

[31] mz automation. (2023) Official repository for libiec61850, the
open-source library for the iec 61850 protocols. https://github.com/
mz-automation/libiec61850.git.

[32] NetPlier. (2023) Netplier: Probabilistic network protocol reverse engi-
neering from message traces. https://github.com/netplier-tool/NetPlier.

[33] netzob. (2023) Netzob: Protocol reverse engineering, modeling and
fuzzing. https://github.com/netzob/netzob.

[34] osrg. (2023) Bgp implemented in the go programming language. https:
//github.com/osrg/gobgp.

[35] M. L. Pacheco, M. von Hippel, B. Weintraub, D. Goldwasser, and
C. Nita-Rotaru, “Automated attack synthesis by extracting finite state
machines from protocol specification documents,” in 2022 IEEE Sym-
posium on Security and Privacy (SP).

[36] V.-T. Pham, M. Böhme, and A. Roychoudhury, “AFLNET: A greybox
fuzzer for network protocols,” 2020 IEEE 13th International Conference
on Software Testing, Validation and Verification (ICST).

[37] RabbitMQ. (2023) Open source rabbitmq: core server and tier 1 (built-
in) plugins. https://github.com/rabbitmq/rabbitmq-server.

[38] RFC 6101, “The secure sockets layer (ssl) protocol version 3.0,”
Website, https://datatracker.ietf.org/doc/html/rfc6101.

[39] RFC 6265, “Http state management mechanism,” Website, https://
datatracker.ietf.org/doc/html/rfc6265.

[40] RFC 793, “Transmission control protocol,” Website, https://www.ietf.
org/rfc/rfc793.txt.

[41] RFC 959, “File transfer protocol (ftp),” Website, https://datatracker.ietf.
org/doc/html/rfc959.

15

https://github.com/8051Enthusiast/delsum
https://github.com/binaryinferno/binaryinferno
https://github.com/binaryinferno/binaryinferno
https://github.com/eclipse/mosquitto
https://github.com/eclipse/mosquitto
https://gitlab.com/gitlab-org/security-products/protocol-fuzzer-ce
https://gitlab.com/gitlab-org/security-products/protocol-fuzzer-ce
https://github.com/jtpereyda/boofuzz
https://github.com/jtpereyda/boofuzz
https://boofuzz.readthedocs.io/en/stable/user/quickstart.html?highlight=session.connect#quickstart
https://boofuzz.readthedocs.io/en/stable/user/quickstart.html?highlight=session.connect#quickstart
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-smb2/5606ad47-5ee0-437a-817e-70c366052962
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-smb2/5606ad47-5ee0-437a-817e-70c366052962
https://github.com/msoulier/tftpy
https://github.com/msoulier/tftpy
https://github.com/mz-automation/libiec61850.git
https://github.com/mz-automation/libiec61850.git
https://github.com/netplier-tool/NetPlier
https://github.com/netzob/netzob
https://github.com/osrg/gobgp
https://github.com/osrg/gobgp
https://github.com/rabbitmq/rabbitmq-server
https://datatracker.ietf.org/doc/html/rfc6101
https://datatracker.ietf.org/doc/html/rfc6265
https://datatracker.ietf.org/doc/html/rfc6265
https://www.ietf.org/rfc/rfc793.txt
https://www.ietf.org/rfc/rfc793.txt
https://datatracker.ietf.org/doc/html/rfc959
https://datatracker.ietf.org/doc/html/rfc959

[42] A. Rosenberg and J. Hirschberg, “V-measure: A conditional entropy-
based external cluster evaluation measure,” in Conference on Empirical
Methods in Natural Language Processing, 2007.

[43] Q. Shi, J. Shao, Y. Ye, M. Zheng, and X. Zhang, “Lifting network
protocol implementation to precise format specification with security
applications,” ACM SIGSAC CCS, 2023.

[44] Q. Shi, X. Xu, and X. Zhang, “Extracting protocol format as state
machine via controlled static loop analysis,” Usenix Security, 2023.

[45] stephane. (2023) A modbus library for linux, mac os, freebsd and
windows. https://github.com/stephane/libmodbus.git.

[46] Synopsis. (2023) Defensics fuzz testing. https://www.synopsys.com/
software-integrity/security-testing/fuzz-testing.html.

[47] T. S. Team. (2023) Samba is the standard windows interoperability suite
of programs for linux and unix. https://gitlab.com/samba-team/samba.

[48] thekelleys. (2023) Implementation of the dns protocol. https://
thekelleys.org.uk/dnsmasq/doc.html.

[49] tplink. (2023) Tp-link ax5400 pro web management page. https://www.
tp-link.com/us/support/download/archer-ax5400-pro/#Firmware.

[50] TShark. (2023) Tshark - dump and analyze network traffic. https://www.
wireshark.org/docs/man-pages/tshark.html.

[51] vs uulm. (2023) Network message syntax analysys. https://github.com/
vs-uulm/nemesys.

[52] vs-uulm. (2023) Re-implementation of the protocol reverse engineering
approach fieldhunter. https://github.com/vs-uulm/fieldhunter.

[53] Y. Ye, Z. Zhang, F. Wang, X. Zhang, and D. Xu, “Netplier: Probabilistic
network protocol reverse engineering from message traces,” Proceed-
ings 2021 Network and Distributed System Security Symposium.

[54] J. Yen, T. L’evai, Q. Ye, X. Ren, R. Govindan, and B. Raghavan, “Semi-
automated protocol disambiguation and code generation,” Proceedings
of the 2021 ACM SIGCOMM Conference.

[55] yerseg. (2023) Implementation of the s7comm protocol. https://github.
com/yerseg/s7comm investigation.

[56] F. Zuo, Z. Luo, J. Yu, T. Chen, Z. Xu, A. Cui, and Y. Jiang,
“Vulnerability detection of ICS protocols via cross-state fuzzing,” IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst., 2022.

[57] F. Zuo, Z. Luo, J. Yu, Z. Liu, and Y. Jiang, “PAVFuzz: State-sensitive
fuzz testing of protocols in autonomous vehicles,” ACM/IEEE Design
Automation Conference (DAC), 2021.

APPENDIX

A. DYNPRE’s Scalability for Checksum Mechanism used in
Protocols

DYNPRE constructs probe messages by modifying the
original messages in the input network traces. However, the
checksum mechanism used in some protocols can render this
strategy ineffective because the modified messages may fail
checksum verification, making it difficult to induce in-depth
semantics from the server. This mechanism is widely used
in transport-layer protocols like TCP but is less common
in application-layer protocols, which are the primary targets
of protocol reverse engineering. To improve the scalabil-
ity of DYNPRE with potential targets that use checksum
mechanisms, we integrate DYNPRE with an existing tool,
delsum [1], and utilize our on-the-fly message rewriting mech-
anism. Specifically, DYNPRE first employs delsum to reverse
engineer the checksum algorithm. Then, DYNPRE automat-
ically generates the corresponding message rewrite rules to
allow the checksum to be recalculated before the message is
sent. Based on this, DYNPRE can perform normal analysis
on the target protocol. We evaluate the effectiveness of this
approach on the ICMP protocol, which uses a checksum
mechanism. The results show that DYNPRE can successfully
reverse engineer the checksum algorithm and correctly es-
tablish message rewriting for the checksum field. We also

evaluate the format inference performance. The results show
that DYNPRE achieves the best perfection of 0.66, compared
to the best result of 0.41 for the other tools. The superiority
of DYNPRE on ICMP is consistent with the results shown in
Section IV-B, demonstrating the scalability of DYNPRE with
protocols that use checksum mechanisms.

B. Experimental Dataset

Table VIII shows detailed information on the selected open-
source protocol projects and constructed dataset. This includes
information on the protocol server under learning, the client
utilities used for building the dataset, and the number of mes-
sage types within the constructed dataset. The encryption or
authentication mechanisms of the selected utilities are disabled
since this is beyond the scope of our work. To facilitate a
fair comparison, the selected server and client utilities (cf. the
third and fourth columns) all come from off-the-shelf utilities
that are either included in the project or operating system or
publicly available services on the Internet (e.g., the public NTP
time server).

To enhance the diversity of message types, we try to use
as many existing clients as possible, and to manipulate the call
parameters of each client to trigger various interaction scenar-
ios. The fifth column shows the number of message types in
the dataset, which is obtained based on the message parsing
results of tshark [50] and the official protocol documents.

C. Detailed Results

This section presents the detailed performance results of
DYNPRE, DYNPRE-, and the state-of-the-art tools.

���	

����

���

����

����

����

���

����

����

����

����

����

����

����

����

���	

����

����

D y n P R E N e m e s y s N e t z o b F i e l d H u n t e r B i n a r y I n f e r n o N e t p l i e r
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

Per
fec

tio
n

Fig. 11: The box plot of mean, median, and percentiles of the
perfection on the 10-message dataset for each tool.

TABLE VII: Format inference results of DYNPRE- on various
protocols with different dataset sizes.

Protocol 10 messages 100 messages 1000 messages
Acc. F1 Perf. Acc. F1 Perf. Acc. F1 Perf.

IEC61850-MMS 0.63 0.34 0.14 0.66 0.37 0.16 0.65 0.34 0.14
S7comm 0.69 0.54 0.24 0.70 0.54 0.24 0.69 0.53 0.23
Modbus 0.60 0.64 0.33 0.64 0.55 0.30 0.68 0.61 0.32

MQTT-QoS1 0.78 0.76 0.48 0.82 0.78 0.50 0.82 0.77 0.50
MQTT-QoS2 0.79 0.78 0.55 0.82 0.80 0.58 0.83 0.80 0.58

AMQP 0.75 0.53 0.34 0.78 0.64 0.42 0.79 0.67 0.45
SMB2 0.83 0.44 0.14 0.86 0.56 0.24 0.86 0.63 0.32
SMB 0.77 0.54 0.32 0.79 0.54 0.30 0.84 0.64 0.33
HTTP 0.86 0.75 0.68 0.91 0.81 0.77 0.97 0.94 0.92
NTP 0.67 0.41 0.21 0.69 0.40 0.17 0.68 0.41 0.18
DNS 0.72 0.46 0.23 0.71 0.46 0.17 0.71 0.46 0.17
BGP 0.92 0.54 0.44 0.93 0.62 0.48 0.91 0.66 0.45
TFTP 0.82 0.64 0.38 0.84 0.62 0.49 0.90 0.72 0.64

Average 0.76 0.57 0.35 0.78 0.59 0.37 0.79 0.63 0.40

16

https://github.com/stephane/libmodbus.git
https://www.synopsys.com/software-integrity/security-testing/fuzz-testing.html
https://www.synopsys.com/software-integrity/security-testing/fuzz-testing.html
https://gitlab.com/samba-team/samba
https://thekelleys.org.uk/dnsmasq/doc.html
https://thekelleys.org.uk/dnsmasq/doc.html
https://www.tp-link.com/us/support/download/archer-ax5400-pro/#Firmware
https://www.tp-link.com/us/support/download/archer-ax5400-pro/#Firmware
https://www.wireshark.org/docs/man-pages/tshark.html
https://www.wireshark.org/docs/man-pages/tshark.html
https://github.com/vs-uulm/nemesys
https://github.com/vs-uulm/nemesys
https://github.com/vs-uulm/fieldhunter
https://github.com/yerseg/s7comm_investigation
https://github.com/yerseg/s7comm_investigation

TABLE VIII: Information on the selected open-source protocol project and constructed dataset for evaluation. We use
off-the-shelf servers and clients for dataset construction and evaluation.

Protocol Project Server Under Learning Clients for Dataset Construction Message Types

IEC61850-MMS libiec61850 [31] server example basic io/server example basic io

iec61850 client example async/client example async
iec61850 client example control/client example control
iec61850 client example array/client example array
iec61850 client example log/client example log
iec61850 client example1/client example1
iec61850 client example2/client example2
iec61850 client example no thread/client example no thread
iec61850 client example reporting/client example reporting

10

S7comm s7comm investigation [55] server client 4
Modbus libmodbus [45] tests/bandwidth-server-many-up tests/random-test-client 14

MQTT-QoS1 Mosquitto [13] src/mosquitto client/mosquitto sub
client/mosquitto pub 4

MQTT-QoS2 Mosquitto [13] src/mosquitto client/mosquitto sub
client/mosquitto pub 6

AMQP RabbitMQ [37] rabbitmq/sbin/rabbitmq-server pika (a python library) 5
SMB2 Samba [47] bin/smbd bin/smbclient 28
SMB Samba [47] bin/smbd bin/smbclient 32
HTTP Router Web [49] usr/bin/httpd Chrome (web browser) 5
NTP - pool.ntp.org (public NTP service) ntptrace (a Linux utility in ntp package) 2
DNS Dnsmasq [48] src/dnsmasq nslookup (a Linux utility in Dnsutils package) 4
BGP gobgp [34] gobgpd gobgpd 3
TFTP tftpy [30] bin/tftpy server.py atftp (a Linux utility) 4

TABLE IX: Format inference results of compared tools on (SBooFuzz, SDYNPRE) enhanced datasets (“-” indicates timeout).

Protocol Netplier BinaryInferno Netzob Nemesys FieldHunter
Accuracy F1-score Perfection Accuracy F1-score Perfection Accuracy F1-score Perfection Accuracy F1-score Perfection Accuracy F1-score Perfection

IEC61850-MMS 0.70, 0.68 0.45, 0.37 0.23, 0.07 0.61, 0.55 0.29, 0.19 0.10, 0.00 0.58, 0.58 0.22, 0.22 0.05, 0.04 0.70, 0.59 0.56, 0.38 0.22, 0.07 0.60, 0.57 0.30, 0.20 0.05, 0.00
S7comm 0.76, 0.76 0.55, 0.53 0.35, 0.21 0.58, 0.58 0.48, 0.49 0.13, 0.14 0.61, 0.63 0.53, 0.54 0.23, 0.24 0.62, 0.70 0.56, 0.65 0.17, 0.29 0.58, 0.58 0.50, 0.50 0.12, 0.12
Modbus 0.81, 0.81 0.65, 0.65 0.31, 0.33 0.66, 0.76 0.50, 0.71 0.22, 0.47 0.42, 0.48 0.24, 0.40 0.13, 0.13 0.58, 0.58 0.50, 0.50 0.28, 0.28 0.54, 0.55 0.33, 0.36 0.09, 0.11

MQTT-QoS1 0.75, 0.75 0.37, 0.45 0.34, 0.34 0.74, 0.79 0.37, 0.50 0.26, 0.25 0.98, 0.98 0.87, 0.87 0.67, 0.67 0.74, 0.78 0.45, 0.54 0.24, 0.23 0.78, 0.63 0.49, 0.18 0.24, 0.09
MQTT-QoS2 0.80, 0.80 0.61, 0.61 0.50, 0.50 0.47, 0.47 0.00, 0.00 0.00, 0.00 0.98, 0.98 0.87, 0.87 0.83, 0.83 0.72, 0.72 0.61, 0.61 0.29, 0.29 0.72, 0.57 0.57, 0.25 0.28, 0.13

AMQP 0.83, 0.82 0.56, 0.53 0.35, 0.26 0.68, 0.72 0.23, 0.40 0.13, 0.13 0.64, 0.64 0.47, 0.33 0.26, 0.13 0.83, 0.79 0.72, 0.67 0.55, 0.49 0.68, 0.68 0.23, 0.23 0.00, 0.00
SMB2 0.68, 0.77 0.38, 0.42 0.08, 0.09 0.79, 0.79 0.33, 0.37 0.00, 0.05 -, - -, - -, - 0.74, 0.71 0.36, 0.32 0.06, 0.06 0.82, 0.82 0.36, 0.36 0.05, 0.05
SMB 0.79, 0.76 0.44, 0.45 0.16, 0.12 0.71, 0.74 0.34, 0.37 0.13, 0.08 0.65, 0.59 0.42, 0.37 0.14, 0.11 0.67, 0.67 0.40, 0.41 0.09, 0.10 0.76, 0.76 0.43, 0.43 0.13, 0.13
HTTP 1.00, 1.00 0.91, 0.88 0.91, 0.88 0.99, 0.99 0.00, 0.00 0.00, 0.00 -, - -, - -, - 0.88, 0.88 0.58, 0.58 0.58, 0.58 0.97, 0.97 0.24, 0.00 0.24, 0.00
NTP 0.76, 0.63 0.17, 0.36 0.14, 0.36 0.66, 0.70 0.27, 0.42 0.00, 0.09 0.78, 0.78 0.24, 0.28 0.14, 0.18 0.80, 0.81 0.40, 0.41 0.27, 0.32 0.79, 0.72 0.00, 0.13 0.00, 0.00
DNS 0.76, 0.73 0.49, 0.30 0.16, 0.06 0.81, 0.77 0.40, 0.36 0.22, 0.22 0.74, 0.71 0.56, 0.53 0.00, 0.11 0.92, 0.91 0.82, 0.82 0.62, 0.62 0.75, 0.74 0.34, 0.32 0.15, 0.11
BGP 0.90, 0.90 0.12, 0.12 0.05, 0.05 0.89, 0.89 0.59, 0.59 0.45, 0.45 0.78, 0.78 0.00, 0.00 0.00, 0.00 0.83, 0.83 0.54, 0.54 0.28, 0.28 0.89, 0.89 0.59, 0.59 0.45, 0.45
TFTP 0.61, 0.61 0.04, 0.04 0.00, 0.00 0.43, 0.43 0.00, 0.00 0.00, 0.00 0.58, 0.58 0.22, 0.22 0.03, 0.03 0.94, 0.94 0.91, 0.91 0.86, 0.86 0.78, 0.78 0.00, 0.00 0.00, 0.00

Average 0.78, 0.77 0.44, 0.44 0.28, 0.25 0.69, 0.71 0.29, 0.34 0.13, 0.14 0.70, 0.70 0.42, 0.42 0.23, 0.23 0.77, 0.76 0.57, 0.56 0.35, 0.34 0.74, 0.71 0.34, 0.27 0.14, 0.09

TABLE X: Message type inference results of compared tools on (SBooFuzz, SDYNPRE) enhanced datasets (“-” indicates timeout).

Protocol Netplier Netzob FieldHunter
Homogeneity Completeness V-measure Homogeneity Completeness V-measure Homogeneity Completeness V-measure

IEC61850-MMS 0.52, 0.51 0.89, 0.73 0.66, 0.60 0.70, 0.70 1.00, 1.00 0.82, 0.82 0.52, 0.52 0.74, 0.74 0.61, 0.61
S7comm 0.75, 0.55 0.78, 0.85 0.76, 0.67 0.83, 0.50 0.54, 1.00 0.66, 0.67 0.50, 0.83 1.00, 0.54 0.67, 0.66
Modbus 0.27, 0.27 1.00, 1.00 0.43, 0.43 0.51, 0.52 0.43, 0.43 0.47, 0.47 0.27, 0.27 0.33, 0.33 0.30, 0.30

MQTT-QoS1 0.98, 0.98 0.67, 0.29 0.79, 0.45 0.99, 0.99 1.00, 1.00 0.99, 0.99 1.00, 1.00 1.00, 1.00 1.00, 1.00
MQTT-QoS2 0.75, 0.75 0.55, 0.55 0.63, 0.63 0.75, 0.75 1.00, 1.00 0.86, 0.86 1.00, 1.00 1.00, 1.00 1.00, 1.00

AMQP 0.04, 0.03 0.74, 0.80 0.08, 0.06 0.04, 0.04 0.74, 0.94 0.08, 0.08 0.83, 0.83 0.53, 0.53 0.65, 0.65
SMB2 0.33, 0.81 0.92, 0.43 0.48, 0.29 -, - -, - -, - 0.96, 0.96 0.88, 0.88 0.92, 0.92
SMB 1.00, 1.00 1.00, 1.00 1.00, 1.00 0.30, 0.30 1.00, 1.00 0.46, 0.46 1.00, 1.00 1.00, 1.00 1.00, 1.00
HTTP 0.74, 0.74 1.00, 1.00 0.85, 0.85 -, - -, - -, - 1.00, 1.00 0.56, 0.56 0.72, 0.72
NTP 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00
DNS 1.00, 1.00 0.96, 1.00 0.98, 1.00 0.96, 0.96 1.00, 1.00 0.98, 0.98 0.96, 1.00 1.00, 0.96 0.98, 0.98
BGP 0.57, 0.57 1.00, 1.00 0.73, 0.73 0.89, 0.89 1.00, 1.00 0.94, 0.94 0.57, 0.57 1.00, 1.00 0.73, 0.73
TFTP 0.55, 0.55 0.28, 0.28 0.37, 0.37 0.51, 0.51 1.00, 1.00 0.68, 0.68 0.51, 0.51 1.00, 1.00 0.68, 0.68

Average 0.65, 0.68 0.83, 0.76 0.68, 0.62 0.68, 0.65 0.88, 0.94 0.72, 0.72 0.78, 0.81 0.85, 0.81 0.79, 0.79

17

TABLE XI: Message type inference results of each tool on various protocols with different dataset sizes (H for homogeneity, C
for completeness, and V for V-measure).

Protocol #msg DYNPRE Netplier Netzob FieldHunter
H C V H C V H C V H C V

IEC61850-MMS 10 1.00 1.00 1.00 1.00 1.00 1.00 0.57 0.41 0.48 1.00 0.60 0.75
S7comm 10 1.00 1.00 1.00 0.55 0.85 0.67 0.78 0.69 0.73 0.90 0.56 0.69
Modbus 10 1.00 1.00 1.00 0.51 0.88 0.64 0.52 0.88 0.66 1.00 0.88 0.94

MQTT-QoS1 10 1.00 1.00 1.00 1.00 1.00 1.00 0.79 1.00 0.88 1.00 1.00 1.00
MQTT-QoS2 10 1.00 1.00 1.00 1.00 1.00 1.00 0.70 1.00 0.82 1.00 1.00 1.00

AMQP 10 1.00 1.00 1.00 0.39 0.71 0.50 0.59 0.56 0.57 0.96 0.52 0.67
SMB2 10 1.00 1.00 1.00 0.34 1.00 0.51 0.45 0.77 0.57 1.00 0.88 0.94
SMB 10 1.00 1.00 1.00 0.34 1.00 0.51 0.86 0.93 0.89 0.93 0.87 0.90
HTTP 10 0.64 1.00 0.78 0.64 1.00 0.78 1.00 0.52 0.68 1.00 0.72 0.84
NTP 10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DNS 10 1.00 0.58 0.73 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.30 0.46
BGP 10 1.00 1.00 1.00 1.00 1.00 1.00 0.42 1.00 0.59 1.00 0.78 0.88
TFTP 10 1.00 1.00 1.00 0.71 1.00 0.83 1.00 1.00 1.00 0.41 1.00 0.59

Average-10 0.97 0.97 0.96 0.73 0.96 0.80 0.74 0.83 0.76 0.94 0.78 0.82

IEC61850-MMS 100 0.81 1.00 0.90 0.81 1.00 0.90 1.00 0.93 0.97 0.81 1.00 0.90
S7comm 100 1.00 1.00 1.00 1.00 1.00 1.00 0.75 0.71 0.73 1.00 1.00 1.00
Modbus 100 1.00 1.00 1.00 1.00 1.00 1.00 0.58 0.70 0.64 1.00 1.00 1.00

MQTT-QoS1 100 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.68 0.79 1.00 1.00 1.00
MQTT-QoS2 100 1.00 1.00 1.00 1.00 1.00 1.00 0.74 0.83 0.78 1.00 1.00 1.00

AMQP 100 1.00 1.00 1.00 0.18 0.77 0.29 0.23 0.68 0.35 0.83 0.51 0.63
SMB2 100 1.00 1.00 1.00 0.24 1.00 0.39 0.27 0.96 0.42 1.00 1.00 1.00
SMB 100 1.00 1.00 1.00 0.34 1.00 0.51 0.49 0.90 0.63 0.95 0.79 0.86
HTTP 100 0.79 1.00 0.88 0.79 1.00 0.88 1.00 0.38 0.55 1.00 0.29 0.45
NTP 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DNS 100 0.97 0.80 0.88 0.97 0.29 0.44 0.97 1.00 0.99 0.97 0.80 0.88
BGP 100 1.00 1.00 1.00 1.00 0.80 0.89 0.57 1.00 0.72 1.00 0.80 0.89
TFTP 100 1.00 1.00 1.00 0.55 1.00 0.71 1.00 1.00 1.00 0.55 1.00 0.71

Average-100 0.97 0.98 0.97 0.76 0.91 0.77 0.73 0.83 0.74 0.93 0.86 0.87

IEC61850-MMS 1000 0.52 0.74 0.61 0.52 0.89 0.66 0.94 0.77 0.85 0.52 0.74 0.61
S7comm 1000 1.00 1.00 1.00 0.75 0.78 0.76 0.75 0.70 0.73 1.00 1.00 1.00
Modbus 1000 1.00 1.00 1.00 1.00 1.00 1.00 0.53 0.43 0.48 0.27 0.33 0.30

MQTT-QoS1 1000 1.00 1.00 1.00 0.98 0.67 0.79 0.99 0.46 0.63 1.00 1.00 1.00
MQTT-QoS2 1000 1.00 1.00 1.00 0.75 0.55 0.63 0.75 0.79 0.77 1.00 1.00 1.00

AMQP 1000 0.03 1.00 0.06 0.04 1.00 0.08 0.04 0.60 0.08 0.83 0.53 0.65
SMB2 1000 1.00 1.00 1.00 0.28 1.00 0.44 0.28 0.97 0.44 0.96 0.88 0.92
SMB 1000 1.00 1.00 1.00 0.37 0.79 0.50 0.41 0.77 0.53 1.00 1.00 1.00
HTTP 1000 0.74 1.00 0.85 0.74 1.00 0.85 1.00 0.36 0.53 1.00 0.56 0.72
NTP 1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DNS 1000 1.00 0.96 0.98 0.98 0.16 0.27 1.00 1.00 1.00 1.00 0.96 0.98
BGP 1000 1.00 1.00 1.00 0.55 0.28 0.37 0.51 1.00 0.68 0.51 1.00 0.68
TFTP 1000 1.00 1.00 1.00 0.57 1.00 0.73 0.89 1.00 0.94 0.57 1.00 0.73

Average-1000 0.87 0.98 0.88 0.66 0.78 0.62 0.70 0.76 0.66 0.82 0.85 0.81

TABLE XII: DYNPRE’s runtime overhead and number of
exchanged messages on different protocols for the dataset of
1000 messages.

Protocol Runtime Overheads Exchanged MessagesTime (min) Connections

IEC61850-MMS 208 55854 2397585
S7comm 211 22565 5646067
Modbus 127 23738 4528680

MQTT-QoS1 52 28019 7044752
MQTT-QoS2 66 16231 4027658

AMQP 313 38785 242574
SMB2 691 122718 9849747
SMB 511 114542 4341266
HTTP 255 92106 192358
NTP 336 76800 2213180
DNS 28 20042 4089829
BGP 328 27443 3439450
TFTP 241 15630 3680608

Average 259 50344 3976443

18

	Introduction
	Motivation
	System Design
	Session-Specific Identifier Detector
	Dynamic Inference
	Implementation

	Evaluation
	Experiment Setup
	Comparison with Prior Work on Static Dataset
	Comparison with Prior Work on Enhanced Dataset
	Module Evaluation
	Proprietary Protocol Analysis

	Discussion
	Performance Overhead
	Impact of Active Probing

	Related Work
	Protocol Reverse Engineering
	Protocol Fuzzing

	Conclusion
	References
	Appendix
	DynPRE's Scalability for Checksum Mechanism used in Protocols
	Experimental Dataset
	Detailed Results

