
Certificate Transparency Revisited:
The Public Inspections on Third-party Monitors

Aozhuo Sun∗‡ Jingqiang Lin†� Wei Wang∗ Zeyan Liu§ Bingyu Li¶ Shushang Wen† Qiongxiao Wang‖ Fengjun Li§
∗Institute of Information Engineering, Chinese Academy of Sciences, China

†School of Cyber Science and Technology, University of Science and Technology of China, China
‡School of Cyber Security, University of Chinese Academy of Sciences, China

§The University of Kansas, USA
¶School of Cyber Science and Technology, Beihang University, China

‖Beijing Certificate Authority Co., Ltd, China
Email: sunaozhuo@iie.ac.cn, linjq@ustc.edu.cn, wangwei@iie.ac.cn, zyliu@ku.edu,

libingyu@buaa.edu.cn, sswen@mail.ustc.edu.cn, wangqiongxiao@bjca.org.cn, fli@ku.edu

Abstract—The certificate transparency (CT) framework has
been deployed to improve the accountability of the TLS certificate
ecosystem. However, the current implementation of CT does not
enforce or guarantee the correct behavior of third-party monitors,
which are essential components of the CT framework, and raises
security and reliability concerns. For example, recent studies [32],
[33] reported that 5 popular third-party CT monitors cannot
always return the complete set of certificates inquired by users,
which fundamentally impairs the protection that CT aims to offer.
This work revisits the CT design and proposes an additional
component of the CT framework, CT watchers. A watcher acts as
an inspector of third-party CT monitors to detect any misbehavior
by inspecting the certificate search services of a third-party
monitor and detecting any inconsistent results returned by
multiple monitors. It also semi-automatically analyzes potential
causes of the inconsistency, e.g., a monitor’s misconfiguration,
implementation flaws, etc. We implemented a prototype of the
CT watcher and conducted a 52-day trial operation and several
confirmation experiments involving 8.26M unique certificates of
about 6,000 domains. From the results returned by 6 active third-
party monitors in the wild, the prototype detected 14 potential
design or implementation issues of these monitors, demonstrating
its effectiveness in public inspections on third-party monitors and
the potential to improve the overall reliability of CT.

I. INTRODUCTION

The TLS certificate ecosystem has been built on the trust
of the certificates issued by trusted certification authorities
(CAs) to domain owners. Browsers verify these certificates
to establish secure TLS sessions. Unfortunately, numerous
incidents involving the generation and use of bogus certificates
have been consistently reported [48], [6], [16], [22], [35],
[59], showing that incorrect or bogus certificates were either
misissued by CAs due to operational errors [28] or generated
by malicious parties through various attacks [4], [11], [12].

To tackle this problem, the certificate transparency (CT)

framework has been developed. It consists of log servers,
auditors, and monitors, as shown in Fig. 1. Its primary goal
is to promptly detect misissued certificates [5], [29], thereby
enhancing the accountability of certificate signing services.
The CT framework does not rely on any single CA, log
server, or auditor since these components could be flawed or
potentially malicious. Instead, it records each issuance action
of the CAs in publicly visible logs at the log servers. For
each recorded certificate, the log server generates a signed
certificate timestamp (SCT) as a form of assurance, indicat-
ing that the certificate will be publicly logged. Meanwhile,
the recording operations of the log servers are audited by
distributed auditors, who work collaboratively to ensure log
servers deliver the promised logging services. With a modest
number of independent log servers and auditors, CT builds a
distributed append-only ledger to record all TLS certificates
that CT-compliant browsers accept.

However, a CT-compliant browser will accept any fraud-
ulent certificate that has been logged in the CT log and
acquired a valid SCT. To detect bogus certificates, CT monitors
are employed, which retrieve certificates from the logs and
identify all certificates for a given domain, e.g., through a
certificate search service. If a CT monitor fails to return bogus
certificates, whether due to negligence or intentional actions,
the effectiveness of the CT framework is compromised. Un-
fortunately, recent studies [32], [33] showed that CT monitors
may not always return all the certificates for an inquired
domain, raising concerns that misissued and fraudulent cer-
tificates can evade monitors’ detection due to potential design
and implementation defects in their certificate search services.
This calls for effective inspection and detection solutions for
third-party monitors to ensure that they provide reliable and
timely services. However, to our best knowledge, there is no
mechanism in CT to inspect monitors’ operations [24], [29].

We revisit the CT framework design and propose a new
component, called watchers, to inspect third-party monitor
services. Similar to CT auditors that are tasked with detecting
misbehavior on the logs, watchers are expected to detect
misbehavior on third-party monitors, including faulty services
and malicious actions. The watchers enable public inspections
on third-party monitors and their certificate search services,

Jingqiang Lin is the corresponding author.
Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.24834
www.ndss-symposium.org

which is essential for detecting bogus certificates. Therefore,
designing watchers to improve the security promise that CT
offers to the TLS certificate ecosystem is highly non-trivial.

CT watchers can be operated by any interested party in
the TLS ecosystem such as domain owners, CAs, monitors,
etc. Based on their needs and capacities, they can run ei-
ther a light watcher that supports automated inspections of
monitors’ search services for a small set of domains, or a
full watcher that monitors a large set of domains with an
additional semi-automated fault analysis function. In particular,
for each domain in the target set, both watchers will (i) retrieve
certificates from multiple monitors to construct a reference set
as an approximation of the ground truth and (ii) identify any
inconsistency between the result returned by each monitor and
the reference set to detect faulty or malicious monitors. The
semi-automated fault analysis of the full watchers will further
identify trigger features in certificates that potentially cause a
monitor to mishandle these certificates. The trigger features
and error locations within the operational process of these
monitors are useful for identifying their internal bugs.

According to the threat model of CT, the watchers should
not be fully trusted. They can be malicious, but cannot cause
any honest party in CT to deviate from the protocol. An
honest watcher always constructs the correct reference set for
a given domain and verifies the trigger features shared by other
watchers. Therefore, they can work cooperatively to inspect the
services provided by third-party monitors without introducing
additional trusted third parties.

We implemented and open-sourced prototypes for both
light and full watchers, which inspect 6 most popular and
currently active third-party monitors, i.e., Censys, crt.sh,
Entrust Search, Facebook Monitor, Google Monitor, and
SSLMate Spotter. We refer the readers to Appendix F for
more details. We performed a trial operation (January 25 -
March 16, 2020) for 4,000 randomly selected domains and
uncovered several implementation bugs and design limitations
in six monitors. The results showed that the light watcher
can promptly inspect third-party monitors with very limited
resources, while the full watcher can effectively detect defects
in the monitors’ search service. We discussed standardization
suggestions for the services of third-party monitors, which can
significantly reduce the watchers’ operational overhead. Our
contributions are three-fold: (a) We proposed CT watchers for
inspecting the services of third-party monitors, which improves
the overall security of CT. (b) We designed and implemented
automated light watchers and semi-automated full watchers.
Our evaluation of the operating cost of the light watcher
shows its practicality. Finally, (c) we conducted real-world
experiments including a 52-day trial operation, and validated
the effectiveness of CT watchers. We discovered several design
and implementation flaws/limitations in 6 inspected monitors
and disclosed them to the vendors.

The remainder of the paper is organized as follows. Section
II presents the reliability problem of third-party monitors and
Section III analyzes the related security threats. Sections IV
and V present the detailed design and implementation of the
watchers, respectively. Section VI reports the trial operation
and the discovered flaws. We discuss the standardization
suggestions and future work in Section VII, present the related
works in Section VIII, and conclude the work in Section IX.

II. UNINSPECTED THIRD-PARTY MONITORS OF CT

A. Certificate Transparency

The main goal of CT [5], [29] is to increase the visibility of
certificates by requiring the CAs to place the issued certificates
in public logs (in the logging phase) so that the users such as
domain owners could actively check the certificates with the
assistance of CT monitors to discover the bogus ones (in the
checking phase). As shown in Figure 1, CT introduces three
new components into the traditional public key infrastructure
(PKI) system:

Log server. When issuing a certificate, the CA is required to
submit it to several log servers [19], [2]. The log server records
the certificate in its publicly visible log within the maximum
merge delay (MMD) and returns an SCT as a promise and
verifiable proof. All received certificates are organized into
a Merkle hash tree to ensure that they are append-only. In
addition, the root node is periodically signed by the log server,
called the signature tree head (STH).

Auditor. Auditors are lightweight software components that
audit log servers to ensure they consistently fulfill their
promises1. They verify whether logs are append-only by com-
paring two STHs and confirm that each SCT corresponds to
a record in the logs by validating the audit path, which is the
sequence of the siblings of all nodes on the path from the node
of the record to the root node.

Monitor. CT participants retrieve certificates of interest from
the log server via the monitor, see subsection II-B for details.
Monitors can be a domain owner that searches certificates
by itself (i.e., self-monitor) or a service providing certificate
search and notification services (i.e., third-party monitor).

In TLS negotiations, a CT-compliant browser only accepts
certificates with SCTs. There are two methods for delivering
an SCT with a certificate. (a) X.509 v3 extension: Before a CA
issues a certificate, it creates a precertificate, which binds the
same data but is formatted differently from the final certificate.
Then, the CA submits the precertificate to log servers and gets
SCTs. Finally, the certificate is issued with the SCTs embedded
as a certificate extension. (b) TLS extension or OCSP Stapling:
After a CA issues a certificate for a website, the CA or the
website submits it to log servers and gets SCTs. The website
uses a TLS extension or OCSP extension to deliver the SCT
to the client during the TLS handshake.

B. Third-party Monitors in the Wild

Operating a monitor requires non-trivial resources. For
example, it needs to handle newly-appended log entries every
day, parse non-conforming certificates [47], and maintain the
list of logs to monitor [50]. This involves handling about 6
million and 15 million new records (including precertificates
and certificates) daily in 2018 and 2022, respectively [32], [39].
Thus, in practice, many users rely on professional third-party
monitors to search for certificates of interest. To the best of our
knowledge, there are 12 third-party monitors on the Internet,

1Some browser vendors such as Chrome [52], [38] implement a standalone
auditor to verify audit paths on behalf of all browsers.

2

CA

Log Server

Monitor

Browser

Domain

Owner

Auditor
C

er
ti

fi
c
a
te

 +
 S

C
T

SCT SCT

(P
re

)C
e
rtific

a
te, S

T
H

(Pre)Certificates

Search Request

Audit Result Audit Path, STH
Log Log Log

2. Cert Indexing 3. Cert Look-up and Output

2.1. Parse Certs; 2.2. Mark Certs; 2.3. Maintain Certs

Domain Owner

3.1. Input

3.2. Matching certs

1. Cert Collection

Raw Data

Certificate(PEM)

Certificate(PEM)

Searchable Data

Certificate(Parsed)

Certificate(Parsed)

index

index

index

Output (Results)

Certificate

Certificate

Fig. 1: The framework of CT and the workflow of the third-party monitor.

as listed in TABLE I. Among them, 6 monitors provide active
certificate search services2, which are studied in this work.

A third-party monitor fetches certificates in the public
logs and indexes them to provide search and/or subscription
services to users. As shown in Fig. 1, it pre-selects a set of
logs to be monitored and operates three basic functions [49],
[9], [29], known as certificate collection, indexing, and look-
up. To collect data, it periodically fetches newly-appended
certificate entries from each log, and then parses the raw
certificate records to extract the domain name(s), i.e., common
name (CN) and dNSNames in the subject alternative name
extension (SAN:dNSNames), as keywords3 to index each cer-
tificate. Other information about a certificate (e.g., the SHA256
fingerprint and the time submitted to logs) is also parsed and
saved in the certificate indexing. Finally, when receiving an
inquired domain, it looks up the certificates with matching
keywords and returns the result.

C. Unreliable Certificate Search Services

We define the complete set of the certificates for an inquired
domain [32] (e.g., z.y.x) as all the unexpired certificates issued
for (a) the domain z.y.x; (b) all its subdomains with or without
wildcard (e.g., www.z.y.x, *.z.y.x and *.game.z.y.x); and (c)
its parent domain with a wildcard (e.g., *.y.x) if the parent
domain is not an effective top-level domain (eTLD) [36]. All
these certificates are called relevant certificates in this paper.
Moreover, the comparison is conducted with SAN:dNSName
in a case-insensitive manner4.

A reliable monitor should return the complete set of the
relevant certificates and in a timely manner, which means
the maximum delay between a certificate’s appearance in the
public log and in the search result returned by the monitor
should not be large. Otherwise, the delay could be exploited
by potential man-in-the-middle or impersonation attacks using
misissued bogus certificates.

However, recent studies [32], [33] experimentally showed
that several well-known monitors did not achieve the expected

2Cloudflare Monitoring, DigiCert Monitoring, EZMonitor, Hardenize
and Report-URI provide only the subscription services and CT-Observatory
was suspended in September 2018.

3Some monitors also use other name fields such as organization (O) and
organizational unit (OU) as keywords.

4While CT-compliant browsers such as Chrome [20] and Safari [1] match
only the SAN:dNSName filed to the visited domain, our experiments showed
that the monitors also search the CN field of the certificates.

reliability by timely returning the complete results. In their
experiments with 6,000 randomly selected domains, none of
the evaluated monitors returned the complete results for all
the inquired domains and 12.6% - 52.3% of the relevant
certificates were missing in the returned results. Besides,
some monitors returned irrelevant certificates [32], [33], e.g.,
Censys returned code-signing certificates whose CN is not a
valid domain name but contains the inquired domain.

III. SECURITY THREATS FROM THIRD-PARTY MONITORS

The current CT design (e.g., SCTs, auditors, the gossip
protocol [37]) focuses mainly on the logging phase to ensure
its security against malicious logs that might even collude with
a malicious CA. Unfortunately, the security of the checking
phase is overlooked. This section points out issues in CT’s trust
model and discusses potential attack vectors resulting from
unreliable monitors within the CT-enabled PKI.

A. The Trust Model of CT

CT enables highly trustworthy TLS server certificate ser-
vices [5], [29], which ensure that any certificate acceptable to
CT-compliant browsers is visible to its domain owner. The
CT framework enforces two principles: (a) any centralized
component (i.e., CA or log server) is inspected by others
because such an entity might be benignly or maliciously faulty
due to software flaws or attacks [4], [11], [12]; and (b) the
correct behavior of a non-centralized component (i.e., auditor,
browser, domain owner, or monitor) is ensured by redundancy
or its own interest.

For each accepted TLS server certificate, the verification of
multiple SCTs by a browser and corresponding audit paths by
an auditor guarantees that any accepted certificate is visible in
multiple logs, while the behavior of a log server is audited by
redundant auditors. A domain owner acts as a self-monitor or
employs the services of third-party monitors to detect potential
bogus certificates. So the certificate signing services of a CA
are inspected by redundant log servers, as the appended-only
certificate records of a log are done by redundant auditors.
Meanwhile, a browser verifies SCTs and audit paths (by acting
as an auditor) for its own interest, and so does a domain
owner (or self-monitor) detecting bogus certificates, because
misbehavior of such a component would bring loss to itself.

However, third-party monitors that could be benignly or
maliciously faulty similar to other components are not well-
inspected in the CT framework. Although self-monitors are

3

TABLE I: Services provided by third-party monitors on the Internet.

URL Service Status Certificate
Search Subscription Signing

Censys https://censys.io/
√

Running

crt.sh https://crt.sh/
√

Running

Entrust Search https://ui.ctsearch.entrust.com/ui/ctsearchui/
√

Running
√

Facebook Monitor https://developers.facebook.com/tools/ct/
√ √

Running

Google Monitor https://transparencyreport.google.com/https/certificates/
√

Suspended

SSLMate Spotter https://sslmate.com/certspotter/
√ √

Running

Cloudflare Monitoring https://dash.cloudflare.com/
√

Running
√

DigiCert Monitoring https://www.digicert.com/secure/
√

Running
√

EZMonitor https://www.keytos.io/ezmonitor_overview.html
√

Running

Hardenize https://www.hardenize.com/
√

Running

Report-URI https://report-uri.com/account/
√

Running

CT-Observatory https://www.ct-observatory.org/
√

Suspended

assumed in the original design, third-party monitors are more
commonly used by ordinary domain owners in practice.

B. Attack Scenario in the CT-enabled PKI

In the CT-enabled PKI, the attacker aims to obtain a bogus
certificate for the victim domain while remaining undetected
by the domain owner. A potential attack consists of two steps:
(1) Obtaining bogus certificates: The attacker could deceive
the CAs that use domain validation (DV) to verify the domain
ownership, e.g., by exploiting the vulnerabilities in the border
gateway protocol (BGP) to hijack the traffic destined for the
victim’s domain [4], or utilizing DNS cache poisoning to
fake the ownership of the victim’s domain [11], [12]. And
(2) Concealing bogus certificates: If a third-party monitor has
design or implementation flaws that prevent it from returning
certain certificates to users, the attacker could deliberately
craft the bogus certificate and exploit the flaws to conceal
it. For example, we found that Entrust Search (during our
experiments) used a case-sensitive manner when looking up
certificates for an inquired domain. Then, the attacker could
create a bogus certificate whose SAN:dNSNames contain both
upper- and lower-case letters (e.g., “WwW.fAceBOoK.cOm”),
so that it would not be included in the result returned by
Entrust Search when users inquire a domain with all lower-
case letters (e.g., “www.facebook.com”). More potential ex-
ploitations are discussed in Appendix A.

C. The Threat Model

Third-party monitors in CT could be faulty or malicious,
causing certain relevant certificates missing or irrelevant cer-
tificates included in the returned result. The misbehavior of
benignly faulty monitors is likely rhythmic and repeatable. For
example, a case-sensitive service never returns a certificate
with a mixed-case SAN:dNSName for an inquired domain
with all lower-case letters. On the other hand, the misbehavior
of malicious monitors is commonly erratic and reproducible.
They may return incorrect results once and then restore to the

correct service, or respond with different results for the same
domain in the split-view attacks [14], [24]. Nevertheless, while
a single monitor may yield an incorrect result due to various
reasons, a federation of monitors is very likely to return the
complete set of relevant certificates.

We introduce the watcher component into the CT frame-
work to ensure reliable certificate search services for third-
party monitors. Such reliable services are necessary for CT as
described above. The proposed watchers are mainly to detect
the benign faults of monitors while providing a defense against
maliciously faulty monitors to a certain extent. A watcher
might also be faulty: (a) It could maliciously disclose monitor
faults that do not exist. On one hand, there are no adverse
effects due to the repeatability of benign misbehavior. On the
other hand, irreproducible malicious behavior requires disclo-
sure by multiple watchers and further manual confirmations.
(b) Besides, it could detect the misbehavior of third-party
monitors without disclosing it. However, redundant watchers
on the Internet ensure that at least one correct watcher discloses
the misbehavior.

IV. CT WATCHER: PUBLICLY INSPECTING THIRD-PARTY
MONITORS

This section presents the design of the proposed watchers,
following the principles and assumptions of CT.

A. Design Goals and Challenges

A watcher is to audit the services of third-party monitors
and detect any misbehavior that causes them to return incorrect
results within the scope of its promised services (e.g., service
delay). In this work, we focus on the search service, but it
could be extended to the subscription service (as discussed in
Section VII-B). Therefore, watchers are expected to achieve
three design goals: (1) effective misbehavior detection, which
requires the watchers to detect incorrect or abnormal behavior
by actively probing and inspecting the monitors’ services,
(2) scalable deployment, which requires the operations of a

4

Test Case:
{customized

domains}
Semi-automated Fault Analyzer

Test Case:
{random
domains}

Test Case:
{reported
domains}

Domain Input

Scraper-1

1. Collecting Certs

Raw
Data

Monitor-1

Scheduler

Domains

Scraper-n

Data Collector

Monitor-n

Domains Raw
Data

3. Identifying
Irrelevant Certs

5. Extracting
Trigger Domains

Inconsistency Analyzer

Searched Set

Reference Set

2. Constructing Reference Set

Output-1 (light/full watcher)

4. Identifying
Missing Certs

Sm/S+
m/S-

m

&
Trigger Domains

SerialNumber

Certificate

Domain Inquired
SHA256 Fingerprint

Monitor's Vote

NotBefore/NotAfter

Log-Details

Issuer
SAN:dNSNames

Target Domains
Logged Format

Other Labels

Missing/Irrelevant
/Annotated/Returned

6. Labeling Certs

Possible Bug Locations

Feature List

F1

Fi

9. Filtering Out
Annotated Certs

7. Extracting and Ranking
Features

10. Locating Bugs

Output-2 (full watcher)

Trigger Features

Unannotated Certs

8. Manual Constructing
Trigger Features

Annotated Certs

Fig. 2: The architecture and workflow of light/full watchers.

watcher to be automated and lightweight so that it can be
continuously (or periodically) run by any interested party
in the ecosystem (such as a domain owner), and (3) (semi-
)automated fault analysis, which aims to uncover the possible
causes behind the detected misbehavior and in some cases
even identify the locations of the bugs. Such information
provides useful insights for third-party monitors to review their
configurations and implementations.

Designing watchers with these desirable goals faces non-
trivial challenges. First, there lacks any ground truth or au-
thoritative knowledge about the “correct” result that a monitor
should return, i.e., for an inquired domain, the complete set of
relevant certificates is unknown. Second, as it is impossible to
predict the occurrence of a monitor’s misbehavior, the watcher
needs to audit and inspect all the domains. This requires a
distributed design with many watchers cooperatively inspecting
the entire space. Thus, the operational cost of a single watcher
should be lightweight. Third, the monitors are largely diverse
in terms of their query APIs, certificate sources, and search
policies. Meanwhile, their internal processing is not open to the
public. This requires non-trivial effort for automated certificate
parsing and matching (discussed in Section V-A). Finally,
a monitor’s misbehavior may be caused by diverse reasons,
including unintended flaws and malicious actions, which re-
sults in a large number of “abnormal” records (e.g., TABLE
III shows 80K-633K inconsistent certificates per monitor). It
makes manual analysis impossible while posing challenges to
developing automated tools for fault analysis.

B. Assumptions

First, we assume a standardized interface for the inspected
third-party monitors to output (a) the expected certificates
for a inquired domain, and (b) a specific certificate for an
inquired SHA256 fingerprint. Each output item contains basic-
info (including the fields of CN, SAN:dNSName, Issuer,
SerialNumber, NotBefore, NotAfter, etc.), cert-file (i.e., the
PEM file), and log-details (including the name of a log server
and the time the certificate was submitted).

We assume that third-party monitors publicly disclose the
information about their quality of service (QoS): (a) service
delay, the maximum delay promised by the monitor, from the
time when a certificate is submitted to a monitored log until
it appears in returned results; (b) output limit, the maximum
number of certificates it can return for an inquiry; and (c) log
list, the list of logs it monitors. This information assists in
inconsistency analysis for watchers and helps domain owners
select a suitable service. Note that any defects in these issues
may result in missing expected certificates.

We design watchers following these assumptions. Although
there is currently no uniform interface for monitors, we bridge
the gap between these assumptions and real-world services
through the implementation of middleware. Meanwhile, if the
QoS information of some monitors is not disclosed, we deduce
it by analyzing the results returned.

C. The Architecture of CT Watchers

A watcher searches for certificates for selected domains
from inspected monitors. Then, it constructs a reference set for
each domain based on all the returned results and analyzes the
missing certificates and the irrelevant ones for each monitor.

A watcher typically runs continuously for N periods, and
in each period completes the above steps using all certificates
that have been collected. In the i-th period, the watcher
analyzes and updates/outputs the inconsistent certificates of the
inspected monitors in the first i periods. As more and more
data are collected in the analysis (i.e., the value of i increases),
the results output by the watcher are more accurate, see Section
IV-D for details. Finally, after N periods, a light watcher
(with inconsistency analysis only) concludes the inspection
results of each monitor for each period and publishes its
inconsistency with the reference set (if any) to the faulty
monitors, a regulator, or even a public forum. Besides, a full
watcher (with inconsistency and fault analysis) with sufficient
resources additionally analyzes and reports possible benign
failure causes. The architecture is shown in Fig. 2.

5

1) Inconsistency Analyzer: From each inspected monitor,
a watcher periodically obtains a searched set of certificates
issued for each inquired domain, and the time of conducting
a search is denoted as SearchedTime. Due to possible faults, a
searched set may contain irrelevant certificates and miss some
expected ones. After the i-th period, the watcher constructs
a pre-reference set as the deduplicated union of all searched
sets from the previous i periods (but keeps only certificates
that are valid at the SearchedTime), and a reference set is then
obtained by removing all irrelevant certificates. In addition,
through this merging process, the watcher knows the time
when each certificate was submitted to a log for the first time,
denoted as SubmittedTime, based on the returned log-details.
For redundancy, the monitors are considered to monitor all the
logs.

We identify irrelevant certificates by voting. A certificate
returned by only a few monitors (e.g., ≤ 2 in our implemen-
tation and experiments; or the threshold depends on the total
number of inspected monitors) is considered irrelevant.

For each inspected monitor, based on the reference set the
watcher calculates an irrelevant set and a missing set for each
period, any of which may be empty. A certificate that appears
in the reference set but not in the monitor’s searched set is
considered a missing certificate. Conversely, it is considered
an irrelevant certificate. Any domain that causes a monitor to
return inconsistent results (i.e., the irrelevant set or the missing
set is not empty) is identified as a trigger domain.

The missing certificates due to service delay, output limit,
and unmonitored logs are further identified as these are
considered “intentional” flaws in configurations. Specifically,
(a) if the SubmittedTime of a missing certificate plus the
monitor’s service delay is earlier than the SearchedTime (as
shown in the second rail of Fig. 3), it is counted as missed
due to service delay, known as a delayed certificate; (b) if a
domain’s searched set reaches the monitor’s output limit, and
the reference set exceeds the limit, the missing certificates for
this domain are considered to be caused by the output limit;
and (c) if all logs recording a certificate are not in the monitor’s
log list, it is counted as missed due to unmonitored logs.

2) Semi-Automated Fault Analyzer: It is almost impossible
to deduce the exact internal bugs of a monitor through external
analysis alone. However, each bug leads to many similar
misbehavior, which are usually rhythmic and repetitive. As a
result, we merge the certificates for N periods as input of the
fault analyzer, rather than analyzing each period separately, and
then employ machine learning (ML) to automate clustering.
Finally, the fault analyzer provides sample features for each
monitor that can potentially trigger a bug, and/or identifies the
location of the bug for further investigation.

The certificates are first automatically or manually la-
beled. Certificates in the missing/irrelevant set of any period
are automatically labeled with “Missing”/“Irrelevant”, while
certificates missed due to service limitations (i.e., service
delay, output limit, and unmonitored logs) are labeled with
“Annotated”. The rest are labeled with “Returned”. We also
manually attach some labels to each certificate (e.g., its lifetime
and the number of its SCTs) to facilitate feature extraction.
Then, the fault analyzer leverages a machine-learning model
to extract and rank features. We focus on high-ranking features

with discriminative power in classifying missing/irrelevant
certificates and manually refine them into trigger features that
show a strong correlation with possible bugs. The certificates
with an identified trigger feature are then assigned an “Anno-
tated” label. In this way, we eliminate the missing/irrelevant
certificates gradually and reduce the burden of manual analysis
in the next round. Finally, we repeat the above three steps until
no similarity is observed for the remaining missing/irrelevant
certificates.

We sample several missing certificates for each trigger
feature and perform a few more black-box tests attempting
to locate at which step in the workflow an error occurred.
We first search the certificate by its SHA256 fingerprint or the
precise subdomain. If it cannot be found by using the SHA256
fingerprint, the error may occur during the fetching or storing
process. If it cannot be found by the precise subdomain, the
error may occur during indexing. Otherwise, the error could
occur when searching or returning the certificate. This process
is known as locating bugs.

3) Domain Input: The inputs or test cases of watchers can
be (a) random domains; (b) customized domains, domains of
interest to the operators (e.g., their own domains or the ones
in browsing history); or (c) reported domains, a collection of
trigger domains reported to a public forum by watchers.

Light watchers tend to pick random and customized do-
mains to inspect monitors for any misbehavior, as well as
build the database of reported domains, while a full watcher
usually selects reported domains to gather enough inconsistent
certificates and then analyze the monitor faults. Moreover,
more labels will be incorporated into the prototype implemen-
tation of full watchers and continuously improved. Thus, as
the ecosystem is established, the analysis results by the full
watchers become more and more accurate.

D. Impact from Service Delay

The service delay of monitors impacts the inconsistency
analysis of watchers.

1) Tracking Time vs. Service Delay: Only after the max-
imum service delay (MSD) of inspected monitors, a newly-
issued certificate is certainly retrieved by a watcher. So, only
when the tracking time (T = N ∗ p, p is the duration of each
period) is long enough (i.e., T > MSD), the watcher can
output accurate results for the first (N −MSD/p) periods.

Impact on reference sets. Continuous tracking for T length
of time eliminates the deviation of a reference set due to the
possible service delays of monitors. However, if T is too small
(i.e., T ≤ MSD), some expected certificates may not be
retrieved within the tracking period, which will not appear in
the reference set. If T is long enough (i.e., T > MSD), then
in theory the expected certificates for the first (N −MSD/p)
periods will all be discovered, which means that the reference
set of these periods is theoretically accurate.

Impact on irrelevant sets. The voting mechanism is based
on the assumption that irrelevant certificates are only re-
turned by a few monitors. However, the monitor’s ability
to return newly issued certificates is closely related to its
processing speed. Therefore, certificates submitted right before
the SearchedT imeN can only be returned by monitors that

6

TABLE II: Introduction of the actual implementation of monitors involved.

Data Source
Cert. Info.† Comparison Scope

Input vs. Result∗ Expired
Cert.

(Pre)Cert.
Pair API

Output Limit‡

Log List Scan Fingerprint z.y.x z.y.x
w/ sub opt. Web API

Censys 47
√

B C L CN SAN:dNSName
√

ab - optional include
Python

BigQuery¶ ◦ 25000
◦

crt.sh 53
√

B C L CN SAN O OU
√

a ab optional optional Postgresql 10000 ◦
Entrust Search � - B L CN SAN - a ab optional include - 5000 -
Facebook Monitor � - B C CN SAN:dNSName - ab - include include Graph ◦ ◦
Google Monitor � - B L CN SAN:dNSName

√
ac abc include include - ◦ -

SSLMate Spotter 56 - B C CN SAN:dNSName - a ab exclude deduplicate Json ◦ ◦
√

: the monitor supports this feature.
�: the monitor does not disclose its log list, so it’s assumed to monitor all non-testing logs. †: B indicates basic-info, including CN, dNSName, SerialNumber,
Issuer, NotBefore, NotAfter, SHA256 fingerprint. C indicates cert-file. L indicates the log-details.
∗: “z.y.x” represents the domain user input, and “z.y.x w/ sub opt.” means the query with the subdomains option. For a domain, the monitor returns any
certificate binding (a) the domain inquired; (b) any subdomain name with wildcard or not; (c) the parent domain with wildcard.
¶: We contacted Censys for help and received an unlimited BigQuery database (censys-io) interface.
‡: The number represents the maximum number of the returned result set by the monitor; ◦ means no explicit output limits.

perform well on timeliness, and they should not be considered
irrelevant certificates even if they have few votes. Specifically,
if the SubmittedTime of a certificate plus the MSD is later
than the SearchedT imeN (i.e., SubmittedT ime+MSD ≥
SearchedT imeN), then it should not be in the irrelevant set.
In conclusion, if T ≤MSD, some irrelevant certificates may
be counted in the reference set since most monitors did not
return in time. If T > MSD, the judgment on irrelevant
certificates in the first (N −MSD/p) periods is accurate.

Impact on delayed certificates. A newly issued certificate but
missing due to the monitor’s mishandling, could be incorrectly
classified as a delayed certificate. However, if the tracking time
is long enough (i.e., T > SDm, SDm is the monitor m’s ser-
vice delay), certificates newly issued in the first (N−SDm/p)
periods can be correctly classified by the watcher.

2) Certificate Lifetime vs. Service Delay: A considerable
delay in the monitor’s service creates a substantial attack
window, potentially causing the omission of even short-lived
certificates. Consequently, the voting mechanism becomes
ineffective in identifying irrelevant certificates among these
short-lived ones. Specifically, certificates with a very brief
lifespan (less than MSD) that receive minimal votes are not
considered irrelevant by the watcher.

V. IMPLEMENTATION

In this section, we present the implementation details of a
watcher. The prototype supports 6 actively running monitors
with public search services.

A. Monitor Investigation

Among the 6 monitors, SSLMate Spotter and crt.sh dis-
closed partial source code to demonstrate their search [9] and
subscription [49] services, from which we obtained basic infor-
mation about how the monitors fetch and process certificates.
We also explored the monitors’ official websites and some CT
forums, exchanged emails with monitors’ development teams,
and conducted several black-box tests to extract information
about each monitor’s implementation.

Service information. The following service information is
useful in the inconsistency analysis, to distinguish inconsistent

certificates due to faults and “intentional flaws”. Only some
monitors disclose partial information publicly, and we infer
other configurations through the returned results.

1) Service delay. None of the monitors disclosed their service
delays, and we estimated monitors’ service delays from long-
term tracking experiments. The experimental results show that
the service delay of Censys is 15 days, crt.sh is 6 days,
Facebook Monitor is 3 days, Google Monitor and SSLMate
Spotter is 2 days, and Entrust Search is 34 days. Moreover,
we dynamically set the service delay of Entrust Search and
evaluate its impact on a watcher (see Section VI-B for details).

2) Output limit. Entrust Search provides services with an
output limit of 5,000. For each of the other monitors, we
choose an interface without output limits according to the
monitor’s claim.

3) Log list. Among 6 inspected monitors, only Censys, crt.sh,
and SSLMate Spotter disclose the log list. If a monitor does
not disclose its log list, we assume that it monitors all non-
testing logs.

Differences in implementations. This subsection details the
differences between monitors, which influence the design of
unique processing engines (i.e., scraper in Section V-B) used
to collect data, as shown in TABLE II.

1) Certificate source. All monitors fetch certificates from pub-
lic log servers. However, some certificates in Censys and
crt.sh are obtained through active scans or from test logs,
which are beyond the scope of CT Watcher.

2) Returned certificate information. All monitors return basic-
info of a certificate. Besides, some monitors return log-details
and/or the cert-file file of the certificate.

3) Search policy. We compare search policies and summarize
four main differences: (a) “comparison scope” defines the
format of search items; (b) “input vs. result” describes the
matched certificates returned by a monitor for an input; (c) “ex-
pired cert.” indicates whether the returned results contain ex-
pired certificates; and (d) “(pre)cert. pair” indicates whether the
returned result deduplicates the (pre)certificate pairs. Specifi-
cally, with the exception of SSLMate Spotter, none of the
other monitors deduplicated the returned (pre)certificate pairs.

7

Moreover, Facebook Monitor and Google Monitor search
results contain a large number of expired certificates. Addi-
tionally, crt.sh also returns some unexpected certificates by
matching O and OU. It is necessary for scrapers to deduplicate
and filter certificates for these cases.

4) Query API. Censys and crt.sh are accessible via a
database, Facebook Monitor and SSLMate Spotter can be
accessed via HTTPS requests, while Google Monitor and En-
trust Search do not provide any API. Therefore, scrapers have
to collect data through various APIs. In addition, all monitors
support search by domain names, while Censys,crt.sh, and
Google Monitor additionally accept SHA256 fingerprint as
the search keyword.

B. Data Collection

This module is designed to obtain standardized data from
third-party monitors. The engine consists of a scheduler and
multiple scrapers, each specific to a monitor. Scraper excludes
differences in results between monitors due to search policies,
making the obtained data available for differential analysis.
The scheduler loads the domains from the selected test cases
and creates tasks to be submitted to each monitor. Moreover, it
ensures that the queries about the same domain are submitted
to all monitors synchronously to reduce the impact of service
delay on the returned results.

Scrapers. For each monitor, we implement a unique scraper
(see Appendix B for details) that prepares one or multiple
queries based on its search policy and its search syntax of
API. We uniform the format of expected search results. For
each domain inquired, the monitor m’s scraper fetches raw
data from m and then returns the searched set of m, which
will be directly compared with each other. Each certificate
in the searched set is uniquely identified by a quadruple
(SerialNumber, Issuer, NotBefore, and NotAfter), which is
used to deduplicate (pre)certificate pairs. Additionally, log-
details are used to determine if a certificate is missed due to
service delay or unmonitored logs. Therefore, this quadruple
plus the log-details is the minimum certificate information
required by the light watcher.

C. Inconsistency Analyzer

Constructing the reference sets. To address the possible lack
of newly issued certificates due to monitors’ service delays, we
construct the reference set for a domain d in the i-th search
period (Ri

d) in three steps. Let us denote the searched set
returned in the i-th period by a monitor m for a domain d
as Sid,m. In the first step, we combine the searched sets of all
the monitors returned in each of the N periods, to generate a
total set Td, as shown in Equation (1).

Td =
⋃

i∈[1,N],m∈M

Si
d,m (1)

R̃i
d = Td − Ui

d − Ei
d (2)

Ri
d = R̃i

d −
⋃

m∈M

S+ i
d,m (3)

Each bar represents the life cycle of a certificate.

(a) Certificates that have not been logged at the SearchedTime.

(b) Unexpired certificates that have been logged for a while at the SearchedTime.

(c) Certificates expired at the SearchedTime.

period-1 (start) period-N
period-i

(SearchedTime)

SubmittedTime NotAfter

service delay

Fig. 3: Certificates in three states at the SearchedTime.

To construct the pre-reference set in the i-th period (R̃i
d),

we need to remove the certificates that are unlogged at the
i-th period (Ui

d) and the ones expired before the i-th period
(Ei

d), following Equation (2). What’s more, Fig. 3 shows the
lifetime of these two types of certificates. Finally, the watcher
uses the method in the next paragraph to remove the irrelevant
certificates to generate the reference set of the domain d for
the i-th period (Ri

d), following Equation (3).

Identifying irrelevant certificates. The watcher counts the
votes for each certificate. If the monitor m returns a certificate
for the domain inquired d within the N periods of tracking
(i.e., certificate ∈

⋃
i∈[1,N] Sid,m), then it votes for this

certificate. If a certificate gets only a few (i.e., ≤ 2) votes,
the watcher will identify it as irrelevant. It is worth noting
that some newly issued certificates (i.e., SubmittedT ime +
MSD ≥ SearchedT imeN) and short-lived certificates (i.e.,
lifetime ≤MSD) are excluded because the processing speed
of monitors heavily affects the voting results for these certifi-
cates. Ultimately, for each monitor m, the set of irrelevant cer-
tificates for the i-th period of domain d is S+ i

d,m = Sid,m−Ri
d.

Identifying missing certificates. For each monitor m, the
watcher calculates a set of missing certificates for a domain d
in the i-th period, which we denote as S− i

d,m. This set can be
directly computed as Ri

d − Sid,m. The certificates missed due
to service limitations are identified according to the method
in Section IV-C1, and the set containing these certificates is
denoted as Ŝ− i

d,m.

Extracting trigger domains and constructing the output.
We extract the domains that trigger inconsistent certificates,
building a set of trigger domains for each monitor. Fi-
nally, the continuously running watcher updates/outputs the
Result every period, which contains the query status (i.e.,
[SearchedT imei,Sid,m,S+ i

d,m,S− i
d,m, Ŝ− i

d,m]) of each trigger do-
main for each monitor in the past few periods.

D. Semi-Automated Fault Analyzer

Labeling certificates. The fault analyzer takes all collected
certificates (i.e., T =

⋃
d∈domains Td) as input to classi-

fiers. In the monitor m’s classifiers, certificates in S+m (i.e.,⋃i∈[1,N]
d∈domains S

+ i
d,m) are labelled as “Irrelevant”, and those in

S−m (i.e.,
⋃i∈[1,N]

d∈domains(S
− i
d,m − Ŝ− i

d,m)) labelled as “Missing”.

Each certificate is labeled with the following three aspects
(see TABLE IX in Appendix C for details): (a) certificate
nature: e.g., issuer and lifetime; (b) submission characteristics:

8

e.g., number of SCTs and logged format of the certificate in
logs (i.e., ‘Pre’ for precertificate, ‘Final’ for final certificate,
and ‘Both’ for both precertificate and final certificate); (c)
information related to domain inquired: e.g., number of target
domains (i.e., domains matched by the domain inquired in the
certificate) and number of uncorrelated domains (i.e., domains
other than the target domains in the certificate).

Extracting and ranking features. Using labeled certificates,
we extracted 778 features from these certificates and trained
a random forest (RF) model with 10 estimators for each
monitor to predict if a certificate with specific patterns would
be returned in the search results. Also, the RF models output
ranked features based on their importance in prediction, which
provides insight to guide manual analysis.

Manually constructing trigger features. We focus on the
top 5 features for each monitor, which have a strong guiding
role, and construct possible trigger features. For example,
the most salient feature for the Facebook Monitor is the
“average size of reference sets”. With this clue, we focused
on domains with mass certificates. We found that Facebook
Monitor returns search results by page. If the result took
multiple pages, missing or duplicate certificates occurred. We
speculated that this was caused by gaps or overlaps between
pages and constructed trigger feature F9 in TABLE V.

The fault analyzer determines whether the constructed
feature is a real trigger feature, which is defined in two types.
Specifically, some features that certificates match cause them
to be missed with high probability, which can be determined by
Measure 1. In addition, certificates matching certain features
are not missed with high probability, but their proportion
in the irrelevant/missing set is significantly higher than the
normal proportion, which also shows that these features have
a strong correlation with possible bugs and can be determined
by Measure 2.

Measure 1. For a monitor m and a feature Fx, we compute
the ratio between the number of inconsistent certificates of
m matching Fx and the number of all collected certificates
matching Fx, as in Formula (4). There is a large ratio indi-
cating there is a strong correlation between feature Fx and
monitor m’s inconsistency on search results.5

P =
of cert. ∈ S+m/S−m matching Fx

of cert. ∈ T matching Fx
(4)

Measure 2. The Cramer’s V for chi-square goodness-of-fit
test [56], [43] is adopted. First, we calculate the number of
inconsistent certificates matching or not matching Fx as O1

and O2. Second, we hypothesize that Fx is independent of
the inconsistent. Then, we calculate the expected value of
inconsistent certificates matching or not matching Fx as E1

and E2, where n is the number of inconsistent certificates and
pi (i ∈ [1, 2]) is the proportion of certificates matching or not
matching Fx in T. Third, we calculate the statistic chi-square
random variable, denoted as X2, and a value of Cramer’s V,
denoted as V in Formula (5). If the V ≥ 0.5, it means that Fx

has a high association with the inconsistency [8].

5To prevent the defined features from being too deviant, the threshold in
Measure 1 should not be too small, so we set it to 0.9 according to the
experimental data.

(5)

0

5

10

15

20

25

30

35

40

45

50

55

2020/1/25 2020/2/11 2020/2/28 2020/3/16

T
h

e
n

u
m

b
er

 o
f

m
is

si
n

g
 c

er
ti

fi
ca

te
s

x
 1

0
0

0
0

Date

Censys

crt.sh

Entrust Search

Facebook Monitor

Google Monitor

SSLMate Spotter

Fig. 4: Overview of missing certificates.

Ei = n ∗ pi; X2 =

2∑
i=1

(Oi − Ei)
2

Ei
; V =

√
X2

n
(5)

VI. EXPERIMENTAL EVALUATION AND ANALYSIS

Our experiments consist of two parts: (a) a trial operation
to evaluate the effectiveness of the watcher designs; and (b)
confirmations to verify the flaws identified.

We randomly select 1,000 domains from Alexa Top-1K,
Top-1K˜10K, Top-10K˜100K, and Top-100K˜1M separately,
4,000 in total. Then, we conducted a 52-day trial operation
of the watcher prototype from January 25 to March 16,
2020. Finally, the watcher took 3,996 domains as inputs and
eliminated 4 super domains (i.e., “amazonaws.com”, “zen-
desk.com”, “azure.com”, “netflix.com”) due to difficulty in
completing the inquiry within 24 hours.

Approximately 5M certificates were obtained each day
during the trial operation, and 267.6M were obtained in 52
days. This data collection contains many duplicate certificates
obtained from different monitors on different days, together
with precertificates and final certificates. After deduplication
(i.e., only one of the corresponding precertificate and the final
certificate remains), there were 964,050 unique certificates.

A. Inconsistency of Returned Results

TABLE III shows an overview of inconsistent certificates
for 6 monitors. Some monitors returned irrelevant certificates.
During the trial operation, there were 665 certificates with
votes ≤ 2. Among them, 570 certificates were issued during
the last two days of the trial operation and 1 certificate was
only valid for one day, which were not counted as irrelevant
certificates, as explained in Section IV-D1. In addition, 42
certificates were only returned by Facebook Monitor, which
was finally confirmed to have a time parsing error, as described
in Section VI-C (F5). In addition, 52 email certificates were
only returned by Censys and/or Entrust Search.

Fig.4 shows the number of missing certificates for each
monitor in the trial operation. SSLMate Spotter encountered
an internal service error when querying “ondemand.com” on
February 14th and “cisco.com” on February 25th, making two
peak values appear. A mass of short-lived certificates (lifetime

9

TABLE III: Inconsistent certificates.

Censys crt.sh Entrust
Search

Facebook
Monitor

Google
Monitor

SSLMate
Spotter

S+ - 52 5 42 - -
S− 206,037 80,841 621,520 633,605 95,527 310,078
SD 203,030 80,841 76,999 38,862 75,258 65,365
OL - - 466,828 - - -
LL 11 - - - - -
IE - - - - - 244,713

SB 2,973 - 65,447 594,737 19,939 -
UC 23 - 12,246 6 330 -

SD, OL, and LL denote the number of certificates that a monitor missed due
to service delay, output limit, and log list, respectively. Similarly, IE, SB,
and UC represent the number of missing certificates due to informed errors,
service bugs, and unknown causes.

< 91 days) were issued for “wixsite.com” on February 3rd,
but none of the monitors could process them in time, making
the number of missing certificates surge. Furthermore, flaws in
the handling of short-lived certificates by the Google Monitor
led to the inability to locate these certificates at a later time.
Besides, the number of Entrust Search’s missing certificates
continues to increase, which indicates a certificate backlog
problem.

Our experiments showed that monitors rarely returned
irrelevant certificates, but missed 8.4% - 65.7% of certificates
during the trial operation. Specifically, there were 206,037
certificates (out of 964,050 certificates) for Censys that could
not be guaranteed to always be returned correctly, 80,841 for
crt.sh, 621,520 for Entrust Search, 633,605 for Facebook
Monitor, 95,527 for Google Monitor and 310,078 for SSL-
Mate Spotter. Moreover, for Censys there were 3,007 cer-
tificates that were always missed, 0 for crt.sh and SSLMate
Spotter, 517,837 for Entrust Search, 384,560 for Facebook
Monitor, and 19,939 for Google Monitor.6

The investigation found that the output limit of Entrust
Search was 5,000. Based on this limitation, 466,828 miss-
ing certificates for 22 domains were annotated. In addition,
Censys did not monitor Google Argon 2022 at the time
resulting in 11 missed certificates. What’s more, the empirical
setting of service delays also annotated a large number of
delayed certificates, see Section VI-B for details. Eventually,
Censys was left with 2,996 missing certificates, 77,693 for
Entrust Search, 594,743 for Facebook Monitor, 20,269 for
Google Monitor, 244,713 for SSLMate Spotter (the code
“internal_error” was used to inform the error), and 0 for crt.sh.

B. Service Delays

In practice, the delay for a bogus certificate from being
trusted to being detected is equal to the log server’s merge
delay plus the monitor’s service delay. Both Meiklejohn et al.’s
survey [34] and our measurements indicate that almost all log
servers merge submitted certificates within a few minutes, see
Appendix D for details. That is, the main delay of CT comes
from the service delay of monitors.

However, no monitor currently discloses its service delay.
Therefore, we made a statistic on about 219.8K newly issued

6Delayed certificates and some missing certificates were still returned
correctly in several periods of the trial operation.

0

10

20

30

40

50

60

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

T
h

e
n

u
m

b
er

 o
f

ce
rt

if
ic

a
te

s x
 1

0
0

0
0

The value of Entrust Search’s service delay to be set

Certificates missed due to service delay Certificates missed for other reasons

Fig. 5: The number of Entrust Search’s missing certificates
classified as delayed certificates under different settings of
service delay.

certificates during the trial operation. Certificates that are
issued during the experiment and returned correctly after n
days are considered to be missed due to service delays, and
those not returned are considered to be caused by service
bugs. The results showed that almost all (over 99.99%) missing
certificates for Censys due to service delay were found within
15 days, 6 days for crt.sh, 4 days for Facebook Monitor, 2
days for Google Monitor and SSLMate Spotter. Besides,
the timeliness of Entrust Search was relatively poor, only
about 32.9K newly issued certificates were found within 52
days, and 99% of them were found within 34 days. Even some
certificates were not returned properly until 51 days after they
were submitted, which means that 52 days of tracking is not
enough to measure Entrust Search’s actual service delays7.

When the service delay is set to different values, the result
of delayed certificates filtered by the watcher is different. If
the service delay is set too small, only a part of the delayed
certificates can be filtered out. Instead, if the service delay is
set too large, some certificates missed due to service bugs will
be wrongly classified as delayed certificates. Fig. 5 shows the
related situation of Entrust Search: as the set service delay
increases from 1 to 52, the proportion of missing certificates
identified as delayed certificates rises from 1.6% to 41.6%.

C. Identified Faults

The RF classifiers reach a high test accuracy (0.912 for
Entrust Search, > 0.994 for others) and an F-1 score between
0.62 and 0.982 for distinguishing the missing certificates from
others, as shown in TABLE IV. The models show a high
accuracy as the datasets are extremely imbalanced. Based on
the high-ranked features, we manually construct 4 confirmed
trigger features (i.e., F2, F4, F9, and F11), which filter out
83.0% to 99.8% of the missing certificates of monitors, see
Appendix C for details.

Through the similarity analysis of missing certificates, we
listed the features triggering certificate misses and confirmed
multiple monitor bugs, as shown in TABLE V. We explained
the causes of almost all the certificates missed from Censys,

7Entrust Search suspended its service for a few days on March 17th,
making longer tracking impossible.

10

TABLE IV: Test F-1 scores of the RF classifiers for monitors
and proportion of certificates annotated with trigger features
constructed from high-ranked feature guidelines.

Censys Entrust
Search

Facebook
Monitor

Google
Monitor

F-1 0.976 0.798 0.620 0.982
Annotate Rate 96.6% 83.0% 99.8% 98.2%

crt.sh, SSLMate Spotter, Google Monitor and Facebook
Monitor, except for 330 from Google Monitor, 23 from
Censys and 6 from Facebook Monitor for unknown reasons.
Besides, we explained about 98% of the missing certificates
of Entrust Search. Then, we categorized the possible bugs of
monitors, each corresponding to a feature in the list.

? Problems in Certificate Collection

#F1: Entrust Search only monitors Google-operated logs. It
could not find all the 35 certificates that were not submitted
to any Google-operated logs.

#F2: Entrust Search is prone to miss certificates on the busiest
logs during fetching/storing. Among the 19 Google-operated
logs at the time, the 4 logs with the fastest growth (i.e.,
Google Rocketeer, Google Pilot, Google Xenon 2020, Google
Argon 2020)8 were defined as busiest-Google-logs and other
15 Google-operated logs were defined as non-busiest-Google-
logs. After excluding missing certificates that identified the
cause, Entrust Search still missed 77,693 certificates, 64,475
of which were not logged in non-busiest-Google-logs, account-
ing for 83%. Since Entrust Search monitors only Google-
operated logs, it missing certificates are from the busiest-
Google-logs. The expected proportion of certificates with this
feature is 40.6%. The calculated Cramer’s value V is 0.863.

? Problems in Certificate Indexing

#F3: Facebook Monitor and Google Monitor incorrectly in-
dexed redacted certificates.9 Both of them missed the only
2 redacted certificates [53] (“?.delta.com” and “?.?.sales-
force.com”). Section VI-D provides further analysis.

#F4: Censys may incorrectly parse a certificate with vast
characters in its SAN:dNSNames. There were 3178 certificates
with a large number of characters (i.e., the total number of
characters of SAN:dNSNames in the certificate is greater than
8,830) in the trial operation, of which 2895 (91.1%) were
tagged as “unparsable” and provided with only the SHA256
fingerprint in Censys’ web service.

#F5: Facebook Monitor incorrectly parsed the validity period
of some certificates. We found that Facebook Monitor re-
turned a different NotBefore or NotAfter for all 42 certificates
matching F5 than the other monitors. If the time happens to
be between 2:00 and 3:00 on the day when daylight saving
time starts, then NotBefore or NotAfter will be +1 hour.

8During the trial operation, the entry growth of CT reached 13.4M per day,
of which the daily growth of Google Xenon 2020 was about 3M (accounting
for 22.4%), Google Argon 2020 was 2.7M (accounting for 20.4%), Google
Rocketeer was 1.5M (accounting for 10.8%), and Google Pilot was 1.4M
(accounting for 10.6%).

9To prevent privacy leakage, the redacted certificates use ‘?’ to replace the
privacy-carrying part in domains to prevent privacy leaks.

TABLE V: Manually constructed trigger features.

No. Trigger Feature

F1 It does not submit to Google-operated logs.
F2 It only submitted to the busiest logs.
F3 Its target domains contain ‘?’.
F4 Its SAN:dNSNames contain over 8,830 characters.
F5 Its NotBefore or NotAfter is in a special time interval.
F6 It has only one target domain.
F7 Its target domains contain ‘_’ and its logged format is ‘Pre’.
F8 The domain inquired is an IDN-ccTLD.

F9 The search results of the domain inquired need to be
returned on multiple segments.

F10 Its target domains are mixed cases.
F11 Its lifetime is less than 91 days.

#F6: Facebook Monitor may omit to mark certificates with
a small probability. After excluding missing certificates that
identified the cause, there were still 1,297 missing certificates.
Among them, 1,291 had only one target domain, accounting for
99.5% However, the expected proportion of certificates with
F6 is 58.5%. The calculated Cramer’s value V is 0.833. See
Section VI-D for further analysis.

#F7: Google Monitor may have an error in parsing the precer-
tificate with underscores in its domains. During the preparation
phase, we found 165 missing certificates of Google Monitor
with F7, which were not included in the 52-day trial operation.
We submitted this bug to Google, and they stated that there
was a parsing error about some precertificates.

? Problems in Certificate Look-up or Output

#F8: Entrust Search and Facebook Monitor prohibited queries
with some internationalized domain name (IDN). For “xn--
b1amahh6b.xn--p1ai” (2 certificates binding it), the only IDN
with an internationalized country code top-level domain (IDN-
ccTLD), Entrust Search and Facebook Monitor did not
return any results, see Section VI-D.

#F9: Certificates were duplicated or missed when Facebook
Monitor paged returned data. The search results of 122
domains were returned on multiple pages. Facebook Monitor
returned incomplete results for 116 of them, accounting for
95.1%, see Section VI-D for further analysis. A total of
592,902 missing certificates were involved in this feature.10

#F10: Retrieval of Censys and Entrust Search is case sen-
sitive. We discovered 1,428 certificates with mixed-case tar-
get domains. Entrust Search could not find all 1,428, so
its search was case-sensitive. Differently, Censys could not
find 17 whose CN was not a target domain since Censys
was only case-insensitive for “parsed.subject.common_name”
while case-sensitive for other 3 domain-related fields (i.e.,
“parsed.names”, “parsed._expanded_names” and “parsed. ex-
tensions.subject_alt_name.dns_names”).

#F11: There may be a problem with Google Monitor’s outputs
for short-lived certificates. Google Monitor has a total of
20,269 missing certificates, of which 19,901 have a lifetime

10The page-turning error causes certificates to be randomly missed, making
them indistinguishable from certificates that were missed for other reasons.
Therefore, we annotate all 592,902 certificates with this error.

11

TABLE VI: The comparison of IDN query.

UniCode Punycode
IDN∗ IDN-ccTLD§ IDN† IDN-ccTLD‡

Censys � �
√ √

crt.sh � �
√ √

Entrust Search � �
√

�
Facebook Monitor � �

√
�

Google Monitor � �
√ √

SSLMate Spotter
√ √ √ √

� means the monitor does not support the query.
∗: E.g., я.wiki; §: E.g., увики.рф;
†: E.g., xn--41a.wiki; ‡: E.g., xn--b1amahh6b.xn--p1ai.

of less than 91 days, accounting for 98.2%. However, the ex-
pected proportion of such certificates is 22.5%. The calculated
Cramer’s V is 1.812, which is greater than 1 due to unequal
expected probabilities of certificates with and without F11. The
details can be found in Section VI-D.

D. The Confirmed Bugs and Limitations

Regarding all the identified issues, we proceeded to analyze
some other certificates (or domains) on the Internet that
matched the same features, aiming to confirm if they were
also being mishandled. In addition, for some specific issues, we
also conducted several separate experiments to determine the
underlying causes or find more related bugs. This subsection
focuses on separate experiments from April to December 2020
involving a total of 7,295,986 unique certificates.

Redacted Certificate. We conducted experiments on 42,269
redacted certificates belonging to 1,898 domains. These certifi-
cates were used to explain the problem of Facebook Monitor
and Google Monitor about F3. We found that (a) if all
SAN:dNSNames in a certificate were redacted, it could not be
found; (b) if part of SAN:dNSNames were redacted, it could be
found by unredacted SAN:dNSNames. This may result from
a mistake in monitor setting or matching indices.

Mark Error. 538 of the 1,291 missing certificates mentioned
in Section VI-C (F6) contained not only the target domains
but also some uncorrelated domains. The bug locating found
that they could be found through uncorrelated domains11 rather
than precise subdomains. This may be caused by Facebook
Monitor’s omission to mark the index. When a certificate has
only one target domain, it is more prone to being missed.

IDN. Inspired by Section VI-C (F8), we further experimented
to explore the strategies of 6 monitors in querying IDNs. We
used Unicode and Punycode to query for IDN-ccTLD and IDN
with ordinary TLD respectively. As a result, only SSLMate
Spotter could recognize the Unicode encoding of IDN. In
addition, Facebook Monitor and Entrust Search judged an
IDN-ccTLD as an invalid domain, as TABLE VI.

Page-turning Error. To confirm the bug about F9 in Section
VI-C, we set the page size to 1,000 and 5,000 to synchronize
multiple queries “uol.com.br”, a domain that at the time had
4,419 relevant certificates bound to it. Facebook Monitor used

11Facebook Monitor does not accept SHA256 fingerprint as the search
keyword. Thus, instead of querying specific certificates via SHA256 finger-
print, we query uncorrelated domains in the certificate to complete the bug
locating.

a cursor item to locate a page. When the page size was 1,000,
it took 5 pages to return the results, and both the cursors and
the number of results varied. However, when the page size was
5,000, the number of results was steady. We submitted this bug
to Facebook and it was fixed, but Facebook Monitor just set
an output limit of 10,000.12

Output Limitation. We also found uninformed output limits
by analyzing 4 super domains, see Appendix E for details.

1) Google Monitor. It only returns a part of certificates for
super domains. Moreover, the upper limit is smaller for the
domains whose relevant certificates were mostly short-lived
(e.g., “wixsite.com”). But these missing certificates can be
found when searching by precise subdomain, which means that
the error is likely in the look-up stage.

First, we analyzed the returning order of certificates. For
a certificate, we extracted the effective second-level domains
(e2LDs) of target domains,13 and defined the smallest one
in lexicographical order (case-insensitive and numbers are
smaller than letters) as smallest-e2LD. Google Monitor re-
turned the results in the following order, (i) certificates binding
the parent domain with wildcard; (ii) certificates binding
the domain inquired with wildcard or not; (iii) certificates
according to the lexicographical order of their smallest-e2LDs.
There were also a few certificates returned out of order.

Then, we analyzed the output limit. Since Google Monitor
returned unexpired and expired certificates by default, the
next analysis included expired certificates. We again obtained
the relevant certificates of 7 domains by Google Monitor
(see TABLE XII in Appendix E), and found that it could
only return the first part of certificates in lexicographical
order. For example, when querying for “azure.com”, only
certificates whose smallest-e2LD starting with ‘c’ or lower in
lexicographical order are returned.

2) Facebook Monitor. After Facebook Monitor set the output
limit of 10,000, its search service for some domains (e.g.,
“microsoft.com”) did not even return any valid certificate. The
reason is that its Graph API returns the earlier certificate first,
resulting in all returned certificates being expired.

Bad Tag. Censys sets bad tags for some certificates. First,
it was found that some certificates in the web service were
tagged as “unexpired” in the Tags field, but tagged as “Expired
Leaf” in the Browser Trust field.14 This bug was reported to
Censys and confirmed. Second, we found that Censys had an
issue with misjudging the validity period of certificates. It may
tag an unexpired certificate as “expired”, and vice versa. On
June 22, 2020, we searched for certificates tagged “expired”
with an expiration date after June 23, 2020, and found 66,245
certificates when there should have been 0 certificates.

Unknown Causes. There were still some missing certificates
with undiscovered similarities that were not interpreted. Since
many possibilities could lead to inconsistencies, some of which
may occur randomly, it was very difficult to interpret them all.
We did further bug locating on Censys which could search
for certificates via SHA256 fingerprint.

12Facebook Monitor didn’t set output limits until we submitted the bug.
13For example, “msm.live.com” is the e2LD of “rps.msm.live.com”.
14When interacting with Censys using the BigQuery interface and filtering

expired certificates by the "unexpired" tag, these certificates were not returned.

12

TABLE VII: The average overhead of processing a domain.

Downloads Storage Time Cost

Censys 0.16MB 0.19MB -† Free/$0.04‡

crt.sh 0.23MB 0.26MB 5.21s Free
Entrust Search 0.12MB 0.28MB 9.91s Free
Facebook Monitor 0.16MB 0.28MB 14.1s Free
Google Monitor 0.36MB 0.41MB 79.7s Free
SSLMate Spotter 0.16MB 0.19MB 87.98s Free/$0.002§

Watcher 1.19MB 1.97MB 163s 4
†: We use the BigQuery interface that Censys only provides to researchers,
so its data does not have reference value;
‡: If 250 free queries per month are exceeded, Censys charges monthly (or
yearly), and it costs $0.04 to search for a domain under full load. §: If 10
free queries per hour are exceeded, SSLMate Spotter charges monthly (or
yearly), and it costs about $0.002 to search for a domain under full load.
4: The fee paid by the operator is related to the number of domains
analyzed and the search period set.

For Censys’ 23 unexplained certificates, 8 of them could
not be found even when searched using their SHA256 finger-
prints. This issue might arise due to Censys failing to fetch
or store these certificates. The 31-day tracking of Censys’
backlog has revealed that it has the issue of incomplete
certificate inquiry for many logs (see Fig. 6(a) in Appendix
E). In addition, 9 unannotated certificates cannot be found
even when searched by their precise subdomains, possibly
due to indexing errors. In our further investigation, we found
that none of them has the “parsed.names” field. Additionally,
the remaining 330 certificates of Google Monitor were only
missed for one day during the 52 days of tracking, likely due
to accidental service shocks.

E. Operating Cost of Light Watchers

Based on the trial operation, we estimate the average cost of
a watcher to process a domain per search period (see TABLE
VII for an overview). For 3,996 tracked domains, each domain
contains about 240 relevant certificates on average, requiring
about 1.19MB of data to download. In addition to the directly
downloaded raw data, the watcher also constructs the searched
set, the reference set, and the irrelevant/missing set. In general,
a domain requires 1.97MB of storage on average.

We measured the time taken by each monitor to obtain cer-
tificates of domains selected using 5Mbps network bandwidth.
Due to the design of synchronous execution, the average time
for the watcher to search for a domain is about 163 seconds.

The 6 selected monitors are basically free, except for
Censys and SSLMate Spotter, which charge for a large
number of queries. When the operator needs to search more
than 250 times a month (i.e., watching over 8 domains per day)
, Censys charges at least $0.04 for each search. In addition,
since SSLMate Spotter returns up to 100 certificates per
search, an average of 3 searches is required for each domain. If
the operator wants to perform more than 10 searches per hour
(i.e., watching over 80 domains per day) through SSLMate
Spotter, it needs to pay at least $0.002 for each search.

F. Disclosures and Responses

SSLMate Spotter performed relatively well, and no bugs

were found, so we did not issue a report. Entrust Search did
not respond to the bugs reported on September 17, 2021.

Although crt.sh performed well during the trial operation,
our testing in May 2022 still found some issues. crt.sh only
returned some of the top-ranked certificates, even for some
domains that did not hit the output limit. For example, for
“taobao.com”, it only returned 80 certificates issued before
September 7, 2021, which was about 140 fewer than expected.
We reported the issue on May 23, 2022, but crt.sh did not
provide a convincing response.

We reported the identified bugs to Censys. The bad tags
bug (reported on January 16, 2020) was confirmed by them, but
we have not received any response to the other bugs (reported
on September 16, 2021).

For Facebook Monitor, we reported the page-turning error
on December 4, 2019, and Facebook fixed it on September 28,
2020. We then reported additional findings on May 20, 2022,
and received a response from Facebook Monitor, stating that
it had been referred to the concerned team.

Google Monitor confirmed the issue with parsing errors
for some precertificates, and fixed it on November 28, 2019.
But Google Monitor stated that it was not a “monitor” as
defined in RFC 6962 and should not be used for deep security
analysis.15

VII. DISCUSSION AND FUTURE WORK

A. Specifications of Third-party Monitors

We suggest the following specifications for third-party
monitors. First of all, a third-party monitor needs to disclose
or provide an interface to receive the following information:
service delay, output limit, and log list. We recommend that a
monitor’s service delay should be less than 4 days, which is the
recommended lifetime of a short-term, automatically renewed
(STAR) certificate [46]), so that (bogus) STAR certificates will
be returned to users who only search unexpired ones.

Secondly, a third-party monitor should provide services
through uniform APIs. This will reduce the complexity of
developing a watcher, and also help domain owners to detect
bogus certificates. A uniform API is suggested as below:

1) Input and options: a user may input the fingerprint of a
certificate, or a domain with the options of expired certifi-
cates included or excluded, expected certificates or exactly-
matching, and (pre)certificates deduplicated or not;

2) Comparison: a monitor compares a inquired domain with
SAN:dNSNames in a case-insensitive way;

3) Normal output for domain owners: each (pre)certificate is
returned, including CN, SAN:dNSNames, Issuer, SerialNum-
ber, NotBefore, NotAfter, log-details, and cert-file, etc.;

4) Opaque output for watchers: Only a opaque set is returned,
as free services for watchers; for example, each certificate is
returned as only the digest of the quadruple (SerialNumber,
Issuer, NotBefore, and NotAfter) and log-details. This optional

15Some bugs were discovered by the watcher in the preparation phase, so
they were reported before January 25, 2020.

13

function enables public inspections by light watchers, while the
monitors still charge domain owners for search services.

Finally, the access method to third-party monitors is de-
signed similarly to log servers [30]. Client messages are sent
to third-party monitors as HTTPS GET or POST requests.
Afterward, the third-party monitor responds with a set of
certificates (i.e., searched set) encoded as a JSON object. The
third-party monitor should provide more secure and reliable
TLS/HTTPS security services. For example, it (i) only accepts
HTTPS-based access, (ii) only supports TLS 1.2 or above, (iii)
uses CAA [21] and other mechanisms to limit which CAs can
issue certificates for which websites to reduce MitM based on
bogus certificates attack.

B. Defenses against Malicious Third-party Monitors

Analyzing the reasons for malicious behavior is infeasi-
ble and meaningless, so fault analysis is not considered for
malicious monitors. While the light watcher is functionally
capable of detecting any misbehavior of a monitor (either
benign or malicious), the malicious action cannot be captured
if the inquirer (e.g., the domain owner) does not run a watcher
while the monitor is doing evil. Therefore, randomly running
a watcher provides probabilistic protection against maliciously
faulty monitors, acting as a deterrent, while running an
ephemeral watcher (i.e., a light watcher with 1 input domain
that runs for 1 period) whenever an inquiry occurs can detect
malicious actions in a deterministic manner.

There are some monitors on the Internet that provide public
welfare services (e.g., crt.sh and Facebook Monitor), while
some provide compensatory services (e.g., Censys and SSL-
Mate Spotter). The inquirer can run a watcher for free that
includes only the requested monitor and monitors providing
public welfare service, or pay to run one with more monitors
participating, which provides greater capabilities. However,
most inquirers would prefer the free service to the paid version.
Therefore, we try to propose a free mode of operation for
watchers. In this mode, the inquirer requests the search result
(i.e., certificate set) from a monitor and inspects it by obtaining
private sets from several other monitors for free, without
revealing any data assets of them.

The opaque output for watcher mentioned in Section VII-A
can be directly applied to light watchers to detect inconsistent
results. The research on the applicability, deployment difficulty,
scalability, and performance consumption of different private
set structures/algorithms [25], [44], [18] to watchers is our
future work. Building on the research results of this work, we
generalize a private set manipulation watcher protocol based
on Bloom filter (BF) [58], [17] to defend against malicious
monitors, as follows:

Watcher protocol. First, the inquirer requests the certificates
for domain d from a monitor, called servicing monitor. Second,
the watcher inserts the certificates into a BF vector, denoted
as BF s

d . Third, the watcher sends the request to the selected
reference monitors with domain d and the service limit (i.e.,
log list, service delay) of the servicing monitor. Fourth, each
reference monitor m inserts the searched certificates within the
service limit into a BF vector (denoted as BFm

d) and returns
it to the watcher. Fifth, the watcher constructs a reference BF
vector (denoted as BF r

d) by merging BFm
d (m ∈ M). It is

worth noting that the voting method is also a potential solution
to exclude irrelevant certificates from the private set. Finally,
the watcher compares BF s

d and BF r
d bit by bit and alerts the

inquirer if a bit is ‘1’ for BF r
d but ‘0’ for BF s

d , which means
the servicing watcher missed some certificates.

Monitor workflow. Watchers increase the workload of the
monitor by n times (n is the number of participating monitors).
However, monitors can avoid searching large databases by
storing and periodically updating the BF vectors of domains.
Therefore, the extra work of the monitor is to insert the
certificate into the BF vector after fetching it from log servers,
in exchange for fast and easy responses to watchers.

Adaptation of subscription-based monitors. The BF-based
watcher protocol has the additional advantage of being poten-
tially useful for subscription services of monitors. By using
this compressed data structure, it’s possible to attach previous
certificates (i.e., the BF s

d of the last alert) to each monitor alert
without displaying all certificates. The BF s

d for a new alert is
obtained by inserting the newly discovered certificates into the
previous BF vector, based on which the watcher protocol can
be completed.

VIII. RELATED WORK

Security Analysis of CT. Several studies analyzed the security
and/or privacy of CT. Stark et al. [51] studied the compliance,
user experience, and potential risks of CT deployment. Li et al.
[31], [32], [33] revealed the potential vulnerabilities of various
CT components and exposed the unreliability of monitors in
the wild. Oxford et al. [40] presented a methodology for for-
mally evaluating quantitative aspects of the security of gossip
protocols for CT. Kondracki et al. [26] proposed CTPOT,
using a distributed honeypot system to analyze the CT bot
ecosystem. Similarly, Pletinckx et al. [41] investigated the
potential of CT logs as a data source for target reconnaissance
using honeypot technology. Scheitle et al. [45] and Roberts et
al. [42] discussed the leakage of domain information caused by
CT. Meiklejohn et al. [34] summarized and categorized privacy
concerns of SCT auditing in CT and existing solutions.

CT Enhancements. Some researchers aim to enhance CT.
Kubilay et al. [27] introduced CertLedger, a blockchain-based
improved CT-enabled PKI architecture, which aims to prevent
split-view attacks and ensure optimal certificate/revocation
transparency. Similarly, Wang et al. [57] deeply integrated
blockchain and CT to reinforce the security guarantees of
certificates. Hu et al. [23] introduced a novel transparency log
system, called Merkle2, which offers efficient monitoring and
low-latency updates. Dirksen et al. [14] presented LogPicker
to achieve mutual auditing amongst CT logs, thereby elimi-
nating a trusted third party. Sun et al. [54] and Dahlberg et al.
[10] respectively, proposed a lightweight monitoring scheme
from the perspective of custom policy and verifiability. Sun
et al. [55] merged the concepts of public-key encryption with
keyword search (PEKS) and CT to ensure compatibility with
transparency and privacy.

Certificate Parsing. Issued certificates may occasionally devi-
ate from the format specification, including HTTPS certificates
in the wild [15]. Kumar et al. [28] introduced ZLint, a linter
that verifies certificates for compliance with technical stan-
dards and identifies errors in certificates issued by hundreds

14

of CAs. Chen et al. [7] introduced SBDT and discovered
several bugs in certificate parsers by employing differential
testing. Barenghi et al. [3] showed that 21.5% of the X.509
certificates are syntactically incorrect and proposed a more
secure approach for parsing X.509 certificates. Debnath et al.
[13] re-engineered the X.509 standard specification alleviating
its design complexity, ambiguities, or under-specifications.

IX. CONCLUSION

In this paper, we present a scalable inspecting service,
named CT watcher, to improve the reliability of CT. It can be
run lightly by any interested party to detect the misbehavior of
third-party monitors. Furthermore, the operator with sufficient
resources can semi-automatically analyze potential failures
leading to misbehavior through a full watcher. We measured
6 active third-party monitors via the full watcher. A total of
8.26M unique certificates were analyzed, and 14 design or
implementation issues were detected, which resulted in 1.4M
missing/irrelevant cases. It turns out that the current monitor
still has some unnoticed exploitable faults, making it neces-
sary to deploy watchers. Finally, we discussed specifications
for services provided by third-party monitors to improve its
cooperation with watchers further, as well as technical routes
to resist malicious third-party monitors.

ACKNOWLEDGMENT

The authors thank Censys for providing the data support
for this research. This work was partially supported by the Na-
tional Key RD Plan of China under Grant 2017YFB0802100,
the National Natural Science Foundation of China under
Grant 62002011, the Youth Top Talent Support Program of
Beihang University under Grant YWF-22-L-1272. In addition,
Zeyan Liu and Fengjun Li were sponsored in part by NSF
awards IIS-2014552, DGE-1565570, and the Ripple University
Blockchain Research Initiative.

REFERENCES

[1] Apple Inc., “Requirements for trusted certificates in iOS 13 and macOS
10.15,” https://support.apple.com/en-hk/HT210176, 2019.

[2] ——, “Apple’s Certificate Transparency Policy,” https://support.apple.
com/en-us/HT205280, 2021.

[3] A. Barenghi, N. Mainardi, and G. Pelosi, “Systematic Parsing of X.509:
Eradicating Security Issues with a Parse Tree,” Journal of Computer
Security, vol. 26, no. 6, pp. 817–849, 2018.

[4] H. Birge-Lee, Y. Sun, A. Edmundson, J. Rexford, and P. Mittal,
“Bamboozling Certificate Authorities with BGP,” in 27th USENIX
Security Symposium, 2018, pp. 833–849.

[5] Certificate Transparency, “Working together to detect maliciously
or mistakenly issued certificates,” https://certificate.transparency.dev/,
2021.

[6] ——, “Our Story: Thank you to our amazing community,” https:
//certificate.transparency.dev/community/#origins-grid, 2022.

[7] C. Chen, P. Ren, Z. Duan, C. Tian, X. Lu, and B. Yu, “SBDT: Search-
Based Differential Testing of Certificate Parsers in SSL/TLS Imple-
mentations,” in Proceedings of the 32nd ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2023, pp. 967–979.

[8] J. Cohen, Statistical Power Analysis for the Behavioral Sciences.
Academic press, 2013.

[9] crt.sh Inc, “Certificate Transparency log monitor of crt.sh,” 2023, https:
//github.com/crtsh.

[10] R. Dahlberg and T. Pulls, “Verifiable Light-Weight Monitoring for
Certificate Transparency Logs,” in Nordic Conference on Secure IT
Systems, 2018, pp. 171–183.

[11] T. Dai, H. Shulman, and M. Waidner, “Off-Path Attacks Against PKI,”
in Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, 2018, pp. 2213–2215.

[12] ——, “Let’s Downgrade Let’s Encrypt,” in Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security,
2021, pp. 1421–1440.

[13] J. Debnath, S. Y. Chau, and O. Chowdhury, “On Re-engineering the
X.509 PKI with Executable Specification for Better Implementation
Guarantees,” in Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, 2021, pp. 1388–1404.

[14] A. Dirksen, D. Klein, R. Michael, T. Stehr, K. Rieck, and M. Johns,
“LogPicker: Strengthening Certificate Transparency Against Covert
Adversaries,” Proceedings on Privacy Enhancing Technologies, vol. 4,
pp. 1–19, 2021.

[15] Z. Durumeric, J. Kasten, M. Bailey, and J. A. Halderman, “Analysis
of the HTTPS Certificate Ecosystem,” in Proceedings of the 2013
conference on Internet measurement conference, 2013, pp. 291–304.

[16] P. Eckersley, “A Syrian Man-In-The-Middle Attack against
Facebook,” 2011, https://www.eff.org/deeplinks/2011/05/
syrian-man-middle-against-facebook.

[17] R. Egert, M. Fischlin, D. Gens, S. Jacob, M. Senker, and J. Tillmanns,
“Privately Computing Set-Union and Set-Intersection Cardinality via
Bloom Filters,” in 20th Australasian Conference on Information Secu-
rity and Privacy, 2015, pp. 413–430.

[18] K. Frikken, “Privacy-Preserving Set Union,” in 5th International Con-
ference on Applied Cryptography and Network Security, 2007, pp. 237–
252.

[19] Google Inc., “Chrome Certificate Transparency Policy,” https://
googlechrome.github.io/CertificateTransparency/ct_policy.html, 2022.

[20] ——, “Feature: Support for commonName matching in Certificates (Re-
moved),” https://chromestatus.com/feature/4981025180483584, 2022.

[21] P. M. Hallam-Baker and R. Stradling, “IETF RFC 6844 - DNS Certi-
fication Authority Authorization (CAA) Resource Record,” 2013.

[22] Heather Adkins, “An update on attempted man-in-the-
middle attacks,” 2011, https://security.googleblog.com/2011/08/
update-on-attempted-man-in-middle.html.

[23] Y. Hu, K. Hooshmand, H. Kalidhindi, S. J. Yang, and R. A. Popa,
“Merkle2: A low-latency transparency log system,” in IEEE Symposium
on Security and Privacy, 2021, pp. 285–303.

[24] S. Kent, “IETF Draft - Attack and Threat Model for Certificate
Transparency,” 2018.

[25] L. Kissner and D. Song, “Privacy-Preserving Set Operations,” in Annual
International Cryptology Conference, 2005, pp. 241–257.

[26] B. Kondracki, J. So, and N. Nikiforakis, “Uninvited Guests: Analyzing
the Identity and Behavior of Certificate Transparency Bots,” in 31st
USENIX Security Symposium, 2022, pp. 53–70.

[27] M. Y. Kubilay, M. S. Kiraz, and H. A. Mantar, “CertLedger: A New PKI
Model with Certificate Transparency Based on Blockchain,” Computers
& Security, vol. 85, pp. 333–352, 2019.

[28] D. Kumar, Z. Wang, M. Hyder, J. Dickinson, G. Beck, D. Adrian,
J. Mason, Z. Durumeric, J. A. Halderman, and M. Bailey, “Tracking
Certificate Misissuance in the Wild,” in IEEE Symposium on Security
and Privacy, 2018, pp. 785–798.

[29] B. Laurie, A. Langley, and E. Kasper, “RFC 6962: Certificate Trans-
parency,” 2013.

[30] B. Laurie, E. Messeri, and R. Stradling, “RFC 9162: Certificate Trans-
parency Version 2.0,” 2021.

[31] B. Li, D. Chu, J. Lin, Q. Cai, C. Wang, and L. Meng, “The Weakest Link
of Certificate Transparency: Exploring the TLS/HTTPS Configurations
of Third-Party Monitors,” in 18th IEEE International Conference On
Trust, Security And Privacy In Computing And Communications, 2019.

[32] B. Li, J. Lin, F. Li, Q. Wang, Q. Li, J. Jing, and C. Wang, “Certificate
Transparency in the Wild: Exploring the Reliability of Monitors,” in
Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, 2019.

[33] B. Li, J. Lin, F. Li, Q. Wang, W. Wang, Q. Li, G. Cheng, J. Jing, and
C. Wang, “The Invisible Side of Certificate Transparency: Exploring
the Reliability of Monitors in the Wild,” IEEE/ACM Transactions on
Networking, vol. 30, no. 2, pp. 749–765, 2021.

15

[34] S. Meiklejohn, J. DeBlasio, D. O’Brien, C. Thompson, K. Yeo, and
E. Stark, “SoK: SCT Auditing in Certificate Transparency,” in Pro-
ceedings on Privacy Enhancing Technologies, 2022, pp. 336–353.

[35] B. Morton, “More Google Fraudulent Certificates,” 2014, https://www.
entrust.com/google-fraudulent-certificates/.

[36] Mozilla Foundation, “Public Suffix List,” 2022, https://publicsuffix.org/
list/.

[37] L. Nordberg, D. K. Gillmor, and T. Ritter, “Gossiping in CT,” https:
//datatracker.ietf.org/doc/html/draft-ietf-trans-gossip-05, 2018.

[38] D. O’Brien, “Chrome CT 2021 Plans,” https://groups.google.com/a/
chromium.org/g/ct-policy/c/4puGir9pNFA/m/1caF3ilrBQAJ, 2021.

[39] Opsmate Inc., “Certificate Transparency Log Growth,” https://sslmate.
com/labs/ct_growth/, 2022.

[40] M. Oxford, D. Parker, and M. Ryan, “Quantitative Verification of
Certificate Transparency Gossip Protocols,” in IEEE Conference on
Communications and Network Security, 2020, pp. 1–9.

[41] S. Pletinckx, T.-D. Nguyen, T. Fiebig, C. Kruegel, and G. Vigna,
“Certifiably Vulnerable: Using Certificate Transparency Logs for Tar-
get Reconnaissance,” in IEEE European Symposium on Security and
Privacy Workshops, 2023.

[42] R. Roberts and D. Levin, “When Certificate Transparency is Too Trans-
parent: Analyzing Information Leakage in HTTPS Domain Names,” in
ACM Workshop on Privacy in the Electronic Society, 2019, pp. 87–92.

[43] Salvatore S. Mangiafico, “Goodness-of-Fit Tests for Nominal Vari-
ables,” 2016, https://rcompanion.org/handbook/H_03.html.

[44] Y. Sang and H. Shen, “Efficient and Secure Protocols for Privacy-
Preserving Set Operations,” ACM Transactions on Information and
System Security, vol. 13, no. 1, pp. 1–35, 2009.

[45] Q. Scheitle, O. Gasser, T. Nolte, J. Amann, L. Brent, G. Carle, R. Holz,
T. C. Schmidt, and M. Wählisch, “The Rise of Certificate Transparency
and its Implications on the Internet Ecosystem,” in Proceedings of the
Internet Measurement Conference, 2018.

[46] Y. Sheffer, D. Lopez, O. G. de Dios, A. Pastor, and T. Fossati,
“RFC 8739: Support for Short-Term, Automatically Renewed (STAR)
Certificates in the Automated Certificate Management Environment
(ACME),” 2020.

[47] SSLMate Inc., “How Cert Spotter Parses 255 Million Certificates,”
https://sslmate.com/blog/post/how_certspotter_parses_255_million_
certificates, 2017.

[48] ——, “Security incident report,” 2018, https://sslmate.com/resources/
certificate_authority_failures.

[49] ——, “Certificate Transparency log monitor of SSLMate,” 2020, https:
//github.com/SSLMate/certspotter.

[50] ——, “One Billion Certificates, At Your Fingertips,” https://sslmate.
com/ct_search_api/, 2022.

[51] E. Stark, R. Sleevi, R. Muminovic, D. O’Brien, E. Messeri, A. P. Felt,
B. McMillion, and P. Tabriz, “Does Certificate Transparency Break the
Web? Measuring Adoption and Error Rate,” in IEEE Symposium on
Security and Privacy, 2019.

[52] E. Stark and C. Thompson, “Opt-in SCT
auditing,” https://docs.google.com/document/d/
1G1Jy8LJgSqJ-B673GnTYIG4b7XRw2ZLtvvSlrqFcl4A, 2020.

[53] R. Stradling and E. Messeri, “Certificate Transparency: Domain Label
Redaction,” 2017.

[54] A. Sun, B. Li, H. Wan, and Q. Wang, “PoliCT: Flexible Policy in Cer-
tificate Transparency Enabling Lightweight Self-monitor,” in Applied
Cryptography and Network Security Workshops, 2021, pp. 358–377.

[55] A. Sun, B. Li, Q. Wang, H. Wan, J. Lin, and W. Wang, “Semi-CT:
Certificates Transparent to Identity Owners but Opaque to Snoopers,” in
IEEE Symposium on Computers and Communications, 2023, pp. 1207–
1213.

[56] K. S. University, “SPSS Tutorial: Chi-Square Test of Independence,”
2019, https://libguides.library.kent.edu/spss/chisquare.

[57] Z. Wang, J. Lin, Q. Cai, Q. Wang, D. Zha, and J. Jing, “Blockchain-
based Certificate Transparency and Revocation Transparency,” IEEE
Transactions on Dependable and Secure Computing, 2020.

[58] Wikipedia, “Bloom filter,” https://en.wikipedia.org/wiki/Bloom_filter,
2023.

[59] K. Wilson, “Distrusting New CNNIC Certificates,” 2015, https://blog.
mozilla.org/security/2015/04/02/distrusting-new-cnnic-certificates/.

APPENDIX A

This appendix summarizes the exploitation of the bugs
discovered in this work (see Section VI-C for details).

Output limit. The APIs of Entrust Search, crt.sh, and
Facebook Monitor have output limits, which means only the
oldest n certificates for the inquired domain are returned.
For a domain with more than n certificates, newly issued
certificates will not be returned. Similarly, Google Monitor
returns certificates with a matching CN or SAN:dNSName
in lexicographical order compared from the top-level domain
to the subdomains, but it tends to miss certificates binding a
lexicographically greater domain. So an attacker could target
such domains with a great number of legitimate certificates,
and then bogus certificates would be (probably) invisible from
these monitors.

Unmonitored or unprocessed log. A monitor pre-selects a
set of logs to collect data, so not all public logs are monitored
(e.g., Censys, and Entrust Search). Therefore, an attacker
can evade detection by submitting the bogus certificate to un-
monitored logs. Furthermore, even when a log is monitored, if
the appended records exceed the monitor’s processing capacity,
it has to create a backlog to store unprocessed certificates
(as shown in Fig. 6 of Appendix E). For example, Censys
maintains a large backlog for the “Google Argon 2020” log.
Thus, an attacker might submit a bogus certificate to some
carefully-selected logs, which are not monitored by some
monitors or have brought backlogs, and then this certificate
will be accepted by CT-compliant browsers but invisible (at
least for a long period).

Defective certificate look-up. The missing certificates of some
monitors exhibit distinctive patterns of certificate contents.
For example, Entrust Search and Censys compare an input
domain and the parsed SAN:dNSName(s) in a case-sensitive
way, while Censys does not return certificates with a large
number of SAN:dNSNames (e.g., a certificate issued to CDN
servers with SAN:dNSNames containing more than 9,000
characters in total). An attacker could encode the target domain
as a SAN:dNSName by mixed upper and lower-case let-
ters (e.g., WwW.fAceBOoK.cOm) or accompanied with many
nonexistent domains, to conceal a bogus certificate.

APPENDIX B

The implementation of the scraper to the participating
third-party monitors is as follows:

Censys. The scraper uses the BigQuery interface and
prepares SQL statements to obtain consistent search results
returned by the web interface. The SQL statement used is
equivalent to the “parsed.subject.common_name:domain OR
parsed.names:domain OR parsed._expanded_names:domain
OR parsed.extensions.subject_alt_name.dns_names:domain”
in the web service. It uses the “unexpired” and “ct” tags to
exclude expired certificates and certificates obtained through
active scanning. We also filter out the certificates recorded
only in test logs (i.e., “Testtube Log” and “Comodo Dodo”).

16

TABLE VIII: The actual merge delay for the 24 unretired logs
that comply with Chrome’s CT policy.

Log Server Merge Delay
Range

Average
Merge Delay

Google Argon (2022) 1s - 137s 4.17s
Google Argon (2023) 1s - 135s 2.86s
Google Argon (2024) 1s - 125s 2.95s
Google Xenon (2022) 1s - 247s 4.26s
Google Xenon (2024) 1s - 125s 3.67s
DigiCert Nessie (2022) 3547s - 3604s 3585s
DigiCert Nessie (2023) 590s - 605s 602s
DigiCert Nessie (2024) 546s - 603s 598s
DigiCert Nessie (2025) 600s - 601s 600s
DigiCert Yeti (2023) 600s - 601s 600s
DigiCert Yeti (2024) 600s - 602s 601s
DigiCert Yeti (2025) 600s - 601s 600s
Let’s Encrypt Oak (2022) 3s - 138s 14.7s
Let’s Encrypt Oak (2023) 1s - 131s 12.8s
Let’s Encrypt Oak (2024h1) 1s - 127s 3.25s
Let’s Encrypt Oak (2024h2) 7200s 7200s
Cloudflare Nimbus (2022) 480s - 1920s 938s
Cloudflare Nimbus (2023) 120s - 1440s 992s
Cloudflare Nimbus (2024) 480s - 2520s 1035s
TrustAsia Log (2022) 10s - 731s 419s
TrustAsia Log (2023) 9s - 659s 76.8s
TrustAsia Log (2024) 1660s - 3601s 2400s
Sectigo Mammoth 92s - 600s 312s
Sectigo Sabre 13s - 600s 548s

crt.sh. The scraper uses the PostgreSQL database interface and
the same SQL statement to obtain the same results as querying
the web service. It excludes the certificates matched by O and
OU, the scanned certificates whose log-details is null, and the
certificates only recorded in the “Comodo Dodo” log.

Entrust Search. The scraper crawls web pages directly.

Facebook Monitor. The scraper uses the graph API to obtain
the certificate in paging (the page size is set to 5,000). It also
excludes expired certificates.

Google Monitor. The scraper crawls certificates from web
pages. It first collects certificate ID (Base64 encoding of
SHA256 fingerprint) from the overview page and then visits
the certificate page for detailed information. It also excludes
expired certificates.

SSLMate Spotter. The scraper uses the JSON API to fetch
the certificates, which does not return SerialNumber. So, we
parse the certificate to extract the information.

APPENDIX C

Table IX provides some examples of labels available to be
attached to certificates when implementing the semi-automated
fault analyzer, most of which are included in our prototype.
TABLE X shows the manually constructed trigger features
guided by the high-ranked features output by the random
forest.

APPENDIX D

This appendix presents the actual merge delay measured
on December 29, 2022, for the 24 unretired logs that are

(a) Censys certificate backlog.

(b) Crt.sh certificate backlog.

(c) SSLMate Spotter certificate backlog.

Fig. 6: The backlog of certificates in the monitors that provide
its log list.

compliant with Chrome’s CT policy, as shown in TABLE VIII.
We queried the latest STH of the log about every second for
about 2 hours and counted how many different STHs were
obtained during the period. For some log servers with actual
merge delays of up to tens of minutes, a longer trace was
performed, this time once every minute for 10 hours. The
results show that the actual average merging delay of 8 logs is
less than 1 minute, the delay of 13 logs is within 20 minutes,
the delay of 2 logs is within 1 hour, and the maximum delay
is 2 hours.

APPENDIX E

This appendix contains some details of the experimental
evaluation and analysis. TABLE XI presents the search results
of 4 super domains, and TABLE XII presents information
about 7 domains used to analyze Google Monitor’s output
limits. Fig. 6 illustrates the backlogs of Censys, crt.sh and
SSLMate Spotter.

17

TABLE IX: The example of labels attached to certificates in the implementation of the semi-automated fault analyzer.

Classification Label

Certificate

Issuer
NotBefore
NotAfter
ExtendedKeyUsage (e.g., client authentication and email protection)
lifetime (i.e., NotAfter −NotBefore)
number of SAN:dNSNames
the average length of its SAN:dNSName
whether it is a redacted certificate (True/False)

Submission

first submitted time
time difference from first submitted to last submitted
time difference from NotBefore to first submitted
number of SCTs
number of operators issuing these SCTs
average size of logs submitted
average daily growth of logs submitted
logged format

Domain inquired

eTLD of the domain inquired
number of target domains
minimum level of target domains
whether target domains are mixed case (True/False)
whether target domains are IDNs (True/False)
whether target domains contain the character ‘-’/‘_’ (True/False)
average size of reference sets
the difference in size between the reference sets
the number of segments (i.e., pages) the monitor returns the result

TABLE X: Manually constructed trigger features based on the guidance of high-ranked features.

High-ranking Feature Trigger Feature

Censys-1: “number of SAN:dNSNames” → F4: Its SAN:dNSNames contain over 8,830 characters.
Entrust-5: “average daily growth of logs submitted” → F2: It only submitted to the busiest logs.

Facebook-1: “average size of reference sets” → F9: The search results of the domain inquired need to be
returned on multiple segments.

Google-3: “lifetime” → F11: Its lifetime is less than 91 days.

TABLE XI: The search results of 4 super domains.

Censys crt.sh Entrust Search Facebook Google SSLMate Spotter

amazonaws.com 1,178,292 � � 31,046 374,693 �
zendesk.com 2,040,024 � � 13,311 315,958 �
azure.com 3,570,640 � � 12,516 265,965 �
netflix.com 51,641 52,193 � 24,214 45,753 �

TABLE XII: The statistics of 7 domains for which Google Monitor only returns partial results.

Number of Google
missing certificates

Number of relevant
certificates

Number of short-lived
certificates Percentage

azure.com 3,160,068 4,808,933 - -
zendesk.com 1,587,280 4,361,666 - -
amazonaws.com 801,983 3,425,695 - -
netflix.com 6,278 522,177 521,287 99.83%
wixsite.com 16,362 36,188 36,161 99.99%
sheridanc.on.ca 3,384 82,600 82,516 99.90%
ugm.ac.id 131 44,588 43,148 96.77%

18

APPENDIX F
ARTIFACT APPENDIX

A. Description & Requirements

The submitted artifact is the light/full watcher described
in this paper (link: https://github.com/PKIexr/CT-watcher or
https://doi.org/10.5281/zenodo.10148256). It includes the in-
consistency analyzer and the machine-learning model in the
fault analyzer. We also provide the data obtained during
the experiments (January 25, 2020 - March 16, 2021) to
demonstrate the functions.

Launching this artifact requires Python3, as well as
psycopg2-binary, pyOpenSSL, urllib3, publicsuffixlist, censys,
schedule, numpy, pypi-json, scikit-learn, pandas, glob2 and
matplotlib. The accounts of inspected third-party monitors and
the corresponding access tokens are also required.

B. Experiment Workflow

1) Light watcher: Light watcher is used to detect misbe-
haviour of third-party monitors. It takes a list of domains as
input and outputs the inconsistency between the search results
of each third-party monitor and the complete certificate set.
Algorithm 1 provides the pseudocode of the light watcher (i.e.,
inconsistency analyzer), which is described in Sections V-B
and V-C. Perform the functions of a light watcher by running
“Inconsistency_Analyzer”.16

Before running the light watcher, you need to configure
the domain input in the “domains.csv” file and the neces-
sary parameters in the “config.py” file as below: the data
storage directory (“DATA_ROOT_FOLDER”), the number
of tracking periods (“PERIOD_NUM”), monitors inspected
(“MONITOR_INVOLVED), the service information (“MONI-
TOR_CONFIG”) and access tokens (“FACEBOOK_TOKEN”
and “SSLMATE_TOKEN”).

2) Full Watcher: Full watcher is used to detect and also
analyze the misbehaviour of third-party monitors. Its input is
a list of domains, while its output is a set of inconsistent
certificates and trigger features. To effectively demonstrate the
functions of the full watcher, we provide the 52-day tracking
data for 4,000 domains (as described in Section VI). The
fault analyzer analyzes the provided data and outputs several
ranked feature lists. TABLE X shows examples of high-ranked
features, which are further analyzed in Section VI-C. Run
“Fault_Analyzer” to extract and rank features on the provided
data (or any data you obtain).

C. Major Claims

• (C1): Light watchers detect misbehaviour of third-
party monitors (i.e., returning incorrect search results
for some certain domain inputs). Experiment E1 illus-
trates this claim.

• (C2): The machine-learning model extracts features,
ranks features, and guides the manual analysis to find
trigger features. Experiment E2 illustrates this claim.

16In the prototype implementation, the termination condition is determined
by the number of tracking periods set by the operator.

D. Evaluation

1) Experiment (E1): [Light watcher17] inspects the search
services of three third-party monitors (i.e., crt.sh, Facebook
Monitor and SSLMate Spotter). On receiving the domains of
interest, the light watcher will output the number of certificates
that are either missing or returned incorrectly by the third-party
monitors for each domain.

[Preparation-1: Account for third-party monitors] Fill in
the API key of SSLMate Spotter (“SSLMATE_TOKEN”)
and the APP token of Facebook Graph API (“FACE-
BOOK_TOKEN”) in “config.py”. For SSLMate Spotter,
you need to obtain the API key from https://sslmate.com/
certspotter/. For Facebook Graph API, you need to obtain the
APP token from their developer tools at https://developers.
facebook.com/tools/explorer/. For crt.sh, there is no need to
register an account.

[Preparation-2: Parameter setting] The parameters are also
configured in “config.py”. Set “DATA_ROOT_FOLDER” as
the directory (e.g., “data/”) where the data files are stored. Set
the number of periods that the light watcher needs to execute
as “PERIOD_NUM”. In addition, we have set the “MON-
ITOR_INVOLVED” and “MONITOR_CONFIG” by default.
Operators can modify these parameters as needed.

[Preparation-3: Domain input] Please fill in the domains
in the “domains.csv” file as the input to the light watcher.

[Execution] Run “python3 main.py”.

[Results] Light watcher first outputs “Collecting certifi-
cates!!!” and the estimated time to start collecting certificates.
It then outputs the domain being inquired, which takes a
long time. After that, it outputs “Construct the reference
set!!!”, “Construct the irrelevant set and the missing set!!!”
and “Classify missing certificates!!!”, indicating the steps it is
executing. Finally, it outputs “Inspection Result:” along with
the size of the reference set, searched set and missing set for
each trigger domain, third-party monitor and period.

The raw search data are stored in the folder named “./pe-
riod/monitor/RawData/”, while the searched sets are in “./pe-
riod/monitor/ProcessedCert/”. The irrelevant sets and the miss-
ing sets are in “./period/monitor/IrrelevantCert/” and “./pe-
riod/monitor/MissingCert/”. Additionally, any missing certifi-
cates resulting from a monitor’s output limitations are stored
in “./period/monitor/ServiceLimit/”.

2) Experiment (E2): [Full Watcher18] extracts and ranks
features of missing certificates (or irrelevant certificates) of
third-party monitors to guide the manual analysis.

[Preparation: Dataset] Machine-learning models require
extensive data input. To demonstrate these functions, we
provide the data obtained during our experiment (January 25,
2020 - March 16, 2021) at link: https://drive.google.com/file/
d/1ivW2GKU47JjKwxG06SJgszdqUYWJ9T9b/view. Down-
load, unzip and place it in the directory “Watcher/”.

[Execution & Results] (1) For from-scratch feature extrac-
tion, run “python json2csv.py”. (2) The pre-saved features are
saved in “./CSV/” (3) If using pre-saved features, run “python

17“Watcher/Inconsistency_Analyzer/”
18“Watcher/Fault_Analyzer/”

19

supervised.py i 1”, and “i” for the monitor id (0-5). It will
show a preview of the data distribution and example data
columns at first. Then it will run several machine learning
classifiers. (4) For attributing the feature importance, run
“python reasoning.py”. The importance of the missed and
delayed certificates will be recorded in “reasons.csv”.

E. Notes

Google Monitor is currently out of service, and Entrust
Search enforces an anti-crawler mechanism. Besides, obtain-
ing the required data from Censys is somehow expensive.
Therefore, this watcher prototype contains only 3 active third-
party monitors, namely crt.sh, Facebook Monitor and SSL-
Mate Spotter.

In the experiments of this paper, in order to obtain large
amounts of data, we used a dedicated API for researchers to
access Censys, with multiple (paid) accounts and multiple
threads. Thus, it is extremely difficult (or even impossible) to
obtain such many certificates (i.e., nearly 1 million certificates
from 4,000 domains) as shown in Section VI by using the
open-source prototype of light watcher, and the experimental
results cannot be strictly mapped. However, the open-source
light watcher still plays an important role in detecting potential
failures of third-party monitors, as described in Section IV-C.

Algorithm 1: Inconsistency analyzer
input : domains, service information;
output: inspection results of monitors for each day;

1 N = 1;
2 while watcher not terminated do
3 for d ∈ domains do
4 for m ∈M do
5 Obtain Sid,m from m;
6 Insert Sid,m into Td;
7 for c ∈ Td do
8 Update the log-details,

SubmittedT ime, vote, etc. for c;
9 end

10 end
11 for i ∈ [1, N] do
12 R̃i

d = Td − Ui
d − Ei

d;
13 for c ∈ R̃i

d do
14 if c is not irrelevant then
15 Insert c into Ri

d;
16 end
17 end
18 for m ∈M do
19 S+ i

d,m = Sid,m − Ri
d;

20 S− i
d,m = Ri

d − Sid,m;
21 for c ∈ S− i

d,m do
22 if c is missed due to service

limitations then
23 Insert c into Ŝ− i

d,m;
24 end
25 end
26 if S+ i

d,m or S− i
d,m is not empty then

27 Result[monitor][i][d]←
[SearchedT imei,Sid,m,S+ i

d,m,S− i
d,m, Ŝ− i

d,m];

28 end
29 end
30 end
31 end
32 Output Result;
33 Wait until the next period;
34 N++;
35 end

20

