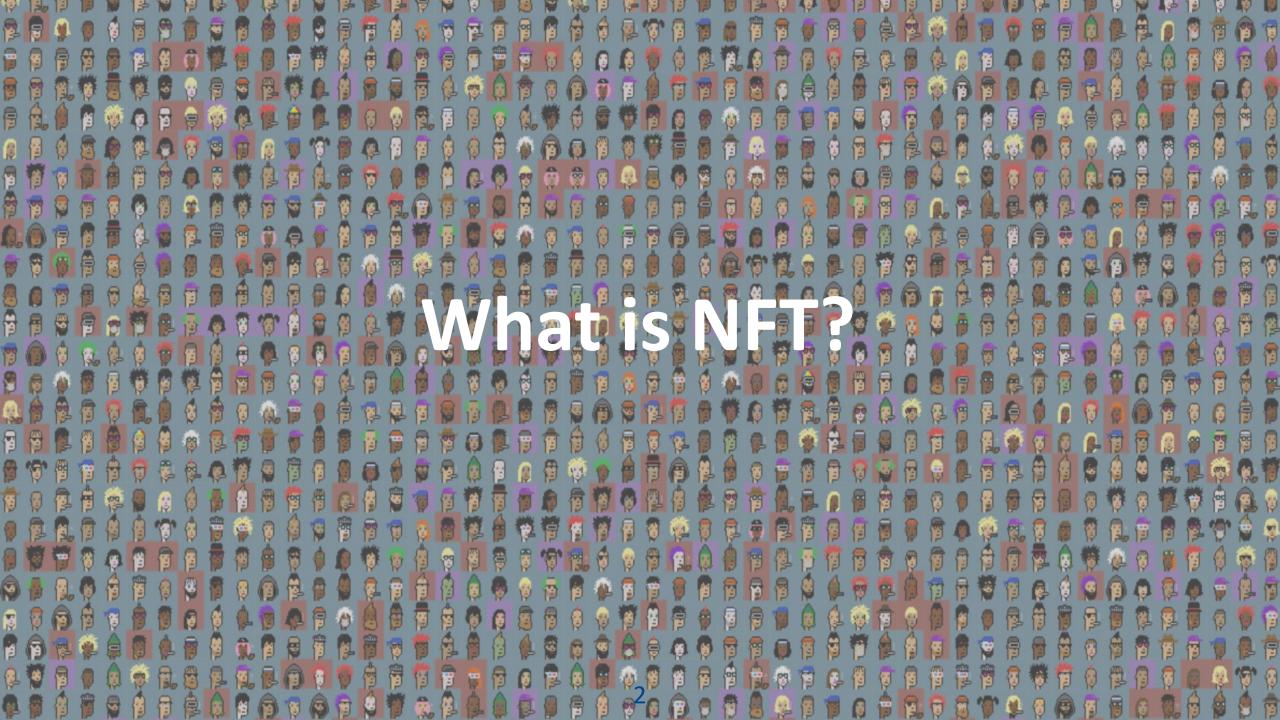


DRAINCLoG:

Detecting Rogue Accounts with Illegally-obtained NFTs using Classifiers Learned on Graphs

Hanna Kim¹, Jian Cui², Eugene Jang³, Chanhee Lee³, Yongjae Lee³, Jin-Woo Chung³, Seungwon Shin¹

Network and System Security (NSS) Lab, KAIST¹ Indiana University Bloomington² S2W Inc.³



What is NFT?

- A unique digital identifier that is recorded on a blockchain
- Widely used in various sectors, including art, gaming, and retail
- A collection refers to a group of NFTs sharing similar features

#**7804** 4.2KE (\$7.57M)

#3100 4.2K= (\$7.58M)

#**2924** 3.3K= (\$4.45M)

#4156 2.69K= (\$3.31M)

#**5577** 2.5KΞ (\$7.7M)

What is NFT?

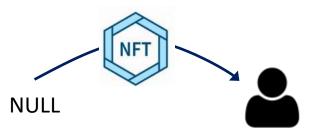
NFT sales volume surges to \$2.5 bln in 2021 first half

By Elizabeth Howcroft

July 6, 2021 3:00 PM GMT+9 · Updated a year ago

NFT Market Booms in January 2024 with Record Volumes

- Mint
 - Converting digital data into NFTs recorded on the blockchain
 - An NFT is created by minting



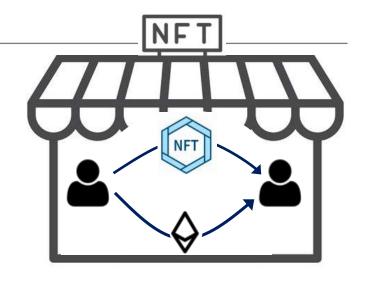
Mint

- Converting digital data into NFTs recorded on the blockchain
- An NFT is created by minting

Burn

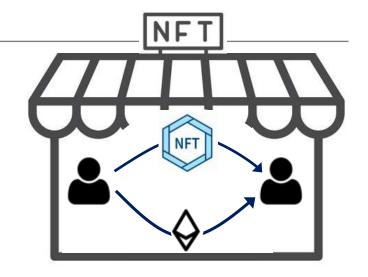
- Sending NFTs to an inaccessible address
- Remove NFTs from circulation
- Used for various purposes, such as operating a collection's community, etc.

- Sale
 - Transferring an NFT ownership to another user for payment
 - NFTs are typically traded with Ether or sometimes fungible tokens through marketplaces
 - Users can partake in sales in two ways: buying and selling



Sale

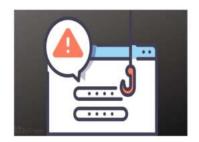
- Transferring an NFT ownership to another user for payment
- NFTs are typically traded with Ether or sometimes fungible tokens through marketplaces
- Users can partake in sales in two ways: buying and selling



Gift

- Transferring an NFT ownership to another user without payment
- Typically, gifting occurs between related users such as avoid monitoring when manipulating markets
- Users can partake in gifts in two ways: gifting-in and gifting-out

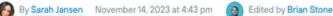
NFT phishing scams are on the rise



Users Lose Over \$1.2M To NFT Airdrop Phishing Scam on Polygon

By Newton Gitonga - June 27, 2023

OpenSea users targeted in phishing scam disguised as official NFT offers



Phishing scam: NFTs Worth \$1.7M Stolen from OpenSea Users

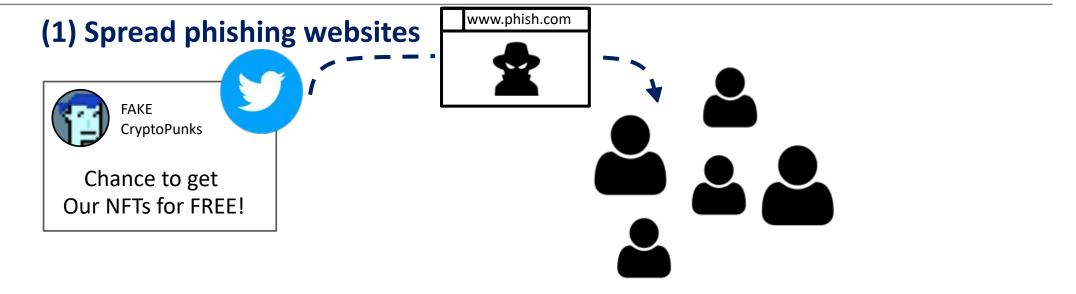
BY DEEBA AHMED - FEBRUARY 21, 2022 - @ 2 MINUTE READ

N Korean Hackers pull off NFT Phishing Scam worth 300 ETH

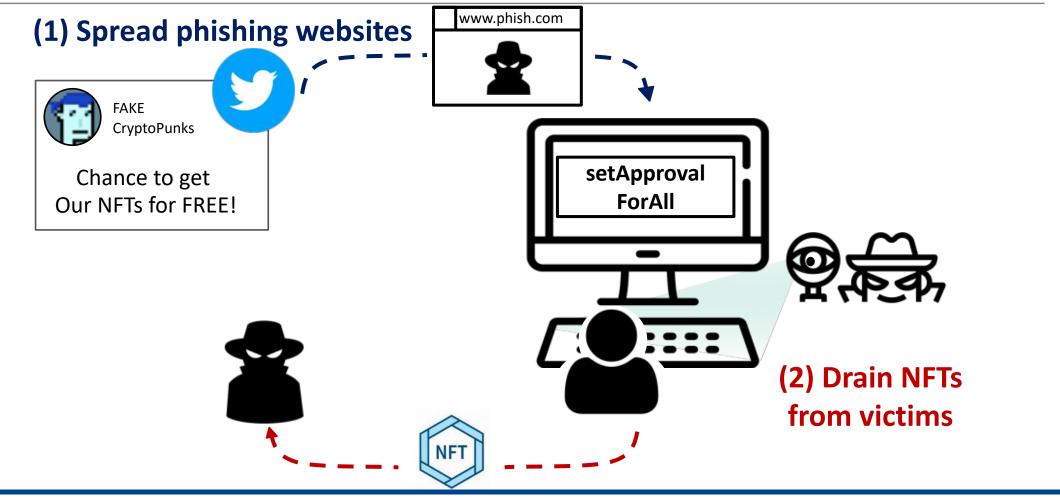
Bored Ape Yacht Club Hacked, Loses \$380,000 Worth of NFTs in Phishing Attack

Yaël Bizouati-Kennedy

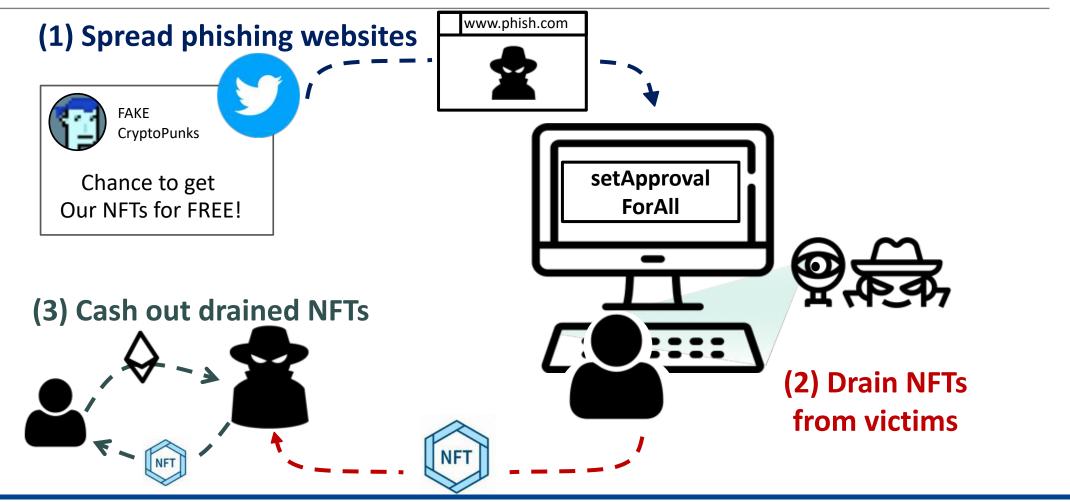
Stealing NFTs using phishing attacks NFT Draining

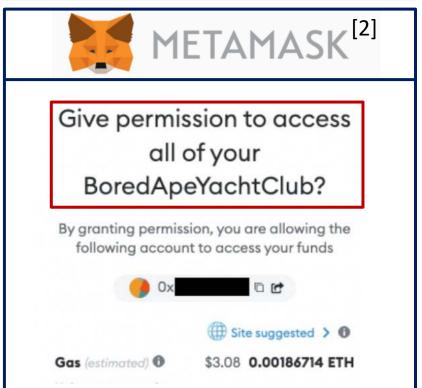


Stealing NFTs using phishing attacks NFT Draining



Stealing NFTs using phishing attacks NFT Draining





Only effective when victims are able to notice and report it

Already bypassed by attackers^[3]

- The existing literature has not explored NFT drainers
- Ethereum Phishing Scam Detection

Approach	Authors	Method	Publisher	
Feature Based	Chen, Weili, et al. [1]	Ether features	2020 IJCAI	
Graph Based	Wu, Jiajing, et al. [2]	Trans2Vec	2022 IEEE Transactions on Systems, Man, and Cybernetics: Systems	
	Chen, Liang, et al. [3]	E-GCN	2020 ACM TOIT	
	Li, Sijia, et al. [4]	TTAGN	2022 WWW	

^[1] Chen, Weili, et al. "Phishing Scam Detection on Ethereum: Towards Financial Security for Blockchain Ecosystem." IJCAI. 2020.

^[2] Wu, Jiajing, et al. "Who are the phishers? phishing scam detection on ethereum via network embedding." IEEE Transactions on Systems, Man, and Cybernetics: Systems (2020).

^[3] Chen, Liang, et al. "Phishing scams detection in ethereum transaction network." ACM Transactions on Internet Technology (TOIT) 21.1 (2020): 1-16.

^[4] Li, Sijia, et al. "TTAGN: Temporal Transaction Aggregation Graph Network for Ethereum Phishing Scams Detection." *Proceedings of the ACM Web Conference 2022.* **2022**.

- The existing literature has not explored NFT drainers
- Ethereum Phishing Scam Detection

Approach	Authors	Method	Publisher			
Feature Rased	Chen Weili et al [1]	Ether features	2020 ΠΟΔΙ			
But they are difficult to apply to NFT phishing scam detection!						
Graph Based	Man, and Cybernetics: Syst		Man, and Cybernetics: Systems			
	Chen, Liang, et al. [3]	E-GCN	2020 ACM TOIT			
	Li, Sijia, et al. [4]	TTAGN	2022 WWW			

^[1] Chen, Weili, et al. "Phishing Scam Detection on Ethereum: Towards Financial Security for Blockchain Ecosystem." *IJCAI*. **2020**.

^[2] Wu, Jiajing, et al. "Who are the phishers? phishing scam detection on ethereum via network embedding." IEEE Transactions on Systems, Man, and Cybernetics: Systems (2020).

^[3] Chen, Liang, et al. "Phishing scams detection in ethereum transaction network." ACM Transactions on Internet Technology (TOIT) 21.1 (2020): 1-16.

^[4] Li, Sijia, et al. "TTAGN: Temporal Transaction Aggregation Graph Network for Ethereum Phishing Scams Detection." *Proceedings of the ACM Web Conference* 2022. **2022**.

In this work

Understand NFT drainer activity

In this work

Design NFT drainer detection system (*)

Data Collection

- Jan-01-2022 ~ Dec-31-2022
- NFT transaction data from Ethereum blockchain

Туре	Value
NFT	80,795,833
Address	4,733,670
Transaction	127,820,930

- NFT drainer accounts from five channels
 - Drainer: an account that have at least one gifted-in NFTs among reported accounts
 - Chainabuse[1], CryptoscamDB[2], Etherscan[3], ScamSniffer[4], Twitter[5]
 - 1,135 accounts

Data Collection

Jan-01-2022 ~ Dec-31-2022

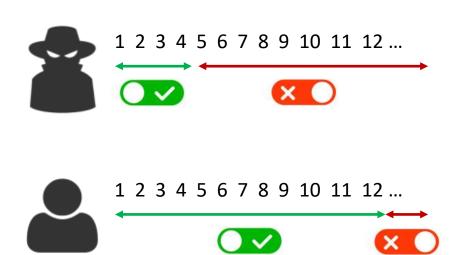
* NFT transaction data from Ethoroum blockshain
To understand NFT drainer activity,

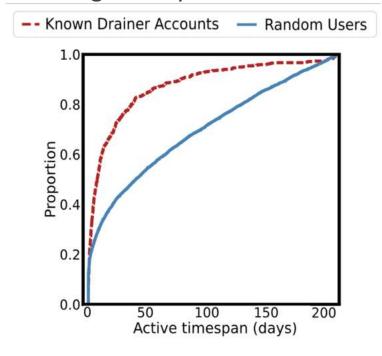
use NFT transaction data during Jan-01-2022 ~ Jul-31-2022
including 645 drainer accounts

- NFT drainer accounts from five channels
 - Drainer: an account that have at least one gifted-in NFTs among reported accounts
 - Chainabuse[1], CryptoscamDB[2], Etherscan[3], ScamSniffer[4], Twitter[5]
 - 1,135 accounts

Drainer Activity Characterization Trading Behavior

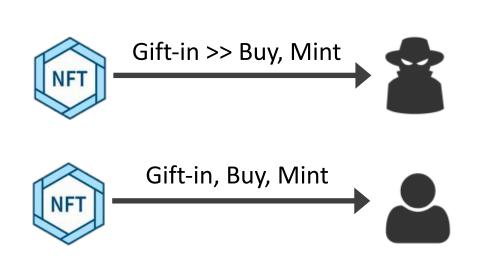
- Have a short active timespan
 - 60% of drainers have only 15 days or less of NFT trading activity
 - 60% of regular users have 67 days or less of NFT trading activity

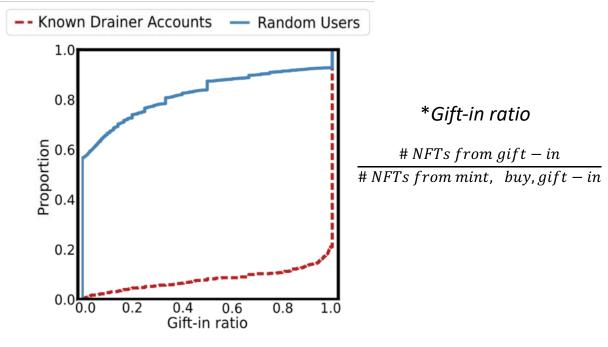




Drainer Activity Characterization Trading Behavior

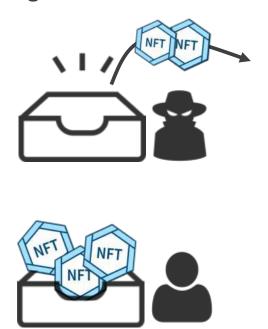
- Acquire most NFTs from gift-ins
 - 80% of drainers acquired NFTs only through gift-ins
 - 8% of regular users acquired NFTs only through gift-ins

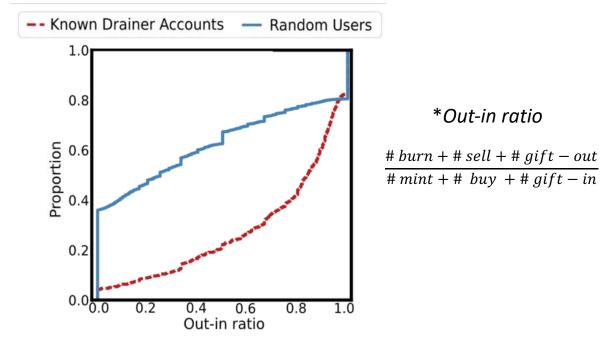




Drainer Activity Characterization Trading Behavior

- Sell or gift-out most of acquired NFTs
 - 76% of drainers transferred out more than half of their NFTs
 - 38% of regular users did not make any out-transactions at all





Drainers have unique

Trading behavior

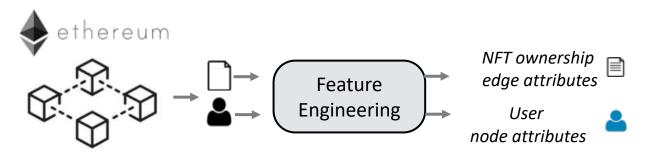
Social context

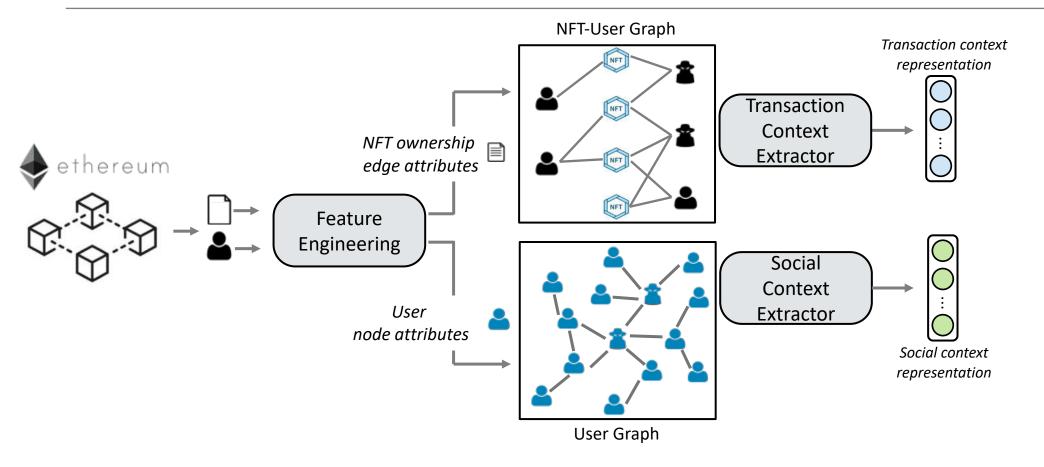
NFT transaction context

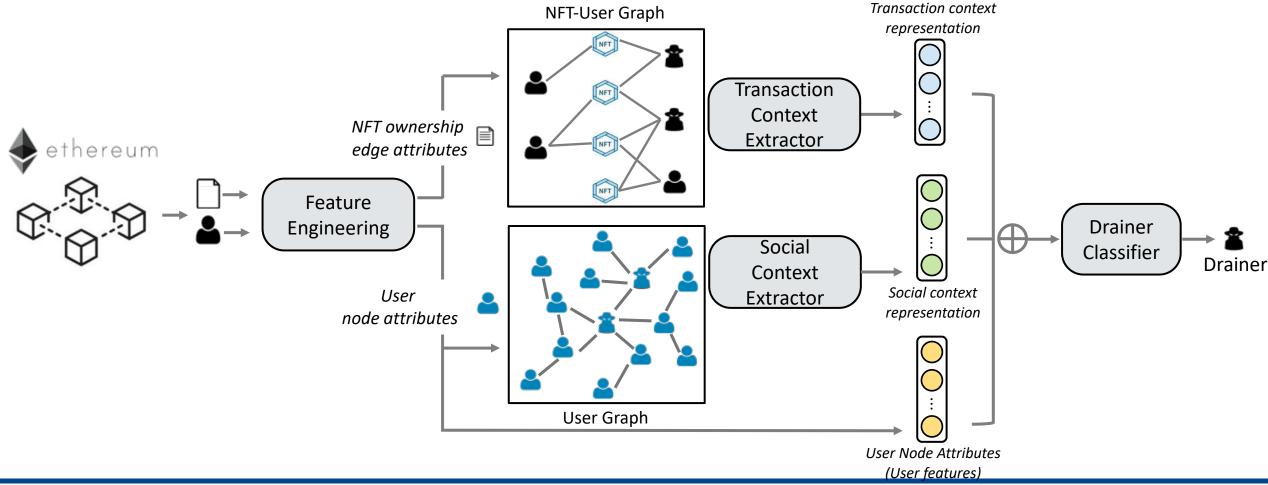
Drainers have unique

Trading behavior
Social context
NFT transaction context

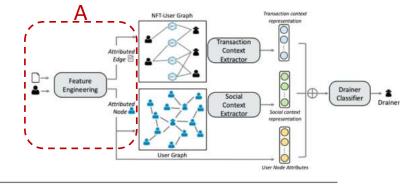
Design { Features Graphs GNNs







NFT Drainer Detector Design A. Feature Engineering



- NFT ownership attributes
 - Create representations of how users interact with NFTs
- User attributes
 - Create representations of their trading behaviors

NFT ownership attributes (7 dimensions)	User attributes (19 dimensions)	
 In-transaction type Out-transaction type In-price Out-price Holding time Average holding time Average sale price 	 Number of each transaction type (5) Number of collections for each transaction type (5) Number of neighbors for each transaction type (4) Frequency of gift-ins & sales Active timespan Gift-in ratio Out-in ratio 	

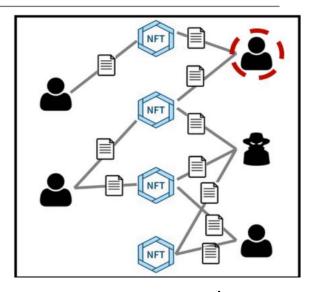
NFT Drainer Detector Design

B. NFT Transaction Context Extractor

- Model ownership changes in NFTs
- Two types of Nodes: User , NFT
- Attributed Edge

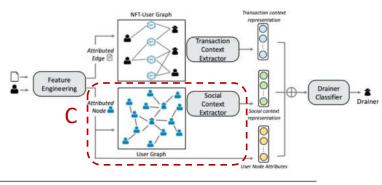
NFT transaction context extraction

- Train a GNN on the graph
- $h_u^U = ||_{k=1}^K \sigma(\sum_{n' \in N(u)} [\alpha_{un'}]_k \cdot (W^U \cdot concat(t_{un'}, h_{n'}^N)))$ where $h_{n'}^N = \sigma(W^N \cdot aggregate(t_{u_1}, t_{u_2}, \dots, t_{u_m}))$



NFT-User graph

NFT Drainer Detector Design C. Social Context Extractor

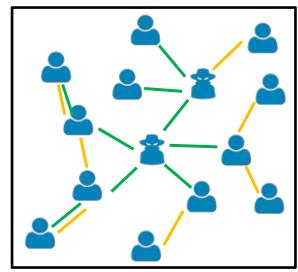


User graph Construction

- Model user interactions
- One type of Attributed Node: User(Address)
- Two types of *Edges*: Sale , Gift —

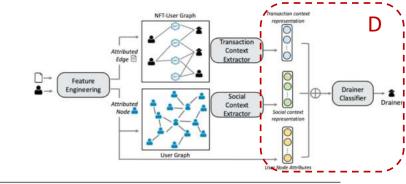
- Train a GNN on the graph
- Update node representations using R-GCN to consider edge types

$$h_u^{l+1} = \sigma\left(W^l h_u^l + \sum_{r \in R} \mathrm{AGG_U}(\frac{1}{c_{u,r}} W_r^l h_v^l), \forall v \in N(u)_r\right) \text{ (Relational-Graph Convolution Networks)}$$

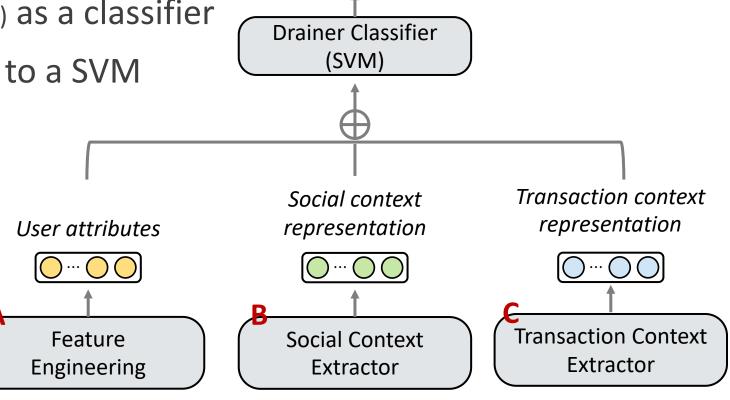


User graph

NFT Drainer Detector Design D. Drainer Classifier



- Concatenate the three representations
- Use a SVM (Support Vector Machine) as a classifier
- Feed the final representation to a SVM



Evaluation Dataset

• **Training**: Jan-01-2022 ~ July-31-2022

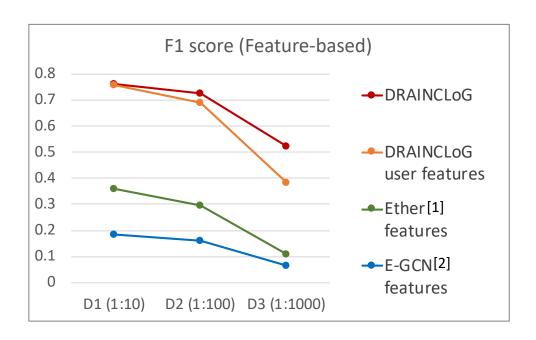
Drainers: 645

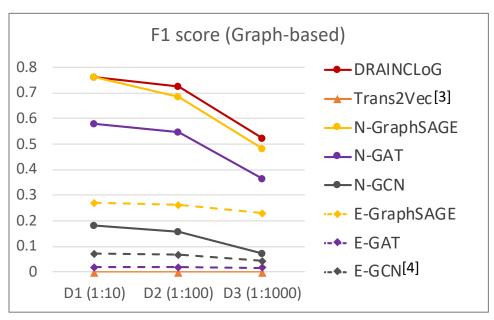
• **Evaluation**: Aug-01-2022 ~ Dec-31-2022

Drainers: 490

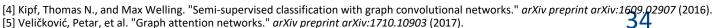
Dataset		Ratio	# central nodes	# total nodes	# transactions
Training	D_0	1:80	52,245	2,010,384.0	24,745,525.0
Evaluation	D_1	1:10	6,006	2,087,436.0	28,375,070.6
	D_2	1:100	55,146	2,743,003.4	41,384,504.8
	D_3	1:1000	546,546	3,179,105.4	45,289,602.6

Evaluation Drainer Classification

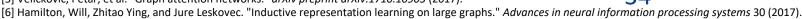




^[3] Wu, Jiajing, et al. "Who are the phishers? phishing scam detection on ethereum via network embedding." IEEE Transactions on Systems, Man, and Cybernetics: Systems (2020).



[5] Veličković, Petar, et al. "Graph attention networks." arXiv preprint arXiv:1710.10903 (2017).



^[1] Chen, Weili, et al. "Phishing Scam Detection on Ethereum: Towards Financial Security for Blockchain Ecosystem." IJCAI. 2020.

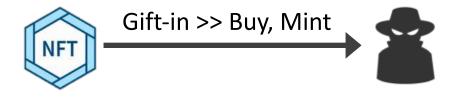
^[2] Chen, Liang, et al. "Phishing scams detection in ethereum transaction network." ACM Transactions on Internet Technology (TOIT) 21.1 (2020): 1-16.

Evaluation Robustness against Evasion Attack

- Assumptions
 - DRAINCLoG monitoring system + Victim's reporting system
 - Detected drainers are immediately blocked their trading on marketplaces
 - To benefit from stolen NFTs, drainers have to quickly sell the NFTs at lower prices
- Attackers can modify their trading patterns to avoid detection
- Evaluate DRAINCLoG's robustness under various attack scenarios

Evaluation Robustness against Evasion Attack

Draining NFTs records as gifts

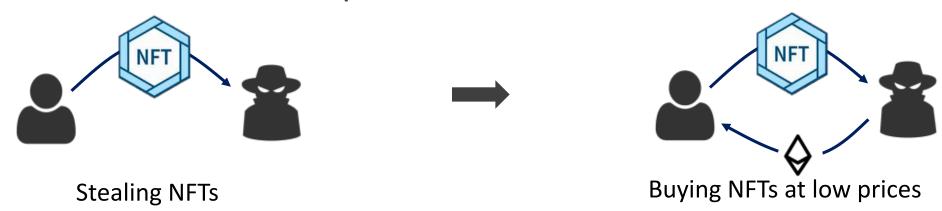


Acquire most NFTs through gift-ins

Evaluation

Robustness against Evasion Attack

Attack Scenario Example: Send a small amount of Ether to victim



For each attacker,

Change L% of gifting-in transactions to buying transactions by sending X% of average sale price of each NFT to victims

$$L \in \{10, 30, 50\}, X \in \{1, 10, 60\}$$

Evaluation Robustness against Evasion Attack

Evasion attack results

Attack (L = 50)	[01 (1:10)	D2 (1:100)				
X	Pre.	Rec.	F1	Pre.	Rec.	F1		
60	0.873	0.114	0.202	0.42	0.114	0.180		
Original Value	0.989	0.622	0.763	0.878	0.621	0.727		

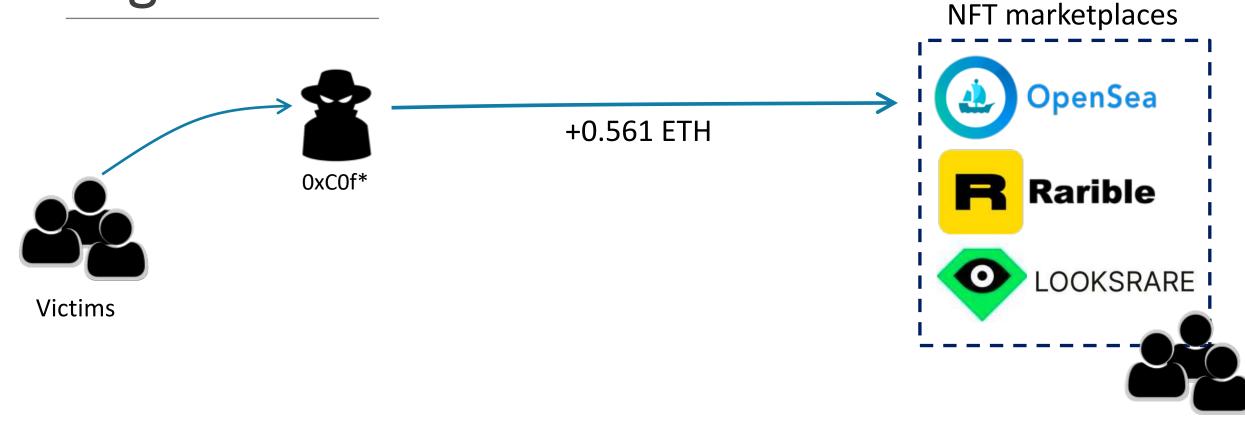
Evaluation Robustness against Evasion Attack

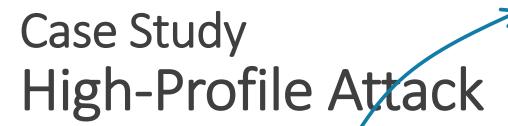
Update DRAINCLoG by re-training only SVM classifier with additional 3% of attackers

Attack (L = 50)	D1 (1:10)			D2 (1:100)			D1 (1:10)			D2 (1:100)		
X	Pre.	Rec.	F1	Pre.	Rec.	F1	Pre.	Rec.	F1	Pre.	Rec.	F1
60	0.873	0.114	0.202	0.42	0.114	0.180	0.97	0.644	0.774	0.769	0.645	0.701
Original Value	0.989	0.622	0.763	0.878	0.621	0.727	0.989	0.622	0.763	0.878	0.621	0.727

DRAINCLoG can effectively capture complex patterns of new drainers!

Case Study High-Profile Attack

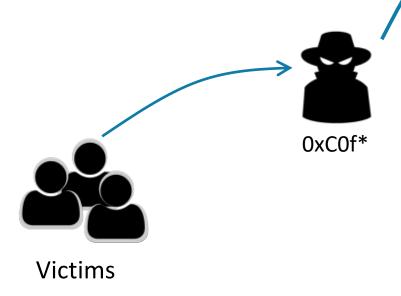


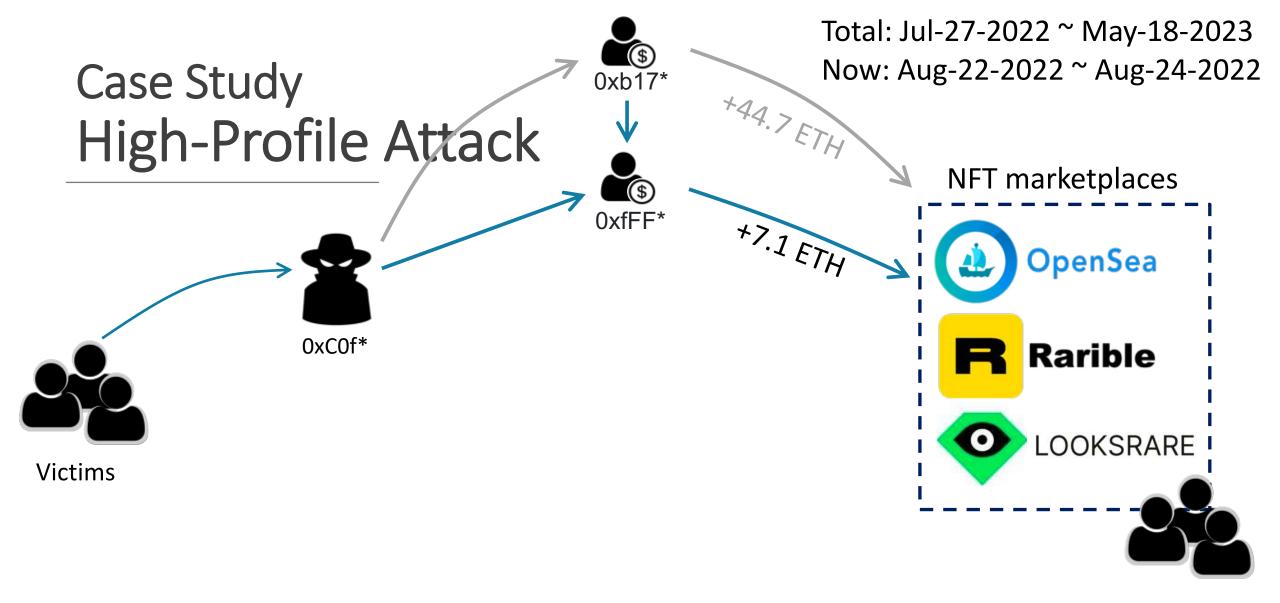


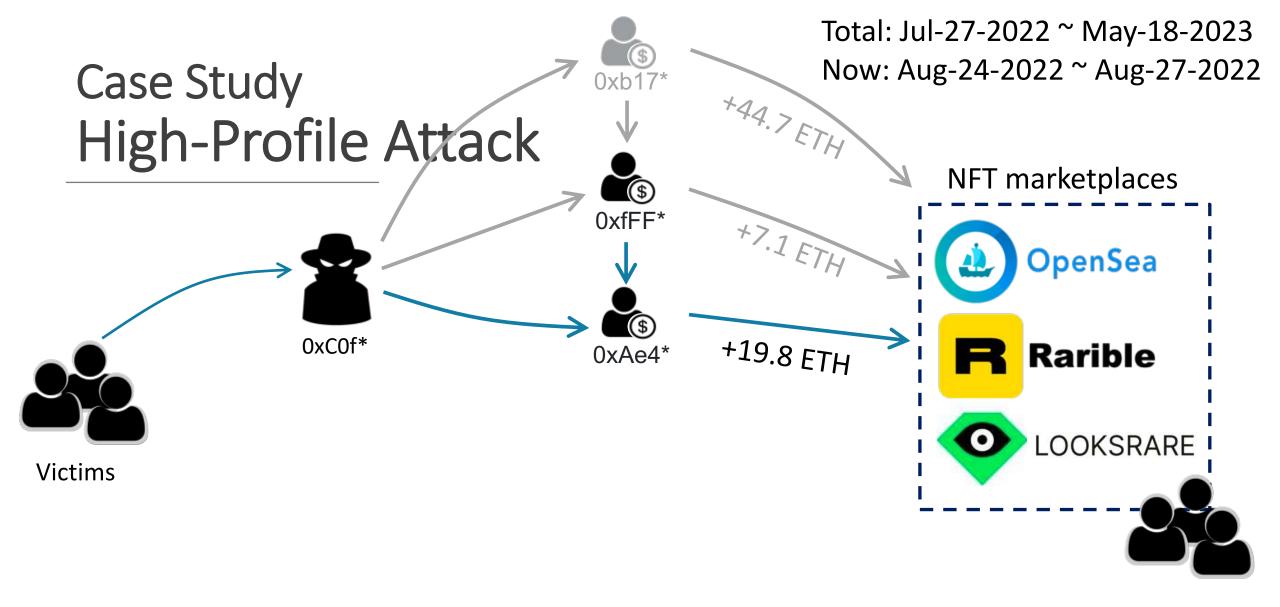
Total: Jul-27-2022 ~ May-18-2023

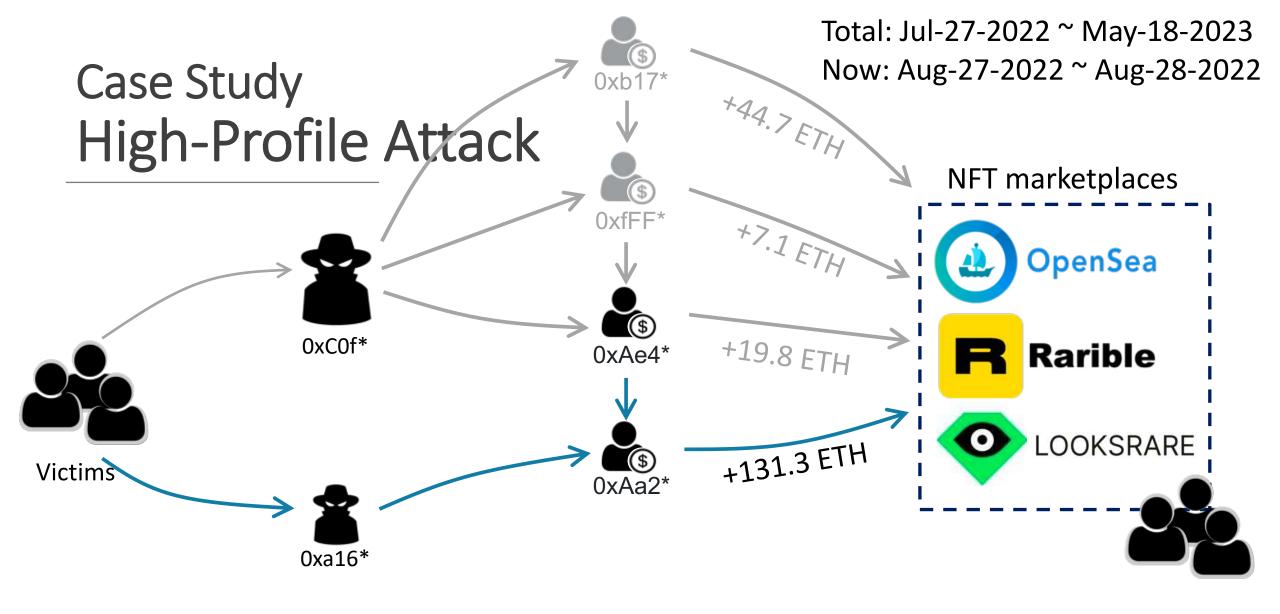
Now: Jul-29-2022 ~ Aug-22-2022

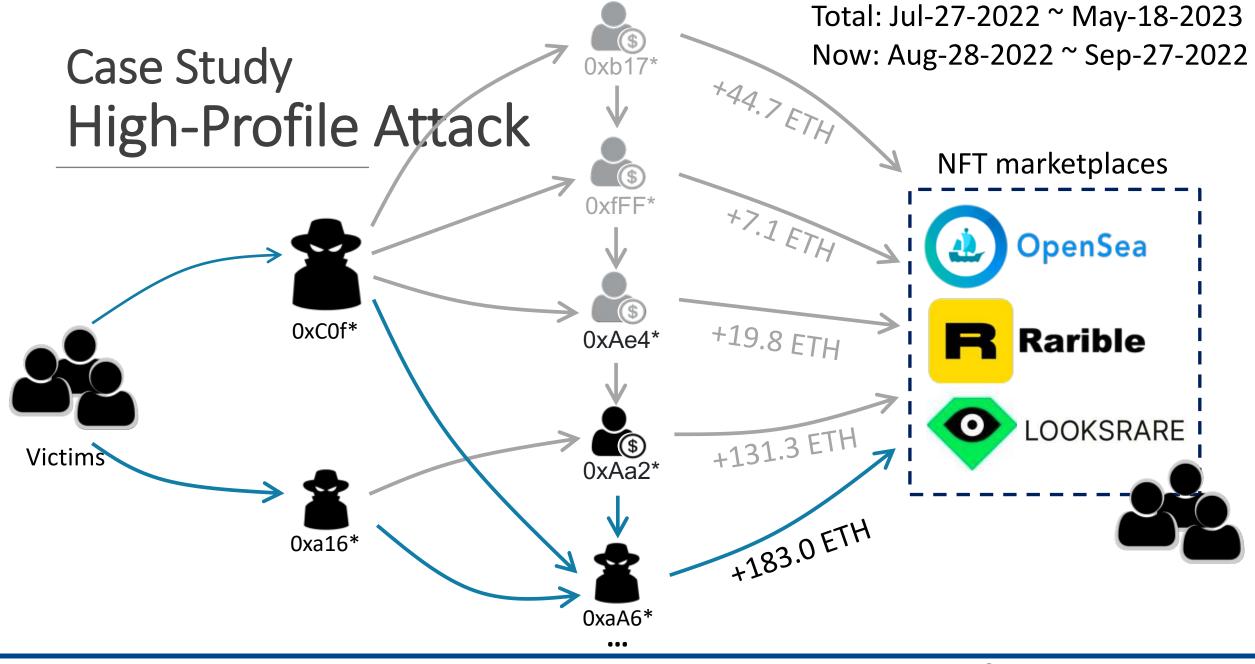
NFT marketplaces











Conclusion

- NFT phishing scams are a significant threat to the NFT ecosystem
- However, the existing literature has not explored NFT drainers

- **DRAINCLoG:** Detecting Rogue Accounts with Illegally-obtained NFTs using Classifiers Learned on Graphs
 - The first study on NFT phishing scammers (drainers)
 - Conduct an in-depth study on NFT drainers
 - Propose a detection system, DRAINCLoG, and verify its effectiveness and robustness

Thank you

Please feel free to contact me regarding our research.

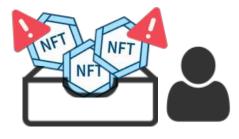
gkssk3654@kaist.ac.kr

Evaluation Drainer Classification

Model	Dataset (# drainer : # regular)	D1 (1:10)				D2 (1:100)				D3 (1:1000)			
	Metrics	Pre.	Rec.	F1	FP/TP	Pre.	Rec.	F1	FP/TP	Pre.	Rec.	F1	FP/TP
Feature based	Ether features	0.875	0.227	0.361	15.9/111.1	0.429	0.227	0.297	148.0/111.2	0.072	0.227	0.109	1433.2/111.2
	E-GCN features	0.838	0.104	0.185	10.0/51.0	0.334	0.104	0.159	102.4/51.0	0.047	0.104	0.064	1045.4/51.0
	DRAINCLoG user features	0.976	0.618	0.757	7.4/302.4	0.779	0.618	0.689	86.2/304.2	0.277	0.627	0.385	801.8/307.2
Graph based	E-GCN	0	0	0	0.0/0.0	0	0	0	0.0/0.0	0	0	0	0.0/0.0
	E-GAT	0.832	0.037	0.071	3.7/18.1	0.349	0.037	0.067	33.6/18.0	0.055	0.037	0.044	311.5/18.1
	E-GraphSAGE	0.933	0.01	0.02	0.4/5.0	0.825	0.01	0.02	1.2/5.0	0.256	0.009	0.018	12.8/4.4
	N-GCN	0.98	0.157	0.271	1.6/77.0	0.867	0.157	0.265	12.0/77.2	0.435	0.157	0.231	99.9/76.9
	N-GAT	0.838	0.103	0.183	9.8/50.2	0.351	0.103	0.159	93.8/50.6	0.057	0.102	0.073	825.5/50.0
	N-GraphSAGE	0.982	0.411	0.58	3.8/201.4	0.811	0.411	0.546	47.4/202.6	0.323	0.415	0.363	426.3/203.4
	DRAINCLoG	0.987	0.569	0.722	3.6/278.4	0.86	0.569	0.685	45.8/280.2	0.416	0.579	0.484	398.3/283.7

Evaluation Identify potential Drainers

- Verify false positives
 - ✓ Possess suspicious NFTs



✓ Have a persistent relationship with reported phishing accounts

- ✓ Newly reported after 2022
- Identify 115 potential drainers among 379 false positives

Appendix **Ablation Study**

- Analyze how each component affects performance
- Conduct the same detection task after eliminating each
 - User attributes (from Feature Engineering)
 - Social context
 - NFT transaction context
 - Edge types in User graph

