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Abstract—Adversarial patch attacks are among the most
practical adversarial attacks. Recent efforts focus on providing
a certifiable guarantee on correct predictions in the presence of
white-box adversarial patch attacks. In this paper, we propose
DorPatch, an effective adversarial patch attack to evade both
certifiably robust defenses and empirical defenses. DorPatch
employs group lasso on a patch’s mask, image dropout, density
regularization, and structural loss to generate a fully opti-
mized, distributed, occlusion-robust, and inconspicuous adversar-
ial patch that can be deployed in physical-world adversarial patch
attacks. Our extensive experimental evaluation with both digital-
domain and physical-world tests indicates that DorPatch can ef-
fectively evade PatchCleanser [64], the state-of-the-art certifiable
defense, and empirical defenses against adversarial patch attacks.
More critically, mispredicted results of adversarially patched
examples generated by DorPatch can receive certification from
PatchCleanser, producing a false trust in guaranteed predictions.
DorPatch achieves state-of-the-art attacking performance and
perceptual quality among all adversarial patch attacks. DorPatch
poses a significant threat to real-world applications of DNN
models and calls for developing effective defenses to thwart the
attack.

I. INTRODUCTION

Deep neural networks (DNNs) are known to be vulnera-
ble to adversarial attacks [56]. Most adversarial attacks and
defenses focus on adversarial examples with low perceptible
adversarial perturbations of small L2 or L∞ distance added
to original samples [4], [7], [11], [16], [17], [22], [66]. These
attacks can perturb all image pixels, making them impractical
for physical-world adversarial attacks, wherein a real-world

∗Chaoxiang He, Xiaojing Ma, Yimiao Zeng, Hanqing Hu, and Xiaofan
Bai are with National Engineering Research Center for Big Data Technol-
ogy and System, Services Computing Technology and System Lab, Hubei
Engineering Research Center on Big Data Security, Hubei Key Laboratory
of Distributed System Security, School of Cyber Science and Engineering,
Huazhong University of Science and Technology. Hai Jin is with National
Engineering Research Center for Big Data Technology and System, Services
Computing Technology and System Lab, Cluster and Grid Computing Lab,
School of Computer Science and Technology, Huazhong University of Science
and Technology.

1Corresponding author: Xiaojing Ma (lindahust@hust.edu.cn).

object is modified, typically using stickers or paint, to cause
misprediction. In contrast, adversarial patch attacks [6], [19],
[30] are among the most practical adversarial attacks against
real-world applications of DNN models [9]. These attacks craft
a typically visible adversarial patch with small support (the
number of pixels of the patch) instead of low perceptible
perturbations. Such a patch can be printed out and stuck or
painted on a real-world object to launch a physical-world
attack. The number of pixels in the adversarial patch is referred
to as the patch budget or patch support in this paper.

Due to the practical threat of adversarial patch attacks,
defense research has been active. Early defenses [25], [45]
are empirical and easily evaded by stronger adversarial patch
attacks [9]. Recent defenses, like the state-of-the-art (SOTA)
PatchCleanser [64], focus on providing certifiable guarantees
for correct predictions in the presence of white-box adversarial
patch attacks. Like other certifiable defenses, PatchCleanser
assumes an adversarial patch is spatially bounded. It uses
a mask large enough to cover the patch and applies two
masking rounds to each input to make prediction and certify
its robustness against adversarial patch attacks.

However, a physically realizable patch is not necessarily
spatially bounded. This raises the questions: without the spatial
boundedness assumption, can certifiable defenses be evaded,
and can adversarially patched examples be certified by these
defenses? We aim to answer these research questions in this
study.

At first glance, one might intuitively think that a distributed
patch like RP2 [19], which uses a set of distributed stickers as
a patch, would be able to evade PatchCleanser [64]. However,
our experiments to be reported in Section VI show that this
is not the case. RP2 cannot evade PatchCleanser or make
adversarially patched examples certified by it. The masking
operation in PatchCleanser corrupts RP2’s distributed patches,
causing them to lose their adversarial properties.

In this paper, we introduce DorPatch (Distributed and
occlusion-robust Patch), a powerful adversarial patch attack
that can evade both certifiable and empirical defenses. Our
adversarial patches are physically realizable and can be used
to launch attacks in the real world, like other patch attacks.
We use the factorization method in SAPF [20] to decompose a
patch into the Hadamard product of a binary mask and pattern
(i.e., pixel values), resulting in a Mixed Integer Programming
(MIP) problem that cannot be solved directly with common
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optimizers such as Stochastic Gradient Descent (SGD) or
Adam [31]. We solve the MIP problem with a two-stage
optimization process, which first optimizes the location and
shape of the patch, and then optimizes the pixel values inside
the patch.

To facilitate physical-world attacks, we enforce a minimum
area for each separated part of a distributed patch to contain
one or more groups and use group lasso [69] on the mask
of the patch for group sparsity. We apply image dropout and
density regularization to make the patch widely distributed
and resilient to masking occlusions. This occlusion robust-
ness ensures consistent predictions for a patched example
after masking at different locations, enabling misprediction
and certification of adversarial examples by PatchCleanser.
Certification poses a more severe security threat, as it induces
false trust in guaranteed predictions.

Furthermore, DorPatch applies a structural loss to ensure
that patched pixels are located in more complex regions
and form structures commonly seen in clean images. The
combination of the structural loss and an L2 bound makes our
patches inconspicuous for physical-world attacks and almost
invisible, resembling adversarial attacks that perturb all pixels,
for digital-domain attacks. DorPatch can be used for both
targeted and untargeted patch attacks.

We conduct extensive experiments to evaluate DorPatch,
including both digital-domain evaluation and physical-world
evaluation. Our empirical studies validate DorPatch’s effective-
ness. To the best of our knowledge, DorPatch is the first ad-
versarial patch attack that can evade SOTA certifiable defense,
PatchCleanser, and enable adversarially patched examples to
be certifiable by PatchCleanser.

Certified robustness defenses generally rely on the bound-
edness of adversarial patches in the image or feature domain
and apply masking to detect or neutralize their effects. To
avoid significant degradation of the model’s clean accuracy, the
mask in the masking operation cannot be too large. DorPatch
exploits this fundamental limitation by making an adversarial
patch distributed and robust to such masking operations. We
argue that all certifiable defenses that rely on the bound-
edness of adversarial patches are practically evadable when
facing DorPatch-like attacks. We call for research efforts to
develop more powerful defenses against DorPatch-like adver-
sarial patch attacks.

This paper includes the following major contributions:

• We propose DorPatch, the first adversarial patch attack
that can effectively evade PatchCleanser, a SOTA
certifiable defense against adversarial patch attacks,
and enable adversarially patched examples certifiable
by PatchCleanser. It can also evade other certifiable
defenses and empirical defenses.

• We propose an image dropout technique and den-
sity regularization to make a generated patch widely
distributed and robust to masking occlusions. obust-
ness to occlusions plays a key role both for evading
PatchCleanser and for making adversarially patched
examples certifiable by PatchCleanser.

• We design a structural loss function to enforce natural
structures within an adversarial patch and position

patch pixels in less noticeable regions for less con-
spicuous patches. When combined with an L2 con-
straint, our adversarial patches become inconspicuous
in physical-world patch attacks and nearly invisible in
digital-domain patch attacks.

• Instead of applying group lasso [69] to adversarial
perturbations as in existing methods [20], [67], we
apply group lasso to the adversarial patch mask. We
solve the Mixed Integer Programming (MIP) problem
using an efficient two-stage optimization method. The
first stage optimizes the shape and location of the
adversarial patch, and the second stage optimizes the
pixel values of the patch.

• We conduct extensive experiments in both the digital
domain and the physical world to validate the effec-
tiveness of DorPatch in evading both certifiable and
empirical defenses. These comprehensive evaluations
demonstrate the effectiveness of DorPatch against var-
ious defense mechanisms.

The DorPatch code is available at: https://github.com/
CGCL-codes/DorPatch.

II. RELATED WORK

A. Adversarial Patch Attacks

The first white-box physically realizable adversarial attack
is an adversarial eyeglass frame [54], considering smoothness
and printability. Wearing this frame can evade face recogni-
tion or impersonate someone. GoogleAP [6] crafts universal
targeted adversarial patches, considering physical factors like
location, rotation, and scale. LaVAN [30] uses a pre-defined
fixed mask for localized adversarial patches in targeted and
untargeted attacks. LOAP [46] generates untargeted image-
specific patches, optimizing their locations.

Adversarial patches in these attacks are conspicuous. Re-
searchers have tried to create visible yet inconspicuous patches.
RP2 [19] generates graffiti-like patches, such as stickers, for
being less noticeable and more robust in physically attacking
traffic sign recognition models. TNT Attack [15] optimizes in a
generative model’s latent space for universal, natural-looking
patches. PS-GAN [38] uses a perceptual-sensitive GAN for
balancing visual fidelity and attackability. IAP [3] employs a
coarse-to-fine approach with multi-scale generative models for
more inconspicuous patches. Both PS-GAN and IAP utilize a
pre-trained model as the attention model to identify important
areas of the source image for patch placement.

While the above adversarial patch attacks assume a white-
box threat model, PatchAttack [68] and Meaningful Adversar-
ial Sticker [58] operate under a black-box setting. The for-
mer generates adversarial textured patches with reinforcement
learning, while the latter manipulates real stickers’ positions
and rotation angles for physical attacks on face recognition.

Adversarial patch attacks have also been proposed for other
task DNN models, such as object detection [28], [39], [71],
semantic segmentation [50], and network traffic analysis [53].
Shapeshifter [8] introduces a physical-world attack on Faster
R-CNN object detector [47] by perturbing stop signs.
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We focus on adversarial patch attacks against image clas-
sification models, but our proposed attack can be extended
to other task DNN models. We will compare typical white-
box attacks with ours on fulfillment of desired properties in
Section III-C.

B. Adversarial Patch Defenses

1) Empirical Defenses: Early defenses against adversarial
patch attacks rely on empirical observations. Local Gradient
Smoothing (LGS) [45] suppresses adversarial noise by smooth-
ing pixels based on image gradients1, as adversarial patches
often have sharp pixel value variations. Digital Watermarking
(DW) [25] detects dense, highly sensitive regions in an input
image using a sensitivity-based saliency map and masks them
for prediction, as perturbed pixels in adversarial patches are
highly sensitive to prediction results.

However, LGS and DW can degrade clean accuracy, as they
also suppress structural edges, feature points, and sensitive
regions in clean images. TaintRadar [36] and Februuss [14]
address this issue by detecting and removing localized adver-
sarial patches, with Februuss using a GAN-based inpainting
method for reconstructing the removed area.

Empirical defenses like LGS and DW are shown to be inef-
fective against adaptive white-box adversarial patch attacks [9].
LGS can be bypassed by incorporating smoothing into patch
generation, while DW can be circumvented using Backward
Pass Differentiable Approximation (BPDA) [2] to approximate
non-differentiable operations during patch crafting.

2) Certifiable Defenses: Researchers have developed cer-
tifiably robust defenses against adversarial patch attacks due
to the failure of empirical defenses. The Interval Bound
Propagation (IBP) defense [23], [44] is extended in [9] for
certifiably-robust networks. However, it has shortcomings like
conservative bounding of neuron activation values, expensive
model training, and inability to scale to large models and
high-resolution images. Randomized smoothing [10], [33],
[35] is adopted in [34], [37], [49] for certifiable defenses but
suffers from significant inference overhead and degraded clean
accuracy.

Certifiable defenses like Clipped BagNet (CBN) [70],
BagCert [43], and PatchGuard [63] rely on DNNs with small
receptive fields, making them impractical for networks like
ResNet [27] with large receptive fields.

Certifiable defenses focusing on detecting adversar-
ial patches include Minority Reports (MR) [42], Patch-
Guard++ [65], ScaleCert [24], and PatchCleanser [64]. Patch-
Cleanser assumes an adversarial patch is spatially bounded
and applies a large enough mask that can completely cover
the adversarial patch at all image locations in two rounds to
an input image. If unanimous predictions are achieved for all
masked images in the first round, PatchCleanser determines
that the input is benign and outputs the prediction. Otherwise,
it applies a second round of masking to each masked image
from the first round and outputs the unanimous or majority
prediction in the second round of masking. If unanimous

1Image gradients differ from gradients used in model learning. The former
is with respect to changes of adjacent pixel values while the latter is with
respect to classification loss.

predictions are achieved in both rounds, the input is certifiably
robust to adversarial patch attacks. PatchCleanser provides
state-of-the-art certifiably robust defense and is agnostic to
DNN architectures. We select it to evaluate the performance
of our proposed DorPatch.

C. Adversarial Training

Adversarial training [22] is one of the most effective
methods for training models robust to adversarial examples.
It generates adversarial examples and applies them in training
a model. Adversarial training is used in [46] and [61] to train a
model robust to adversarial patch attacks. However, adversarial
training incurs high computational overhead. To mitigate this,
the inner optimization step is replaced with an expectation over
random augmentations in [1].

D. Group Lasso and Other Related Work

Group lasso [69] is applied to sparse adversarial perturba-
tions in StrAttack [67] and SAPF [20] for group sparsity and
clustering of perturbed pixels, leading to more semantically
structured adversarial perturbations with better interpretability.
StrAttack optimizes with the Alternating Direction Method
of Multipliers (ADMM) and applies a threshold to remove
insignificantly perturbed pixels from the optimization result
to produce an adversarial perturbation. SAPF factorizes each
perturbed pixel into a product of a perturbation value and a
binary pixel selection factor, resulting in an MIP problem.
Due to the discrete nature of the binary selection factor, the
MIP problem cannot be directly solved with conventional
optimizers such as the gradient descent algorithm or the
Adam optimizer [31]. SAPF applies lp-Box ADMM [59] to
reformulate the MIP problem as a continuous optimization
problem and solves it with ADMM and the gradient descent
algorithm in [20].

We apply group lasso to the adversarial patch mask and
follow SAPF’s factorization method to factorize a patch into
the Hadamard product of a binary mask and pattern (i.e.,
pixel values) to form an MIP problem in our DorPatch attack,
and solve it with a two-stage optimization method. Although
our two-stage method lacks the mathematical rigor of SAPF’s
MIP solution, it provides similar or even better attacking
performance for our DorPatch compared to SAPF’s, as will
be presented and further discussed in Section VI-H.

Human perceptibility is taken into consideration in [41] to
generate more imperceptible adversarial examples, wherein the
standard deviation in a local region is used as the perceptibility
metric in generating adversarial perturbations. We also use the
standard deviation as the perceptibility metric in our structural
loss (Eq. 3 in Section IV-E) to place patch pixels in less
perceptible regions, in addition to enforcing natural structures
in adversarially patched examples.

III. THREAT MODEL AND DESIRABLE PROPERTIES

A. Threat Model

In this paper, we assume white-box access to the DNN
model under attack and black-box access to potential defenses
against DorPatch. Specifically, adversaries have full access to
the DNN model, including its architecture and parameters, but
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no knowledge of any defense (its characteristics or settings)
against DorPatch. Adversaries can modify any image pixels to
craft an adversarial patch, which can be located anywhere in an
image. We have removed the restriction in PatchCleanser and
other certifiable robustness defenses that an adversarial patch
must be spatially bounded.

B. Limitations of Existing Patch Attacks

Existing adversarial patch attacks typically employ a lo-
calized patch. The shape, location, and size of the patch in
many attacks are predetermined and remain fixed during the
optimization process to craft an adversarial patch. Such attacks
have two major drawbacks. First, the location, shape, or size of
the crafted adversarial patch may not be optimal, resulting in
a less powerful adversarial attack. Second, the adversarialness
is realized with adversarial pixels typically located in a small,
restricted region. This strong locality has been exploited by
certifiable robustness defenses, such as PatchCleanser [64], to
detect and neutralize adversarial patches.

PatchCleanser relies on two assumptions: 1) The DNN
model is robust to occlusion of a small-size mask at arbitrary
locations of an input image, i.e., a benign image arbitrarily
occluded by the mask likely yields consistent and correct
predictions. 2) The adversarial patch can be fully occluded
by the mask at an appropriate location. The first assumption
requires that the mask should be small enough to avoid
significant degradation of the model’s clean accuracy. The
second assumption requires the mask to be large enough to
completely cover the adversarial patch.

RP2 [19] uses a distributed graffiti-like adversarial patch,
such as stickers, which may not be fully covered by a single
mask in PatchCleanser while preserving clean accuracy. As
will be shown in Section VI, this distributed adversarial patch
is insufficient to evade PatchCleanser. The masking operation
in PatchCleanser may corrupt the adversarial patch, causing it
to lose its adversarialness and allowing PatchCleanser to pre-
dict correctly. If the simpler goal of causing PatchCleanser to
mispredict cannot be achieved, it becomes infeasible to reach
the more challenging goal of making adversarially patched
examples certifiable by PatchCleanser.

C. Desired Properties of Patch Attacks

Since PatchCleanser is the SOTA certifiable robustness
defense against adversarial patch attacks, we focus on it
when describing DorPatch. However, the proposed method
can be extended to other certifiable robustness defenses. To
evade PatchCleanser and unleash its attacking power, DorPatch
should possess the following desirable properties:

• Distributed: To evade PatchCleanser, an adversarial
patch should be widely distributed to prevent being
fully occluded by a small exploring mask. DorPatch
achieves this through density regularization, which
will be described in Section IV-B.

• Robust to Partial Occlusions: A distributed adver-
sarial patch, like RP2 [19], is not sufficient to evade
PatchCleanser. To do so, the patch should be ro-
bust to partial occlusions at various locations, forcing
PatchCleanser to use a large mask that degrades the

model’s clean accuracy. Our goal is not only to make
PatchCleanser mispredict but also to create adversarial
examples that are certifiably robust by PatchCleanser,
fostering a false sense of trust in certified predictions.
To achieve this, an adversarially patched example
should produce consistent predictions in both masking
rounds of PatchCleanser. DorPatch accomplishes both
goals using image dropout, as will be described in
Section IV-C.

• Fully Optimized: An adversarial patch should be
fully optimized, including its shape, location, and pixel
values, to achieve the most effective attack within a
given patch budget. DorPatch accomplishes this goal
by employing group lasso on mask (to be described
in Section IV-D) and a two-stage adversarial patch
generation process (to be described in Section V).

• Inconspicuous: An adversarial patch should be in-
conspicuous. To enhance the inconspicuousness of an
adversarial patch and avoid being neutralized by image
processing techniques, such as suppression of large
image gradients [45], perturbed pixels should result in
structural indistinguishability and perceptual masking
should be considered when determining the locations
and pixel values of perturbed pixels. Structural indis-
tinguishability means that perturbation should result
in modifications with structures frequently found in
clean images, like continuous and smooth structures,
rather than abrupt image changes. DorPatch achieves
inconspicuousness using structural loss, which will be
described in Section IV-E.

Adversarial patch attacks should fulfill all the above four
desirable properties. Table I lists the fulfillment of the four
desirable properties for several existing typical patch attacks
and our DorPatch. We can see that among the considered patch
attacks, only DorPatch possesses all four desired properties.

TABLE I. FULFILLMENT OF DESIRED PROPERTIES OF ADVERSARIAL
PATCH ATTACKS

Attack\Property Distributed Robust to Occlusion Inconspicuous Location-optimized

DorPatch ✓ ✓ ✓ ✓
LaVAN [30]
LOAP [46] ✓
IAP [3] ✓ ✓
RP2 [19] ✓ ✓

IV. ACHIEVING DESIRABLE PROPERTIES IN DORPATCH

We use the factorization method in SAPF [20] to decom-
pose a patch into the Hadamard product of a binary mask and a
pattern (i.e., pixel values), and optimize both the mask and the
pattern. This results in an MIP optimization problem. In this
section, we introduce several losses that enable DorPatch to
achieve the desired properties outlined in the previous section.
In the following description, we assume that an image-specific
adversarial patch is generated. To create a universal adversarial
patch, we can extend the described losses by adding an extra
summation over all images to which the universal adversarial
patch is applied.

A. Notation

Before describing our losses, we present the notation that
will be used, which is summarized in Table II. X and xi denote
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an image and the i-th pixel in the image, respectively. M
denotes the mask of a patch, which consists of 1s and 0s, where
1 indicates that a pixel is part of the patch, and 0 indicates that
a pixel is not part of the patch. Consequently, M determines
the location, shape, and size of the patch. ∆ denotes the pattern
of a patch, which represents the pixel values of the patch. Both
M and ∆ are determined through an optimization process in
DorPatch. X∆ ≡ X ⊕∆ represents the resulting image after
applying a patch with pattern ∆ to image X according to
patch mask M . · denotes the dot product (i.e., the summation
of element-wise products). ◦ denotes the Hadamard product
(i.e., element-wise product). |·| denotes the cardinality of a
set. ∥·∥p is the Lp norm. E denotes the expectation operation.

TABLE II. NOTATION

Notation Definition
X an image
xi the i-th pixel in the image
M the mask of a patch
∆ the pattern of a patch

X∆ ≡ X ⊕ ∆ the patched image
· the dot product
◦ the Hadamard product (i.e., element-wise product)
|·| the cardinality of a set

∥·∥p the Lp norm
E the expectation operation

B. Density Regularization

To encourage a patch to be widely and uniformly dis-
tributed, we use a set of sampling regions, A, which evenly
divide an image into |A| parts. Our goal is to make the density
of patch pixels in each region similar. We achieve this by
minimizing the standard deviation of the number of selected
pixels for the patch in each sampling region over all regions
in A. This is referred to as density regularization:

Lden =

√
1

|A|
∑
a∈A

(M ·a− Ea∈A(M ·a))2 (1)

where a ∈ A is the region’s mask, M ·a is the dot product
of M and a, i.e., the number of patch pixels in a. This
term encourages the mask of a generated patch to be evenly
distributed among different regions in A.

C. Image Dropout

To make a generated adversarial patch robust to partial
occlusions and ensure the patched image is certifiably robust
by PatchCleanser, we randomly mask out parts of the image
during the patch optimization process. Specifically, we collect
a set of possible occlusions, B, such as squares of different
sizes and positions. In each iteration, we generate N occluded
images Xi

∆, i ∈ [1,N ] from the patched image X∆ and
optimize them together. To obtain each Xi

∆, we randomly
choose no occlusions from B and remove the corresponding
regions from X∆. This image dropout process is illustrated in
Fig. 1.

The choice of no depends on the goal: to make Patch-
Cleanser misclassify the patched image, we set no to 1. To
make the patched image certifiably robust by PatchCleanser,
we set no to 2. N should be large enough to cover various
occlusion scenarios so that the generated patch will remain ef-
fective under PatchCleanser’s removal. We find that increasing

…

Occlusion Set 𝓑

Randomly select occlusions and apply

…

Occluded Samples

Fig. 1. An illustration of the image dropout process in one iteration of patch
generation. We randomly choose no occlusions from the set B and remove the
corresponding regions from the patched image X∆ to produce an occluded
image. We do this N times to obtain N occluded images Xi

∆, i ∈ [1,N ]
and optimize them together in a single batch.

N beyond a certain point does not improve the performance
significantly. In our experiments, we use N = 128 as the
default value.

D. Group Lasso on Mask

To physically attack a target object, an attacker typically
prints and cuts out a patch and then sticks it on the object. We
want the patch to be easy to handle, so we design it such that
each isolated part of it is large enough and has a rather regular
shape. To achieve this, we only allow the patch to include
or exclude whole groups of pixels, where a group consists of
adjacent pixels and is the smallest unit for an isolated part of a
patch that DorPatch generates. In our implementation, a group
is a square subregion of K×K pixels, and we divide an image
into non-overlapping groups. The parameter K determines the
minimum area of each isolated part of the patch. Fig. 2 shows
how we partition a 4×4 image into 2×2 groups.

We apply group lasso [69] to the mask M to enforce group
sparsity, i.e., to minimize the number of groups in the patch:

Lgrp =

m∑
l=1

∥M ◦Gl∥2 (2)

where Gl is the indicator matrix for the l-th group (element 1
means the corresponding pixel is in the group) and m is the
total number of groups. As stated in Section IV-A, ◦ denotes
the Hadamard product and ∥·∥2 is the L2-norm of a vector. By
minimizing Lgrp, we encourage many groups in M to become
zero vectors, i.e., to exclude all their pixels from the patch.

E. Structural Loss

To encourage perturbed pixels to result in continuous and
smooth structures, we propose the following structural loss:

Lstr =
∑

xi∈X∆

1

Vi
(

∑
xj∈N(xi)

(xi−xj)
2 · min

xj∈N(xi)
(xi−xj)

2) (3)
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Fig. 2. An illustration of non-overlapping group partitioning: a 4×4 image
is divided into 2×2 groups. Each cell represents a pixel. The cells in the same
color form a group.

where N(x) returns all neighborhood pixels of x over the
patched image X∆, and Vi is the local variance of pixel values
of the input image X at pixel xi.

The inner summation in Eq. 3, i.e.,
∑

xj∈N(xi)
(xi−xj)

2, is
the conventional total variation loss, which encourages smooth
changes among neighboring pixels for each perturbed pixel.
The next term in Eq. 3, i.e., minxj∈N(xi)(xi − xj)

2, is the
minimal variance loss, which is the minimal squared pixel-
value difference with adjacent pixels. It is small when a
neighboring pixel has a similar value. It allows preserving a
sharply changing pixel as long as at least one neighboring pixel
has a similar pixel value, such as an edge pixel. The product
of these two terms encourages smooth and edge-like structural
modifications and suppresses outliers that deviate significantly
from all of their neighboring pixels.

Following [41], we approximate the local perceptual mask-
ing power at a pixel xi with its local variance Vi. We weight the
product at pixel xi by the inverse of its local variance Vi of the
input image X . This weighting encourages patch pixels located
in complex regions to increase inconspicuousness. Overall, the
structural loss is small when the current pixel is either locally
smooth, an edge point, or locally complex (i.e., exhibiting high
local variance).

V. GENERATION OF ADVERSARIAL PATCHES

To achieve the goal of a targeted or untargeted adversarial
patch attack, we require an adversarial loss, denoted as Ladv .
By incorporating this loss with the losses described in Sec-
tion IV, we can formulate DorPatch’s optimization problem as
follows:

min
M,∆

Ladv + λ1 · Lgrp + λ2 · Lden + λ3 · Lstr

s.t. ∥X∆ −X∥p≤ ϵ
(4)

where λ1, λ2, and λ3 are weighting parameters to balance
the contributions of the different loss terms, and ϵ is the
perturbation bound under the Lp norm. Solving Eq. 4 with
the dropout described in Section IV-C yields the mask M and
pattern ∆ of the sought adversarial patch.

Mask M consists of 0s and 1s. Eq. 4 is an MIP problem,
which cannot be directly optimized with common optimizers
such as Stochastic Gradient Descent (SGD) or Adam [31].
Such an MIP problem is solved elegantly with the lp-Box
ADMM [59] in SAPF [20]. Following RP2 [19], we solve it
with a two-stage method. In the first stage, we relax the binary
constraint on M and allow it to take continuous values between
0 and 1, and then optimize Eq. 4 to obtain a fractional mask

M . We then threshold M to obtain a binary mask by selecting
the groups with the highest values. In the second stage, we
fix the binary mask M and optimize Eq. 4 to determine the
optimal pixel values of the adversarial patch. The performance
of using the two solutions to DorPatch will be compared in
Section VI-H.

A. Stage 1: Generation of Mask M

1) Optimization Using Transparency Mask: In this stage,
we optimize Eq. 4 to generate mask M . As mentioned above,
M is non-differentiable since it consists of 0s and 1s. To make
M differentiable, we assume M is a transparency mask MT

with floating point values in [0, 1], which is applied to a source
image X as follow:

X∆ = (1−MT ) ◦X +MT ◦∆ (5)

Transparency mask MT controls the merging transparency
when the mask is applied to an image. If MT takes values
of only 1s and 0s, then Eq. 5 is equivalent to applying
patch M to image X . When M is replaced with MT , Eq. 4
is differentiable, and common optimizers such as SGD or
Adam [31] can be applied to solve Eq. 4.

In our experiments, we use SGD as the optimizer and set
λ2 and λ3 to 10−3. The parameter λ1 is adaptively adjusted
as in FIA [26] to maintain adversarialness while minimizing
the group lasso of the mask. Specifically, we first set λ1, λ2,
and λ3 to 0 to achieve adversarialness. Once adversarialness
is reached, we enable λ2 and λ3 to their set values and adjust
λ1 as follows: if adversarialness is maintained, we multiply
λ1 by a factor (1.2 in our experiments) to focus more on
reducing group lasso; if adversarialness is lost, we divide λ1

by another factor (1.3 in our experiments) to focus more on
reaching adversarialness.

2) Selecting Important Groups to Form Mask M : The
magnitude of MT in Eq. 5 represents the merging weight
of pattern ∆ of the adversarial patch. A pixel with a larger
magnitude has a higher contribution from the adversarial patch
in the merged value of the pixel. We use the magnitude of
MT to approximate the importance of each pixel for achieving
adversarialness. The importance of a group is defined as the
sum of all magnitudes of MT in the group. We compute the
importance for each group, select groups in descending order
of importance until the patch budget is reached, and then set
the selected groups to 1s and unselected groups to 0s to form
mask M .

B. Stage 2: Generation of Pixel Values

Once M is determined, we enter the second stage to
continue optimizing Eq. 4 to produce pixel values of the
adversarial patch to generate. Since the pixel locations in the
adversarial patch are fixed in this stage, Lgrp and Lden in Eq. 4
are both fixed and thus can be removed from the optimization.
As a result, optimizing Eq. 4 becomes optimizing the following
equation in the second stage:

min
∆

Ladv + λ3 · Lstr

s.t. ∥X∆ −X∥p≤ ϵ
(6)

In this stage, λ3 is adjusted dynamically in the same way as
λ1 is adjusted in the first stage.
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C. Generation of Untargeted Adversarial Patch

To evade PatchCleanser and make adversarially patched ex-
amples certifiable by PatchCleanser, the two-stage generation
process described above is sufficient for targeted adversarial
patch attacks but insufficient for untargeted adversarial patch
attacks. This is because PatchCleanser employs prediction
consistency when masking out an image at different locations
to make a decision. For untargeted adversarial patch attacks,
predicted labels when masking different locations may be
different, albeit all of them fulfill the goal of a label different
from the original one. This prediction inconsistency of masking
different portions of an image makes it unlikely to evade
PatchCleanser.

To address this inconsistent prediction problem, DorPatch
adopts a mixture process that combines both untargeted and
targeted adversarial patch generations to generate adversarial
patches for untargeted adversarial patch attacks. To generate an
untargeted adversarial patch, DorPatch splits the first stage into
two substages: an untargeted substage and a target substage.
In the untargeted substage, untargeted adversarial loss Lunt

adv is
used for untargeted adversarial patch optimization. When it is
sufficiently trained, DorPatch switches to the target substage
to ensure consistent prediction. Specifically, DorPatch selects
the majority label using a majority voting of the prediction
results at different masked positions in the untargeted stage as
the target label. It then switches to using targeted adversarial
patch loss Ltar

adv to generate an adversarial patch to the target
label for the remaining training of the first stage and for
the whole training of the second stage. This mixture of
untargeted and targeted adversary patch generation process
ensures that the optimization process drives to an easy label
while ensuring prediction consistency, a basic requirement for
evading certifiable defenses such as PatchCleanser.

D. Supplementary Physical-World Patch Factors

The aforementioned adversarial patch generation is suffi-
cient for digital-domain adversarial patch attacks. However,
for physical-world attacks, more factors should be taken into
consideration. First, the adversarial patch should be within the
victim object. This is realized by using the bounding region
of the victim object to restrict selected groups of pixels in
the first stage to be within the region. Second, physical factors
related to printing and photoshooting should also be taken into
consideration during the optimization. This is realized with the
following method.

Similar to existing physical adversarial patch attacks [18],
[19], we apply Expectation Over Transformation (EOT) [19]
to make DorPatch robust to affine and perspective transfor-
mations. These transformations are used to simulate different
photoshooting distances and angles. Additionally, color jitter
and blurring are employed to simulate various lighting condi-
tions and color distortion in printing and photo-shooting.

Let B be the bounding region of the victim object, and
let T denote all possible combinations of transformations. Let
t ∈ T be a random sample from T , i.e., a randomly sampled
combination of transformations. The same optimization of
Eq. 4 described above is executed for both stages except:

1) Mask M is bounded with B: M ←M ·B;

2) Patched example X∆ is transformed by t into t(X∆)
before feeding into the classification model;

3) Ladv is calculated as the expectation over T :
Ladv(X∆)← Et∼TLadv(t(X∆)).

VI. EXPERIMENTAL EVALUATION

In this section, we conduct experimental evaluations in
both the digital domain and the physical world to assess Dor-
Patch’s performance. This includes attacking state-of-the-art
certifiable defense PatchCleanser [64] and empirical defenses
and evaluating the perceptual quality of patched images. We
also compare DorPatch with existing adversarial patch attacks
and present an ablation study to examine the impacts of
different modules and parameter settings in DorPatch on its
performance.

A. Attack Settings and Baseline Attacks

Most existing adversarial patch attacks evaluate their per-
formance using untargeted attacks. To facilitate comparison,
we also utilize untargeted adversarial patch attacks as the
default in our evaluation of DorPatch. Our evaluation encom-
passes various model architectures and datasets. The specific
models and datasets employed in a particular evaluation de-
pend on the available models for that evaluation. Detailed
information about the models and datasets used in each eval-
uation can be found in the following respective evaluation
descriptions.

The attack performance results reported in this section
represent the average outcomes obtained from 1,000 samples
randomly selected from the test set of a dataset that are
classified correctly on the evaluated model.

DorPatch Settings. For density regularization, we divide
an image into 8 × 8 equal-size regions. In image dropout,
we randomly mask out a square area with the mask size
ranging from 1.5% to 12% of the entire image, sampling 128
different masks per iteration. For the group lasso loss, we set
the number of pixels in each group to 7× 7. As the Carlini &
Wagner attack (C&W) [7] has proven effective in generating
powerful adversarial examples, we adopt the C&W loss as
the adversarial loss Ladv in our experiments. The values of
λi, i ∈ 1, 2, 3 in Eqs. 4 and 6 were described in Section V.

In our experiments, the maximum number of iterations for
each stage is set to 5,000, and the learning rate is initially set
to 0.01 and is decayed as follows. We halve the learning rate
when the loss value of the dynamically adjusted loss term,
i.e., the group lasso in the first stage and the structural loss in
the second stage, no longer decreases, and stop early when the
learning rate is smaller than 0.001. At the end of optimization,
we consider the generation a failure if the adversarialness is
not reached.

Baseline Attacks. The following four typical and state-of-
the-art adversarial patch attacks are selected as the baseline
attacks in our performance evaluation.

1) LaVAN [30]: It crafts a localized adversarial patch
placed at a pre-fixed location (randomly chosen in
our experiments). Its optimization problem can be
formulated as

min
∆

Ladv(X∆) (7)
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2) LOAP [46]: It crafts a localized adversarial patch by
also optimizing the location through moving the patch
in different directions.

3) IAP [3]: It utilizes an attention technique to identify
the most critical area of the image for placing the
patch and generates an inconspicuous patch with
Adversarial Generative Networks (GAN). Its opti-
mization problem can be expressed as

argmin
G

max
D

Ladv(X ⊕G(z))

+ αLGAN (G,D)

+ βLrec(X,X ⊕G(z)) + γLtv(G(z))

(8)

where G and D are the generator and discriminator of
the GAN. G takes in a random noise z and outputs
the generated pattern, i.e., ∆ = G(z). LGAN and
Lrec are the adversarial loss and the reconstruction
loss for training GAN. Ltv is the total variance loss
for smoothing the generated patch.

4) RP2 [19]: It uses a two-stage method to generate
adversarial patches. In the first stage, it employs the
L1 regularization to generate a sparse perturbation
located in most vulnerable regions. The optimization
problem in the first stage is as follow,

min
∆

Ladv(X∆) + λ∥∆∥1 (9)

In the second stage, it solves the same optimization
problem as in LaVAN [30] with a mask positioned on
the vulnerable regions identified from the first stage.
In our experiments, we set the minimum region to
7× 7, the same size as a group in DorPatch. RP2 is
the only existing distributed patch attack.

In our experiments, each baseline attack is executed with
its default setting, except for the explicitly stated settings
above. For a fair comparison, we set the maximum number
of iterations to 10,000 and adopt the same initial learning
rate for each baseline attack. We also adopt the same learning
rate decaying strategy on the adversarial loss for all baseline
attacks, except for the first stage of RP2. For the first stage of
RP2, the decaying strategy is applied with respect to the L1

norm term.

B. Attacking Performance against PatchCleanser

We first assess the attack performance against the state-of-
the-art certifiable defense, PatchCleanser. In our experiments,
we utilize the open-source code and pre-trained ResNet models
from its official GitHub repository [62]. These models are
trained on three widely used image classification datasets:
ImageNet [12], CIFAR10 [32], and CIFAR100 [32], using the
cutout technique [13] as data augmentation for enhancing ro-
bustness to masking occlusions for higher certifiable accuracy.
PatchCleanser’s default settings are used in our experiments
unless specified otherwise.

PatchCleanser primarily focuses on employing a single
square mask to mask out a portion of an image at a time for
prediction. For a given setting, PatchCleanser has a maximum
size for such a localized square patch that it can protect. This

maximum size is referred to as the mask size of PatchCleanser,
which indicates a specific setting of PatchCleanser.

The robust accuracy of the model, which measures the
model’s prediction accuracy under various attacks, both with
and without the defense of the primary PatchCleanser, is
presented in Tables III, IV, and V for ImageNet, CIFAR10,
and CIFAR100, respectively. These tables display results for
different PatchCleanser mask sizes and attacks’ patch budgets.
Robust accuracy is important because it evaluates the model’s
performance in the presence of adversarial conditions, ensuring
its reliability and stability. For IAP, we present experimental
results only for the more practical dataset ImageNet and ignore
more toy-like datasets CIFAR10 and CIFAR100 since IAP
requires training a generative model for each test image, which
takes a prohibitive amount of time to finish all experiments on
one dataset.

The third column of these tables exhibits that all the attacks
except IAP can substantially degrade the robust accuracy when
no defense is applied. The robust accuracy under IAP attack
is significantly higher than other attacks on ImageNet, ranging
from 36.7% to 25.4% when the patch budget ranges from 3%
to 12% of the image size.

However, when PatchCleanser is applied, as indicated by
the fourth to sixth columns in these tables, the robust accuracy
raises to a very high level, close to clean accuracy (the accuracy
when there is no attack), for attacks LaVAN, LOAP, and IAP,
but remains reasonably low for RP2 and very low or close
to 0% for DorPatch at 3% or 6% and above patch budget.
By correlating with the fact that only RP2 and DorPatch are
distributed patch attacks among these attacks, we conclude
that a distributed patch helps lower PatchCleanser’s robust
accuracy. Since the robust accuracy under RP2 is significantly
higher than that under our DorPatch attack, we conclude
that our image dropout is much more effective in reducing
PatchCleanser’s robust accuracy than making an adversarial
patch distributed. This is because image dropout makes an
adversarial patch robust to PatchCleanser’s masking occlusions
while a only distributed patch cannot.

In addition to robust accuracy, another important perfor-
mance metric is the certified rate of patched examples (CRPE),
which is defined as the ratio of adversarially patched examples
that are both successful in misprediction (i.e., predict to a
label different from the original one for untargeted attacks
or the target label for targeted attacks) and the prediction
results are certifiable robust by a certifiable defense such
as PatchCleanser. CRPE is important since it measures the
probability that the false prediction of an adversarially patched
example can be successfully certified by the certifiable defense
to provide a false sense of trust.

The certified rates of patched examples (CRPEs) of the at-
tacks are also presented in Tables III, IV, and V for ImageNet,
CIFAR10, and CIFAR100, respectively. From these tables, we
can see that the CRPE of each baseline attack is or close to 0%,
even for a large patch budget. On the other hand, DorPach’s
CRPE is high even for 3% patch budget and increases with
an increasing patch budget. DorPach’s CRPE is comparable
to and mostly higher than the certified rate of benign samples
that PatchCleanser reports in [64] when the patch budget is
the same as the mask size except for CIFAR10 when the patch
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budget is 3%.

Note that our DorPatch is agnostic to the defense setting of
PatchCleanser. We can conclude from the above experimental
results that DorPatch exhibits high effectiveness in attacking
PatchCleanser, in terms of both robust accuracy and CRPE.

TABLE III. ROBUST ACCURACY AND CERTIFIED RATE OF PATCHED
EXAMPLES (CRPE) ON IMAGENET FOR ATTACKS WITH VARIOUS PATCH
BUDGETS, WITH/WITHOUT PATCHCLEANSER DEFENSE (SINGLE MASK)
USING DIFFERENT MASK SIZES. PB:PATCH BUDGET. MS: MASK SIZE.

PB Attack
Robust Accuracy (in %) CRPE (in %)

without
Defense

PatchCleanser (MS) PatchCleanser (MS)
3% 6% 12% 3% 6% 12%

3%

DorPatch 4.4 10.2 9.8 11.2 49.8 44.9 38.1
LaVAN 6.2 89.1 90.6 86.3 0.0 0.0 0.0
LOAP 4.7 89.5 89.9 86.4 0.0 0.0 0.0
IAP 36.7 80.9 78.1 78.1 0.0 0.0 0.0
RP2 0.0 56.4 58.4 63.0 0.8 0.4 0.0

6%

DorPatch 0.8 1.2 1.2 1.2 80.9 69.7 57.6
LaVAN 1.2 82.8 86.7 85.6 0.0 0.0 0.0
LOAP 0.4 82.9 86.8 84.8 0.0 0.0 0.0
IAP 27.0 71.5 71.5 71.5 0.0 0.0 0.0
RP2 0.0 25.8 38.1 43.2 2.7 0.4 0.4

12%

DorPatch 0.8 1.0 1.0 1.0 87.1 83.1 75.8
LaVAN 0.0 76.2 78.1 81.6 0.0 0.0 0.0
LOAP 0.0 77.4 78.9 78.9 0.0 0.0 0.0
IAP 25.4 61.1 63.2 63.7 0.0 0.0 0.0
RP2 0.0 16.7 19.8 22.2 5.5 2.5 0.8

TABLE IV. ROBUST ACCURACY AND CERTIFIED RATE OF PATCHED
EXAMPLES (CRPE) ON CIFAR10 FOR ATTACKS WITH VARIOUS PATCH
BUDGETS, WITH/WITHOUT PATCHCLEANSER DEFENSE (SINGLE MASK)
USING DIFFERENT MASK SIZES. PB:PATCH BUDGET. MS: MASK SIZE.

PB Attack
Robust Accuracy (in %) CRPE (in %)

without
Defense

PatchCleanser (MS) PatchCleanser (MS)
3% 6% 12% 3% 6% 12%

3%

DorPatch 7.6 13.2 13.2 12.7 40.6 37.6 33.0
LaVAN 4.9 98 95.6 94.3 0.0 0.0 0.0
LOAP 5.3 96.8 96.4 92.7 0.0 0.0 0.0
RP2 0.0 77.7 78.5 80.2 0.8 0.4 0.4

6%

DorPatch 0.0 0.0 0.0 0.0 78.8 68.2 60.6
LaVAN 0.8 93.1 94.3 92.7 0.0 0.0 0.0
LOAP 0.8 93.5 93.5 93.1 0.0 0.0 0.0
RP2 0.0 60.7 67.6 66.8 1.21 1.21 0.8

12%

DorPatch 0.0 0.0 0.0 0.0 90.9 86.4 76.3
LaVAN 0.0 86.6 92.3 93.5 0.0 0.0 0.0
LOAP 0.0 85.8 92.7 92.7 0.0 0.0 0.0
RP2 0.0 42.5 44.9 52.2 1.6 1.6 0.4

TABLE V. ROBUST ACCURACY AND CERTIFIED RATE OF PATCHED
EXAMPLES (CRPE) ON CIFAR100 FOR ATTACKS WITH VARIOUS PATCH

BUDGETS, WITH/WITHOUT PATCHCLEANSER DEFENSE (SINGLE MASK)
USING DIFFERENT MASK SIZES. PB:PATCH BUDGET. MS: MASK SIZE.

PB Attack
Robust Accuracy (in %) CRPE (in %)

without
Defense

PatchCleanser (MS) PatchCleanser (MS)
3% 6% 12% 3% 6% 12%

3%

DorPatch 5.3 6.7 6.2 7.2 61.7 49.3 39.7
LaVAN 1.6 61.3 62.5 62.1 0.0 0.0 0.0
LOAP 2.3 58.2 59.4 59.0 0.0 0.0 0.0
RP2 0.0 40.2 43.8 43.0 0.4 0.0 0.0

6%

DorPatch 0.0 0.5 0.5 0.5 85.2 75.6 64.1
LaVAN 0.0 55.9 57.4 59.8 0.0 0.0 0.0
LOAP 0.4 49.2 50.4 50.4 0.0 0.0 0.0
RP2 0.0 29.3 29.7 33.6 0.8 0.8 0.0

12%

DorPatch 0.0 0.0 0.0 0.0 92.8 87.6 79.0
LaVAN 0.0 41.8 48.4 54.7 0.0 0.0 0.0
LOAP 0.0 37.5 39.8 43.8 0.0 0.0 0.0
RP2 0.0 16.4 19.1 19.5 1.6 1.2 0.4

TABLE VI. TRANSFORMATIONS AND THEIR PARAMETER VALUES
USED IN EOT FOR DORPATCH IN OUR PHYSICAL-WORLD ATTACK

Transformation Factor Random Sampling Range

Color Jitter

Brightness [0.8, 1.2]
Contrast [0.8, 1.2]
Saturation [0.8, 1.2]
Hue [-0.1, 0.1]

Affine

Degrees (-5, 5)
Horizontal Translation Width×(-0.05, 0.05)
Vertical Translation Height×(- 0.05, 0.05)
Scale [0.8, 1.2]

Perspective Distortion Scale 0.05

Gaussian Blur Kernel Size (3, 3)
Sigma (0.1, 2.0)

C. Perceptual Quality

Inconspicuousness is one of the desirable properties of
an adversarial patch, as described in Section III-C. We have
compared the inconspicuousness of different attacks. Fig. 3
shows adversarially patched examples generated by various
attacks. Traditional patch attacks like LaVAN, LOAP, and RP2,
which lack any perceptual constraint in crafting adversarial
patches, appear conspicuously visible and suspicious, as il-
lustrated in Columns (b)-(d) in Fig. 3. In Column (e), IAP,
by utilizing the discriminators of generative models, produces
patches that harmonize with the background images at first
glance. However, upon closer examination, the generated patch
can still be detected due to the abnormal lines and blur effect
near the eye region of the showcased samples. In contrast, as
depicted in Column (f), the patches generated by our DorPatch
remain inconspicuous even with the aid of masks indicating
their locations in Column (g). Our DorPatch can produce the
most imperceptible perturbations among all considered patch
attacks.

Additionally, Column (h) in Fig. 3 shows the saliency
maps of DorPatch’s adversarially patched examples given by
GradCAM [52], which simulate human attention. The hotter
the color, the more attention it gets. From the attention maps,
we can conclude that most portions of DorPatch’s adversarial
patch fall within low attention regions, which proves the
inconspicuousness of the adversarial patch.

D. Physical-world Attack Performance

In this section, we evaluate DorPatch’s physical-world
attack performance against the PatchCleanser defense. We
employ the pretrained ImageNet model from the PatchCleanser
authors and set DorPatch’s patch budget to 12%. Adversarial
patches are generated following the method in Section V-D.
The EOT [19] parameters for our experiments are listed in
Table VI.

We choose IAP [3], the most inconspicuous physically
realizable patch attack among all existing adversarial patch
attacks, as our baseline for evaluating physical-world attack
performance. Our evaluation primarily focuses on untargeted
attacks.

1) Physical Experimentation Process: The physical-world
experiments are conducted as follows.

We take a sample that is classified correctly and certifiable
by PatchCleanser with different mask sizes from the street sign
category of ImageNet, print it on photographic paper using a
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(a) Origin (b) LaVAN (c) LOAP (d) RP2 (e) IAP (f) DorPatch (g) Mask (h) Saliency Map

Fig. 3. Perceptual quality of various adversarial patch attacks. Column (g) shows the masks of our DorPatch’s patched examples. Column (h) shows the saliency
maps of our DorPatch’s patched examples given by GradCAM [52], which simulate human attention.

Canon G580 printer, and paste it onto a wall. The resulting
physical object serves as a victim object for our physical attack
evaluation. In our experiments, we generate two victim objects.

After generating an adversarial patch for a victim object in
the digital domain, we print it out, cut off each piece of the
adversarial patch, and then paste them onto the victim object
to produce an adversarially patched physical object.

We use an iPhone 13 Pro to capture sequences of photos of
the physical object under various conditions, with a resolution
of 1920×1080 and a frequency of 30 frames per second. These
conditions include different lighting (intensity and color tem-
perature), shooting angles (up to 30 degrees in each direction),
and shooting distances of 0.4 m and 0.7 m. The camera moves
at a constant speed while capturing the photo sequences.

For each frame in a sequence, we crop an image from the
center with a fixed size appropriate for the shooting distance,
as shown by the red squares in Fig. 4 (f). The image is then
resized to the input size of the classification model and fed
into the model for prediction.

For each experimental evaluation, we draw 1,000 frames
uniformly from the photo sequences and use them to assess
performance. The physical-world attack evaluation is illus-
trated in Fig. 4, and the evaluation results are presented in
Table VII.

2) Perceptual Quality: As shown in Fig. 4 (c), IAP gener-
ates a square patch that significantly blurs the word ”TIME”,
while our DorPatch creates distributed patches resembling
green fluorescent stains scattered around the sign’s edge area.
DorPatch’s patches are much less conspicuous than those of
IAP.

3) Attacking Performance: Table VII shows that without
any attack, the clean accuracy is high. When subjected to the
IAP or DorPatch attack, the robust accuracy drops significantly
for both attacks: to 0% under our DorPatch attack and 16.0%
under the IAP attack. IAP’s robust accuracy is much higher
than ours, indicating that our DorPatch is a more effective
patch attack than IAP. When the PatchCleanser defense is
applied, the robust accuracy under IAP attack restores to
a level close to clean accuracy, suggesting that IAP is in-
effective in evading PatchCleanser. In contrast, the robust
accuracy under our DorPatch attack remains very low, at 2.4%
or below, demonstrating DorPatch’s effectiveness in evading
PatchCleanser in physical-world attacks as well.

TABLE VII. ROBUST ACCURACY (IN %) ON IMAGENET UNDER
PHYSICAL-WORLD ATTACKS OF DORPATCH AND IAP WITH 12% PATCH
BUDGET, WITH/WITHOUT PATCHCLEANSER DEFENSE (SINGLE MASK)

UNDER DIFFERENT MASK SIZES. MS: MASK SIZE.

Attack without
Defense

PatchCleanser (MS)
3% 6% 12%

No Attack 100.0 100.0 100.0 100.0
IAP 16.0 91.4 90.4 66.4
DorPatch 0.0 2.4 1.4 2.1

E. Targeted Attack Performance

All the above evaluations are based on untargeted attacks
for comparison with existing adversarial patch attacks since
most of them focus on reporting untargeted attack perfor-
mance. One would wonder: how does DorPatch perform when
conducting targeted attacks, generally considered more chal-
lenging than untargeted attacks? We evaluate DorPatch’s target
attack performance against PatchCleanser on ImageNet in this
subsection.
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(a) Original

(b) Mask

IAP

DorPatch

(c) Digital (d) Shooting Angle (f) Shooting Distance(e) Lighting Condition

30° Left 30° Right Bright Warm 0.7 m 0.4 m

Fig. 4. Illustration of physical-world evaluation. (a) Original victim object. (b) DorPatch mask to help locate the patch. Columns (c)-(f): top row shows IAP
results, bottom row shows DorPatch results. (c) Generated adversarial patched examples. (d) and (e) Captured frames and their cropped images under varying
angles (up to 30°) and lighting conditions (intensity and temperature). (f) Red squares highlight cropped areas in captured frames at different shooting distances.

In our experiments, we randomly sampled 1000 correctly
classified samples from the test set. For each selected sample,
we randomly selected a target label different from the original
prediction. These selected samples were used in evaluating
DorPatch’s target attack performance. The patch budget was
set to 3% in our experiments.

1) Attacking Performance against PatchCleanser: By ad-
justing the perceptual constraint ϵ in Eqs. 4 and 6 to a reason-
able level, a targeted DorPatch attack can achieve comparable
attacking performance to that of an untargeted DorPatch attack.
Specifically, when attacked by DorPatch as a targeted attack,
the robust accuracy drops to 0.5% without defense. When
PatchCleanser with a mask size of 3%, 6%, and 12% is
applied, the robust accuracy drops to 1.1%, 0.5%, and 0.5%,
respectively, and the CRPEs are 46.6%, 22.3%, and 29.6%,
respectively.

Unlike untargeted attacks, a targeted attack is considered
successful only when the generated adversarial example is
misclassified into the target category. Therefore, we also report
the Attacking Success Rate (ASR) for a targeted attack, which
is the ratio of patched examples that successfully reach their
respective target categories. For DorPatch used as a targeted
attack, the ASR is 91.0% without defense. The ASR consis-
tently remains at 91.0% when PatchCleanser with a mask size
of 3%, 6%, and 12% is applied.

2) Perceptual Quality: Since IAP [3] is the most inconspic-
uous patch attack among all existing adversarial patch attacks,
we choose it as the baseline to compare the perceptual quality
of adversarial patch attacks. Fig. 5 presents a side-by-side com-
parison of both targeted and untargeted adversarial examples
generated by DorPatch and IAP, using the same source images
from ImageNet and the same target labels for targeted attacks.
Comparing columns (b) with (c) and (d) with (e), we observe
that targeted attacks generally result in more noticeable visual
effects than their untargeted counterparts. This holds true for
both DorPatch and IAP. This can be explained by the fact that
targeted attacks are more challenging than untargeted attacks,
and a larger patch budget is generally required to achieve
adversarialness, resulting in more perceptual distortions. For
DorPatch, in terms of the average L2 norm distortion between a

patched example and its source sample, DorPatch as a targeted
attack is 3.88 times that of DorPatch as an untargeted attack
on ImageNet.

On the other hand, our DorPatch typically yields superior
perceptual quality when compared to IAP. This can be mainly
attributed to our designed structural loss, which encourages
generated patches to be placed in complex regions and pro-
motes the construction of continuous and smooth structures.
As a result, our DorPatch’s targeted attacks can even achieve
perceptual quality that is comparable to or even better than
IAP’s untargeted attacks.

F. Attack Performance Against Empirical Defenses

We have evaluated the attack performance against the
certifiable defense PatchCleanser. It is natural to question
the effectiveness of the DorPatch attack against empirical
defenses. In this subsection, we explore the ability of our
DorPatch to evade various empirical defenses designed to
counter adversarial patch attacks.

1) Evading Local Gradients Smoothing: Local Gradients
Smoothing (LGS) [45] deters patch attacks by suppressing
large image gradients in an image. LGS is evaluated only on
ImageNet in its paper. We also evaluate LGS on ImageNet.
We take the Pytorch implementation of LGS [48], with the
default setting in LGS’s original paper, and adopt a pre-
trained DenseNet110 model from the Pytorch TorchVision
model zoo [57]. The clean accuracy of the model on the test
samples drops by 4.0% when it is defended by LGS.

In this evaluation, we choose LaVAN and LOAP as the
baselines. The patch budget is set to 3% for all attacks.
The evaluation results are shown in Table VIII. The table
demonstrates that, when the model is defended by LGS, the
robust accuracy under LaVAN and LOAP attacks is restored to
a very high level, at 99.8% and 99.9%, respectively. However,
it remains relatively low at 35.9% under the DorPatch attack.
This robust accuracy indicates that LGS is more effective
in defending against DorPatch than PatchCleanser, primarily
because DorPatch is not designed to evade LGS. To achieve
better inconspicuousness, DorPatch places adversarial patches
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(a) Origin (b) DorPatch-targeted (c) DorPatch-untargeted (e) IAP
-untargeted

(d) IAP
-targeted

(f) IAP
-mask

Fig. 5. Perceptual quality: targeted v.s. untargeted attacks for DorPatch and IAP. The right columns in (b)-(c) show the masks to help locate the patches.

TABLE VIII. ROBUST ACCURACY (IN %) ON IMAGENET UNDER
ATTACKS WITH 3% PATCH BUDGET, WITHOUT DEFENSE AND WHEN THE

MODEL IS DEFENDED BY LGS OR DW.

Defense Attack No AttackDorPatch LaVAN LOAP
No Defense 3.1 7.4 4.7 100.0
LGS 35.9 99.8 99.9 96.0
DW 19.6 98.7 98.4 90.9

in complex regions with large image gradients in an image,
making the patch more susceptible to LGS’s suppression. We
can improve DorPatch’s attacking effectiveness against LGS
by placing a patch in regions with smaller image gradients,
slightly sacrificing perceptual quality.

2) Evading Digital Watermarking: Digital Watermarking
(DW) [25] defends against patch attacks by first constructing
a sensitivity-based saliency map of an input image to identify
unusually dense, highly sensitive regions and then masking
them out for prediction. DW is evaluated solely on ImageNet
in its paper [25]. We also evaluate DW on ImageNet. Similar
to LGS, we choose LaVAN and LOAP as the baselines. The
patch budget is set to 3% for all attacks.

There is no official implementation available. We have im-
plemented DW by constructing the saliency map using guided
backpropagation [55] from a popular GitHub repository [21].
The resulting performance aligns closely with that reported
in the original paper. We adopt a pre-trained DenseNet110
model from the Pytorch TorchVision model zoo [57] for this
experiment.

The evaluation results are shown in Table VIII. When the
model is defended by DW, the clean accuracy of the model

on the test samples drops significantly (by 9.1%). The robust
accuracy under LaVAN and LOAP attacks is restored to 98.7%
and 98.4%, respectively. In contrast, DorPatch remains highly
effective in bypassing DW, with the robust accuracy as low as
19.6%. This also proves our DorPatch’s robustness to partial
removal.

G. Attack Performance Against Adaptive Defenses

1) PatchCleanser Using Multiple Masks: PatchCleanser
can be extended to defend against a distributed adversarial
patch comprising multiple separated subpatches by applying
multiple masks to mask out multiple regions simultaneously.
It needs to search all possible combinations of subpatches to
fully cover the distributed patch, i.e., each subpatch is covered
by a mask. Let k be the number of distinct locations for placing
a single mask on an image, and let Z be the number of sub-
patches. PatchCleanser needs to search for

(
k
Z

)
combinations

for single-round masking and
((k

Z)
2

)
combinations for two-

round masking. Each combination requires a model inference.

For the default value of k = 36, PatchCleanser needs 36,
630, and 7,140 model inferences for single-round masking and
630, 1.98×105, and 2.55×107 model inferences for two-round
masking when Z increases from 1 to 3.

The number of model inferences explodes exponentially
as Z increases. Even for Z = 2, two-round masking for
certifying a single sample requires 1.98×105 model inferences,
accumulating to a prohibitive number for completing all ex-
periments on a single dataset. Consequently, we conducted
experiments for single-round masking of PatchCleanser to
obtain its robust accuracy when Z = 2 on ImageNet. The
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TABLE IX. ROBUST ACCURACY (IN %) OF PATCHCLEANSER WITH
DUAL MASKS ON IMAGENET UNDER DORPATCH ATTACK. VALUES IN

PARENTHESES INDICATE THE ROBUST ACCURACY IMPROVEMENT FROM
PATCHCLEANSER’S SINGLE PATCH SETTING.

Patch
Budget

Mask Size of PatchCleanser
3% 6% 12%

3% 16.3 (+6.1) 15.6 (+5.8) 15.6 (+4.4)
6% 3.1 (+1.9) 3.5 (+2.3) 4.3 (+3.1)
9% 2.4 (+1.4) 2.4 (+1.4) 3.2 (+2.2)

TABLE X. ROBUST ACCURACY (IN %) UNDER THE DORPATCH
ATTACK WITH DIFFERENT PATCH BUDGETS ON CIFAR10

Model Patch Budget (in %)
Arch. Training Type 1.5 3 6 12

WRN28-4 Normal 10.8 0.6 0.7 0.1
Adv. Trained 70.7 57.3 31.4 13.0

ResNet110 Normal 11.9 2.3 1.2 0.4
Adv. Trained 64.7 29.6 7.0 0.9

results are presented in Table IX, with values in parentheses
indicating the robust accuracy improvement from the single
mask case shown in Table III. The table shows that robust
accuracy slightly improves when dual masks are applied in
PatchCleanser but remains low. The robust accuracy decreases
when the patch budget of DorPatch increases. We can conclude
that DorPatch can still effectively evade PatchCleanser using
dual masks.

2) Adversarial Training: Adversarial training enhances a
model’s robustness by training it with adversarial examples
generated using a specific method. It is widely used as an
effective defense against adversarial attacks. In this subsection,
we evaluate the performance of our DorPatch on adversarially
trained models on CIFAR10. For this evaluation, we use pre-
trained robust models from the open-sourced repositories of
Hydra [29], [51] and DOA [60], [61]. Specifically, the robust
WRN28-4 model from Hydra is adversarially trained using a
PGD attack with 50 steps and an 8/255 L∞ budget, while
the robust ResNet110 model from DOA is trained using a
rectangular occlusion attack with an 11× 11 rectangle (patch
budget=12%). The experimental results of our DorPatch with
different patch budgets are shown in Table X.

The results demonstrate that even when the model is ad-
versarially trained with a mismatching adversarial attack (i.e.,
PGD attack or the rectangular occlusion attack), it can improve
adversarial robustness against our DorPatch to a certain degree,
especially when the patch budget is low. For example, for a
patch budget of 1.5%, the robust accuracy on WRN28-4 in-
creases from 10.8% for normal model training to 70.7% when
the model is adversarially trained. However, with increasing
patch budget, the robust model can still be compromised.
The robust accuracy drops to 13.0% for adversarially trained
WRN28-4 and to 0.9% for adversarially trained ResNet110
when the patch budget increases to 12%.

We expect that adversarial training with adversarial exam-
ples generated with DorPatch can be more effective but the
training cost is high. More adaptive defenses will be discussed
in Section VII-C.

H. Performance Comparison with SAPF’s Solution

In this subsection, we compare the performance of
DorPatch when our two-stage solution and the Lp-Box

TABLE XI. ROBUST ACCURACY AND CRPE OF DORPATCH WITH 12%
PATCHES ON IMAGENET UNDER PATCHCLEANSER WITH VARIOUS MASK

SIZES (MS)

Solution
Robust Accuracy (in %) CRPE (in %)

without
Defense

PatchCleanser (MS) PatchCleanser (MS)
3% 6% 12% 3% 6% 12%

Two-stage 0.8 1.0 1.0 1.0 87.1 83.1 75.8
SAPF 1.2 2.5 2.5 2.5 58.0 37.0 16.1

ADMM [59] used in SAPF [20] are applied to solve Dor-
Patch’s MIP optimization problem (see Eq. 4). The Lp-
Box ADMM is based on the equivalence between a discrete
constraint space and the intersection of two continuous con-
straints: a box constraint and a Lp-sphere constraint. Using this
property, SAPF replaces the non-differentiable location mask
with two additional continuous variables and solves the MIP
optimization problem by employing the ADMM method and
the gradient descent algorithm to alternatively optimize the
locations and the pixel values of the patch to generate.

Our two-stage solution optimizes the mask and the pattern
separately in two stages. In the first stage, we relax the binary
mask M to a transparency mask MT with floating point values
in [0, 1] and optimize Eq. 4 to obtain a fractional mask. From
this fractional mask, we select the groups with the highest
masking values to form the binary mask M with a given patch
budget. In the second stage, we optimize the pattern ∆ using
Eq. (6) with the binary mask M determined in the first stage.

Table XI shows the experimental results of applying both
solutions in DorPatch on ImageNet using a 12% patch budget.
We can see from the table that both solutions achieve compa-
rable low robust accuracy under PatchCleanser defense with
different mask sizes. However, the Lp-Box ADMM has lower
CRPEs than our two-stage solution (higher CRPE means better
attacking performance). This may be attributed to the following
reasons:

• The Lp-Box ADMM solution has many more vari-
ables and hyperparameters in the optimization prob-
lem, making it harder to balance the competitive
relationship between the adversarialness loss and other
losses and Lagrange multiplier terms.

• The dual variables introduced by ADMM are hard to
optimize or tune when combined with image dropout.

• ADMM can be very slow to converge to high accu-
racy [5].

These results suggest that our two-stage solution, although
less elegant as the Lp-Box ADMM solution, is simpler yet
empirically more effective.

I. Ablation Study

It is important to know the impact of each component of
our DorPatch on its performance. We conducted an ablation
study to evaluate DorPatch’s performance on ImageNet in
attacking PatchCleanser under the single mask setting and LGS
in the digital domain by removing different components of
DorPatch. The patch budget was set to 3% in our experiments.
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TABLE XII. ABLATION STUDY OF DENSITY REGULARIZATION AND
IMAGE DROPOUT WITH PATCHCLEANSER ON IMAGENET USING A 3%

PATCH BUDGET. MS: MASK SIZE.

Attack
Robust Accuracy (in %) CRPE (in %)

without
Defense

PatchCleanser (MS) PatchCleanser (MS)
3% 6% 12% 3% 6% 12%

DorPatch 4.4 10.2 9.8 11.2 49.8 44.9 38.1
−Density Reg. 4.7 9.0 10.9 10.9 47.5 38.5 26.9
−Img Dropout 4.7 86.7 89.8 89.1 0.0 0.0 0.0

TABLE XIII. ABLATION STUDY OF STRUCTURAL LOSS WITH LGS ON
IMAGENET USING A 3% PATCH BUDGET

Configuration Fixed λ3 Adaptive λ3 No Lstr
10−3 10−4

Robust Acc. (in %) 37.9 50.3 35.9 75.5

1) Ablation of Density Regularization & Image Dropout:
The attack performance after removing density regularization
or image dropout is presented in Table XII when PatchCleanser
is applied under the single mask setting. We observe that
CRPE slightly decreases by 2.3%, 6.7%, and 11.2% for mask
sizes of 3%, 6%, and 12%, respectively, when the density
regularization is removed. The decline in CRPEs is more
noticeable when the mask size of PatchCleanser is larger,
indicating the importance of density regularization in boosting
DorPatch’s CRPE, especially for large mask sizes.

Table XII clearly shows that the absence of image dropout
severely impairs attack effectiveness in terms of both robust
accuracy and CRPE when facing the PatchCleanse defense.
Without the image dropout, the generated adversarial patch
cannot withstand partial occlusion, allowing PatchCleanser to
successfully restore robust accuracy to above 86.7%, while
CRPE drops to 0%. The experimental results highlight the
importance of robustness to partial occlusions when attacking
PatchCleanser.

2) Ablation of Structural Loss: We utilize LGS [45] for the
ablation study of the structural loss, as it effectively impacts
the structural loss by suppressing large image gradients. To
investigate the effect of the structural loss in DorPatch on
bypassing LGS, we vary its weighting value, i.e., λ3 in Eq. 4
and Eq. 6, and fix the value in both stages to adjust the
contribution of the structural loss in generating an adversarial
patch. When λ3 is set to 0, the structural loss is completely
removed. We set the patch budget to 3% in this experiment.
The evaluation results are shown in Table XIII. The table
reveals that the robust accuracy increases from 35.9% to 75.5%
when the structural loss is removed. When λ3 increases from
10−4 to 10−3, i.e., with more emphasis on the structural loss,
the robust accuracy decreases from 50.3% to 37.9%.

These results demonstrate that the structural loss facilitates
the construction of continuous and smooth structures, making
the generated patch more resistant to neutralization by LGS.

VII. DISCUSSION

A. Limitations

DorPatch has the following limitations.

1) Black-box Transferability: We assume white-box access
to the model to be attacked, and the performance results

reported in Section VI are under this assumption. A ques-
tion naturally arises: how effective can DorPatch be under
the black-box model setting? We conduct an experiment on
ImageNet with a 6% patch budget, and the result shows that the
transfer success rate from a whitebox DenseNet121 model to a
blackbox ResNet50 model for DorPatch as an untargeted attack
is 45.3%. This can be explained by the fact that DorPatch
fully optimizes the attacking effectiveness of its generated
adversarial patch (i.e., to fulfill the desirable property of being
fully optimized), resulting in the generated adversarial patch
overfitting to the model used in generating the adversarial
patch, and thus reduces the black-box transferability. We plan
to employ model ensembling [40] to strengthen its black-box
transferability.

2) Deployability: Another question that might arise is: how
does the distributed nature of DorPatch’s patch affect the
difficulty of deploying a physical attack? Unlike traditional
methods that use a single localized patch, DorPatch makes
it harder to deploy a physical attack, because it requires
cutting and pasting multiple pieces of the adversarial patch
and preserving their spatial locations during the process. For
example, in our physical-world evaluation in Section V-D, we
took about 5 minutes to set up the attack for IAP but around
30 minutes for DorPatch, most of which was used for cutting
the patch and other preparations. The actual sticking of the
patch onto the target only took 1 to 2 minutes. Despite the
increased difficulty, DorPatch is still practically feasible for
physical attacks.

B. Restriction on Patch Budget

One may ask: instead of applying a restricting patch budget
to perturb a small portion of pixels, why not simply perturb
the whole surface of the victim object like ShapeShifter [8]?
There are several reasons for us to restrict adversarial patches
within a given patch budget. First, we want to apply the same
patch budget for all attacks, DorPatch and baseline attacks, for
a fair comparison. Second, perturbing the whole surface of the
victim object like ShapeShifter [8] requires a much larger patch
budget. Similar to adversarial examples, this can be hard to be
deployed in the physical world, unless the whole image of an
adversarial example is printed out and pasted on the physical
object to launch a physical-world attack, which works only for
static and flat objects but can be hardly deployable for uneven
or live objects (e.g., human faces). DorPatch can still deploy
physical-world attacks for uneven or live objects.

C. Possible Countermeasures

With its attacking power, DorPatch poses a serious threat
to practical usage of DNN models. Our work calls for a great
effort to develop effective countermeasures to thwart DorPatch.
One countermeasure is to apply adversarial training with ad-
versarial examples generated with DorPatch to defend against
DorPatch, which should be effective but the training cost is
high. More effective countermeasures should be developed.

It might be challenging to develop an effective defense
against our DorPatch for general cases. For some special
scenarios, such as recognizing traffic sign images containing
words, we may apply OCR in combination with the clas-
sification model to classify traffic signs, which should be
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able to disable DorPatch unless both the OCR model and
the classification model are used by DorPatch to generate the
adversarial patch.

When there are no effective countermeasures for general
cases, the best protection against DorPatch is to protect the
model from being accessed by adversaries, which can signifi-
cantly lower the risk, since about 54.7% adversarially patched
examples lose their adversarialness when attacking a black-box
model, as we mentioned in Section VII-A1.

D. Spatial Boundedness of Physically Realizable Patches

To launch a physical attack, each segment has to be
accurately placed on the target object, similar to how a local
patch is applied. This involves some additional effort but is
still physically possible. A major challenge is to preserve the
spatial relation of the segments during placement. We address
this in the following manner: we print the patch on adhesive
paper and the patched image that includes both the patch and
the target object on non-adhesive paper. We cut the patch from
the adhesive paper, align it on the non-adhesive paper, and then
align the non-adhesive paper on the target object. After peeling
off the non-adhesive paper, the patch is attached to the target
object. In this manner, attaching the patch to the target only
took 1 to 2 minutes in our experiments.

We can also make the patch resilient to small deviations
in segment positions during placement by introducing a minor
spatial disturbance to each segment when generating a dis-
tributed patch.

We conclude that physical patches are not restricted by
spatial boundaries.

VIII. CONCLUSION

In this paper, we present DorPatch, a novel adversarial
patch attack that can evade both certifiable and empirical
defenses against adversarial patch attacks, while being phys-
ically realizable for launching real-world attacks. DorPatch
applies group lasso to the patch’s mask, and employs image
dropout, density regularization, and structural loss to generate
a fully optimized, distributed, occlusion-robust, and incon-
spicuous adversarial patch that can fool DNN models in the
physical world. We performed comprehensive experiments in
both digital and physical domains to evaluate DorPatch and
compare it with existing typical and state-of-the-art adversarial
patch attacks. Our results show that DorPatch can effectively
evade PatchCleanser, the state-of-the-art certifiable defense,
and empirical defenses against adversarial patch attacks. More-
over, DorPatch can make PatchCleanser certify the wrong
predictions of the adversarially perturbed examples, creating
a false sense of security for the users. DorPatch achieves
the best attack performance and perceptual quality among all
adversarial patch attacks. DorPatch poses a serious challenge
to the practical applications of DNN models and urges the
development of more robust defenses against such attacks.
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