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Typical Adversarial Patch Attacks

* LaVAN: localized patch using prefixed mask:

mAin Laay(Xa)

* LOAP: also optimize patch location via
moving the patch in different directions.

Brown Bear (92.5%) — Baseball (96.4%)

* RP,: generate a distributed graffiti-like
adversarial patch (e.g., sticks)

* |AP: generates an inconspicuous patch with
Adversarial Generative Networks (GAN)




Adversarial Patch Defenses - Certifiable

e PatchCleanser (the state-of-the-art defense)
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Adversarial Patch Defenses - Certifiable

e Assumptions of PatchCleanser

* The model is robust to occlusion of @ Bl EEs aELaal= naleky e atel il Kol aatel
small-size mask at arbitrary locations ) Slelie/kerelerleRle i ae el e celelel el
of an input image of the model’s clean accuracy

* The adversarial patch can be fully
occluded by the mask at an N requires the mask to be large enough to

appropriate location completely cover the adversarial patch




Our Threat Model

White-box access to the DNN
model under attack

Black-box access to potential
defenses against DorPatch

Full access to the DNN model,
including its architecture and
parameters

No knowledge of any defense
(its characteristics or settings)
against DorPatch



Limitations of Existing Adv. Patch Attacks

 Existing adversarial patch attacks typically employ a localized patch.
* Many attacks use predetermined and fixed shape, location, and
size of the patch

* The patch may not be optimal, resulting in a less powerful adversarial
attack

* Adversarial pixels typically located in a small, restricted region

* Exploited by certifiable robustness defenses (e.g. PatchCleanser) to
detect and neutralize adversarial patches



s Distributed Enough to Evade PatchCleanser?

* RP2 uses a distributed graffiti-like adversarial patch
* May not be fully covered by a single mask in PatchCleanser

 Distributed adversarial patch is insufficient to evade PatchCleanser
* The masking operation in PatchCleanser may corrupt the patch,
causing it to lose its adversarialness
e PatchCleanser can predict correctly

* |t cannot make adversarially patched examples certifiable by
PatchCleanser (much harder than causing misprediction)



Distributed

e Widely distributed to prevent being fully occluded by a small exploring
mask

:
Desired

e Robust to partial occlusions at various locations

. e Not only to make PatchCleanser mispredict but also to be certifiably
P ro p e rtl es robust by PatchCleanser

Fully Optimized
Of Patc h e Patch is fully optimized, including its shape, location, and pixel values, to

achieve the most effective attack within a given patch budget

e To enhance the inconspicuousness and avoid being neutralized by image
processing techniques

e Perturbed pixels should result in structural indistinguishability and

e Perceptual masking should be considered when determining the
locations and pixel values of perturbed pixels



Fullfillment of Desired Properties

Attack\Property | Distributed | Robust to | Inconspicuous | Location-optimized
Occlusion

DorPatch

LaVAN

LOAP v
|AP v v

RP, v/ v/
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Achieving Desired Properties in DorPatch

Density Regularization e Distributed

* Goal: To encourage a patch to be widely and uniformly distributed

e Method:

* Use a set of sampling regions, A, to divide an image evenly into
| A | parts

* Make the density of patch pixels in each region similar by
minimizing the standard deviation of the number of patch pixels in
each sampling region over all regions in A

1 2
Lden = mi (M-a—IEaEc,q(M-a))
\ acA
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Achieving Desired Properties in DorPatch
—*— Robust to Partial Occlusions |

* Goal: robust to partial occlusions and certifiably robust 7

Occlusion Set B \
by PatchCleanser [,n - -
* Method: randomly mask out parts of the image during ] -
the patch optimization process:
* Collect a set of possible occlusions, B, such as Iy
squares of different sizes and positions \L A
* Generate )V occluded images, X3,i € [1, V'], from — Selec“’idusw“s and apply
the patched image X, and optimize them together 4 Cecluded Sampies

* Randomly choose n, occlusions from B and
remove the corresponding regions from X, to
obtain each X,
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Achieving Desired Properties in DorPatch

e Group Lasso on Mask g e Fully Optimized

* Goal: fully optimized while physically realizable
* Method

» Patch consists of isolated parts (groups)

e Each group is large enough and has a regular shape

* Agroupis eitherincludedin or excluded from the patch as a
whole

* Apply group lasso to the mask M to enforce group

sparsity, i.e., to minimize the number of groups in the

patch m
Lyrp= ) IMoGyl,
=1
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Achieving Desired Properties in DorPatch

* Goal
* To encourage perturbed pixels to result in continuous and smooth structures

* Method
[ = E 1 E (x; = x;)° : — %)
str = Vi xl x] ng}\lfrki xl x]

XiEXA ijN(xi)

minimal variance loss
» Small when a neighboring pixel has a similar value
» Allows preserving a sharply changing pixel as long
as at least one neighboring pixel has a similar pixel
value (e.g., an edge pixel)

total variation loss:
» Encourages smooth changes
among neighboring pixels
for each perturbed pixel

V;:approximate the local
perceptual masking power
at a pixel x;



Generation of Adversarial Patches

e DorPatch’s optimization problem (together with image dropout)
min Ladv + /11 . Lgrp + Az . Lden + /13 . LStT‘

M,A
s.t. |1 Xa —Xllp <€

* It is a Mixed Integer Programming (MIP) problem
 Mask M consists of Os and 1s: cannot be directly optimized

* Solving it with our two-stage method

e 1ststage: Generate mask

e Relax the binary constraint on M by allowing continuous values in [0, 1] (i.e.,as a
transparency mask) to obtain a fractional mask M

* Threshold M to obtain a binary mask by selecting the groups with the highest values
« 2'd stage: Generate patch’s pixel values
* Fix the binary mask M to determine the optimal pixel values of the adversarial patch.



Attacking Performance against PatchCleanser

CIFAR10 ImageNet
Robust Accuracy (in %) CRPE (in %)
Robust Accuracy (in %) CRPE (in %) PB Attack without PatchCleanser (MS) PatchCleanser (MS)
PB Attack without PatchCleanser (MS) PatchCleanser (MS) Defense 3% 6% 12% 3% 6% 12%
Defense | 3% 6% 12% | 3% 6%  12% DorPatch | 4.4 102 938 112 | 498 449 38.1
DorPatch | 7.6 13.2 132 127 | 406 376 330 LaVAN 6.2 89.1 906 863 | 0.0 0.0 0.0
LaVAN 4.9 98 95.6 94.3 0.0 0.0 0.0 3% LOAP 4.7 89.5 89.9 86.4 0.0 0.0 0.0
3% LOAP 5.3 96.8 964 927 | 0.0 0.0 0.0 IAP 36.7 809 781 781 | 0.0 0.0 0.0
RP> 0.0 777 785 802 | 0.8 0.4 0.4 RP; 0.0 564 584 630 | 08 0.4 0.0
DorPatch | 0.0 00 00 00 788 682 606 DorPatch | 0.8 12 12 12 80.9 69.7 576
LaVAN 0.8 93.1 943 927 | 00 00 00 LaVAN 1.2 828 8.7 8.6 | 00 00 0.0
6% | Loap 0.8 935 935 931 | 00 00 00 6% | LOAP 0.4 829 8.8 848 | 00 00 00
RP> 0.0 607 676 66.8 | 121 121 08 IAP 270 715 7L5 715 1 00 00 00
DorPatch | 0.0 00 00 00 | 99 864 763 RP; 0.0 258 381 432 |27 04 04
LaVAN 0.0 86.6 92.3 935 0.0 0.0 0.0 DorPatch 0.8 1.0 1.0 1.0 87.1 83.1 75.8
12% LOAP 0.0 85.8 92.7 92.7 0.0 0.0 0.0 LaVAN 0.0 76.2 78.1 81.6 0.0 0.0 0.0
RP, 0.0 425 44.9 522 1.6 1.6 04 12% LOAP 0.0 77.4 78.9 78.9 0.0 0.0 0.0
IAP 254 61.1 632 637 | 00 00 00
RP, 0.0 167 198 222 | 55 2.5 0.8
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Perceptual Quality

(a) Origin (b) LaVAN (c) LOAP (d) RP, (e) IAP (f) DorPatch (g) Mask (h) Saliency Map




without PatchCleanser (MS)

Defense 3% 6% 12%
Physical-world Attack Performance X0 Y T 1w

16.0 014 90.4 66.4
0.0 24 1.4 2.1

30° Left 30° Right Bright 0.7m 0.4 m
(a) Original
o . . lIl .
(b) Mask (c) Digital (d) Shooting Angle (e) Lighting Condition (f) Shooting Distance
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Attacking Performance against Adaptive Defenses

Adversarial Training PatchCleanser Using Multiple Masks
» the robust WRN28-4 model from Hydra is » PatchCleanser can be extended to defend against a
adversarially trained using a PGD attack with 50 distributed adversarial patch comprising multiple
steps and an 8/255 L, budget separated subpatches by applying multiple masks
» the robust ResNet110 model from DOA is trained to mask out multiple regions simultaneously
using a rectangular occlusion attack with an 11 X » The number of model inferences explodes
11 rectangle (patch budget=12%) exponentially as number of subpatches increases
Model Patch Budget (in %) :
NI Training Type | 1.3 3 g D Patch Mask Size of PatchCleanser
N Budget 3% 6% 12%
WRN28-4 ormal ‘ 10.8 0.6 0.7 0.1
Adv. Trained 707 573 314 130 3% 163 (+6.1)  15.6 (+45.8)  15.6 (+4.4)
ResNet11o  Norml 11.9 23 12 04 6% 3.1 (+1.9) 3.5 (+2.3) 4.3 (+3.1)
> Adyv. Trained 647 296 70 09 9% 2.4 (+1.4) 2.4 (+1.4) 3.2 (+2.2)

CIFAR10 ImageNet
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Conclusion

* A novel adversarial patch attack, DorPatch, that can evade both certifiable and empirical
defenses against adversarial patch attacks, while being physically realizable for launching
real-world attacks

* Applies group lasso to the patch’s mask, and employs image dropout, density regularization, and structural
loss to generate a fully optimized, distributed, occlusion-robust, and inconspicuous adversarial patch

 Comprehensive experiments

* DorPatch can effectively evade PatchCleanser, the state-of-the-art certifiable defense, and empirical defenses
against adversarial patch attacks

* Moreover, DorPatch can make PatchCleanser certify the wrong predictions of the adversarially perturbed
examples, creating a false sense of security for the users

* DorPatch achieves the best attack performance and perceptual quality among all adversarial patch attacks

* DorPatch poses a serious challenge to the practical applications of DNN models and
urges the development of more robust defenses against such attacks
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