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Abstract—In this paper, we propose VETEOS, a static vetting
tool for the “Groundhog Day” vulnerabilities in EOSIO contracts.
In a “Groundhog Day” attack, culprits leverage the distinctive
rollback issue in EOSIO contracts, which allows them to per-
sistently execute identical contract code with varying inputs. By
using the information exposed in prior executions, these attackers
unlawfully amass insights about the target contract, thereby
figuring out a reliable method to generate unauthorized profits. To
tackle this problem, we formally define this unique vulnerability
as a control and data dependency problem, and develop a custom
static analysis tool, VETEOS, that can precisely discover such
bugs directly from EOSIO WebAssembly (WASM) bytecode.
VETEOS has detected 735 new vulnerabilities in the wild and
outperforms the state-of-the-art EOSIO contract analyzer.

I. INTRODUCTION

EOS [10] has become one of the major cryptocurrencies,
with a market cap of 1.3 billion USD. Its official blockchain
platform, EOSIO, provides an industry-leading transaction
throughput – it processes around 4000 transactions per second
(TPS), while Ethereum only has a transaction speed of 30
TPS. This is because EOSIO uses a “delegated proof-of-stake
(DPoS)” [4] mining system rather than the traditional “proof-
of-work (PoW)” [40] mechanism. Hence, EOSIO has the
unique ability to enable high performance applications. EOSIO
smart contracts, the building blocks of EOSIO applications,
thus have attracted special attentions. Meanwhile, previous
studies [18], [19], [7], [36], [30] have strived to comprehend
and identify security vulnerabilities within EOSIO contracts.

In this paper, we propose VETEOS, a static vetting tool
for the Groundhog Day1 vulnerabilities (or GDV) in EOSIO
contracts. In a Groundhog Day attack (or GHD attacks), adver-
saries can exploit the unique rollback problem [18] in EOSIO
contracts to retry executing the same contract code repeatedly
with different inputs. With leaked information observed during
previous executions, attackers illegally accumulate knowledge
about the victim contract, so as to learn how to make illicit
profits in a deterministic manner. This kind of attacks may

1Groundhog Day is a 1993 film, where a weather reporter finds himself in
a time loop on Groundhog Day; the day keeps repeating until he gets it right.

generally affect a broad spectrum of financial applications,
such as sealed-bid auctions [39], double auctions [38], stock
exchanges [6], casino number guessing game [18], etc., where
internal contract states must be kept secret.

To our study, there exist four enabling factors in such an
attack. (F1) Revertable: A sequence of activities in one EOSIO
transaction can be reverted entirely by a malicious contract
user. (F2) Unpredictably profitable: It is unpredictable what
inputs can lead a user to make profits legally from a victim
contract. (F3) Information leakage: A reverted transaction can
change an internal state which however can be observed by
external attackers. (F4) Causal inference: A leaked state can
be leveraged by attackers to infer whether a specific input can
make a profit.

Unfortunately, existing EOSIO contract analyzers [18], [7],
[19] cannot completely or precisely detect such vulnerabilities,
fundamentally due to their insufficient problem modeling. Prior
work, such as EOSAFE [18], models this vulnerability largely
as a “rollback” issue (F1). In contrast, it examines F2 in an
ad-hoc manner and only searches for special instances such as
apps with random number generators. Furthermore, it does not
discuss how internal contract states can be disclosed (F3) and
does not adequately capture the causal relation (F4) between
leaked information (F3) and profitability (F2).

To address this limitation, we propose to formally model a
Groundhog Day vulnerability based upon these four critical
factors. We further translate this abstract high-level model
to concrete low-level detection specifications, and develop
custom static analysis techniques to automatically identify such
vulnerability patterns from EOSIO WebAssembly bytecode.

Our work makes three folds of contributions. First, we
systematically studied real-world Groundhog Day problems in
EOSIO contracts and gained an important insight: this class of
vulnerabilities lies in intrinsic data and control dependencies
among key contract constructs, such as user inputs, global
states, database tables, API return values and inlined action
calls. Second, we developed a custom static analysis tool that
can perform context-sensitive flow-sensitive interprocedural
dataflow analysis on EOSIO WebAssembly bytecode. To do
so, we designed new algorithms to address EOSIO contract-
specific challenges such as application-level entry points, in-
direct and implicit action calls, reordered dataflow due to
delayed action execution and cross-action dataflow through
database table accesses, and implemented new techniques to
handle the distinct memory model and calling convention
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1 void apply(uint64_t receiver, uint64_t code, uint64_t
action) {

2 // action redirection
3 if (action == name("func1").value) {
4 eosio::execute_action(eosio::name(receiver), eosio::

name(code), &mycontract::func3);
5 }
6 else if (action == name("func2").value) {
7 eosio::execute_action(eosio::name(receiver), eosio::

name(code), &mycontract::func4);
8 }
9 ...

10 }

Fig. 1: Example of apply() Function

used in EOSIO bytecode. Last but not least, we implemented
a prototype, VETEOS, in 5,893 lines of Python code. We
applied VETEOS to 60,577 real-world EOSIO contracts and
discovered 735 novel vulnerabilities. Our evaluation showed
that VETEOS significantly outperformed the state-of-the-art
detector EOSAFE, as VETEOS can reduce 79.8% of false
positives that cannot be precisely recognized by the prior
work. Our code, documents, and experimental data are publicly
available at: https://github.com/HKJL10201/VetEOS.

II. BACKGROUND

EOSIO Contracts. EOSIO contracts are computer pro-
grams running atop EOSIO blockchains. They are written in
C++, compiled to WebAssembly (or WASM) bytecode, and
running in EOSIO VMs, stack-based virtual machines. Unlike
Ethereum contracts which are independent entities, an EOSIO
smart contract must be associated with an EOSIO account
and is automatically triggered when the account is invoked
by another. When being triggered, an apply() function (ex-
emplified in Figure 1) will be called. This function serves as a
“dummy” starting point of an EOSIO contract and can further
dispatch an external request to a specific function, called an
action, based upon a given action name. Note that, the target
action name does not have to match the requested one – the
apply() function essentially performs a dictionary lookup and
redirects the requested action to an existing function defined
in the contract. For instance, in Figure 1, when the action
func1() is requested, the apply() function will instead make
a call to another action func3().

Inline Action Sequence in One Transaction. Multiple
actions can be performed in one single EOSIO transaction.
This is achieved by making inline action calls. An inline
action is in fact an implicit function call where contract and
action names can be dynamically assigned at runtime. Figure 2
illustrates how to make an inline call to the transfer()
action in the eosio.token contract so as to transfer tokens
from a sender to a recipient. An inline action must be a tail
call invoked at the end of another action, regardless where it is
situated in a function. This is to ensure that all the statements
in the previous action can be executed before moving to the
next action. When a transaction is reverted, all the actions
performed in this transaction will be reverted.

EOSIO Payment and Notification. Among all EOSIO
contracts, eosio.token is a special system contract that
allows users to create, issue, and manage tokens for EOSIO
blockchains. For instance, one can check her own account
balance by invoking the eosio.token::get balance()
function. Particularly, all funds (token) transfers in EOSIO

1 void refund(eosio::name payee) {
2 eosio::name code = name("eosio.token");
3 eosio::name action = name("transfer");
4 action(
5 // permission level
6 permission_level{get_self(), "active"_n},
7 code, // target contract
8 action, // target action
9 std::make_tuple( // transaction data
10 get_self(), // token sender
11 payee, // token receiver
12 asset(10000, // token amount
13 symbol("SYS", 4)), // token symbol
14 std::string("refund")) // transaction memo
15 ).send();
16 ...
17 }

Fig. 2: Example of Inline Action Calls

systems must be realized using this contract, and therefore
are essentially implemented in an asynchronous manner. To
send tokens to a target account, an initiating account must
make a call to the eosio.token::transfer() action, which
will then update the balances of both accounts accordingly.
Upon completion, this system contract will notify the sender
and the recipient, and the notifications will be handled by the
apply() functions in both contracts. This, however, leaves
malicious users a window for launching the so-call “rollback”
attacks [18]. Because the token transfer and the notification
handling happen in the same transaction, a malicious notifica-
tion receiver, can thus intentionally revert an already executed
funds transfer – and potentially a series of previous actions in
this transaction – by simply invalidating the notification via
calling the eosio assert() function in her apply() code.

EOSIO Table. The system contract eosio.token stores
account balances in a persistent database storage. Such a
database is accessible through the EOSIO Table interface.
In fact, these database tables can be used by any EOSIO
contracts to permanently maintain states even after the contract
ends. This is a very useful feature for financial applications
to synchronize states among multiple transactions. Although
individual action calls (or transactions) are independent from
each other and therefore by nature stateless, they all belong
to the same stateful application logic and thus must share
common data. Particularly, smart contracts often leverage
tables to create and manage private accounts (as opposed to
public accounts maintained by the system contract) and thus
can allow users to directly work with the application contracts
using their virtual accounts. Similar to any relational database
tables, an EOSIO table is indexed by its primary key which
must be defined when creating a table scheme. To access a
table entry, a key is needed to reference its corresponding row.

WebAssembly Linear Memory Model. Another shareable
data structure among action calls is the linear memory adopted
by WebAssembly. Essentially, the linear memory is an array
of bytes which can be accessed by any action calls. Actions
use the linear memory to pass arguments and allocate local
variables. In principle, this linear memory can also be used
to store global variables for maintaining states across trans-
actions. However, in practice, due to its volatile nature, it is
unlikely that applications leverage the linear memory to persist
long-term data such as account balances.

Authorization Check. Activities in EOSIO contracts, such
as action calls, table accesses, can all be protected by au-
thorization checks. An authorization check can be placed in
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any action or regular function to verify whether callers have
sufficient permissions to make such a call. For instance, a
critical action such as deleting accounts should be only invoked
by its contract owner; then this action must be protected by
this check: require auth(get self()). In the case where
each user is allowed to access solely her own personal account,
the action to read users’ account balances must verify that the
caller’s identify matches that of the account owner.

Resource Model. The EOSIO resource model forms the
backbone of resource allocation and management on the EO-
SIO blockchain platform. This model centers on three vital
resources, CPU, NET and RAM, where CPU and NET are
essential for executing transactions. Contract owners or trans-
action senders are required to stake EOS tokens to exchange
these resources and determine the amount of CPU and NET
resources at their disposal [22], [12]. Unlike the “gas” fees that
are charged by Ethereum to execute individual instructions,
staked tokens are not “spent” but are rather “locked” for a
certain period. After this period, or once certain conditions are
met, the tokens can be “unstaked” and returned to the user’s
control. Therefore, the staked tokens are reimbursable.

Secrecy in Smart Contracts. While blockchain data is
inherently public, EOSIO contracts can incorporate methods
to maintain secrets. (1) In-memory Secrets. Contracts can
obtain unforeseen user inputs (e.g., bid prices) at runtime, or
dynamically generate random numbers, leveraging blockchain
properties, such as tapos block num, that are not easily
predictable [17]. These secrets are used immediately within
the contract code for condition checks and are not stored on
the blockchain, preserving their confidentiality. (2) Hashing
Techniques. Borrowing from the principles of password man-
agement, EOSIO contracts can store a hash of a secret rather
than the secret itself on a blockchain (e.g., in EOSIO tables). It
is virtually impossible to recover the original information from
its hash. For instance, a sealed-bid auction can be conducted
using the hashes of secret bids [29]. This process unfolds
in two phases. During the “bidding” phase, each participant
submits the hash of their bid along with a cryptocurrency
deposit that matches or exceeds the value of the actual bid.
Then, the later “revealing” phase allows participants to disclose
their original bids. The integrity of these bids is confirmed by
comparing them with the hashes submitted earlier.

III. GROUNDHOG DAY VULNERABILITY

A. Secret Revelation via Unlimited Free Trials

Many financial applications depend on time-sensitive se-
crets. These secrets cannot be disclosed before a transaction
has completed. Otherwise, it will cause unfairness issues.
For instance, in a blind auction (or first-price sealed-bid
auction) [39], bidders only know whether they were the best
but do not see others’ bids. However, if the current highest bid
is leaked to a bidder, she can thus maximize her profit, unfairly,
by placing a bid that barely exceeds the previous one. Another
example is the lottery game where players must guess a secret
number to win. Similarly, such a game becomes compromised
if the hidden number is revealed prematurely to any players.

To reveal such secrets, malicious contract users can simply
perform black-box testing and eventually find the exact input
that leads to expected profits. For instance, in a blind auction,

…

user input

payToPlay()

actionT2m actionT2nwriteState()

notify()

checkCondition(in,cond)

readState() actionT3m actionT3n

createSecret() actionT1m actionT1n

secret

global state

T1

T2

T3 … ……

……

Fig. 3: Groundhog Day Vulnerability

a bidder can start with a high bid and gradually reduce her bid
price to reach the “lowest” winning price. Note that, attackers
do not need to understand the type of secrets they are probing.
All they need is to pass the critical condition check against a
secret and thus execute the “profitable” path.Normally, this
brute-force attack is infeasible as every attempt has a non-
negligible cost. However, because the “rollback” problem [18]
in EOSIO contracts essentially allows unlimited free trials,
such an exploit thus becomes possible. Of course, reverting
a transaction alone does not sufficiently enable attackers to
identify hidden secrets, since the outcome of the reverted
transaction (i.e., whether a given input can make a profit) may
not be revealed unless the transaction successfully completes.
Hence, to uncover contract secrets during unlimited rollbacks,
a Groundhog Day vulnerability must be in place.

B. Groundhog Day Attack Transactions

Figure 3 illustrates a typical Groundhog Day vulnerability.
Here, solid lines represent control flows and curved dotted lines
indicate dataflows. Ovals are actions or functions; octagons are
global variables; gray arrows are transactions. At least three
transactions are needed to enable this attack. First, a vulnerable
contract must generate a secret via an earlier transaction T1.
Such a secret can be derived in different ways. For instance, it
can be directly created by the contract as a random number or
a constant in a number guessing game; it can also be provided
by a third party as an external user input – for example, the
highest bid in a blind auction. Once a secret has been created,
it can be directly used for comparison, or stored in a globally
accessible region (e.g., linear memory or database tables) and
later used by other actions to perform condition checks.

The second transaction T2 is triggered and eventually
reverted by an attacker to mount the attacks. It contains the
core activities that enable threat actors to conduct black-box
testing. Note that these activities can be implemented in either
one or multiple EOSIO actions. Without loss of generality,
in Figure 3, we illustrate them as several individual actions.
This sequence of actions begins with an entry point function
payToPlay() that allows a user to pay to participate in
the contract activity such as gambling, auction, etc. This ini-
tial payment through a call to eosio.token::transfer()
can cause changes to the user’s account balance. While the
payment has been accepted by the contract, the user’s input
(e.g., a lot, a bet or a bid) will also be received by the
contract and stored in memory. Then, the user input will
be compared with the previously generated secret by the
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checkCondition(in,cond), and the result will be used to
decide whether the “profitable” branch will be taken. If the
“winning” condition is satisfied, the contract will need to
update a global state via writeState(). This state can be the
balance of the winner’s official eosio.token account or her
virtual account maintained locally by the contract via database
tables. It may also be simply a global variable indicating the
current winner. In the end, the contract notifies the participant
(i.e., notify()) that the transaction has completed. By han-
dling this notification, an attacker can intentionally rollback
the entire transaction and decline all the actions in the T2.

Additionally, the attacker must execute the third transaction
T3 to observe the changes to the global state. This is critical
because the result of T2 may be invisible to her since the
transaction will not complete. Hence, this exposed information
becomes the only chance for the attacker to understand whether
her prior result has met her expectation and thus to adjust
her strategy accordingly. Note that while reading a user’s
own account balance is in general allowed, accessing internal
contract state such as the highest bidder may require certain
permissions. In such cases, a GHD attack will only be possible
if a necessary permission check, e.g., require auth(), is
accidentally missing or misused in the “readState” action. Also
notice that, the timing at which the attacker checks the global
state matters because the observed transaction T2 may update
the global state multiple times and only the specific state after
the condition check can actually reflect its result. The attacker
thus may need to check the global states several times and
perform a differential analysis to detect any changes.

C. Formal Definition

Definition 1: A Groundhog Day vulnerability (GDV) in
EOSIO contracts allows an attacker to indefinitely re-execute a
transaction without any cost so that she can eventually identify
the exact contract input that deterministically maximizes her
profits. Hence, the existence of such a vulnerability depends
on four key factors:

• (F1) Revertable: A sequence of activities locate in a single
transaction that can be reverted entirely, so that a malicious
user can rerun it unlimitedly for free.

• (F2) Unpredictably profitable: Whether one can make
profits legally from a vulnerable contract is unpredictable.
It relies on a secret condition the contract uses to evaluate
participants’ inputs.

• (F3) Information leakage: A state is changed in the middle
of the revertable transaction. The state change is visible
outside this transaction.

• (F4) Causal inference: The change to the visible state is
caused by the invisible comparison between a user input and
the secret, and can be used to infer the comparison result.

Based upon this definition, to determine whether an EO-
SIO contract is vulnerable to a Groundhog Day attack is
equivalent to finding control and data dependencies that
can fulfill the four requirements. For instance, in Figure 3,
to satisfy F1, one must identify the inter-procedural con-
trol flow payToPlay() → writeState() → notify()
in the transaction T2. In the meantime, F2 indicates two
inbound dataflows for the comparison in T2: payToPlay()
⇝ user input ⇝ checkCondition() and T1 ⇝ secret

Algorithm 1 Detection of Groundhog Day Vulnerabilities
1: procedure CONTAINSGDV(c)
2: WR← FINDWRITESTATE(c)
3: for ∀wr ∈WR do
4: gs← GETGLOBALSTATE(wr)
5: if ISTOKENACCOUNT(gs) or ISREADABLE(gs, c) then
6: ep← FINDENTRYPOINT(wr)
7: if LEADTONOTIFY(ep) then
8: in← GETUSERINPUT(ep)
9: USE← DODEFUSECHAINANALYSIS(in)

10: for ∀use ∈ USE do
11: if ISCONDITION(use) and ISPRED(use, wr) then
12: return true
13: end if
14: end for
15: end if
16: end if
17: end for
18: return false
19: end procedure

⇝ checkCondition(). F3 requires a dataflow from T2 to
T3: writeState() ⇝ global state ⇝ readState(), while
F4 can be represented as the control dependency between
checkCondition() and writeState().

Why Existing Work Fails. A Groundhog Day attack is
built atop the rollback issues but is far more complex than
a basic rollback attack. Fundamentally, this is because such
attacks aim to make profits from vulnerable financial apps in
a deterministic and general manner and therefore require a
series of delicate program dependencies. Thus, while state-of-
the-art analyzers [18], [7], [19] can effectively detect rollback
issues, they cannot precisely or completely capture the GDVs.

IV. DETECTION METHOD

A. High Level Idea

At a high level, we detect the Groundhog Day vulnerabili-
ties based upon the aforementioned control and data dependen-
cies. Algorithm 1 illustrates our high-level idea. Particularly,
given an EOSIO contract c, we first scan the entire contract
to identify all the instructions WR that write global states.
Then, for each instruction wr in this set, we obtain the global
state gs it updates. We further check whether this state is also
readable. This is equivalent to checking whether (a) this state
is a user’s eosio.token account balance that can be acquired
by the user herself through a get balance() call, or (b) it is
contract-wide global variable (often a database table) that can
be readable through an external interface within the contract.

If either condition is satisfied, this global state can be
leaked at runtime. We thus investigate whether the leaked state
can be leveraged by adversaries to find a good input. To this
end, we search for the entry point ep of the wr instruction.
Such an entry point must be an action that allows users to
start a transaction with user-specified inputs and that eventually
notifies users of the result of a game. Hence, from the entry
point, we can obtain the user input in and perform def-use
chain analysis to discover all the uses USE of this input.
We then examine each use statement in the USE set. If it
is a conditional statement and meanwhile a predecessor of the
state update wr, that means the changes to the global state
are actually caused by user inputs, and therefore the leakage
of this state information is indeed helpful to attackers. As a
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1 class [[eosio::contract]] gambling:public eosio::contract{
2 public:
3 using eosio::contract::contract;
4 [[eosio::action]] void reveal(eosio::name username, std

::string user_input) {
5 action(permission_level{"gambling"_n, "active"_n},
6 "gambling"_n, "getbalance"_n,
7 std::make_tuple(username)).send();
8 ...
9 uint64_t secret = getSecret();

10 if (checkCondition(user_input, secret)) {
11 writeState(username, state);
12 createSecret(); ...
13 }
14 notify(username, message);
15 }
16 [[eosio::action]] void getbalance(eosio::name username){
17 require_auth(get_self());
18 uint64_t balance = readState(username);
19 ...
20 notify(username, message);
21 }
22 [[eosio::action]] void myreveal(eosio::name username,

std::string user_input) { ... }
23 private:
24 uint64_t getSecret();
25 void createSecret();
26 bool checkCondition(std::string user_input, uint64_t

secret);
27 void writeState(eosio::name username, uint64_t state);
28 uint64_t readState(eosio::name username);
29 void notify(eosio::name username, std::string message);
30 ...
31 using balance_index = eosio::multi_index<"balances"_n,

balance>;
32 };
33
34 void payToPlay(const transfer_data &transfer) {
35 ...
36 eosio::name contract_name = name("gambling");
37 eosio::name action_name = name("myreveal");
38 action(permission_level{"gambling"_n, "active"_n},
39 contract_name, action_name,
40 std::make_tuple(transfer.from, transfer.memo)).send();
41 }
42
43 extern "C" void apply(uint64_t receiver, uint64_t code,

uint64_t action) {
44 if (code==receiver && action==name("myreveal").value)
45 eosio::execute_action(eosio::name(receiver), eosio::

name(code), &gambling::reveal);
46 else if (action == name("getbalance").value)
47 eosio::execute_action(eosio::name(receiver), eosio::

name(code), &gambling::getbalance);
48 else if (code == name("eosio.token").value && action ==

name("transfer").value)
49 payToPlay(unpack_action_data<transfer_data>());
50 }

Fig. 4: An Example of Gambling Contract

result, we can return true at this point. Eventually, if we do
not identify any “true” patterns, we return false.

B. Technical Challenges

While the high-level detection algorithm is straightforward,
several technical challenges must be addressed. To explain
these challenges and our solutions, we present a concrete
example as depicted in Figure 4. This example illustrates
an EOSIO contract implementing a gambling game. This
code allows any player to place a bet in a number guessing
game via sending EOS tokens to the contract’s account us-
ing eosio.token::transfer() (LN48). Upon a successful
funds transfer, the eosio.token contract will send a notifi-
cation to this contract, which will be handled by the apply()
function (LN43). This then triggers the payToPlay() function
(LN34) which will further call the reveal() action (LN4)

action
(...,.

..,act
ion_na

me,...
).send

();

payToP
lay(..

.);

execut
e_acti

on(...
,...,&

gambli
ng::re

veal)

writeS
tate(.

..);

apply() payToPlay()

apply() reveal() writeState()

if (... && action == name("myreveal").value)
eosio::execute_action(...,...,&gambling::reveal);

uint64_t action_name = "myreveal"_n;

Fig. 5: Attack Flow in the Gambling App

to check the player’s bet against the predefined “secret”. If
the two numbers match, the contract will update the player’s
“status” – e.g., sending the winner’s prize to her account.
Regardless of the player’s outcome, the contract will send a
notification to inform her of the result.

Note that, while we aim to automatically analyze EOSIO
WASM bytecode, for the readability purpose, we present
the contract in C++ source code. Particularly, this con-
tract contains a “dummy” entry point function apply()
(LN43), an internal function payToPlay() (LN34) as
an event handler for inbound token transfers, three pub-
lic actions: reveal(), getbalance() and myreveal()
(LN4-22), and several private member functions includ-
ing getSecret(), createSecret(), checkCondition(),
writeState(), readState() and notify() (LN24-29).
Actions can be invoked directly by external parties while
private functions can only be triggered internally. The contract
also maintains a contract-wide database balances (LN31)
accessible by the writeState() and readState() functions
(LN27-28), which are further illustrated in Figure 6.

By applying Algorithm 1, we hope to first identify the
call to the writeState() function (LN11) which changes
the global balances state. Starting from this call, we trace
back to discover its entry point: the if-clause for payToPlay()
in the apply() where every player’s input – including the
sender (e.g., from) and recipient (e.g., to) of a funds transfer,
the transferred token quantity and the additional memo (e.g.,
the guessed number) – is encoded in a transfer data
(LN49). Then, from this entry point, we perform a forward
data and control-flow analysis to find that the user input
(transfer.memo) is being checked against a potential secret
(LN10) to determine whether the player wins. If so, the
player’s account status will be updated by the writeState().
In the meantime, the state change can be leaked through a call
to readState(), which in this case is automatically invoked
(LN5) each time a new bet is placed.

Nevertheless, to achieve the expected analysis result, sev-
eral unique challenges must be addressed.

C1: Correctly identifying application entry points so as to
capture required vulnerability factors.

Entry point identification plays a crucial role in reveal-
ing potential attack flows in EOSIO apps. For instance, in
the motivating example, we may detect the existence of the
Groundhog Day vulnerability, only if we can correctly recog-
nize the entry point of the function for updating account states
(i.e., writeState()) to be the function payToPlay(), as
illustrated in Figure 5. This is because payToPlay() is a nec-
essary step to satisfy two required vulnerability factors: (a) it
accepts players’ bets and thus makes the contract unpredictably
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profitable (F2); (b) it initializes players’ account states based
upon their transferred funds, and therefore allows attackers to
later observe possible state updates (F3 Information leakage).

C2: Soundly tracking control flows through implicit and
indirect calls to complete callgraphs.

To find the entry point of writeState(), we need to
perform callgraph analysis. In this case, eventually, we expect
to identify this call chain: apply() → payToPlay() →
apply() → reveal() → writeState(). As illustrated in
Figure 5, this call chain contains direct calls (solid arrow),
indirect calls (blue dotted arrow) and implicit calls (red dotted
arrows). Specifically, the indirect call from payToPlay()
to apply() is triggered via passing a function reference
&gambling::reveal to the eosio::execute action()
API. Meanwhile, the reveal() action is implicitly in-
voked by the apply() function in a “reflective” manner
– an action name string is fed into an inline action call
action().send() as an argument.

However, traditional callgraph analysis only discovers ex-
plicit caller-callee relations but does not identify these in-
direct or implicit calls. If either of the two links is bro-
ken, one will fail to uncover the causal relation among
payToPlay(), reveal() (which calls checkCondition())
and writeState() that fundamentally forms a Groundhog
Day bug. Furthermore, to accurately address implicit inline
action calls, it is also crucial to correctly handle the unique
dynamic dispatch mechanism used in the custom apply()
function. As shown in Figure 5, while the reveal() ac-
tion is invoked by an inline call from payToPlay(), the
action name specified in the call is actually not “reveal”
but “myreveal”. It is the handler code in the apply() that dis-
patches the “myreveal” request to the &gmabling::reveal
reference. In fact, there is indeed an action myreveal() in this
contract. Without interpreting the dispatcher code, a callgraph
analysis will miss this redirected call to the reveal() action.

C3: Accurately establishing data dependencies due to
delayed execution of inline action calls.

Regardless of where an inline action is being invoked
within a function, it will be executed last, following the
execution of all other statements in the function. Unfortunately,
conventional dataflow analysis does not recognize such a
reordering in the control flow, and therefore fails to cor-
rectly discern the data dependencies between the inline call
and the remaining components of the function. For instance,
in the reveal() action (Figure 4), the delayed execution
of the inline call to getbalance() in effect allows it to
access the newer account state which may have been up-
dated by writeState(). However, because this inline call
seems to happen before writeState() from a traditional
control-flow perspective, existing dataflow analysis techniques
– without specifically handling the delayed inline call – will
mistakenly consider that users cannot obtain their updated
account states from this call and therefore cannot infer whether
their inputs have passed the condition check. Note that, the
getbalance() action cannot be called directly by any arbi-
trary users because it is protected by a strict permission check
that requires the caller to be only the contract itself. As a result,
this getbalance() inline call within the reveal() action,
invoked by the contract, is the only opportunity for attackers

1 void writeState(eosio::name username, uint64_t state) {
2 ...
3 balance_index balances(get_self(), get_self().value);
4 auto iterator = balances.find(username.value);
5 if (iterator == balances.end()) {
6 balances.emplace(get_self(), [&](auto &row) {
7 row.key = username;
8 row.amount = amount; });
9 }
10 else {
11 balances.modify(iterator, get_self(), [&](auto &row) {
12 row.key = username;
13 row.amount = amount; });
14 }
15 }
16 uint64_t readState(eosio::name username) {
17 balance_index balances(get_self(), get_self().value);
18 uint64_t amount = 0;
19 auto iterator = balances.find(username.value);
20 if (iterator != balances.end())
21 amount += iterator->amount;
22 return amount;
23 }
24 struct [[eosio::table]] balance {
25 name key;
26 uint64_t amount;
27 uint64_t primary_key() const { return key.value; }
28 };
29 using balance_index = eosio::multi_index<"balances"_n,

balance>;

Fig. 6: writeState() and readState()

to read their account states. Subsequently, the misconception
that this inline call is unable to retrieve account updates can
result in a detector overlooking this vulnerability.

C4: Tracking dataflow across actions via global database
table accesses.

EOSIO contracts use persistent storage, database tables, to
maintain and share contract-wide states. Hence, we must cap-
ture dataflow through these unique programming constructs.
Figure 6 illustrates an example where writeState() and
readState() have data dependencies due to a shared EOSIO
table. In particular, this code declares a multi-index table,
as balance index. This table is named “balances” and
configured to use the balance data structure. The balance
struct contains two fields: an EOSIO name object key and an
unsigned integer-typed amount. A primary key() function
is also defined for this struct to identify the key of the
database table. Consequently, balance index can be used to
create references to the table that maps users to their account
balances. Then, when accessing the table, one needs to use
the find(key) API to locate the corresponding entry and
use the iterator API to read (e.g., iterator→amount)
or write (e.g., modify(iterator,...)) the entry. Hence,
to precisely detect the dataflow through an EOSIO table, we
must verify that multiple table access operations – such as
table1.find(key1) and table2.find(key2) – read/write
the same database table and the identical table entry.

C. Analysis Method

To address the aforementioned challenges, we develop our
custom entry point discovery and dataflow analysis techniques.

a) Entry Point Discovery: Entry point identification has
been a well-studied problem for event-driven programs such as
Android apps [23] or industrial controller routines [41]. For in-
stance, the state-of-the-art work CHEX [23] proposes to model
an entry point of an Android program as a method that is not

6



being called internally. Conceptually, we can follow the same
idea to detect entry points of EOSIO apps. Nevertheless, in
practice, we must precisely and completely identify the unique
mechanisms, in the new context EOSIO contracts, that are
used to make function calls. Particularly, in conventional event-
driven programs, externally-facing functions such as GUI event
handlers are typically not invoked from within application
code and thus can be easily identified as entry points. In
contrast, external interfaces in EOSIO smart contracts – actions
– can still be called internally in an either direct, indirect or
implicit manner. Hence, it is inadequate to simply consider
external-facing actions to be entry points. In contrast, an
internal function in EOSIO contracts may also serve as an
entry point, as long as it is only invoked by apply() due
to an eosio.token::transfer(). In fact, in the motivating
example, if we mistakenly treat the reveal() action, instead
of payToPlay(), as the entry point of writeState(), our
vulnerability analysis will miss the critical factors that can only
be found in payToPlay().

Consequently, to capture the entirety of potential attack
flows in an EOSIO application and thus be able to discover
sufficient vulnerability patterns, we must precisely define an
entry point for an EOSIO contract. Such an entry point must
indicate the starting point of the application business logic,
such as the payToPlay() of a gambling game, rather than an
intermediate step (e.g., the reveal() function):

Definition 2: An entry point of an EOSIO application is
either an EOSIO action that is not invoked directly, indirectly
or implicitly by any other functions or actions in the same app,
or an internal function that is solely triggered by the apply()
function to handle the token transfers from the system contract.

Based upon this definition, to identify entry points, we must
discover and inspect all types of action calls in addition to
traditional callgraph analysis. To this end, we have summarized
the different mechanisms that can be used to make action calls,
as depicted in Table I. In general, an EOSIO action can be
(1) called directly – the same way as regular function are
called, (2) invoked indirectly using a function reference, or
(3) triggered implicitly in a “reflective” manner. Any action
call may be redirected to a concrete target via a (4) dis-
patcher handler. Thus, we must handle individual methods of
action calls differently. While direct call targets can be simply
resolved using conventional callgraph analysis, we perform
custom pointer analysis to identify the targets of indirect calls,
and use string analysis to interpret implicit “reflective” calls
as well as connecting an implicit caller to an actual callee.

Our custom pointer analysis is based upon the call indirect
mechanism used in EOSIO bytecode. This special instruction
makes an indirect call according to its integer argument,
representing an index of a function. We perform backward
dataflow analysis at each callsite to identify a constant source
of its index value, and check the function table stored in the
WASM file to determine the call target. Our string analysis
follows Christensen et al.’s classic algorithm [8]. The general
idea is that a series of string operations can be translated
into an automaton and possible string values at a certain
point of interest – e.g., the action name being called – must
be accepted by this automation. More concretely, starting
from a string initialization (e.g., constant) of interest, we
first build a flow graph [8] that captures data dependencies

Algorithm 2 Entry Point Discovery
1: procedure FINDENTRYPOINTS(poi)
2: EP← ∅
3: Q← ∅
4: Visited← ∅
5: Q.ENQUEUE(HOSTFUNC(poi))
6: while Q.ISNOTEMPTY() do
7: f← Q.DEQUEUE()
8: Visited← Visited ∪ f
9: Clr← (DIRCLR(f) ∪ INDIRCLR(f) ∪ IMPCLR(f))− Visited

10: if Clr = ∅ then
11: EP← EP ∪ f
12: else if Clr = {apply(, eosio, transfer)}∧!ISACTION(f) then
13: EP← EP ∪ f
14: else
15: Q.ENQUEUE(Clr)
16: end if
17: end while
18: return EP
19: end procedure

TABLE I: Action Call Methods
Category Example Required Analysis
Direct call reveal(); Callgraph analysis
Indirect call execute action(...,...,&gambling::reveal); Pointer analysis
Implicit call action(...,...,‘‘myreveal’’ n,...).send(); String analysis
Dispatching if(action==name(‘‘myreveal’’).value) execute action(); String analysis

among string operations in the bytecode. Next, we transform
the graph to a context-free grammar, and utilize the Mohri-
Nederhof [25] algorithm to approximate this grammar with a
regular grammar, and finally extract automata from the latter.
Our analysis handles major string operations, defined either in
eosio::string or the standard C++ library std::string,
including append(), insert(), substr() and replace().

With our pointer and string analyses, we can discover
complete caller-callee relations in an EOSIO contract and
address C2. Then, we develop the algorithm to explore the
entry points for a given point of interest in a contract, as
shown in Algorithm 2. This algorithm FindEntryPoints()
takes a point of interest poi as an input and discovers all the
contract entry points EP that lead to this point. It first initializes
three empty sets: the entry point set EP, a work queue Q and
a set of visited functions Visited. Next, it inserts the host
function of poi into Q and starts to process every function in
the queue until the queue becomes empty. In each iteration,
we fetch one function f from the queue and add it to the
Visited set. Then, we compute the unvisited direct callers
DirClr(), indirect callers IndirClr() and implicit callers
ImpClr() of the function f. If the result Clr is an empty set,
the current f is then identified as an entry point and added to
EP. Or, if Clr contains only the apply() function triggered
by eosio.token::transfer(), and f is not an action, we
also consider f to be an entry point. Otherwise, we add Clr
into the work queue for further processing. Eventually, when
no new function need to be examined, we reach a fixed point
and output EP. Thus, C1 is finally addressed.

b) Cross-Action Dataflow Analysis: The unique chal-
lenges for analyzing dataflow in EOSIO contracts originate
from the special interactions among actions. While dataflow
within each action can be adequately addressed by classic
def-use chain analysis, capturing the dataflow across multiple
actions requires accurate modeling of action ordering. This
determines whether and how information can flow from one
action to another through a shared database table.
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action: eosio.token::transfer

payToPlay(&transfer)
action(,,”myreveal”_n,std::make_tuple
(transfer.from,transfer.memo)).send()

action: gambling::reveal
reveal(username,user_input)

action(,,”getbalance”_n,std::make_
tuple(username)).send()

balance_index balances;
iter=balances.find(username.value);
balances.modify(iter,,{});

checkCondition(user_input,secret)

action: gambling::getbalance

getbalance(username)
balance_index balances;
iter=balances.find(username.value);
amount+=iter->amount

notify(username,message)

Fig. 7: Cross-Action Dataflow

Existing work that aims to analyze cross-“component”
dataflow such as CHEX [23] takes a simplistic approach
to model the interactions among external-facing components.
Because prior work assumes that user-facing components
are independent from each other, it proposes a random
permutation-based dataflow analysis – it first computes a
dataflow summary for each independent component and then
checks different combinations of the components to find poten-
tial cross-component dataflows. This simple model, however,
does not sufficiently address the interactions of actions in
EOSIO contracts. This is because not all combinations of
actions are viable due to the control-flow constraints caused
by inline action calls. These constraints may actually affect
the existence of data dependencies. Suppose a readState()
function can only be called before a critical state change made
by writeState(), and therefore cannot receive the updated
state data. In such a case, overlooking this control dependency,
one may mistakenly conclude that there exists a dataflow from
writeState() to readState().

Hence, we propose a model-constrained permutation-based
cross-action dataflow analysis. Specifically, we first perform
intra-procedural dataflow analysis within each action and sum-
marize the result as a sources-to-sinks mapping. Then, we use
our aforementioned callgraph analysis to construct an action-
flow model that represents the partial order of action calls.
Finally, guided by this model, we combine multiple dataflow
summaries via connecting one’s sink to another’s source, so as
to uncover information flow across actions. Figure 7 illustrates
our analysis result for the motivating example.

Dataflow Summary. For every action, we use classic def-
use chain analysis to identify its internal data dependencies
between sources and sinks, and generate a dataflow summary.
In particular, we have identified two types of sources: action
inputs and database tables, and three types of sinks: inline
action calls, database tables and signature components that
are part of the Groundhog Day vulnerability. In Figure 7,
for instance, we discover one source and three sinks in the
gambling::reveal action. The source is the action interface
reveal(username,user input) which can receive two
external inputs. This source data can flow into three different
sinks: (1) an inline call to the action getbalance()
which uses the tainted username, (2) a database write
that modif[ies] a specific table entry indicated by the
username, and (3) the checkCondition() component,

action B1

action B2

action A

action C1

action C2

action D1

action D2

Fig. 8: Nested Inline Action Calls

an essential part of the vulnerability, which compares
username with a predetermined secret. Then, a dataflow
summary indicates any possible mappings from a source
to a sink such as reveal(username,user input) ⇝
action(,,‘‘getbalance’’ n,std::make tuple(
username)).send(). Note that a table read (e.g.,
iter→amount in the gambling::getbalance action)
can be both a source and a sink – it is the sink of the table
key, username, within the action, and the source of the table
content obtained from other actions.

Action-flow Model. In principle, any EOSIO actions can
be directly called by external users, and therefore the or-
der of action calls is indeterministic. However, in practice,
due to certain restrictive permission requirements – e.g., the
require auth(get self()) in the getbalance() action
– a seemingly external-facing action may in practice be only
triggered internally by its host contract. Consequently, the
control dependency between such an action and its caller
then becomes deterministic and is constrained by how it is
being called programmatically. In the motivating example,
for instance, there is no way for third-party users including
attackers to call getbalance() before invoking reveal().
To rule out impossible combinations of action calls in further
permutations, we must model deterministic control flows.

Definition 3: An action-flow model of an EOSIO contract
describes the must-follow relations among action calls. If
action A must follow action B, all activities within A must
inherently follow any activities within B, due to the delayed
execution of A.

The must-follow relations result from inline action calls
that can only be made by their host contract code (due
to stringent permission checks). To capture such rela-
tions, we first search for restrictive permission checks (e.g.,
require auth(get self())) in each action to identify
anyone that cannot be invoked by a third party. Then, for the
identified ones, we use inter-procedural control-flow analysis
to discover by whom and how they are being called. Therefore,
a must-follow relation can be easily determined in two simple
scenarios: (a) if action X simply calls Y, then Y must follow
X; (b) if two actions Y1 and Y2 are being called sequentially
by the same caller X, then Y2 must follow Y1. However, the
execution order may become less obvious when inline action
calls are made in a nested fashion. Figure 8 gives an example.
Here, action A makes a call to action B1 and action
B2 consecutively; B1 and B2 then invoke C1, C2 and D1,
D2, respectively. While the order regarding direct caller/callee
(e.g., B1 and C1) and direct siblings (e.g., B1 and B2) is clear,
the order regarding B2 and C1 remains ambiguous. In fact, to
the best of our knowledge, in what order nested inline calls are
executed is not well documented. To address this question, we
conduct an empirical study and discover that, when handling
nested actions, EOSIO VM takes a breadth-first search-based
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balance_index balances;

iter=balances.find(username.value);
amount+=iter->amount

balance_index balances;

iter=balances.find(username.value);
balances.modify(iter,,{});

balance_index=eosio::multi_index<“balances”_n,balance>;

reveal(username,user_input)

getbalance(username)

action(,,”getbalance”_n,std::make_
tuple(username)).send()

Table 
Matching

Table Entry 
Matching

Fig. 9: Two-Level Matching for Table Accesses

approach and processes the calls at the same level first before
advancing to the next level. As a result, the total order of these
seven action calls will be A ⇝ B1 ⇝ B2 ⇝ C1 ⇝ C2 ⇝ D1
⇝ D2. This action-flow model thus addresses C3.

Model-Constrained Permutation. We then use our action-
flow model to guide the permutation of individual dataflow
summaries. To do so, we first select two random actions A
and B, and connect A to B. Next, we check whether such a
connection violates any must-follow constraints, and if so, we
discard it. Otherwise, we will search for any possible linkage
between A’s sinks to B’s sources. A successfully discovered
linkage indicates a cross-action dataflow. For instance, to
generate the result in Figure 7, we first build the connection
from the action reveal to getbalance. This connection
satisfies the must-follow constraints which require the former
to always occur before the latter. Consequently, we can test
whether the two sinks of reveal can be linked to the two
sources of getbalance.

A cross-action dataflow linkage can be established
due to two reasons. First, an inline action caller can
be linked to a corresponding callee – for example,
action(,,‘‘getbalance’’,std::make tuple(username
)).send()⇝ getbalance(username). Then, the dataflow
is natually identified through the argument passing. Second,
a “write” to a global database table is connected to a later
“read” from the same table. For isntance, in Figure 7, we link
balances.modify(iter...) to amount+=iter→amount.
To determine whether two table accesses reference the same
table entry, we conduct a two-level matching: table matching
and table entry matching, as illustrated in Figure 9. (1) A
table matching applies backward dataflow analysis to the
table instances that are instantiated at different locations.
If multiple instances originate from the same table object
(e.g., balance index in the case), a match is found and
we can then proceed to the table entry matching. (2) The
table entry matching also uses backward dataflow analysis. It
aims to discover the origin of the accessed table keys. In this
example, because the keys accessed at two different places
share the same source (i.e., the username parameter from the
reveal() call), we can conclude that there exists a dataflow
between the two operations. Hence, C4 is also addressed.

V. IMPLEMENTATION

Our dataflow analysis is performed on EOSIO WASM
bytecode. We build our analysis on top of Octopus [1]. We fisrt
leverage Octopus to convert WASM stack-based bytecode to

1 [[eosio::action]] void checkCond(eosio::name username,
uint64_t user_input, uint64_t secret) {

2 require_auth(username);
3 if (user_input == secret)
4 eosio::print(username, "wins");
5 else
6 eosio::print(username, "loses");
7 }

Fig. 10: Example Action Using Arguments

username (local8)

user_input (local7)

secret (local6)

action data

0: %00 = get_global 0()
2: %01 = #0x20
4: %02 = i32.sub(%01, %00)
5: tee_local 2(%02) 
7: set_local 3(%02)

13: %05 = call_to_action_data_size() 
15: tee_local 4(%05) 
43: %1B6 = get_local 2() 
45: %1B7 = get_local 4() 
47: %1B8 = #0xF 
49: %1B9 = i32.add(%1B8, %1B7) 
4a: %1BA = #0x70 
4c: %1BB = i32.and(%1BA, %1B9) 
4d: %1BC = i32.sub(%1BB, %1B6) 
4e: tee_local 2(%1BC)
53: %1BE = get_local 2()
55: %1BF = get_local 4()
57: %1C0 = call_to_read_action_data(

%1BF, %1BE)  

61: %1C3 = get_local 3()
63: %1C4 = #0x18
65: %1C5 = i32.add(%1C4, %1C3)
66: set_local 5(%1C5)
79: %252 = get_local 5() 
7b: %253 = get_local 2() 
7d: %254 = #0x8 
7f: %255 = call_to_memcpy(%254,%253,%252) 

df: %2CC = get_local 3() 
e1: %2CD = i64.load 3, 24(%2CC) 
e4: tee_local 8(%2CD)
e6: call_to_require_auth(%2CD)  
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local3

local2
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local5

Fig. 11: Memory Model and Calling Convention

static single assignment (SSA)-formed, register-based IR, and
then conduct context-sensitive flow-sensitive interprocedural
dataflow analysis on this IR. Nevertheless, while Octopus
handles basic WebAssembly features, it does not specifically
address the special memory model of EOSIO WASM bytecode
caused by the distinct compilation process adopted by the
EOSIO toolchains. Thus, we must implement custom dataflow
analysis techniques to address the unique memory addressing
mode and calling convention in EOSIO WASM code.

Basic WASM bytecode uses a simple memory model –
it leverages special variables called locals, such as local0,
local1, to store temporary data and pass function arguments.
However, due to the usage of a linear memory and the special
action argument passing, EOSIO WASM code may not directly
use locals to transfer parameter data. On top of the basic simple
model, it additionally adopts an indirect memory addressing
mode. Figure 11 demonstrates this unique memory modeling
and how action parameters are passed using this model.

Figure 11 illustrates the memory layout, when an EO-
SIO action checkCond() is called, and partial SSA-formed
Octopus IR code that allocates and manages this memory
space. The source code of this action is presented in Fig-
ure 10. This action implements a simplified versoin of the
checkCondition() function in the motivating example. It
takes three arguments: the username who makes the call,
a user input that indicates a guessed number, and the
secret number generated by the contract. The action uses
the username for the authorization check, and then compares
user input with secret to determine if the user’s guess is
correct, and finally presents the result to the user.

Nevertheless, our study on the IR instructions (Figure 11)
indicates that these three action arguments are not stored in
any WASM locals. In fact, the locals here hold addresses
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rather than values and are thus used to reference memory
regions that contain these parameters. Similar to a stack pointer
in x86, a special global0 variable is used in this model
to always point to the bottom of the memory being used.
As a result, at the start of the checkCond() function, the
global0 pointer is moved to a lower position to allocate
necessary spaces for arguments and local variables. More
concretely, this IR code first allocates a block of 0x20 bytes
and saves its address in local3. Next, it creates additional
space based upon the argument size of this action. To do
so, it invokes the call to action data size() to obtain
the raw data size of action input, and computes the actual
storage space ((action data size + 0xF) & 0x70) by
considering the alignment requirement, and finally reserves a
memory block starting at the address in local2. Then, the
call to read action data() function is called to pass
the action arguments to the reserved memory space pointed to
by local2. To store the arguments into local variables for later
usage, the code further calls call to memcpy() to transfer
individual parameter values to corresponding positions within
the memory region at local3 (e.g., local5 for username).
To easily reference these local variables, their values are
eventually loaded into other locals such as local8, local7
and local6. For instance, the local8 (i.e., username) can
be directly used as a parameter in the require auth() call.

Custom SSA transformation to handle the indirect
memory addressing mode. Existing SSA transformation in
Octopus is only applied to simple IR variables (stored in
WASM stack) but not WASM locals because these locals
are, technically, not “redefined” in the code. Consequently,
even though the content of a local has been altered, its
name does not change. For instance, in Figure 11, there
exist two memory writes that change the local2’s content:
tee local2(%02) (LN5) and tee local2(%1BC) (LN4e).
However, any accesses to this local (e.g., LN43, LN53, LN7b)
refer to it as the same name “local2”. Hence, when the value
of local2 is used as an address from which memory content
is being loaded (e.g., memcpy()), it is not explicit what data
will be obtained. To eliminate this confusion, we additionally
apply SSA transformation to the locals and rename them
whenever their contents are modified by write operations such
as set local or tee local. Thus, in this case, we will
have two different versions of local2. Then, to further track
dataflow through memory data loaded from addresses specified
by locals, we develop a custom points-to analysis atop renamed
locals. Specifically, for the sake of efficiency, we use a strict
policy to identify aliases. For two (local + constant offset)
patterns, we consider they are aliases only if the two locals
share the same data origin and the two offsets are identical.
In theory, our approach may lead to incompleteness. We will
assess the accuracy of our dataflow analysis in the evaluation.

Using signature functions to recognize action argu-
ments. To our study, the action arguments are transferred using
two signature functions call to action data size()
and call to read action data(). The return value of
the former will be used as one parameter of the latter. The
other parameter of the latter is the address of the transferred
arguments. Therefore, we leverage the existence of the two
signature functions and their data dependencies to identify the
positions of action parameters.

VI. EVALUATION

A. Experimental Setup

Three Datasets. (a) To assess the accuracy of our bytecode
analysis, we must leverage source code-level information as
the ground truth. To this end, we have retrieved 98 real-world
EOSIO smart contracts, from open-source projects on GitHub,
whose source code can be identified. We further compile these
projects to generate corresponding bytecode programs.

(b) To discover new vulnerabilities, we have collected
60,577 real-world EOSIO contract samples directly from the
EOSIO blockchain. Due to the absence of a centralized app
market where contract code can be easily collected, we have
been monitoring the blockchain activities to record any real-
world transactions that are used to install contracts. Note
that it is also possible to obtain deployed contract bytecode
directly from the blockchain. However, two challenges arise:
(1) EOS contracts are inherently upgradable, but only the most
recent version is accessible on the blockchain, and (2) the
lack of a batch-download API hinders the efficient retrieval
of contracts. To completely and efficiently obtain contract
code, we therefore extract WASM code from the transaction
data. Nevertheless, the source code of these contracts is
not available. The statistics of this dataset can be found in
Appendix A-A.

(c) We further aim to demonstrate that the state-of-the-art
EOSIO contract vulnerability detector, EOSAFE [18], cannot
precisely identify the GDVs, despite its effectiveness in de-
tecting the “rollback” bugs. To this end, we have obtained the
dataset used in EOSAFE which contains 715 contracts that are
identified to be vulnerable to the “rollback” attacks.

System Settings. We have implemented a prototype system
in 5,893 lines of Python code. Our experiments are conducted
on a server equipped with Intel Xeon Gold 6330 CPU @
2.00GHz, 256GB memory, and Ubuntu 20.04 LTS (64bit).

B. Accuracy of Static WASM Bytecode Analysis

To evaluate the accuracy of our static bytecode analysis, we
apply VETEOS to the compiled WASM code of 98 EOSIO
contracts. In the meantime, we also manually inspect the
source code of these contracts to label the expected application
entry points and dataflow paths. We then compare the auto-
mated detection results with the manually identified ground
truths to derive the accuracy of VETEOS.

Entry Point Discovery. To assess the accuracy of our entry
point detection, given a test sample, we randomly select points
of interest (POI) in the code and use VETEOS to discover
the entry points of each POI from WASM bytecode. We then
consolidate the automatically discovered entry points for all
the POIs, and manually find the total number of relevant
entry points for the same set of POIs in the source code.
The accuracy is finally calculated by dividing the number of
discovered entry points by the actual total amount. Figure 12a
represents the distribution of detection accuracy for entry
points. The accuracy is calculated for each EOSIO contract
program. The x-axis denotes the contract samples and the y-
axis is the percentage of entry points that can be correctly
identified. The results are sorted in the ascending order.
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Fig. 12: Accuracy of Static Analysis

The detection accuracy is on average 98.5%, and can reach
100% for 85.7% of the samples. The major reason that causes
the inaccurate results is due to compiler optimization. For
instance, in the vigor.wasm, while the action strived() is
being called in the source code and thus is not considered
to be an entry point, it is however not invoked by any
functions in the bytecode. Instead, an optimized version of
this function (i.e., func117) is generated and used in the
WASM code. As a result, VETEOS will mistakenly consider
this strived() action as an uncalled entry point. Notice that
such an inaccuracy does not further affect our vulnerability
detection because we did not miss the real entry point that
makes a call to the optimized alternative.

Dataflow. To measure the accuracy of our dataflow anal-
ysis, we first locate multiple ground-truth dataflow paths in
WASM bytecode. To do so, we manually pinpoint sources,
sinks, and data paths in the source code. After instrumenting
these statements and executing the code, we identify the
instrumented bytecode instruction trace. This trace is then
employed as the ground-truth for data paths. On average, for
the 98 sample contracts, we labeled 4 paths, with each path
comprising 397 WASM instructions. Then, starting from the
sources of the paths, we utilize VETEOS to search for dataflow
in the bytecode. Finally, we check how many bytecode in-
structions in the ground-truth paths are missed by our analysis
(i.e., false negatives), and how many additional instructions
are mistakenly included (i.e., false positives). Thus, we can
compute the false negative rate FNR = FN/(FN+TP) and false
discovery rate FDR = FP/(FP+TP) for each sample.

Figure 12b illustrates the result. The red dashed curve
and blue curve represent the distributions of FNR and FDR,
respectively, for the 98 samples. The average FNR is 4.43%,
while the average FDR is 3.41%. For a large portion (79.6%)
of contract samples, our dataflow analysis can achieve zero
FDR and FNR. We further manually inspect the false negative
and false positive cases to understand the root causes. Our
study shows that both FNs and FPs are mainly caused by
how we handle the memory address aliasing. For instance,
in the case salescon.wasm, because our points-to analysis
uses an overly strict rule – i.e., assessing the equality of base
addresses and offsets individually, rather than determining if
their combined sums match – we can actually miss certain
data paths and cause incomplete results. In the meantime, in
the cases such as oracle.new.wasm and eosuber.wasm,
our false dataflows are caused by the classic challenge of
over-tainting – when an aggregate data structure is copied
while only a small portion within this structure is tainted, we
conservatively consider the entire copy to be tainted.

TABLE II: Detecting Vulnerabilities by Steps
Factor Semantics # of Contracts

F1 payToPlay → writeState → notify 3,702/60,577

F2 & F1 payToPlay ⇝ (user input) ⇝ checkCondition 3,394/3,702createSecret ⇝ (secret) ⇝ checkCondition
F3 & F2 & F1 writeState ⇝ (global state)⇝ readState 2,086/3,394

F4 & F3 & F2 & F1 checkCondition → writeState 735/2,086

C. Real-world Vulnerability Detection

Overall Detection Results. We then apply VETEOS to
real-world EOSIO contracts. Table II demonstrates how we
capture the critical vulnerability factors in stages. First, our
entry point detection and control-flow analysis identifies 3,702
samples out of the total 60,577 that satisfy the “rollback”
requirement. Next, our dataflow analysis further confirms that
3,394 instances in the 3,702 contracts pass both a user input
and an internally generated data item (possibly a secret) to a
condition check, and 2,086 of them can actually leak internal
states. Finally, by determining the control dependency between
the condition check and the information leakage, we discover
735 samples that can actually be exploited by GHD attacks.
A case study is presented in Appendix A-B.

We then manually verify the correctness of the result.
We sequentially check the existence of the four factors: F1
Revertable – the initial payment (apply() function moni-
toring a notification from eosio.token::transfer()) and
final notification (transferring tokens to a user or calling
require recipient()) exist in a single action or ac-
tion sequence; F2 Unpredictable profitable – the user input
(reachable from action interface) is compared with a contract
property (a global state such as a table entry); F3/F4 Infor-
mation leakage/Causal inference – the prior condition check
guards a state update (e.g., change of table entry, calling
eosio.token::transfer()) which is observable publicly.

False Positives. We randomly select 40 samples from the
735 cases and examine their WASM bytecode with manual
efforts. Eventually, we have identified zero false positives –
all the 40 contracts are confirmed to have the Groundhog
Day vulnerabilities. We argue that the high precision can be
attributed to two reasons: (1) we use strict rules to handle
memory accesses and (2) the dataflow that exhibit in the
Groundhog Day vulnerability pattern is not overly complex
and usually does not involve sophisticated memory aliasing.

False Negatives. To assess whether VETEOS may miss
any GDV instances, we run it on benchmark contracts. In
particular, we have collected 36 samples identified by EOSAFE
as having rollback issues. Out of these contracts, 18 have been
reported by PeckShield [27], a leading Chinese blockchain
security company, to have been attacked, while the remaining
18 have been manually verified by EOSAFE authors. Based
upon the already discovered rollback problems, with EOSAFE
authors’ help, we further manually check if they have GDVs
– i.e., whether these rollbackable transactions contain other
factors including user controlled comparison, conditional state
updates and exposed states. Eventually, we have confirmed that
18 samples contain all four essential factors of GDVs. In these
18 benchmark contracts, VETEOS successfully identify all the
vulnerabilities without any false negatives.

Logic-level False Positives. In principle, our detection
algorithm is susceptible to logic-level false positives. This
is because our algorithm by design uses the disclosure of
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global variables to approximate the leakage of game outcomes.
Nevertheless, the mere exposure of a global variable does
not necessarily grant an attacker the essential knowledge. For
instance, if there exists a state leakage only when a player
loses, attackers remain uncertain whether their inputs can
induce a winning scenario. Fundamentally, if the revealed
global variables are irrelevant to critical game outcomes – for
example, leaking a counter which is updated every time a game
concludes but does not pertain to game results – they do not
provide attackers with actionable information for launching a
GHD attack. We admit that this is a fundamental limitation of
our analysis, as it is a challenging task to infer the semantics of
the identified global variables from opaque WASM bytecode,
and we leave it to our future work. However, we did not
observe such cases in our verified samples.

D. Financial Impact

The 735 identified contracts are deduplicated cases in-
volving highly active EOSIO contracts, such as Ge***OS,
so***ys, ch***se and re***gm, top apps on eosauthority.com.
Of these, 10% generate over 2K transactions daily. For con-
text, the average transaction count for the top 2000 EOSIO
contracts stands at 1.3K. The total balance of the identified
contracts currently amounts to 899K USD which can be
directly affected. Moreover, because the GHD attacks target
individual application instances (e.g, a lottery game, a number
guessing game, etc.), any additional funds that are invested by
participants dynamically will also be affected. For instance, a
lottery game runs for one week with a daily transaction amount
of 700K USD (on par with that of the top vulnerable contracts
we have detected), the estimated affected balance added to that
game instance would be 4.9M USD.

E. Disclosure

Identifying the developers of the detected contracts from
the bytecode programs we gathered from transactions is no-
tably challenging. This difficulty arises because the EOSIO
ecosystem lacks a centralized knowledge base, similar to
what Etherscan offers for Ethereum. Hence, we have to re-
sort to limited symbol information such as EOSIO account
names, Twitter accounts (e.g., dr***on, eo***11, ch***dg),
Discord or Telegram groups (e.g., ma***yz, fi***em, da***yp,
z1***n1) and cross-referenced them in GitHub (e.g., eo***ps,
il***ok, fi***em) or Google (e.g., ge***ol, pi***it, ch***se,
be***io, ac***k1, il***ok) to discover possible developers.
We subsequently contact the identified developers to confirm
ownership. Once verified, we share our findings with them.

We have reached out to 83 developers concerning the
vulnerabilities, and the existence of their vulnerabilities has
been confirmed. These vulnerabilities can also be verified
in their published source code (e.g., eo***ps, il***ok, etc.).
Among the responses, we have received feedback from the
developers of Ge***OS, a leading EOS application. While
they acknowledged the ownership of the contracts, they chose
not to disclose specifics of their closed-source contracts. They
claimed that their contracts, in their current states, are resilient
to the GHD attacks, due to the external protection for their
input interfaces, which prevents attackers from directly feeding
inputs into the core app logic. However, we believe that if the
fundamental vulnerability persists, it could potentially become
exposed, for instance, during code refactoring.

We have reported our findings to CISA [9]. Particularly,
we have introduced the formal definition of the Groundhog
Day vulnerabilities, described our approach to automatically
detecting this class of security bugs, and submitted the list of
735 vulnerable contract names we have identified. Per CISA’s
request, we have further provided the developer information
of these contracts in order to assist them in confirming the
vulnerabilities. In addition to CISA, we have attempted to
present our results to other vulnerability disclosure programs.
However, they do not accept EOSIO contract vulnerabilities
due to the lack of vendor (i.e., EOSIO) collaboration.

F. Practicality of GHD Attacks

The efficacy of GHD attacks depends on (1) a notably
high probability of triggering a winning condition and (2) an
attacker’s ability to gather necessary resources for sufficient
attempts. Hence, we aim to comprehend how feasibly attackers
can leverage this type of defects for financial advantage. To
this end, we (a) investigate past occurrences of GHD attacks,
(b) examine real-world contracts with GDVs to assess their
likelihood of being exploited, (c) estimate attackers’ capability
via gauging the potential resources at their disposal, and (d)
employ fuzzing on our identified GDV cases to quantitatively
evaluate the cost-effectiveness of targeting such contracts.

(a) Existing GHD Attacks. Of the 18 benchmark contracts
confirmed by EOSAFE authors and us to contain GDVs (used
for our false negative test), several, including dicecenter11,
fairdogegame, and gamebetdices, have already fallen victim
to real-world attacks. EOSAFE authors note that these attacks
have been inspected and documented by security experts at
PeckShield [27]. Note that, PeckShield has already converted
all their original intelligence reports to proprietary documents,
making them inaccessible to the public. Nevertheless, we have
discovered the PeckShield GitHub page which maintained a
list of previously identified attacks [26] and news articles
(in Chinese) that reported PeckShield’s findings about the
attacks against dicecenter11, fairdogegame, gamebetdices con-
tracts [3]. In addition, using the reported names of the victim
contracts and the dates of attacks, we cross-referenced the
data with bloks.io (a major EOS block explorer). This has led
us to identify unusually high-volume (potentially malicious)
transactions associated with these contracts [3].

(b) Analysis of Winning Conditions. We further study
the source code we have discovered for two real-world
number-guessing game contracts, EOSBet Casino [5] and
EOS.Win [13], that are susceptible to GHD attacks. Our inves-
tigation indicates that merely ∼90 attempts are needed to ex-
ecute the GHD attacks against these contracts. We present our
annotated contract code for these contracts in Appendix A-C.
In general, these games generate secret numbers between the
range [1,100] or [0,99]. Though designed to be random, the
actual randomness is compromised because of an improperly
used constant seed. Subsequently, these apps accept user inputs
from either [2,96] or [2,97]. If a user input is greater or less
than the secret number, they win. Consequently, in most sce-
narios (when the secret falls between [3,95]), attackers would
require a maximum of ∼90 tries to meet the winning criteria.
These real-world examples demonstrate that, although a wide
range of secret values can make attacks more challenging in
theory, in practice, applications may still utilize a limited secret
range – this leaves them vulnerable to GHD attacks.
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Fig. 13: Attack Success Rate through Fuzzing

(c) Estimation of Attackers’ Capability. According to
the statistics provided by EOS Authority [11], an average
transaction consumes 286.25 µs of CPU time and 165.6 Byte
NET, and the average tokens staked by each EOS holder
amount to 977 USD (equivalent to 8,724s CPU + 16,631 MB
NET). As a result, an average user could potentially execute a
contract up to 30M times. This makes launching attacks against
GDV contracts, such as the aforementioned ones, practically
viable. Besides, any investments made by GHD attackers are,
in essence, “reimbursable” owing to the rollback issue and the
fact that the tokens staked for CPU/NET can be reclaimed. This
means that even if attackers lack the necessary resources for a
sufficient number of attempts, thereby inhibiting their capacity
to deduce the winning conditions, they are not financially
compromised. These cost-free retries grant them adequate
opportunities to discover and capitalize on vulnerable contracts
(which are more likely to be exploited).

(d) Dynamic Verification. To show the cost-effectiveness
of GHD attacks, we employed WASAI [7], an open-source
fuzzing tool, to assess the exploitability of the 735 identified
GDV samples. The inputs of WASAI consist of a contract’s
WASM program and its Application Binary Interface (ABI).
Utilizing the specific ABI information enables the fuzzer to
bypass ill-structured inputs, which a logical attacker would
unlikely provide. It is noteworthy that identifying the correct
ABI for a target EOS function is non-trivial. Although EOSIO
blockchain explorers such as EOS Authority publish ABI infor-
mation, they only provide the most recent function interfaces.
Yet the vulnerable code we have detected may exist solely in
particular older versions of these contracts, requiring specific
past versions of ABIs for execution. Hence, we search for
ABI data from historical EOS transaction logs – where every
contract deployment is recorded – based upon the transaction
timestamps and indices. Finally, we manage to identify the
ABIs of vulnerable functions for 507 out of the 735 samples.

To quantify the probability that an attacker can successfully
activate the winning conditions within the vulnerable func-
tions, we instrument both the success and failure branches
for every GDV-related condition check that VETEOS has
identified. Then, we run each of the 507 samples 500 times
using random initial input values, tallying both successful
and failed attempts. Thus, the proportion of successful trials,
depicted in Figure 13, serves as the estimated likelihood of
successfully executing a GHD attack. As you can see, the
average success rate is 19%, while the lowest is still around
5%. This indicates that the discovered vulnerabilities can be
practically exploited with a reasonable amount of attempts.

TABLE III: Identified Vulnerability Factors

Factor EOSAFE VETEOS
F1 715/715 715/715

F2 & F1 715/715 563/715
F3 & F2 & F1 NA 195/715

F4 & F3 & F2 & F1 NA 144/715

G. Limitation of EOSAFE

We then investigate whether and how EOSAFE [18] falls
short in detecting GDVs. Note that EOSAFE is not a tool
specifically designed to address this information flow-based
issue but rather a symbolic execution engine that can iden-
tify “rollbackable” control flows (F1). Nevertheless, because
EOSAFE adopts simple heuristics – such as searching for
modulo instructions (i.e., rem) that can be used to generate
random numbers (i.e., secrets), it has actually been used
by their authors to detect GDVs. However, this fundamental
lack of formal vulnerability modeling may potentially lead to
significant false positives. To verify this, we have obtained 715
samples from the authors of EOSAFE. These contracts have
been flagged by EOSAFE as being vulnerable to “rollback”
attacks but have not been verified manually by the authors.

To determine the existence of the GDVs in these contracts,
we apply VETEOS to their WASM code to search for the four
enabling factors. Table III depicts the results. While the prior
work can successfully recognize all the rollbackable actions
(F1), its detection of F2 & F1, meaning rollbackable actions
that allow users to make profits in an unpredictable fashion, is
not precise because it does not check whether an identified ran-
dom number is actually compared with user inputs. In contrast,
VETEOS uses a more accurate rule for F2 & F1 that checks
if user inputs are used in an internal comparison, and thus
discovers less cases satisfying the condition. Besides, EOSAFE
does not further consider the other factors (F3 and F4), as it
does not detect leakage flow or build the dependency between
user inputs and the leakage flow. VETEOS, by additionally
investigating these two factors, can precisely remove 79.8% of
the cases which cannot be exploited to mount GHD attacks.

H. Runtime Performance

We finally assess the runtime performance of VETEOS
using the 60K real-world contracts. Overall, our detection is
fast due to its nature of static program analysis. On average, it
takes 3.46 seconds to process a bytecode program. Particularly,
our callgraph analysis and entry point detection cost 2.6
seconds per app, and the dataflow analysis takes 0.86 seconds.

VII. MITIGATION

Groundhog Day vulnerabilities are realistic and serious se-
curity problems in the EOS ecosystem. Conceptually, this kind
of issues may even affect smart contracts on other blockchain
platforms, as discussed in Appendix A-D. To mitigate such
problems, we propose two strategies (1) separating funds
transfers from core game logic and (2) hiding critical global
contract states. The first defense strategy aims to disrupt the F1
Revertable factor. Essentially, a GDV exists because an adver-
sary can revert an entire transaction, which encompasses not
only checking a user input against the secret, updating global
states, but also informing the user of the outcome. Hence,
reversing the final notification can unnecessarily also revert
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the prior steps implementing the core game logic. To avoid
this, we can split this sequence of operations into multiple
separate transactions. Thus, the F1 factor no longer holds as
the “rollback” issue merely affects the notification process.
In contrast, the transactions related to the central application
logic have already completed and cannot be undone. The
second possible solution targets obscuring critical global states
that may leak game statuses (i.e., F3 Information leakage).
Specifically, we propose to restrict public accesses to global
states such as account balances stored in tables managed
by contracts. Since game outcome are communicated to end
users via notifications, blocking access to their balances does
not notably affect usability. Meanwhile, as attackers cannot
prematurely ascertain the game’s result, their ability to secure
unwarranted profits predictably is negated.

VIII. RELATED WORK

Security of EOSIO Contracts. Prior work has developed
tools to discover security problems in EOSIO WASM byte-
code. EOSAFE [18] proposes the first static WASM bytecode
analysis framework. WANA [36] introduces a cross-platform
vulnerability detection tool based on the symbolic execution.
EOSFuzzer [19] develops a general black-box fuzzing frame-
work to detect EOSIO contract vulnerabilities. WASAI [7] im-
plements a new concolic fuzzer for uncovering vulnerabilities
in WASM contract programs.In contrast, VETEOS is the first
work in this domain that provides the capability of conducting
static dataflow analysis and detecting the novel GDVs.

Security Vetting of Smart Contracts. Many efforts [24],
[37], [35], [20], [21], [16], [31], [32], [28], [34], [15] have been
made to automatically verify smart contract code to detect se-
curity risks. Existing tools detect both syntax-based errors [24],
[21], [16], [31], [15] and semantic-level defects [35], [20], [28],
[34], [33]. In comparison, VETEOS detects security bugs in a
completely different type of contracts, and thus must address
the unique high-level programming paradigm and low-level
implementation mechanisms used in EOSIO WASM code.

Static Analysis of Event-Driven Programs. Static anal-
ysis tools have been built to analyze event-driven programs.
Due to the special mechanisms for triggering such applications,
these analyzers must particularly identify program entry points.
Efforts have been made to address this challenge in different
application domains (e.g., Android [23], [42] or industrial
controllers [41]). VETEOS follows the same idea but models
such entry points in a more strict manner.

IX. CONCLUSION

We propose VETEOS, a static vetting tool for the Ground-
hog Day vulnerabilities in EOSIO contracts. VETEOS for-
mally defines this unique vulnerability as a control and data
dependency problem, addresses multiple distinct challenges for
analyzing EOSIO WASM programs, and has detected 735 new
vulnerabilities in the wild.
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APPENDIX A
ADDITIONAL DATA AND DISCUSSION

A. Statistics of the Evaluation Dataset.

We survey the 60,577 samples to understand their nature.
Firstly, these contracts contain fairly large WASM bytecode
programs, with an average size being 80KB and the largest
app, eo***iv, being 522KB. Secondly, these contracts have
been recently deployed, from 2018 to 2023, and new apps
have been constantly introduced. In general, 15K new contracts
are being installed every year. Thirdly, we further expect to

Fig. 14: Word Cloud of the String Literals

categorize what activities these apps may perform. Because the
source code or any textual description of these applications is
unavailable, we alternatively utilize the string constants stored
in these contracts to estimate their “semantics”. Figure 14
shows the word cloud we can build from the string literals
extracted from these WASM code. This indicates that our
collected samples commonly perform EOS token transfers and
may include different types of applications such as game,
lottery, token exchange market, decentralized finance, etc.

B. Case Study for Real-world GDV Detection.
Figure 15 illustrates how we capture the Groundhog

Day vulnerability in a real-world EOSIO contract, EOSBet
Casino [5]. This casino app enables users to wager on a
specific number, and the players win if their chosen number
matches a randomly generated secret number.

VETEOS has discovered the four enabling factors of the
Groundhog Day vulnerability in this WASM program. More
concretely, (F1) Revertable: VETEOS identifies the sequence
of activities, from “payToPlay” (apply() that handles to-
ken transfer notification) to “notify” (send inline()), that
can be executed in the same transaction and therefore can
be reverted as an entirety. (F2) Unpredictably profitable:
our analysis also discovers that the outcome of the game
depends on a successful comparison between a user in-
put (get local 2 0()) and a secret (get local 5 0()).
(F3) Information leakage: we further uncover the informa-
tion flow from a database table write (db store i64())
to a table read (db get i64()). Finally, (F4) Causal in-
ference: our detector establishes the control dependency be-
tween the condition check and the account balance update
(db find i64(,balances,,) and db store i64())

This example, again, demonstrates that, in order to ac-
curately detect the Groundhog Day vulnerabilities hidden in
EOSIO WASM code, a static analyzer must be able to (1)
accurately identify the application entry point so as to capture
an entire activity sequence and (2) precisely discover the
dataflow across multiple actions so as to build necessary causal
relations and leakage flows.

C. Annotated Source Code for EOSBet Casino and EOS.Win
Figure 16 and Figure 17 illustrate the source code of EOS-

Bet Casino and EOS.Win, respectively. These two contracts
implement a number guessing game, where the range of the
secret number is limited. We annotate the original source code
with comments to describe its application logic and explain
the scope of the success condition.

As shown in Figure 16, the core workflow of EOSBet
Casino begins with the extraction of transfer information using
unpack action data() (LN4). The user input is obtained
from the memo field of the transfer data, then parsed and
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apply(): 
288: %C7 = get_local 1_0() ;;code
290: %C8 = #0x80CC8AA4B3C0BA98D500 ;;"eosio.token"
301: %C9 = i64.ne(%C8, %C7)
302: br_if(%C9)
349: %D9 = get_local 2_0() ;;user_input
351: %DA = #0x808080B8D585CFE64D ;;"transfer()"
361: %DB = i64.ne(%DA, %D9)
362: br_if(%DB)

payToPlay

$func96():
4815: i32.rem_s
4822: set_local 12_0() ;;secret

createSecret

$func168():
373: %735 = get_local 5_0() ;;secret
375: %736 = get_local 2_0() ;;user input
377: %737 = i32.ne(%736, %735)
378: br_if(%737)

checkCondition

$func175():
62: %15 = #0x808080C095B49AD139 
;;"balances"
74: %17 = call_to_db_find_i64(

%16, %15, %14, %13) ;;db_find_i64()

$func184():
104: %C04 = call_to_db_get_i64(

%C03, %C02, %C01) ;;db_get_i64()

readState

actionT3m
...

actionT3n
...

...

actionT1m

...

actionT1m

$func172():
83: %1C = #0x808080C095B49AD139 ;;"balances"
95: %1E = call_to_db_find_i64(

%1D, %1C, %1B, %1A) ;;db_find_i64()
$func186():
137: %105 = call_to_db_store_i64(
%104, %103, %FF, %FD, %FC, %FB) ;;db_store_i64()

writeState

notify
$func174():
868: i64.const 6138663591592764928 ;;"eosio.token"
853: i64.const -3617168760277827584 ;;"transfer"
909: i64.const 3617214756542218240 ;;"active”

$func159():
236: call_to_send_inline(%D7, %D2) ;;send_inline()

input

secret

state

T1

T3

T2

Fig. 15: Groundhog Day Vulnerability in EOSBet Casino

checked to ensure it falls within the range [2,96] (LN7, LN10).
Subsequently, this user input, along with other betting details,
is stored in the activebets table (LN12-20). When a bet needs
to be resolved, the resolvebet() function is called, which
retrieves the betting information from the activebets table
(LN24). A secret number in the range [1,100] is randomly
generated (LN27), and a comparison is made to check if the
user input is greater than the secret (LN29). The global game
state, stored in the activebets table, is then updated with the
result (LN33). Finally, the rewards are sent to the player using
an inline action (LN35-45).

Similarly, in EOS.Win (Figure 17), transfer information
is acquired at LN4, and a user input is extracted from the
transfer memo at LN9. This user input is restricted to the range
[2,97] as shown in LN11. Betting details, including the user
input, are stored in a table indicated by r out.actions (LN13).
The resolved() function receives betting information as
parameters (LN17) and generates a random secret number
within the [0,99] range (LN19), then compares the user input
with the secret based upon the roll type (small or big) (LN21).
If the player wins, the global game state stored in the trades
table is updated (LN26-28), and rewards are sent to the player
through an inline action (LN31).

D. Generality of Groundhog Day Vulnerability
This study concentrates specifically on the Groundhog Day

vulnerability within EOSIO contracts. However, this type of
vulnerability could also potentially exist in other forms of
smart contracts, such as Ethereum contracts, provided that the
four enabling factors are present.

In fact, three factors – F2 Unpredictably Profitable, F3
Information Leakage and F4 Causal Inference – are defined at
the logic level and can, therefore, appear in any financial ap-
plications regardless of the underlying programming language
features. In contrast, the first factor, F1 Revertable, is espe-
cially achievable in EOSIO smart contracts due to the specific
“rollback” attacks. Since users are able to receive notification
when a transaction is near completion, it opens the door for
adversaries to consistently revert the entire transaction.

Although other contract languages such as Ethereum’s
Solidity may not present such a direct attack surface, attackers

1 class EOSBetDice : public eosio::contract {
2 void transfer(uint64_t sender, uint64_t receiver) {
3 // Get transfer data from unpacked action data
4 auto transfer_data = unpack_action_data<

st_transfer>();
5 const std::size_t first_break = transfer_data.memo

.find("-");
6 // Get user input (guessing number) from transfer

data
7 roll_str = transfer_data.memo.substr(0,

first_break);
8 const uint64_t roll_under = std::stoull(roll_str,

0, 10);
9 // Restrict user input in [2,96]
10 eosio_assert( roll_under >= 2 && roll_under <= 96,

"Roll must be >= 2, <= 96.");
11 // Store the betting information in the table
12 activebets.emplace(_self, [&](auto& bet){
13 bet.id = bet_id;
14 bet.bettor = transfer_data.from;
15 bet.referral = referral;
16 bet.bet_amt = your_bet_amount;
17 bet.roll_under = roll_under;
18 bet.seed = seed_hash;
19 bet.bet_time = time_point_sec(now());
20 });
21 }
22 void resolvebet(const uint64_t bet_id, signature sig)

{
23 // Read the betting information from the table
24 auto activebets_itr = activebets.find( bet_id );
25 eosio_assert(activebets_itr != activebets.end(), "

Bet doesn’t exist");
26 // Create secret number in [1,100]
27 const uint64_t random_roll = ((random_num_hash.

hash[0] + random_num_hash.hash[1] + random_num_hash.
hash[2] + random_num_hash.hash[3] + random_num_hash.
hash[4] + random_num_hash.hash[5] + random_num_hash.
hash[6] + random_num_hash.hash[7]) % 100) + 1;

28 // Compare secret (random_roll) with user input (
roll_under), checking (secret < user input)

29 if(random_roll < activebets_itr->roll_under){
30 payout = (activebets_itr->bet_amt *

get_payout_mult_times10000(activebets_itr->roll_under
, edge)) / 10000;

31 }
32 // Update the global state
33 increment_game_stats(activebets_itr->bet_amt,

payout);
34 // Send the rewards to the player
35 action(
36 permission_level{_self, N(active)},
37 N(eosio.token),
38 N(transfer),
39 std::make_tuple(
40 _self,
41 activebets_itr->bettor,
42 asset(payout, symbol_type(S(4, EOS))),
43 std::string("Bet id: ") + std::to_string(

bet_id) + std::string(" -- Winner! Play: dice.eosbet.
io")

44 )
45 ).send();
46 }
47 };

Fig. 16: Annotated Source Code of EOSBet Casino

could still intentionally revert specific transactions. It is actu-
ally not uncommon for a Solidity function to explicitly call
the revert() API under certain conditions. For instance, a
bidding function must verify whether an auction has expired or
if the bid is legitimate, and will abort the entire transaction if
the condition is not satisfied. Since source code of Solidity con-
tracts is often publicly available on, for example, Etherscan [2]
– as this allows third parties and contract users to verify the
equivalence between source code and deployed bytecode [14]
– attackers can gain insights into contract implementations,
especially about transaction reversibility. Particularly, if the
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1 class dice : public eosio::contract {
2 void transfer(account_name from, account_name to,

eosio::asset quantity, string memo) {
3 // Get transfer data from unpacked action data
4 eosio::currency::transfer t = {from, to, quantity,

memo};
5 vector<string> pieces;
6 boost::split(pieces, t.memo, boost::is_any_of(",")

);
7 // Get user input (guessing number) from transfer

data
8 uint8_t roll_type = atoi( pieces[0].c_str() );
9 uint64_t roll_border = atoi( pieces[1].c_str() );

10 // Restrict user input in [2,97]
11 eosio_assert(roll_border >= ROLL_BORDER_MIN &&

roll_border <= ROLL_BORDER_MAX, "Bet border must
between 2 to 97");

12 // Store the betting information in the table
13 eosio::transaction r_out;
14 auto t_data = make_tuple(t.from, t.quantity,

roll_type, roll_border, inviter);
15 r_out.actions.emplace_back(eosio::permission_level

{_self, N(active)}, _self, N(start), t_data);
16 }
17 void resolved(account_name bettor, eosio::asset

bet_asset, uint8_t roll_type, uint64_t roll_border,
account_name inviter) {

18 // Create secret number in [0,99]
19 uint64_t roll_value = get_random(BET_MAX_NUM);
20 // Compare secret (roll_value) with user input (

roll_border), checking user input is less or greater
than secret

21 bool is_win = (roll_type == ROLL_TYPE_SMALL &&
roll_value < roll_border) || (roll_type ==
ROLL_TYPE_BIG && roll_value > roll_border);

22 if ( is_win )
23 {
24 // Update the global state
25 int64_t reward_amt = get_bet_reward(roll_type,

roll_border, bet_asset.amount);
26 _trades.modify(trade_iter, 0, [&](auto& a) {
27 a.out += reward_amt;
28 });
29 }
30 // Send the rewards to the player
31 INLINE_ACTION_SENDER(eosio::token, transfer)(

lucky_trade_iter->contract, {_self, N(active)}, {
_self, bettor, lucky_iter->reward, string(str)} );

32 }
33 };

Fig. 17: Annotated Source Code of EOS.Win

condition check (and hence potential revert position) is mis-
takenly placed at a later point in a function, attackers could
exploit this vulnerability, crafting specific inputs to deliberately
revert the transaction while monitoring leaked state updates
from a side channel. Admittedly, while feasible in theory,
practical factors must also be taken into account. For instance,
the cost of code execution (e.g., gas in Ethereum) may affect
the financial gain of such attacks. However, adversaries that
carefully consider the trade-off between cost and benefit may
still make such attacks possible. In addition, attackers can
identify other types of smart contracts that do not require any
cost for execution.

Consequently, our current work is an exploration of this
critical vulnerability, using EOSIO contracts as a case study.
However, it is worth noting that demonstrating a general
problem and its detection method within a specific program-
ming language context is non-trivial, and requires to devise
special mechanisms to handle distinct challenges originating
from unique high-level programming paradigm and low-level
implementation, such as memory modeling. The major contri-
bution of this work lies precisely in this aspect. As a result,
despite the fact that Groundhog Day vulnerability is a general

problem in financial applications, we limit our discussion to its
manifestation in EOSIO smart contracts at this point, leaving
the investigation of this issue in other domains for future work.
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APPENDIX B
ARTIFACT APPENDIX

A. Description & Requirements

1) How to access:
• Zenodo: https://doi.org/10.5281/zenodo.10158696.
• GitHub: https://github.com/HKJL10201/VetEOS.

2) Hardware dependencies:
• Processor: Any 64-bit processor, such as Intel Core

Processor Series.
• Memory: 4 GB RAM, recommend 8 GB or higher.
• Storage: 1 GB or higher available space.

3) Software dependencies:
• Operating System: macOS or Linux, recommend

Ubuntu 16.04 or higher.
• Software: Python 3.7 or 3.8.
• Python Dependencies:
◦ wasm
◦ graphviz
◦ timeout-decorator

4) Benchmarks: None.

B. Artifact Installation & Configuration

1) Install Python 3.7 or 3.8.
2) Download VETEOS from Zenodo or GitHub.
3) Install the dependencies using the script in VETEOS:

python3 install dependencies.py. Note that the
script uses pip to install graphviz, if pip fails, please
try apt-get: sudo apt-get install graphviz. For
macOS users, the dependency graphviz needs to be
installed manually.

C. Major Claims

• (C1): VETEOS has detected 735 new vulnerabilities in
the wild. This is proven by the experiment (E2) whose
results are reported in Table II.

• (C2): VETEOS achieves average 98.5% entry point de-
tection accuracy. This is proven by the experiments (E4)
whose results are illustrated in Figure 12a.

• (C3): VETEOS achieves average 4.43% False Negative
Rate and 3.41% False Discovery Rate in dataflow analy-
sis. This is proven by the experiments (E5) whose results
are illustrated in Figure 12b.

D. Evaluation

1) Experiment (E1): [GDV Analysis Test] [1 human-
minute + 1 compute-minute]: Test the GDV analysis func-
tionality of VETEOS.

[Preparation] Ensure that the working directory is the root
directory of VETEOS project. Execute command python3
tests/test dependencies.py to ensure that all depen-
dencies are installed and available.

[Execution] bash tests/test GDV.sh.
[Results] Expected printed output:
...
Total number of files analyzed: 24
Detected Groundhog Day Vulnerabilities: 24
Results are stored in ./results/

T1

T2

T3

<createSecret>

$func96:

4815: i32.rem_s

4822: set_local 12

actionT1m

actionT1n

<payToPlay>

apply:
288: get_local 1 <code>

290: i64.const 6138663591592764928 <"eosio.token">

301: i64.ne

302: br_if 0
349: get_local 2 <action>

351: i64.const -3617168760277827584 <"transfer">

361: i64.ne

362: br_if 0

<checkCondition>

$func168:
373: get_local 5 <global state>

375: get_local 2 <user input>

377: i32.ne

378: br_if 0

<writeState>

$func172:
83: i64.const 4152997948076064768 <"balances">

95: call 33 <db_find_i64>

$func185:
151: call 48 <db_update_i64>

<notify>

$func174:
868: i64.const 6138663591592764928 <"eosio.token">

853: i64.const -3617168760277827584 <"transfer">

909: i64.const 3617214756542218240 <"active">

$func159:
236: call 22 <send_inline>

<readState>

$func175:
62: i64.const 4152997948076064768 <"balances">

74: call 33 <db_find_i64>

$func184:
104: call 45 <db_get_i64>

actionT3m

actionT3n

Fig. 18: Analysis Summary Graph Example

The logs and generated analysis summary graphs will be
stored in ./results/. An example of detailed analysis log
can be found at: ./results/example.log. Figure 18 shows
an example of generated analysis summary graph, which also
can be found at: ./results/example.pdf.

2) Experiment (E2): [GDV Detection Test] [1 human-
minute + 10 compute-minutes]: Run GDV detection test on
735 vulnerable samples.

[Preparation] Ensure that the working directory is the root
directory of VETEOS project.

[Execution] bash tests/test GDV all.sh.
[Results] Expected printed output:
...
Total number of files analyzed: 735
Detected Groundhog Day Vulnerabilities: 735

3) Experiment (E3): [Dataflow Analysis Case Study] [1
human-minute + 1 compute-minute]: Test the dataflow analysis
functionality of VETEOS on binary EOSIO smart contracts.

[Preparation] Ensure that the working directory is the root
directory of VETEOS project.

[Execution] bash tests/test dataflow.sh.
[Results] The script will trigger a process of auto-

matic dataflow tracking testing through the VETEOS termi-
nal. An example output of dataflow test can be found at:
./results/example output dataflow test.log.

4) Experiment (E4): [Entry Point Detection Test] [1
human-minute + 1 compute-minute]: Test the accuracy of entry
point detection.

[Preparation] Ensure that the working directory is the root
directory of VETEOS project.

[Execution] python3 tests/tests.py entrypoint.
[Results] Expected printed output:
...
samples:98
error:0

The test logs will be printed directly to the terminal. Note
that accuracy tests requires manual verification against the
source code. The source code of the tested samples can be
found in ./samples/sourcecode.tar.gz.
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5) Experiment (E5): [Dataflow Accuracy Test] [1 human-
minute + 1 compute-minute]: Test the accuracy of dataflow
analysis.

[Preparation] Ensure that the working directory is the root
directory of VETEOS project.

[Execution] python3 tests/tests.py dataflow.
[Results] Expected printed output:
...
dataflow false positive test:
test cases:537
error:0
dataflow false negative test:
test cases:537
error:0

The test logs will be printed directly to the terminal. Note
that accuracy tests requires manual verification against the
source code. The source code of the tested samples can be
found in ./samples/sourcecode.tar.gz.

E. Customization

To manually perform the GDV analysis functionality,
run command: python3 main.py -f <filepath> -g -d,
where the flag -g enables the analysis graph generation, and
flag -d enables dumping the analysis logs.

For example, if need to dump the log files to directory
./results/ during experiment (E2), modify the line 24 of
file ./tests/test GDV all.sh to be output=$(python3
main.py -f "$file" -g -d).

F. Notes

VETEOS is highly scalable, it includes an integrated
terminal for visualizing instructions, accessible through the
command python3 main.py -v. This feature enhances the
intuitiveness and user-friendliness of dataflow analysis and
allows for potential expansion of additional analysis of WASM
bytecode capabilities in the future.
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