
Abusing the Ethereum Smart Contract Verification
Services for Fun and Profit

Pengxiang Ma*1, Ningyu He*2, Yuhua Huang1, Haoyu Wang§1 and Xiapu Luo3
1 Hubei Key Laboratory of Distributed System Security, Hubei Engineering Research Center on Big Data Security,

School of Cyber Science and Engineering, Huazhong University of Science and Technology, China
2 Key Lab of HCST (PKU), MOE; SCS, Peking University, China

3 The Hong Kong Polytechnic University, China

Abstract—Smart contracts play a vital role in the Ethereum
ecosystem. Due to the prevalence of kinds of security issues
in smart contracts, the smart contract verification is urgently
needed, which is the process of matching a smart contract’s source
code to its on-chain bytecode for gaining mutual trust between
smart contract developers and users. Although smart contract
verification services are embedded in both popular Ethereum
browsers (e.g., Etherscan and Blockscout) and official platforms
(i.e., Sourcify), and gain great popularity in the ecosystem, their
security and trustworthiness remain unclear. To fill the void,
we present the first comprehensive security analysis of smart
contract verification services in the wild. By diving into the
detailed workflow of existing verifiers, we have summarized the
key security properties that should be met, and observed eight
types of vulnerabilities that can break the verification. Further, we
propose a series of detection and exploitation methods to reveal
the presence of vulnerabilities in the most popular services, and
uncover 19 exploitable vulnerabilities in total. All the studied
smart contract verification services can be abused to help spread
malicious smart contracts, and we have already observed the
presence of using this kind of tricks for scamming by attackers.
It is hence urgent for our community to take actions to detect
and mitigate security issues related to smart contract verification,
a key component of the Ethereum smart contract ecosystem.

I. INTRODUCTION

Ethereum, as one of the representative blockchain plat-
forms, is regarded as a medal contender of Satoshi’s Bitcoin.
Its market cap peaked at $540 billion in November 2021 [16].
The success of Ethereum cannot omit the existence of tens of
millions of smart contracts deployed on it.

Specifically, smart contracts on Ethereum can be seen
as scripts that will be executed once pre-defined conditions
are met. Alongside the characteristics of irreversibility and
determinacy of blockchain, developers start to compose de-
centralized applications (DApps) with smart contracts, e.g.,
gambling games [62], decentralized exchanges [66], and de-
centralized autonomous organizations that can propose and
discuss proposals [22], where all participants are willing to and

*Pengxiang Ma and Ningyu He are co-first authors.
§Haoyu Wang (haoyuwang@hust.edu.cn) is the corresponding author.

Ethereum mainnet

Unreadable contract

Addr: 0x12..
Addr: 0x34..

Addr: 0x56..

“Contract A is the source
code of contract at address

0x34..”

Source code: A

(a) Request source code verification

Verifier

“I want the source code of
the contract at 0x34..”

(b) Ask source code for a contract

Verifier
Addr: 0x34.. Source code: A

Downstream applications

Vulnerability scanner

Code audit

…

Used by

Configuration items

Fig. 1: Source code verification in Ethereum ecosystem.

have to obey game rules that are coded in the smart contracts.
Considering the efficiency and I/O issue, Ethereum only stores
a compact format, i.e., bytecode, of smart contracts within its
decentralized database.

However, the unreadability of bytecode severely hampers
the development of the whole ecosystem. For example, on
Ethereum, accounts are eligible to create and issue tokens by
deploying their own token contracts, it is hard to tell scam
tokens from official or real ones by only auditing the bytecode.
For example, Xia et al. [72] identified over 10K scam token
contracts, where scammers have gained a profit of at least
$16 million. Such a gap between users’ expectation and actual
executed logic in unreadable bytecode urges the emergence
of smart contract verification, i.e., the process of matching a
smart contract’s source code to its on-chain bytecode.

Smart contract verification have been integrated into
Ethereum browsers, e.g., Etherscan [26] and Blockscout [6],
and other official platforms, e.g., Sourcify [2]. As shown
in Fig. 1(a), by providing a piece of source code, a set of
configuration items, and an address, the verification service
compiles the given source code according to the configuration
and compares it with the on-chain bytecode in the designated
address. For all source code that passes the verification, they

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.24992
www.ndss-symposium.org

will be stored by the service provider. Once someone asks the
source code of a contract, the verification service returns it if
it has been verified, as illustrated in Fig. 1(b). The retrieved
source code can be used in various kinds of downstream appli-
cations, e.g., vulnerability detection and code auditing. Indeed,
many research studies [28], [32] and industrial products [8]
rely on the smart contract verification services. Intuitively,
source code verification services will help gain mutual trust
between smart contract developers and their users, and boost
a series of applications.

Are the smart contract verification services trustworthy?
Surprisingly, no prior studies have considered whether these
verification services work as expected. Imagine such a situation
where a malicious developer provides a seemingly harmless
source code that can pass the verification of an on-chain con-
tract, which however is embedded with backdoors. Moreover,
what if one’s smart contract can be verified by a source code
that is elaborately constructed by malicious competitors? These
severe consequences can happen once there are vulnerabilities
or bugs under any of the modules of the verification services.
These vulnerabilities can be abused by adversaries, leading to
an extreme negative impact to the whole Ethereum ecosystem.

This Work. We take the first step to perform a compre-
hensive security analysis on Ethereum smart contract verifi-
cation services in this paper. Based on the implementation of
three widely-adopted verifiers, i.e., Etherscan, Sourcify, and
Blockscout, we firstly distill the general workflow of them
and identify key modules that make them up (see §IV). Then
we propose the key security properties that should be satisfied
in these services (see §V). Against the security properties, we
summarize eight types of potential vulnerabilities that can ex-
ploit the verification service. Further, for each type of vulnera-
bility, we propose a detection method, the corresponding proof
of concept (PoC) to illustrate how they can be exploited, and
concrete steps to avoid the abuse (see §VI). Our comprehensive
analysis reveals 19 vulnerabilities in total on three services,
each of which can be exploited by attackers. After a timely
disclosure to service providers, 15 vulnerabilities have been
confirmed by the corresponding official and 10 of them have
been patched. We further measure the impact, and observe that
tens of millions of deployed innocent contracts can be abused,
and hundreds of contracts may have already committed fraud
by exploiting these vulnerabilities (see §VII).

Our contributions can be summarized as follows:

• To the best of our knowledge, we are the first to
characterize the design and implementation of popular
Ethereum source code verification services.

• We uncover eight types of overlooked but exploitable
vulnerabilities hidden in verification services.

• We propose the concrete methods to detect, exploit
and mitigate for all these types of vulnerabilities,
and reveal 19 vulnerabilities hidden in three verifiers.
By the time of writing, 15 vulnerabilities have been
confirmed, and 10 of them have been patched in time.

• We show that the uncovered vulnerabilities can in-
troduce an extreme negative impact on the Ethereum
ecosystem, i.e., tens of millions of innocent contracts

1 contract foo {...}
2 contract bar {...}
3 contract fac {
4 function f() public{
5 foo c_foo = new foo();
6 bar c_bar = new bar();
7 }
8 }

(a) A simple factory contract.

Creation code Runtime code

Metadatadeploy

(b) The structure of most
smart contracts.

Creation code Runtime code

Metadatadeploy

foo barfac

(c) The structure of the factory contract
illustrated in Fig. 2a.

Fig. 2: The bytecode structure of Ethereum smart contracts.

can be abused by attackers, and hundreds of contracts
have already been manipulated.

We have released all artifacts at: link.

II. BACKGROUND

A. Smart Contract

Most Ethereum smart contracts are written in Solidity [54],
a high-level programming language specifically designed by
the Ethereum official. Correspondingly, Ethereum provides a
specific compiler, named solc, which takes Solidity files as
input and generates a bytecode file, which can be executed by
Ethereum Virtual Machine (EVM). An EVM bytecode consists
of a series of opcodes, which can interact with the data
structures maintained by EVM [23]. For example, the PUSH
opcode pushes its operand onto an operand stack.

Typically, an EVM bytecode can be divided into three parts
according to their functionalities, i.e., creation code, runtime
code, and metadata, as shown in Fig. 2b. Specifically, the
creation code can be executed only once. It is responsible for
deploying the corresponding runtime code, where the concrete
executing logic of a smart contract, e.g., implementations of
functions, is encoded. Moreover, the fixed-length metadata is
part of the runtime code and not executable. It is the hash
result of the meta information during the compilation (like
solc version) [55]. Additionally, the metadata can be used as a
key to retrieve and index the corresponding smart contract in a
decentralized database. For most smart contracts, there is only
one piece of metadata, while things look different for factory
contracts [70]. Specifically, a factory contract can deploy other
contracts solely by itself, as shown in Fig. 2a, where the fac
contract can deploy foo and bar whenever the function f is
invoked. Its bytecode structure is shown in Fig. 2c. The most
obvious distinction is that there are three pieces of metadata
embedded in the runtime code, corresponding to fac and the
contracts it can deploy. Note that, there exist explicit and fixed
indicators in the head and tail of each metadata, which can thus
be identified easily. Except for these three basic structures,
we often use the term, bytecode, as a general one to refer

2

https://github.com/source-code-scam-paper/source-scam-all-in-one

all these three parts together. When a user tends to initiate a
transaction with the locally compiled bytecode for deployment,
the bytecode as well as the initial values of parameters are
embedded into the input field of the transaction.

Functions and variables in Ethereum smart contracts can
be specified by type specifiers [54]. Some of them specify
the visibility, e.g., private and external, which can be
used to differentiate access control on functions and vari-
ables. Another specifier, named immutable, is introduced
to specify read-only variables. Different with the ordinary
constants, immutable variables are calculated and initialized
till the contract is deployed by the creation code.

B. Smart Contract Verification

Code Is Law, is one of the core principles of Ethereum. In
other words, all smart contracts in finalized blocks are non-
updatable and cannot be rolled back. As we mentioned in
§II-A, smart contracts are stored in the form of EVM bytecode.
Due to its unreadability, it requires huge efforts to identify
developers’ original intention.

Such a transparency issue urges the emergence of smart
contract verification1, which is either a feature offered by
Ethereum browsers (e.g., Etherscan [26] and Blockscout [6]) or
a service provided by the Ethereum official (e.g., Sourcify [2]).
Specifically, anyone can upload a source code file and claim
it is the implementation of an on-chain smart contract. The
service is responsible for verifying if the bytecode compiled
from the given source code matches the one deployed on-chain.
Once matched, all users are able to access the source code file
for further usage.

There are two specific results to further describe that the
provided source code is matched to the on-chain contract,
i.e., partial match and exact match. To be specific, if the
given source code can generate an identical result with the
on-chain one except for the metadata, it is described as a
partial match. This is because some configuration items are
inconsistent with the ones at the time of original compilation.
Otherwise, it is an exact match. However, such a subtle
difference is only considered by Sourcify, where an exact
match can replace the existing partial match on the same
contract [58]. In contrast, Blockscout and Etherscan do not
allow replacements of any already manually verified contracts.
According to the statistics [25], [2], [6], less than 1%, 0.7% and
0.3% of contracts have been manually verified in Etherscan,
Sourcify, and Blockscout, respectively, indicating a huge attack
surface for adversaries.

III. ADVERSARY MODEL

A. Motivating Example

If the smart contract verification services are exploited,
it is possible that the provides source code is inconsistent
with the contract in the designated address. Fig. 3 illustrates
a concrete example. As we can see, from step 1 to step 3,
attackers intentionally deploy an evil contract (A), request a
source code verification by providing A. Thus, the source code
of A is stored in the corresponding address, 0x11...1, for

1Note that we use smart contract verification and source code verification
interchangeably in this paper.

{
 "language": "Solidity",
 "sources": {
 “a.sol": {"content":
 "contract A{..}"}
 },
 "settings": {},
}

{
 "language": "Solidity",
 "sources": {
 “../0x11..1/a.sol": {"content":
 "contract B{..}”}
 },
 "settings": {},
}

Configuration of contract A Configuration of contract B
Address Source Code
0x11..1 contract A{..}

… …
0x22..2 -

Address Source Code
0x11..1 contract B{..}

… …
0x22..2 -

Contract A

Contract B

Deploy

Deploy

Verify

Verify

Store results

Store results

Database after verifying A

Database after verifying BOverlap

Ethereum Verifier Database

  

  

Fig. 3: A motivating example that exploits verification services.

example. Then, to hide their malicious intention, they compose
another harmless contract, named B. Based on the contract B,
attackers repeat the above processes from step 4 to step 6.
However, at step 5, they slightly modify the configuration file.
As the highlighted rows indicate, they claim the path of B as
../0x11...1/a.sol. To this end, the source code of B
overwrites the A’s in the back-end database. Users who visit
0x11...1 eventually obtain the source code of B without
explicit warnings. In other words, the harmless contract covers
the malicious intention of the actually deployed one. This
vulnerability is uncovered in Sourcify by us (see §VI-B4).

B. Adversary Model

We assume that attackers can access both on-chain and off-
chain data as normal users. Specifically, attackers can access
all deployed smart contracts through a self-deployed node or
Ethereum browsers, and arbitrarily request verification by pro-
viding necessary files. Thus, depending on whether attackers
request verification on contracts deployed by themselves or
other developers, we can divide the consequences of exploiting
smart contract verification services into two categories, i.e.,
adversarial verification and source scam.

Adversarial Verification (A1). This consequence corresponds
to verifying contracts deployed by other developers. Given
an arbitrary contract bytecode, malicious users can forge a
piece of source code that can successfully pass the verification
process by exploiting vulnerabilities in the verifiers. Such
a verification not only does not require authorizations from
the actual developers, but also does not notify them that
their contracts have been verified by others. Additionally, the
verified source code can show malicious or scam information
that discredits the victim. For example, Fig. 4 illustrates a real-
world example2. Specifically, we can see the actual deployed
contract is named as L1Weth, and its meta information is
shown in the upper part. Attackers exploit a vulnerability
(the one detailed in §VI-A1) and provide a source code
file, as shown in the lower part. There are three interesting
points: 1) attackers deliberately name the source code file as
L1Weth.sol, though the most visible contract is named as
LlWeth; 2) there are an ASCII art diagram, a phishing link
and a fake discord channel; and 3) the deposit function

2Address: 0xc536...

3

https://goerli-optimism.etherscan.io/address/0xc536afd4906e8bee12df47d537700675a73abe4c#code

Actually deployed contract named L1Weth

Phishing and
fraud

information

Clearly vulnerable function

Name the source code as L1Weth

Fraud information is
hidden in LlWeth

Fig. 4: A real-world example of adversarial verification, where
the upper and lower parts correspond to the meta information
of the deployed contract and the one of the provided source
code, respectively.

has an obvious vulnerability. Intuitively, the credibility of
the original contract is significantly compromised. As for the
adversarial, it can be explained in two ways. On the one
hand, a successful source code verification, even not requested
by the actual developers, has no chance to be replaced in
Blockscout and Etherscan. On the other hand, in Sourcify, if
a smart contract is only partially verified by its developers,
attackers can construct an exact match to adversarially replace
the original one (see §II-B).

Source Scam (A2). This consequence corresponds to the
situation where attackers are exactly the developers of the
verified contracts. As the example in §III-A, attackers can
exploit vulnerabilities by providing a seemingly harmless
contract to hide malicious intentions. Consequently, the fake
contract gains users’ trust, which is however a trap.

These two consequences are explicitly related to users who
access Ethereum contracts. Further, the vulnerabilities can also
bring in critical consequences to the whole ecosystem. For
example, lots of downstream applications, e.g., source-code
level vulnerability detectors like Slither [28] and Echidna [32]
and smart contract auditing companies [8], rely on the source
code retrieved from these verifiers. If they are compromised,
the reliability of such services is severely impacted.

IV. SOURCE CODE VERIFIER

Against three mainstream verifiers, i.e., Etherscan, Sour-
cify, and Blockscout, we firstly overview their general work-
flow in §IV-A. Then, we delve deeper in their implementations
in §IV-B and §IV-C. Last, against the proprietary Etherscan,
we detail how a black-box testing is conducted in §IV-D.

A. Overview

Fig. 5 illustrates the general workflow and architecture of
verifiers. Moreover, Table I illustrates the options adopted by
them in each module. Generally speaking, a verifier takes
source code, configuration items, and an address as inputs.

Untrusted Source
Code Data Acquisition

Module (M1)

Address

Configuration
Items

Source code
file(s)

On-chain Data
Acquisition

Module (M2)

Compilation
Module (M3)

Comparison
Module (M4)

Data Storage
Module (M5)

Display & API
Module (M6)

ShortcutMatch

Mismatch

Bytecode

Runtime
code

Source code
file(s)

Meta
info

Source
code

Configuration
Items

Bytecode

Runtime
code

Fig. 5: Architecture and workflow of the source code verifiers.

According to the configuration items, the verifier can compile
the given source code in a deterministic way. Then, the verifier
fetches the bytecode and the runtime code according to the
given address, and compares if they are identical to the locally
compiled ones3. Once matched, the provided source code
would be labeled as verified and served to users who query
it via APIs exposed by verifiers.

B. Components of Verifier

Smart contract verifiers can be abstracted into six modules
with calling relations, denoted from M1 to M6, respectively.

1) Untrusted Source Code Data Acquisition Module (M1):
M1 is responsible for obtaining untrusted data, i.e., source
code file(s), configuration items, and an address, from the
verifying requester. As for providing multiple source code
files, it is because a DApp may require multiple files to
achieve a complex functionality. Thus, to enable compiling
a DApp with the hierarchical structure among source code
files, solc allows users to pack source code files and their
paths into a single file in JSON format. Additionally, once
a contract is compiled by solc, a set of configuration items is
generated automatically, corresponding to the meta information
of the compilation adopted this time, e.g., solc version. Last,
the contract stored in the given address is regarded as the
verification target. Moreover, specific service providers may
require extra information. For example, Blockscout requires a
contract name as the entry when multiple contracts exist.

2) On-chain Data Acquisition Module (M2): From the
given address, this module retrieves necessary on-chain data,
i.e., the runtime code and the bytecode (i.e., both creation
code and runtime code) on demand. Specifically, to obtain
the on-chain runtime code, M2 queries a standard RPC,
named eth.getCode(), which is exposed by client nodes.
As for obtaining the bytecode, M2 firstly queries some
third-party databases, e.g., Etherscan, to obtain the hash of
the creation transaction to the address. Then, M2 queries
eth_getTransactionByHash() and extracts the byte-
code from its input field.

3) Compilation Module (M3): M3 invokes solc to com-
pile and obtain both bytecode and runtime code for the
subsequent comparison process. According to the source code
files and configuration items obtained by M1, solc can perform
compilation in a deterministic way. Even so, the compiled
runtime code may be unusable. The reason lies in that there

3Note that the comparison works on demand. Specifically, Blockscout
only compares the bytecode, while Sourcify compares bytecode only if the
comparison on runtime code failed [61]. Etherscan compares both of them.

4

TABLE I: Adopted options in modules for different source code verifiers.

M2 M3 M4 M5 Shortcut

Etherscan1
Runtime

code

Fetch on-chain ones
according to the

given address

Compilation +
Replacing immutable Regex matching

in tailing part Centralized database Inheritance across identical runtime code

Bytecode Compilation

Sourcify

Runtime
code

Compilation +
Simulating

Regex matching
in tailing part2

IPFS –

Bytecode Compilation
Prefix matching +
Regex matching
in tailing part2

Blockscout Bytecode Compilation Differential analysis Centralized database Inheritance across identical runtime code /
Inheritance across platforms

1All adopted options in Etherscan are speculated, please refer to §IV-D.
2Sourcify only perform the comparison on bytecode once the result of the comparison of runtime code is mismatched [61].

may exist immutable variables (see §II-A), whose values are
dynamically determined by executing the creation code during
the deployment. We find two ways are adopted by verifiers to
resolve this issue, i.e., directly replacing immutable variables
and simulating creation code [57].

As for the former method, during the compilation, it
leaves all immutable variables as blanks and records all their
offsets. Then, before comparing the compiled one and the on-
chain one, it fetches the corresponding bytes from the on-
chain runtime code according to the recorded offsets, and
fills them into the blanks. Hence, the values of immutable
variables in the local compiled contract are definitely identical
to the on-chain ones, which somehow does not achieve the
purpose of verification. As for the latter method, M3 invokes
eth_call() exposed by client nodes to simulate the behav-
ior of creation code. For example, suppose there is a statement
in a constructor: address immutable public owner
= msg.sender;, where owner is an immutable variable
that can be dynamically assigned as the user’s address who
deploys this contract. The advantage of this statement is that
the owner address does not need to be hard-coded, but is
dynamically set as the transaction initiator during deployment.
This avoids permission verification problems such as owner
address misuse.

4) Comparison Module (M4): M4 is responsible for com-
paring the fetched on-chain data and the locally compiled ones.
As we stated in §IV-B2, the bytecode is obtained from the
input field of the creation transaction, which means that the
bytecode may be followed by values of parameters if the con-
structor requires (see §II-A). Thus, instead of asking requesters
to provide concrete values of parameters, another feasible
strategy is determining if the locally compiled bytecode is the
prefix of the one parsed from the creation transaction.

Except for that, comparing bytecode or runtime code is
still challenging due to the existence of metadata. Though
verification requesters are asked to provide configuration items
to try to generate identical metadata, it is still difficult to
ensure that the uploaded ones are identical to the ones at
the actual compilation. Thus, removing the metadata in ad-
vance is the best choice to avoid verification failure. These
three verifiers adopt distinct methods to identify and remove
metadata. Specifically, because the metadata is wrapped by
explicit indicators [54], Sourcify directly identifies such a
pattern through regex matching at the tail of the runtime

code. However, as Fig. 2c shows, factory contracts may
have multiple metadata, where only removing the tailing one
is insufficient. Thus, Blockscout adopts another method. It
intentionally inserts additional configuration items, which only
changes the metadata while keeping runtime logic unaltered. It
can identify all metadata by observing which bytes are changed
and wrapped in the metadata pattern.

5) Data Storage Module (M5): After completing the above
comparison, all uploaded files need to be properly preserved.
Thus, M5 is accountable for storing them in a permanent
database. For Etherscan and Blockscout, they store all source
code files in their owned and centralized back-end servers.
Users may be concerned about such a centralization issue, like
a single point of failure can cause a completely unavailable
service. Moreover, such centralized back-end servers adopted
by verifiers have been compromised in TRON, where 26
million TRX tokens are stolen [18]. Thus, Sourcify adopts
IPFS [36], a decentralized file system that can be accessed by
anyone who maintains an IPFS node, to enhance its confidence.

6) Display & API Module (M6): Through M6, users
can access the corresponding source code files when asking
for a specific address. Additionally, the displayed information
also includes some meta information as illustrated in Fig. 4.
Furthermore, Sourcify directly offers a metadata file consisting
of all uploaded configuration items to users.

C. Shortcuts

All these three verifiers generally follow the design and
workflow we mentioned in §IV-A and §IV-B. However, we
found some shortcuts, i.e., skipping some modules when a
condition meets, exist in their implementations. The purpose of
these shortcuts is to alleviate the workload or save computing
resources. We detail the found two shortcuts in the following.

Source Code Inheritance across Identical Runtime Code.
Intuitively, if two on-chain runtime code are identical, we can
conclude that the specific logic of the non-constructor part of
these two contracts is equivalent. Therefore, in Etherscan and
Blockscout, if a contract is verified, all other contracts whose
runtime code are identical to this one’s will also be marked
as verified. Such a shortcut provides an automatic verification
for factory contracts. Take a famous decentralized finance
application, Uniswap [66], as an example, which allows token
exchanges at an interest rate calculated by supply and demand.

5

TABLE II: Security properties for source code verifiers.

Security Property Related Modules

P1 Unrestorability M3, M4

P2 Consistency M2, M3, M4, M5, M6

Users can create and deploy a contract of an exchangeable
token pair by invoking create_pair in the factory contract.
Because the concrete steps of how to perform exchanges are
coded in the factory contract, all newly deployed contracts
are identical in terms of runtime code. Consequently, the
previously verified source code files can be directly inherited
to the newly created ones without further verification requests.

Source Code Inheritance across Platforms. To avoid re-
source consumption, Blockscout recognizes the verification
results of Sourcify without manual interventions. In other
words, against an address, users can only request verification
on Sourcify, Blockscout automatically inherits the source code
files uploaded to the address. Note that, there is no automatic
results inheritance from or to Etherscan, which still requires
manual verification requests from users for each contract.

D. Blackbox Testing in Etherscan

Etherscan is not open-source, thus we use a black-box
testing based approach to investigate what options are adopted
by each module. Specifically, the process can be roughly
divided into: 1) constructing and deploying a contract, 2)
constructing the corresponding source code, 3) trying to bypass
or utilize specific options in modules, and 4) observing whether
the verification is passed.

Take determining how metadata is identified in Etherscan
as an example. The biggest challenge for identifying metadata
lies in factory contracts, who have multiple ones. Thus, we
firstly deploy several factory contracts with different solc
versions. Then, we ask verifications for them by providing
the corresponding source code files. The results show that the
verification cannot pass due to the existence of unidentified
metadata when solc is less than or equal to 0.4, but plays
opposite when solc is greater than 0.4. Thus, we infer that
when solc ≤ 0.4, Etherscan adopts the same method as
Sourcify’s, i.e., regex matching. However, we cannot conclude
which option is adopted when solc is greater than 0.4. All
speculated options of these modules are reflected in Table I.
Detailed processes and specific contracts used for black-box
testing are released in our artifact: link.

V. SECURITY PROPERTIES

According to the two possible consequences (see §III-B),
two security properties (P) should be guaranteed to protect
the normal functionalities of source code verification services,
which are shown in Table II.

Unrestorability (P1). Restoration refers to a kind behavior,
where a user somehow obtains source code via reverse engi-
neering or exploiting compiler features. However, this source
code is definitely not the original one composed by developers,
but can bypass the source code verification. Such a behavior
is intuitively unexpected for both users and developers as it

Incomplete Bytecode ValidationR3

Unchecked SimulatingR2

Exploitable Compiler FeaturesR1

UnrestorabilityP1

ConsistencyP2

Replaceable On-chain ContractsR4

Unverified Linked LibrariesR5

Mislabeled BytecodeR6

Security Properties Exploitable Vulnerabilities

Path Traversal RiskR7

Inadequate Information DisclosureR8

Fig. 6: Relations between security properties (P) and ex-
ploitable vulnerabilities (R) in source code verifiers.

cannot reflect the original intention of the deployed contract.
Analogous to the preimage resistance of hash functions [68],
we propose unrestorability, trying to avoid such behaviors. To
meet this property, verifiers should be robust to the following
threats. First, threats to the compilation module. Features
adopted by M3 may violate this security property. For exam-
ple, both verbatim function [51] and loose inline assembly [53]
in solc can assist developers to designate the compiled opcode
sequence. Second, threats to the comparison module. During
the comparison stage, as we mentioned in §IV-B4, some
options are enabled to enhance the user-friendliness, like only
considering the prefix of the retrieved bytecode. Such options
can be utilized by attackers to hamper the unrestorability.

Consistency (P2). Consistency refers to a property that the
semantics between the source code files that passed the verifi-
cation and the targeted on-chain contract should be identical.
Thus, comparing to the semantics of the targeted on-chain
contract, there should not be redundancy or absence in the se-
mantics of the uploaded source code files. Intuitively, two types
of inconsistency can emerge. On the one hand, the semantics
of the provided source code files is absent. For example, in
M3, the implementation of functions in linked libraries is not
included in the caller. In addition, before the comparison in
M4, all metadata should be identified and removed. However,
if a piece of runtime logic is mistakenly marked as metadata,
the corresponding semantics will be overlooked. Consequently,
the absence in the semantics of source code files results in more
code being executed than users think. On the other hand, the
semantics of the provided source code files is redundant. In
M6, the consistency is reflected by the unambiguity of the
displayed information. For example, if attackers can display
redundant or misleading information, like multiple contracts
with an identical name, the unambiguity is violated. The
downstream applications based on the data exposed by M6

will be influenced. Moreover, such an inconsistency can also
emerge after the verification. Specifically, after a successful
verification, the uploaded source code files are stored in
M5. The stored ones may be overwritten unexpectedly or
intentionally by tampering file systems.

VI. VULNERABILITY DETAILS

Against two security properties, we found eight types of
vulnerabilities, whose relations are shown in Fig. 6. In this
section, we firstly organize them according to their conse-
quences (A1 and A2). Then, we present the technical details
of detection, exploitation, and mitigation against each of them.

6

https://github.com/source-code-scam-paper/source-scam-all-in-one

A. Vulnerabilities Leading to A1

Three types of vulnerabilities (R1 to R3) are categorized
to this consequence. The impact of exploiting them depends
on the scale of unverified contracts and the practicality of the
exploits. As we introduced in §II-B, less than 1%, 0.7% and
0.3% of contracts have been manually verified in Etherscan,
Sourcify, and Blockscout, respectively. Thus, if the corre-
sponding exploits are used extensively, the impact can be
summarized in twofold: 1) preventing original developers from
providing actual original source code files, and 2) embedding
malicious or scam information within the provided source code
files to discredit victims. Specifically, as R1 to R3 violate
P1, attackers are able to construct a contract according to
the victim’s bytecode to bypass the source code verification.
In the same source code file, attackers can compose another
contract, within which embeds phishing or scam information as
illustrated in Fig. 4 to discredit the victim contract. The latter
contract can even be placed in a more visible position. In the
following, we mainly focus on how to forge source code files,
instead of the concrete way to spread malicious information
and commit fraud.

1) Exploitable Compiler Features (R1): In M3, attackers
can abuse features of solc to break P1. Specifically, such
features include YUL [56] (an intermediate language) and loose
inline assembly [53], both of which can be inlined in Solidity.
For example, taking advantage of the verbatim_0i_0o
function in YUL, users can directly designate the compiled
opcode sequence. Though according to the implementation of
solc, an invalid opcode fe will be appended after the opcode
sequence, it still reflects how users can flexibly control the
deployed bytecode via abusing compiler features. Likewise,
when solc ≤ 0.4, users can also adopt loose inline assembly
to generate arbitrary opcode sequences.

Detection. To detect if R1 is exploitable in three verifiers, we
construct a set of contracts. Each of them is composed of a
single fallback function, where it embeds a verbatim function
or a piece of loose inline assembly code. Fallback function
has an empty function signature, meaning that the compiled
bytecode is not wrapped by additional opcodes, like function
identifiers [52]. Through observing the difference between the
opcode sequence declared in source code and the consequently
compiled one, we can conclude if R1 is exploitable in verifiers.
1 contract A_ {
2 //target bytecode ’608060405260043610610133..’
3 function() external payable{
4 assembly{ //6080604052
5 0x4 //6004
6 calldatasize //36
7 lt //10
8 tag1 //610133
9 ...

Listing 1: The PoC of R1.

PoC. Consider a deployed contract named A, whose runtime
code is 0x608060.... We can compose a contract A_, as
shown in Listing 1, which only contains a fallback function
(L3). To exploit R1 in Etherscan, we firstly translate the
victim’s, i.e., A’s, runtime code (without metadata) into a piece
of loose inline assembly in the fallback function of A_, as
shown from L4 to L9. Then, we compile A_ locally and
manually replace the metadata of A_ to the A’s. In this way,
A_ and A are identical in terms of runtime code. Thus, we

deploy A_ and verify it by providing Listing 1, which should
be an exact match certainly4. Consequently, due to the shortcut
in Etherscan (see §IV-C), A is automatically labeled as verified
with the source code of A_. As Sourcify allows only verifying
the runtime code (see §IV-B4), it is easier to exploit it. We
can directly request verification for A with A_ in Listing 1.
After the metadata is removed, they certainly have an identical
runtime code to pass the verification. Since Blockscout inherits
the results of Sourcify, Blockscout is also exploitable.

Exploitation Conditions. Successfully abusing R1 is limited
by some conditions. First, only valid opcodes can be written in
loose inline assembly, resulting in the PoC has to be compiled
with solc ≤ 0.4 and the target contract cannot have multiple
pieces of metadata. Specifically, if solc is greater than 0.4,
it automatically appends an invalid opcode fe in front of the
tailing metadata. And if there are multiple pieces of metadata,
it cannot guarantee that each byte of such a random hash string
can always correspond to a valid opcode. Second, operands of
PUSH cannot be led by zero. In Ethereum, there are 32 types
of PUSH which can push 1 to 32 bytes, respectively. However,
if we intend to encode opcodes like PUSH2 0001 in loose
inline assembly, solc will automatically optimize it as PUSH1
01, which changes the final opcode sequence.

Mitigation. It is impractical to prohibit the use of such
features in the provided source code, because they can provide
several advantages, like supporting functionalities unavailable
in Solidity and saving gas, which are proven by Liao et al. [38].
Therefore, to avoid the abuse, here are two possible solutions
for verifiers. On the one hand, raise the threshold for requesting
contract verification, e.g., all requesters must follow the know-
your-customer (i.e., KYC) policy [67] or being authorized in
advance. On the other hand, if these features are found to
be heavily used by solc, verifiers should allow source code
replacement of such contracts or give users a clear warning.

2) Unchecked Simulating (R2): Simulating is an option in
M3, which is adopted by Sourcify in verifying runtime code
to handle immutable variables. Specifically, the simulator takes
whatever it receives as a creation code, executes it locally, and
regards the returned bytecode as the corresponding runtime
code. Such a process may break P1 if attackers construct a
wrapper (not a valid creation code), which returns the victim’s
runtime code directly. Generally, the pointer of the runtime
code is acquired by codecopy, an opcode located at the end
of the creation code. Then, the pointed data, i.e., runtime code,
is returned and processed. However, solc does not check if the
pointer is actually returned by codecopy and the validity
of the returned data. Thus, attackers can construct a piece of
code, within which explicitly returns a pointer that points to
the victim’s runtime code before the actual codecopy.

Detection. To detect if R2 is exploitable, we deliberately insert
some functions that can explicitly change the control flow in
the constructor, like call and return. By asking conducting
source code verification on these contracts and observing if
the control flow of the compiled bytecode changes, we can
conclude if simulating is adopted in M3.

1 contract A_ {
2 constructor() public {

4Note that, the modified metadata has no influence on the verification result
because it is removed before comparing, see §IV-B4

7

3 // Assign victim A’s runtime code to bytecode
4 bytes memory bytecode = hex’608060...’;
5 assembly {
6 return (add(bytecode, 0x20), mload(bytecode))
7 }
8 }
9 }

Listing 2: The PoC of R2.

PoC. Suppose a contract A is deployed on-chain, and we can
construct a contract A_ as shown in Listing 2. At L4, it assigns
the runtime code of A to the variable bytecode. Then, at L6,
a return is explicitly declared in YUL, which is located before
the actual codecopy opcode. Thus, the simulator will execute
the return at L6 before running into the actual codecopy,
leading to an early return of a pointer, which points to the
bytecode. Considering that such an attack can accomplish
the exact match (as metadata can also be directly encoded in
bytecode), we can verify arbitrary contracts that are not
exactly matched yet.

Mitigation. To mitigate the issue, we highly recommend veri-
fiers to not adopt simulating during the compilation stage. This
is because simulating has to rely on EVM, which inevitably
introduces new features that may be improperly utilized or
abused. After we made the suggestion, Sourcify officially
abandoned simulating and started to adopt the direct replacing
strategy that we mentioned in §IV-B3 [60].

3) Incomplete Bytecode Validation (R3): Considering the
user-friendliness, verifiers may not ask users to provide the
concrete values of parameters that are appended after the byte-
code. Such a strategy can be abused by attackers, which breaks
P1. Specifically, assume a constructor requires a parameter,
whose value is p. It is always a mismatch if directly comparing
locally compiled bytecode, denoted as byteloc, to the input
field of the creation transaction, denoted as bytechain||p, due
to the absence of p. Thus, verifiers may adopt prefix matching,
i.e., verifying if byteloc is the prefix of bytechain||p. If it is,
they consider the verification passes. However, this strategy
can be abused if a comprehensive examination misses. For
example, a prefix of byteloc, which is even not a valid
bytecode, may also be the prefix of bytechain||p. Furthermore,
if verifiers do not take an empty string into consideration, an
empty string can also be the prefix of bytechain||p.

Detection. To detect if R3 is exploitable in verifiers, we
intentionally design a set of contracts, which can generate a
prefix of the victim contract. This process can be completed
through utilizing loose inline assembly (see §VI-A1) or by
composing abstract contracts. Specifically, abstract contracts
can be compiled to an empty bytecode. In other words, an
abstract contract can be regarded as a prefix of any contract.
If such contracts can pass the verification, R3 is exploitable.

1 abstract contract WrappedToken{
2 mapping (address=>uint256) public balance;
3 function withdraw (uint256 value) public {
4 balance[msg.sender] -= value;
5 payable(msg.sender).transfer(value);
6 }
7 }

Listing 3: The PoC of R3.

PoC. Firstly, we choose a victim contract that is unverified.
We claim the code snippet in Listing 3 is the corresponding

source code, which is wrapped by an abstract contract. Ab-
stract contracts have the following two characteristics: 1) the
compiled bytecode is empty, and 2) functions within them will
be recognized as ABI functions [50], just like the functions
in normal smart contracts. Because of the problematic im-
plementation of verifiers (e.g., Sourcify [59]), such an empty
bytecode can be regarded as the prefix of any bytecode. To
this end, users who browse this contract will notice that a
function called withdraw is listed as an ABI function, but
it has an apparent integer overflow vulnerability at L4. The
actual deployed contract is discredited.

Mitigation. To avoid this exploitation, verifiers should firstly
always perform a non-null check on byteloc, i.e., an empty
bytecode compiled locally is unacceptable. Further, verifiers
should ensure that the arguments part can always be success-
fully identified. It can be done by verifying whether the suffix
bytes after removing the matched prefix can be parsed as legal
parameters according to the corresponding ABI file. If it is
possible, it means that byteloc equals to bytechain.

B. Vulnerabilities Leading to A2

Several types of exploitable vulnerabilities can lead to A2,
i.e., conducting source scam for inexperienced users. They can
cause extreme severe impact.

Specifically, the verification requesters who exploit these
vulnerabilities (R4 to R8) are malicious developers them-
selves. They firstly deploy a malicious contract, and verify
it by another piece of seemingly harmless source code. The
verification between these two mismatched contracts can be
bypassed by exploiting these vulnerabilities, where a concrete
instance is illustrated as the motivating example (see §III-A).
Similarly to the introduction on vulnerabilities leading to A1

(see §VI-A), in this section, we deliberately ignore details
about how to construct and deploy malicious contracts. In the
following, we mainly focus on how to bypass the verification,
i.e., importing inconsistency to break P2.

1) Replaceable On-chain Contracts (R4): The status and
enabled features of the client node that verifiers depend on can
be exploited by attackers to replace already on-chain contracts,
which breaks P2. For instance, client nodes may suffer the
chain reorganization issue [41], which is a normal phenomenon
for blockchains as forking is inevitable. According to the
statistics [27], this issue happens around 5 times an hour in
Ethereum. It requires service providers on blockchain plat-
forms to proactively avoid the imported negative impact, e.g.,
decentralized exchanges only consider the transactions located
under certain block heights as valid ones [15]. For verifiers,
if unconfirmed on-chain smart contracts are taken as targets
for the source code verification, the validity of their results
may be hampered. Additionally, the EVM version adopted by
the verifier-dependent client node may also lead to abuses.
For example, Ethereum has introduced a new opcode, named
create2 [21]. It was originally designed to deploy a smart
contract on a predetermined address for developers. However,
this opcode can be abused to deploy another piece of runtime
code on an existing address, which may invalidate the original
source code verification result on the same address [24].

Detection. Against above two examples, to detect the former
one, a reasonable method is to deploy multiple client nodes and

8

Dumper
creation code

Deployer
Dumper

creation code

Deployer

Backdoor-free
runtime code

Backdoor-free
source code

Dumper
creation code

Deployer

Backdoor-free
source code

Malicious
runtime code











 Assemble a deployer with Dumper’s creation code
 Deploy A’s runtime code
 Conduct source code verification with A
 Self-destruct the runtime code
 Re-deploy malicious A_’s runtime code

Fig. 7: Overview of the PoC of R4.

initiate multiple transactions simultaneously to urge state fork-
ing. However, such a testing on consensus algorithm is out of
scope of this work. Thus, we mainly focus on the exploitability
of the later one, i.e., if verifiers can be cheated by redeploying
contracts on an existing address through create2. Specif-
ically, if the creation code is unchanged, the address of the
deployed contract also keeps unchanged through create2.
Taking advantage of this feature, we compose a contract as
a deployer, which has a fixed creation code and takes the to-
be-deployed runtime code as an argument. Intuitively, if an
address is available and can be redeployed after the original
one is self-destructed, the verified source code may correspond
to the original one, indicating verifiers are exploitable to R4.

1 contract Deployer {
2 bytes public deployBytecode;
3 address public deployedAddr;
4 function deploy(bytes memory code) public {
5 deployBytecode = code;
6 address target;
7 bytes memory dumperBytecode = hex"{Dumper

contract’s creation code}";
8 assembly {
9 target := create2(callvalue, add(0x20,

dumperBytecode), mload(dumperBytecode), 0
x11)

10 }
11 deployedAddr = target;}
12 }
13 contract Dumper {
14 constructor() public {
15 Deployer dp = Deployer(msg.sender);
16 bytes memory bytecode = dp.deployBytecode();
17 assembly {
18 return (add(bytecode, 0x20),mload(bytecode))
19 }}
20 }

Listing 4: The toolchain of conducting PoC of R4.

PoC. Fig. 7 and Listing 4 illustrate how a fraud can be commit-
ted through exploiting R4. In the preparation stage, i.e., step
1, we first compile the Dumper declared at L13 in Listing 4,
extract its creation code and assign it to dumperBytecode
at L7. Thus, the contract Deployer at L1 can be seen as a
general deployer. Any runtime code passed through code at
L4 can be deployed at an unchanged address. At step 2, we
compile a harmless contract A, and call the function deploy
of Deployer at L4 with code as A’s runtime code. The
create2 at L9 deploys this contract on an address. Then, at
step 3, we provide the corresponding source code files of A
and ask for a verification. After the verification completes, we
call the function selfdesctruct in A to make this address

available, as shown in step 4. We again compose another evil
contract A_, and pass its runtime code in deployer. Due
to the characteristic of create2, such an evil contract is
also deployed on the identical address to A. Consequently, the
verification results of A are mistakenly bound on the actual
executed contract, i.e., A_.

Mitigation. To prevent such an attack, verifiers should ensure
the immutability of the contracts being verified and make
necessary updates simultaneously. On the one hand, for those
contracts that can still be rolled back, e.g., through a chain
reorganization, it is best for verifiers not to provide services
to them. On the other hand, for those contracts in finalized
blocks, when verifiers provide the source code file, they should
also highlight the difference between the current bytecode
and the one at the time the verification is requested. If they
are different, it means that the deployed contracts are self-
destructed or re-inited by create2 on the same address.

2) Unverified Linked Libraries (R5): If the implementation
of invoked linked libraries is not considered by verifiers, it
intuitively violates P2. Specifically, in order to support mod-
ular design when developing DApps, developers can embed
part of the contract logic into a library contract. Two kinds of
libraries exist, i.e., linked library and embedded library, whose
distinctions are subtle [17]. On syntactic level, the only dis-
tinction is that they are specified by public and internal,
respectively. However, they are encoded in different ways.
Specifically, a call to functions in linked libraries is encoded as
an opcode delegatecall, which takes the invoked library’s
address and the function signature of the callee as arguments.
This means that the callee linked library is actually located at
another address, and its logic does not appear in the caller’s
bytecode at all. Conversely, as for embedded libraries, the
logic of callee is directly included into the caller’s. Such
subtle differences may not be taken into account by users. In
other words, though verification requesters provide the source
code of the caller contract and the invoked linked libraries
together, verifiers only consider the function signatures instead
of the implementation of the functions in the provided linked
libraries. Because there is no clear warnings about this issue,
users may be deceived as the implementation of invoked linked
library is not verified at all.

Detection. To detecting if a verifier is exploitable to R5, we
firstly deploy a contract that invokes a linked library where
it poses malicious behaviors. Then, we verify the contract
while uploading a library with identical function signature but
different implementation. If the verification can pass, it means
malicious users can commit fraud through exploiting R5.

1 pragma solidity ˆ0.8.0;
2 contract A{ // caller
3 uint totalsupply = 0;
4 function is_zero() public view returns(bool){
5 L.check(totalsupply);
6 // compiled to: L.delegatte(abi("check(uint)

", totalsupply))
7 return true;
8 }
9 }

10 library L{ // linked library
11 function check(uint balance) public view{
12 require(balance == 0);
13 }
14 }

Listing 5: The PoC of R5.

9

PoC. Listing 5 illustrates a call to a linked library. We can see
from L5 that L is a linked library, and check is the callee
function. This is equivalent to the statement at L6, i.e., only
the address of L and the signature of check is considered
by the caller contract. To this end, we can commit fraud by
utilizing this feature. Specifically, we firstly update Listing 5 by
replacing L12 to selfdestruct(msg.caller) that can
destroy the contract in callers. Then, we compile and deploy
this malicious contract on-chain. To conduct exploitation, we
provide the seemingly normal Listing 5 at the source code
verification, which should pass the verification because the
contract A is unchanged, and the signature of the callee
function check in the linked library also keeps unaltered.
Consequently, the malicious intention is covered.

Mitigation. If the invoked linked libraries cannot be verified
recursively, we urge verifiers to explicitly warn users that
the implementation of linked libraries is unreliable. Moreover,
users need to carry out further checks themselves. In other
words, only when the main contract and the invoked linked
libraries are both verified and there are no security issues in
their implementations, users can trust the main contract.

3) Mislabeled Bytecode (R6): When performing the com-
parison in M4, verifiers flag and intentionally skip certain
fields in order to avoid unnecessary verification failures. How-
ever, such an intentional skip may lead to the inconsistency
issue. Two types of fields lie in this scope, i.e., metadata and
linked library placeholders.

The necessity of removing all metadata before M4 is
detailed in §IV-B4. However, problematic metadata labeling
and extracting may leave metadata behind or extract inno-
cent bytes as metadata, leading to a failed verification or
unexpected verification bypass, respectively. Specifically, the
current pattern of metadata is 53-bytes long, including a 34-
bytes IPFS hash, a 3-bytes solc version, and a 16-bytes magic
number [54]. To extract all metadata, as we mentioned in
M4, two ways are adopted by current verifiers, i.e., regex
matching and differential extracting. Specifically, no matter
where a metadata locates, regex matching is supposed to be
effective and efficient. However, in 2021, a white hat exploited
the buggy regex matching to intentionally mark a piece of
runtime code as metadata, where he hid a backdoor [49]. It
proves the unreliability of this strategy. Thus, Blockscout has
proposed the idea of differential extracting. According to its
implementation [5], it can be summarized as follows:

• According to configuration items, it compiles the
given source code files, which is denoted as c.

• Blockscout intentionally adds a pre-defined and use-
less configuration item to make the compiled byte-
code changed as c′. The newly added item is to
import a linked library located in a file named
SOME_TEXT_USED_AS_FILENAME [7].

• By comparing c and c′, Blockscout can identify an
index, denoted as i, where the first difference occurs.
Based on i, it looks backward and forward to find a
byte string that follows the metadata pattern.

• The above indexing and metadata identifying process
repeat till all metadata are identified.

Linked library placeholders should also be removed before
conducting comparison. Specifically, during the compilation,
solc firstly replaces each invoked linked library address with a
40-bytes placeholder. If users require verification on Etherscan
or Blockscout, both verifiers ask users to provide concrete
addresses. Unlike them, Sourcify provides a more user-friendly
solution, which is detailed as follows:

• Sourcify identifies the first appeared placeholder,
records its offset, and extracts the following 40-bytes
string as a regex pattern.

• Sourcify then locates the bytes from on-chain byte-
code according to the recorded offset, regarding them
as the actual invoked library address.

• Among all placeholders, it matches the ones according
to the regex pattern (1st step), and replaces them with
the on-chain bytes (2nd step).

• The above process repeats till no placeholders exist.

This implementation is safe when solc is greater than 0.4,
where the placeholder is a 34 bytes hash with fixed prefix and
suffix. However, the situation turns opposite when solc is 0.4,
where the placeholder is a string like:

_ _ filePath : libName _ _

, where filePath and libName are strings explicitly declared in
the source code. Because solc does not require the format of
filePath, e.g., ended by .sol, attackers can construct a value
to abuse Sourcify’s regex matching mechanism.

Detection. Instead of exploiting the regex matching mecha-
nism in identifying metadata like the previous attack [49], we
focus on if the differential labeling proposed by Blockscout is
vulnerable. To this end, we compose a contract, in which we
deliberately invoke the library imported by Blockscout. Then,
between M3 and M4, we compare the compilation results
of the Blockscout generated one and the normal one. If some
runtime logic is missed, it means that part of runtime logic is
mislabeled, violating P2. PoC #1 illustrates an example.

As for detecting the vulnerability on identifying linked
library placeholders, we construct a contract whose filePath
and libName are deliberately set as strings following regex
grammar. Then, after M3 of Sourcify, we observe if the forged
filePath and libName can hit any valid runtime logic and
replace it with on-chain bytecode. If it is, it means attackers
can construct malicious contracts to arbitrarily label runtime
logic to intentionally remove it before the comparison in M4.
We will demonstrate is in the following PoC #2.

PoC #1. Fig. 8 illustrates how to exploit the differential
extracting. Specifically, we compose a piece of source code,
as shown in the top of Fig. 8. We deliberately import a file
named SOME_TEXT_USED_AS_FILENAME, and assign the
library (L_), which is defined in the imported file, to a variable.
At step 1 & 2, we compile the source code, and locally
update an opcode near the library placeholder to FF, i.e.,
selfdestruct. Then, we deploy such a modified bytecode
on-chain. After that, we request a source code verification
through Blockscout. Because the library L_ is defined in the
imported strange file, which is inserted by Blockscout when
conducting differential extracting, the bytes at that location

10

import "./SOME_TEXT_USED_AS_FILENAME";
contract A {
bytes11 public constant a = 0xa26..11;
address public constant owner = address(L_);

//‘L_’ is a linked library in SOME_TEXT_USED_AS_FILENAME
file
bytes11 public constant c = 0x647..33:

}

Compile

6080..a2646..22260a81b81565b73__$L_$__8156..00003360..

Change 60 (PUSH) to
FF (SELFDESTRUCT)

Local

Remote Deploy modified bytecode

6080..a26..22FFa81....

Mistakenly identify runtime
code as metadata

Pass verification

Verifier

6080..a26..2260a81....

Source code of the backdoor-free contract A

Bytecode of A

Modified A with backdoor

6080..a2646..222FFa81b81565b73__$L_$__8156..00003360..

On-chain bytecode Local bytecode

Ethereum

u

v

w

x

y

Fig. 8: Overview of the PoC #1 of R6.

are unexpectedly updated. According to the implementation
adopted by Blockscout we mentioned before, it should mark
the L_ nearby area, including the malicious FF, as metadata
and remove it, which is normal runtime logic actually. Because
other parts of bytecode are still identical to the on-chain ones,
it can pass the verification, while users are unaware of there is
a dangerous selfdestruct hidden in the deployed contract.

1 pragma solidity ˆ0.4.0;
2 import "./$.{37}|2{40}|"; // file path
3 contract A {
4 address constant public owner = address(0x222

..22);
5 uint public b;
6 function c() public{
7 b = foo.bar();
8 }}
9

10 library foo{ // lib name
11 function bar() public pure returns(uint) {
12 return 1;
13 }}

Listing 6: The PoC #2 of R6.

PoC #2. Listing 6 illustrates a malicious smart contract. The
L2 and L10 correspond to filePath and libName, respectively.
Thus, a placeholder is generated as5:

__$.{37}|2{40}|:foo_...__

To this end, Sourcify takes the above placeholder as a regex
pattern. Specifically, the __$.{37} can match the current
placeholder itself, but the 2{40} can match the address

5The . . . refers to underline characters to make the whole placeholder as
40 bytes long.

declared at L4. Suppose this placeholder locates at the offset
o. We can place any 40-byte sequences at o on the on-
chain contract, like an address or even a backdoor. Therefore,
through the constructed regex pattern, Sourcify mistakenly
replaces the address at L4 to a predefined byte sequence.

Mitigation. Generally speaking, when dealing with such non-
naive fields, like metadata and linked library placeholders,
extra operations need to be conducted to avoid unnecessary
verification failures. According to Occam’s razor, verifiers
should prioritize the reliability instead of introducing unnec-
essary steps, which can be reflected on the mitigations against
these two exploitations.

Specifically, when identifying metadata, the differential
extracting is better because it is conducted on semantic level
while the regex matching is only on syntactic level and proven
unsafe [49]. However, Blockscout unnecessarily introduces
a linked library that can be exploited. Therefore, we urge
the verifiers to adopt the simplest way of differential ex-
tracting, like adding a meaningless space character after the
source code, which can update the metadata while keeping
runtime logic unchanged. As for identifying linked library
placeholders, Sourcify can avoid this attack by enumerating all
placeholders one by one instead of adopting regex matching.
Because verifying a contract is basically a one-shot process,
underlining the efficiency barely introduces extra advantages.

4) Path Traversal Risk (R7): Similar to R4, where on-
chain contracts can be replaced by exploiting features in EVM,
by exploiting R7, existing contracts can also be overwritten.
Specifically, solc allows users to pack source code files and
their corresponding paths in a single JSON file, where the
paths can be designated arbitrarily. To this end, if verifiers do
not strictly validate the paths, it is very likely that attackers
can abuse this feature to conduct an arbitrary path traversal.

Detection. To detect if a verifier is vulnerable to R7, we
construct several JSON files, within which the paths of source
code files are declared in a malicious path traversal way, like
deliberately adding ../ to refer to its parent directory. Then,
we try to access the directory to see if the source code files
are uploaded to that invalid directory.

PoC. Suppose there is a contract with backdoors named A. Af-
ter the deployment and source code verification, let us assume
its source code is stored in 0x12..fe/source/A.sol.
To fool users, we can deploy another contract without back-
doors, named A_ for instance. However, during performing
the source code verification, we claim the path of A_ is:
../../0x12..fe/source/A.sol. To this end, the ver-
ifier stores the source code of A_ at the place where it should
be used to store A. When users examine the source code files
of A, they are fooled by the implementation of A_.

Mitigation. Path traversal is a well-studied vulnerability in
traditional scenarios, e.g., web applications [30]. Therefore,
we strongly suggest verifiers to adopt a comprehensive sanity
check on the given paths of source code files by following the
best practices that are widely-adopted [43], [46].

5) Inadequate Information Disclosure (R8): The inconsis-
tency can be introduced by not only really existing issues (like
R4 to R7), but also users misunderstanding. Specifically, if a
source code verification is passed, the verifier should display

11

the verified information to the public. Take the Etherscan as
an example (see Fig. 4), it illustrates lots of meta information,
but the contract name does not contain the directory it belongs
to. Such an inadequate information disclosure may mislead
users and be abused. For example, attackers can put the main
contract and a fake one with the identical name under different
paths. Because only the contract name is displayed, users may
be misled to take the fake one as the verified contract, which
can negatively impact the credit of the project.

Detection. To detect R8, we can upload multiple contracts
with an identical name to verifiers. Then, we observe if users
can distinguish them. If they cannot, we conclude that this
verifier is exploitable to R8.

PoC. We develop two contracts, both named erc721.sol,
following a simplified ERC-721 standard [20] to issue
tokens. They are put under different directories. e.g.,
test/erc721.sol and main/erc721.sol. The only
difference between them is the initial value of totalSupply,
i.e., the field refers to the maximum amount of tokens that is al-
lowed to be minted, where the value of totalSupply under
the test one is much higher than the one under the main di-
rectory. We deploy the test/erc721.sol firstly, and verify
it by uploading both files in a json format. To fool users further,
we can even put another config.sol under the main
directory. Consequently, users may be fooled by a seemingly
limited edition of the one shown in main/erc721.sol.

Mitigation. Verifiers should ensure that the disclosed infor-
mation is consistent to the ones adopted by the compiler. If
some fields cannot be displayed at all or cannot be displayed
completely, verifiers should at least guarantee the displayed
information is unambiguous.

VII. EVALUATION

A. Experimental Setup & Ethical Considerations

In this work, we target the most popular Ethereum smart
contract verification services, including Etherscan, Sourcify,
and Blockscout. For all these three verifiers, they provide the
verification services on both Ethereum mainnet and testnet.
For ethical considerations, all evaluations are conducted on the
goerli testnet, which is independent of the Ethereum mainnet.

We have carefully designed methods to detect the ex-
ploitable vulnerabilities. Specifically, for the A1-related vul-
nerabilities, i.e., R1 to R3, we randomly sample 10 widely-
used contracts with source code from mainnet as victim
contracts, and deploy them on the testnet. After that, according
to the victim’s bytecode, we construct PoCs to try to pass the
verification. Note that a successful verification does not imply
the A1 consequence, as we need to ensure that the forged
source code cannot be replaced. Therefore, we further request
verifications against these victim contracts with their original
source code. If the re-verification fails, we conclude that the
testing verifier is exploitable. For the A2-related vulnerabili-
ties, we firstly construct some contracts with backdoors, like
conducting selfdestruct or transferring to other users,
compile and deploy them on the testnet. Then, according
to PoCs raised from R4 to R8, we try to construct source
code without such malicious behaviors, and bypass the source
code verification. If it succeeds and no warnings raise, we

TABLE III: Overall vulnerability detection results. For each
vulnerability, – and ✗ refer to infeasible (safe) and exploitable,
respectively. * refers to the official teams have confirmed our
reported vulnerabilities, and ✓ indicates it has been patched
after our timely disclosure.

Consequence Exploitable
Vulnerailities Etherscan Sourcify Blockscout

A1

R1 ✗ ✗* ✗*
R2 – ✗* (✓) ✗* (✓)
R3 – ✗* (✓) ✗* (✓)

A2

R4 ✗ ✗* ✗*
R5 ✗ ✗* ✗* (✓)
R6 – ✗* (✓) ✗* (✓)
R7 – ✗* (✓) ✗* (✓)
R8 ✗ – ✗* (✓)

can conclude that the verifier is exploitable in terms of the
corresponding vulnerability.

Finally, after confirming the exploitability of vulnerabili-
ties, we conduct timely disclosure to impacted verifiers within
30 minutes. On the one hand, it benefits a timely fixup on
exploitable vulnerabilities. On the other hand, it gives little
chance for malicious users to replay exploitations by observing
our uploaded source code files and initiated transactions.

B. Detecting Results

Overall Result. Table III presents the overall results. Sur-
prisingly, all these popular verifiers are vulnerable, which
can be abused by attackers. In total, we have uncovered 19
exploitable vulnerabilities. Etherscan is vulnerable to 4 kinds
of vulnerabilities, while Sourcify poses the risks of 7 types of
vulnerabilities, and Blockscout can be exploited by all types
of vulnerabilities.

Further Exploration. As Sourcify and Blockscout are vulner-
able to most kinds of vulnerabilities, we next deep dive into
them. For Sourcify, some of its designs for user-friendliness
introduce security issues. For example, Sourcify does not re-
quire users to provide the addresses of invoked linked libraries,
it tries to replace placeholders according to a regex pattern,
which is also embedded in the source code. Such an adoption
of untrusted data harms its initial goodwill on usability. For
Blockscout, it is vulnerable to all kinds of attacks. Recall
the shortcut we mentioned in §IV-C, which can be seen as
an amplifier to expand the exploitable scope of PoCs. For
example, if a vulnerability is exploitable in Sourcify, we also
consider it can be exploited in Blockscout because the latter
one recognizes the results of the former one. Through the
shortcut, Blockscout inherits the malicious verification results
of exploiting R1, R2, R3, R4 and R7 from Sourcify. But then
again, the transparency of Blockscout and Sourcify enables a
more insightful and timely security analysis.

Vulnerability Patching. We disclose the vulnerabilities to
verifiers timely. Among the 19 uncovered vulnerabilities, 15
of them have been confirmed by the official teams, and 10
vulnerabilities have been fixed. For Sourcify and Blockscout,
we observed that the vulnerabilities of R2, R3, R6, and R7

were fixed within 12 hours. However, as suggested in Table III,
we find that four kinds of vulnerabilities are almost exploitable
in all verifiers by the time of this writing (R1, R4, R5, and

12

TABLE IV: The statistic of affected contracts.

Consequence Exploitable
Vulnerailities # Afftected Contracts

A1

R1 49,598

R2
partial verified / unverified

contracts (∼58.9M)

R3
unverified contracts

(∼58.9M)

A2

R4 2

R5 244

R8). By communicating with the official teams, we summa-
rize the following challenges. Specifically, as for R1, loose
inline assembly is a necessary feature that is widely adopted
by normal contracts to improve its runtime efficiency [44].
Directly disabling it shall affect the usability of verifiers. As
for the other three kinds of vulnerabilities, the verification
services thought that users should be aware of the scams,
e.g., paying attentions to whether a smart contract invokes a
malicious linked library or has a suspicious accompanying file
with identical name. Thus, they are considering adding explicit
warnings for users in recent updates.

C. Contracts Affected by A1-related Vulnerabilities

1) Method: Among all three A1-related vulnerabilities,
exploiting R2 and R3 have no prerequisites. Thus the number
of influenced smart contracts are all smart contracts that are not
exactly matched yet and unverified, respectively. As for R1,
due to the restriction we mentioned in §VI-A1, we compose
a simple and effective SQL query statement to filter out all
possible victim contracts. It consists of three sets of like
operators based on the patterns we summarized. Specifically,
first, to narrow down the scope to all contracts compiled
from solc with 0.4 version, we heuristically use the magic
number a165627a7a7230, which is located in metadata
that is used by solc 0.4, as the pattern. Then, we restrict the
operand of each PUSH operators has no leading zeros. Last,
because the exploit can only be conducted on contracts with
at most a single piece of metadata, we filter the contract with
multiple pieces of metadata out by adopting the magic number
0029a165.

2) Result: As shown in Table IV, We finally identify more
than 49K contracts that are influenced by R1. Among them, by
identifying the function signatures, 25K and 2,440 contracts
are suspected to follow ERC20 and ERC721, respectively,
which may lead to huge financial and ecological impact if they
are adversarially verified. In addition, all unverified solidity
contracts in Sourcify, around 58.9M, are affected by R2 and
R3, where the former one even includes the partial verified
ones (around to 9K contracts). Moreover, as we clarified in
§I, lots of downstream applications rely on source code veri-
fication services. If millions of contracts can be adversarially
verified by forged smart contracts, the effectiveness and even
safety of these applications are severely impacted. We illustrate
a case study in our artifact [1], where Slither [28], a well-
known vulnerability detector on Ethereum smart contracts on
source-code level, is exploited by a piece of forged source
code, resulting in file overwriting in its hosting environment.

D. Contracts Affected by A2-related Vulnerabilities

Five types of vulnerabilities are related to A2. Therefore,
we try to measure if there exists any contracts that have already
performed source scam on users.

1) Method: To the best of our knowledge, among all these
five types of vulnerabilities, R6 to R8 are zero-day vulnera-
bilities uncovered by us. No existing instances are found on
Ethereum mainnet. Thus, we mainly focus on the existence of
instances that exploit R4 and R5. Based on tintinweb [42],
a dataset consisting of all verified contracts on Ethereum,
we performed a series of rule-based detection to filter such
contracts. Specifically, as for identifying contracts abusing R4,
for each verified contract, we iterate its transactions to identify
if there are more than one successful contract deployment. To
identify contracts abusing R5, we first filter out all verified
contracts that have a call relationship to linked libraries. Then,
we perform a difference checking between the provided linked
library and the one invoked. Consequently, we can identify if
attackers uploaded a forged linked library.

2) Result: As shown in Table IV, we finally find 2 and
244 contracts whose developers are suspected to abuse R4

and R5 to commit fraud. For the 2 cases under R4, after a
manual recheck, we confirm that one case has performed a
fake proposal attack against Tornado.cash [69]. Specifically,
by exploiting R4, the attackers associate a piece of source
code that has gained the user’s trust to a malicious proposal.
The proposal ultimately resulted in a $750K financial loss for
Tornado.cash [48]. As for the 244 cases that are related to R5,
we confirm that at least 6 of them invoked malicious libraries
but uploaded with benign ones. For example, there is an attack
targeting the Saddle Finance [47], a well-known decentralized
exchange. Interestingly, its actually invoked linked library is
a deprecated version, which has a vulnerability in the price
calculation that can be utilized by malicious users to exchange
a small number of token for another bunch of token at a rate
deviated from the market. However, the developer of Saddle
Finance has uploaded the updated and bug-free version of the
invoked library, which covers the vulnerability hidden in the
library. Eventually, this vulnerability has been exploited and
led to a financial loss of $7.2 million.

VIII. RELATED WORK

Blockchain Security. Currently, a great deal of research
work is focusing on the security of the whole blockchain
ecosystem [45], [10], [37], [35], [34], [71], [75], [4], [13],
[12]. While lots of them are delving into the security risks of
various modules in the blockchain ecosystem, there is still a
void when targeting source code verification services.

Ethereum Scam. In recent years, with the increasing financial
value embedded in the Ethereum contracts, the research on the
scam in the Ethereum ecosystem has become a hot spot [73],
[74], [11], [65], [14], [31], [72]. For example, Chen et al. [11]
propose a heuristic-guided symbolic execution technique to
identify Ponzi scheme contracts in Ethereum. However, there
is little discussion about if scams can be performed by a
mismatched source code and deployed bytecode.

Ethereum Smart Contract Analysis. In terms of Solidity
contract security, there is a lot of work [32], [19], [40], [28],

13

[29], [64], [9], [3], [33], [39] focus on contract vulnerability
detection based on source code. For instance, Feist et al. [28]
build a static analysis framework for solidity source code,
called Slither, to provide support for bug detection in Ethereum
smart contracts. However, all of them assume the fetched
source code files are correct and not consider the risks brought
by source code verifiers.

IX. THREATS TO VALIDITY

We have identified three threats to validity in this work.
First, there might be more kinds of vulnerabilities related to
smart contract verification services, which are not covered in
this work. Etherscan is close-sourced and we can only conduct
a black-box analysis against it. Nevertheless, we argue that we
have comprehensively performed a code audit on Blockscout
and Sourcify against the intuitive security properties, and sum-
marized the vulnerabilities related to almost all the modules
of verifiers. We believe this work can remind developers and
security researchers of this previously overlooked direction.
Second, beyond the detection principles for vulnerabilities,
we also illustrate the corresponding PoCs for them. However,
we need to mention that these exploitations are not the only
way to tamper verifiers. For example, in addition to adopting
return in YUL to exploit the simulating mechanism in
R2, attackers could also utilize the jump statement in loose
inline assembly [76]. Moreover, exploits can even be combined
to perform a more covert attack. In a nutshell, we have
presented these vulnerabilities in the most understandable way,
but developers should never take the risks hidden in verifiers
lightly. Last, we have considered the three mainstream verifiers
in Ethereum in this work, and identified several exploitable
vulnerabilities. There do exist other verifiers in Ethereum, e.g.,
Tenderly [63]. We argue that our detecting principles can be
directly applied to them, and even verifiers on other EVM
blockchain platforms.

X. CONCLUSION

We explored the security issues of smart contract verifi-
cation services in this work, an uncharted direction of the
Ethereum ecosystem. We have depicted the design and imple-
mentation of smart contract verification services, summarized
their security properties, observed eight kinds of vulnerabil-
ities, and proposed effective detection and attack methods.
Our exploration has uncovered 19 exploitable vulnerabilities
in popular smart contract verification services, posing a great
impact to millions of smart contracts in the ecosystem. Our
results encourage our research community to invest more
efforts into the under-studied directions.

ACKNOWLEDGEMENT

We would like to express our sincere thanks for all anony-
mous reviewers and the shepherd for their valuable suggestions
on improving this paper. Additionally, we really appreciate
the official teams of Blockscout and Sourcify for their timely
responding, and samczsun for his insightful comments on
this paper. This work was supported in part by National Key
R&D Program of China (2021YFB2701000), the Key R&D
Program of Hubei Province (2023BAB017, 2023BAB079),
the Knowledge Innovation Program of Wuhan-Basic Research,
HUST CSE-HongXin Joint Institute for Cyber Security, Hong

Kong RGC Project (No. PolyU15224121) and research grants
from Huawei.

REFERENCES

[1] “Github repository for displaying each attack,” june
2023. [Online]. Available: https://github.com/source-code-scam-paper/
source-scam-all-in-one/

[2] “Sourcify—the ethereum source code verifier,” june 2023. [Online].
Available: https://sourcify.dev/

[3] S. Akca, A. Rajan, and C. Peng, “Solanalyser: A framework for
analysing and testing smart contracts,” in 2019 26th Asia-Pacific Soft-
ware Engineering Conference (APSEC). IEEE, 2019, pp. 482–489.

[4] A. Biryukov and S. Tikhomirov, “Security and privacy of mobile wallet
users in bitcoin, dash, monero, and zcash,” Pervasive and Mobile
Computing, vol. 59, p. 101030, 2019.

[5] Blockscout, “Blockscout—implementation of differential extraction
metadata,” 2023. [Online]. Available: https://github.com/
blockscout/blockscout-rs/blob/stats/v1.0.0/smart-contract-verifier/
smart-contract-verifier/src/verifier/contract verifier.rs#L95-L121

[6] ——, “Blockscout—the ethereum explorer,” May 2023. [Online].
Available: https://eth.blockscout.com/stats

[7] ——, “Implementation of blockscout for differential metadata
extraction,” 2023. [Online]. Available: https://github.com/
blockscout/blockscout-rs/blob/stats/v1.0.0/smart-contract-verifier/
smart-contract-verifier/src/verifier/contract verifier.rs#L100-L121

[8] BlockSec, “Smart contract audit service,” june 2023. [Online].
Available: https://blocksec.com/audit

[9] T. Chen, R. Cao, T. Li, X. Luo, G. Gu, Y. Zhang, Z. Liao, H. Zhu,
G. Chen, Z. He et al., “Soda: A generic online detection framework for
smart contracts.” in NDSS, 2020.

[10] T. Chen, X. Li, Y. Wang, J. Chen, Z. Li, X. Luo, M. H. Au, and
X. Zhang, “An adaptive gas cost mechanism for ethereum to defend
against under-priced dos attacks,” in Information Security Practice and
Experience: 13th International Conference, ISPEC 2017, Melbourne,
VIC, Australia, December 13–15, 2017, Proceedings 13. Springer,
2017, pp. 3–24.

[11] W. Chen, X. Li, Y. Sui, N. He, H. Wang, L. Wu, and X. Luo,
“Sadponzi: Detecting and characterizing ponzi schemes in ethereum
smart contracts,” Proceedings of the ACM on Measurement and Analysis
of Computing Systems, vol. 5, no. 2, pp. 1–30, 2021.

[12] W. Chen, Z. Sun, H. Wang, X. Luo, H. Cai, and L. Wu, “Wasai:
uncovering vulnerabilities in wasm smart contracts,” in Proceedings of
the 31st ACM SIGSOFT International Symposium on Software Testing
and Analysis, 2022, pp. 703–715.

[13] Y. Chen, F. Ma, Y. Zhou, Y. Jiang, T. Chen, and J. Sun, “Tyr: Finding
consensus failure bugs in blockchain system with behaviour divergent
model,” in 2023 IEEE Symposium on Security and Privacy (SP). IEEE
Computer Society, 2022, pp. 1186–1201.

[14] Z. Cheng, X. Hou, R. Li, Y. Zhou, X. Luo, J. Li, and K. Ren, “Towards a
first step to understand the cryptocurrency stealing attack on ethereum.”
in RAID, vol. 2019, 2019, pp. 47–60.

[15] Circle, “Circle— reorgs and associated risks,” 2023. [Online]. Available:
https://developers.circle.com/developer/reference/confirmations

[16] Coinmarketcap, “Coinmarketcap—market capitalization of ethereum,”
2023. [Online]. Available: https://coinmarketcap.com/currencies/
ethereum/

[17] J. Cvllr, “Solidity tutorial: all about libraries,”
2023. [Online]. Available: https://jeancvllr.medium.com/
solidity-tutorial-all-about-libraries-762e5a3692f9

[18] DappReview, “26 million trx stolen behind the
rashomon,” 2023. [Online]. Available: https://blocking.net/3832/
26-million-trx-stolen-behind-the-rashomon-episode-2/

[19] T. Durieux, J. F. Ferreira, R. Abreu, and P. Cruz, “Empirical review
of automated analysis tools on 47,587 ethereum smart contracts,”
in Proceedings of the ACM/IEEE 42nd International conference on
software engineering, 2020, pp. 530–541.

[20] Eip-721, “Non-fungible token standard,” june 2023. [Online]. Available:
https://eips.ethereum.org/EIPS/eip-721

14

https://github.com/source-code-scam-paper/source-scam-all-in-one/
https://github.com/source-code-scam-paper/source-scam-all-in-one/
https://sourcify.dev/
https://github.com/blockscout/blockscout-rs/blob/stats/v1.0.0/smart-contract-verifier/smart-contract-verifier/src/verifier/contract_verifier.rs#L95-L121
https://github.com/blockscout/blockscout-rs/blob/stats/v1.0.0/smart-contract-verifier/smart-contract-verifier/src/verifier/contract_verifier.rs#L95-L121
https://github.com/blockscout/blockscout-rs/blob/stats/v1.0.0/smart-contract-verifier/smart-contract-verifier/src/verifier/contract_verifier.rs#L95-L121
https://eth.blockscout.com/stats
https://github.com/blockscout/blockscout-rs/blob/stats/v1.0.0/smart-contract-verifier/smart-contract-verifier/src/verifier/contract_verifier.rs#L100-L121
https://github.com/blockscout/blockscout-rs/blob/stats/v1.0.0/smart-contract-verifier/smart-contract-verifier/src/verifier/contract_verifier.rs#L100-L121
https://github.com/blockscout/blockscout-rs/blob/stats/v1.0.0/smart-contract-verifier/smart-contract-verifier/src/verifier/contract_verifier.rs#L100-L121
https://blocksec.com/audit
https://developers.circle.com/developer/reference/confirmations
https://coinmarketcap.com/currencies/ethereum/
https://coinmarketcap.com/currencies/ethereum/
https://jeancvllr.medium.com/solidity-tutorial-all-about-libraries-762e5a3692f9
https://jeancvllr.medium.com/solidity-tutorial-all-about-libraries-762e5a3692f9
https://blocking.net/3832/26-million-trx-stolen-behind-the-rashomon-episode-2/
https://blocking.net/3832/26-million-trx-stolen-behind-the-rashomon-episode-2/
https://eips.ethereum.org/EIPS/eip-721

[21] Ethereum, “Constantinople, where create2 was added,”
2023. [Online]. Available: https://blog.ethereum.org/2019/02/22/
ethereum-constantinople-st-petersburg-upgrade-announcement

[22] ——, “Decentralized autonomous organizations,” 2023. [Online].
Available: https://ethereum.org/en/dao/#dao-governance

[23] ethereum, “Evm opcode introduction.” june 2023. [Online]. Available:
https://ethereum.org/en/developers/docs/evm/opcodes/

[24] Ethereum-Magicians, “Potential security implications of create2 eip
1014,” 2023. [Online]. Available: https://ethereum-magicians.org/t/
potential-security-implications-of-create2-eip-1014/2614/2

[25] etherscan, “Ethereum daily verified contracts chart,” 2023. [Online].
Available: https://etherscan.io/chart/verified-contracts

[26] Etherscan, “Etherscan—the ethereum blockchain explorer,” May 2023.
[Online]. Available: https://etherscan.io

[27] ——, “Forked blocks excluded blocks as a result of chain
reorganizations,” 2023. [Online]. Available: https://etherscan.io/blocks
forked

[28] J. Feist, G. Grieco, and A. Groce, “Slither: a static analysis framework
for smart contracts,” in 2019 IEEE/ACM 2nd International Workshop on
Emerging Trends in Software Engineering for Blockchain (WETSEB).
IEEE, 2019, pp. 8–15.

[29] J. F. Ferreira, P. Cruz, T. Durieux, and R. Abreu, “Smartbugs: A
framework to analyze solidity smart contracts,” in Proceedings of
the 35th IEEE/ACM International Conference on Automated Software
Engineering, 2020, pp. 1349–1352.

[30] M. Flanders, “A simple and intuitive algorithm for preventing directory
traversal attacks,” arXiv preprint arXiv:1908.04502, 2019.

[31] B. Gao, H. Wang, P. Xia, S. Wu, Y. Zhou, X. Luo, and G. Tyson,
“Tracking counterfeit cryptocurrency end-to-end,” Proceedings of the
ACM on Measurement and Analysis of Computing Systems, vol. 4, no. 3,
pp. 1–28, 2020.

[32] G. Grieco, W. Song, A. Cygan, J. Feist, and A. Groce, “Echidna:
effective, usable, and fast fuzzing for smart contracts,” in Proceedings of
the 29th ACM SIGSOFT International Symposium on Software Testing
and Analysis, 2020, pp. 557–560.

[33] Á. Hajdu and D. Jovanović, “solc-verify: A modular verifier for solidity
smart contracts,” in Verified Software. Theories, Tools, and Experiments:
11th International Conference, VSTTE 2019, New York City, NY, USA,
July 13–14, 2019, Revised Selected Papers 11. Springer, 2020, pp.
161–179.

[34] N. He, R. Zhang, H. Wang, L. Wu, X. Luo, Y. Guo, T. Yu, and
X. Jiang, “Eosafe: Security analysis of eosio smart contracts.” in
USENIX Security Symposium, 2021, pp. 1271–1288.

[35] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse attacks on
bitcoin’s peer-to-peer network,” in 24th {USENIX} Security Symposium
({USENIX} Security 15), 2015, pp. 129–144.

[36] IPFS, “Ipfs—the decentralised file system,” May 2023. [Online].
Available: https://docs.ipfs.tech

[37] K. Li, J. Chen, X. Liu, Y. R. Tang, X. Wang, and X. Luo, “As strong
as its weakest link: How to break blockchain dapps at rpc service.” in
NDSS, 2021.

[38] Z. Liao, S. Song, H. Zhu, X. Luo, Z. He, R. Jiang, T. Chen, J. Chen,
T. Zhang, and X. Zhang, “Large-scale empirical study of inline assem-
bly on 7.6 million ethereum smart contracts,” IEEE Transactions on
Software Engineering, vol. 49, no. 2, pp. 777–801, 2022.

[39] S.-W. Lin, P. Tolmach, Y. Liu, and Y. Li, “Solsee: a source-level
symbolic execution engine for solidity,” in Proceedings of the 30th
ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2022, pp. 1687–1691.

[40] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco,
J. Feist, T. Brunson, and A. Dinaburg, “Manticore: A user-friendly
symbolic execution framework for binaries and smart contracts,” in
2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2019, pp. 1186–1189.

[41] M. Neuder, D. J. Moroz, R. Rao, and D. C. Parkes, “Low-cost
attacks on ethereum 2.0 by sub-1/3 stakeholders,” arXiv preprint
arXiv:2102.02247, 2021.

[42] M. Ortner and S. Eskandari, “Smart contract sanctuary,” june 2023. [On-
line]. Available: https://github.com/tintinweb/smart-contract-sanctuary

[43] owasp, “owasp—path traversal,” 2023. [Online]. Available: https:
//owasp.org/www-community/attacks/Path Traversal

[44] R. Park, “Inline assembly, good or bad practice,” 2023.
[Online]. Available: https://ethereum.stackexchange.com/questions/
72895/inline-assembly-good-or-bad-practice

[45] Z. Peng and Y. Chen, “All roads lead to rome: Many ways to double
spend your cryptocurrency,” arXiv preprint arXiv:1811.06751, 2018.

[46] Rayne, “Github—virtual path,” 2023. [Online]. Available: https:
//github.com/Rayne/virtual-path

[47] REKT, “Saddle finance attack,” june 2023. [Online]. Available:
https://rekt.news/saddle-finance-rekt2/

[48] rekt, “Tornado cash governance - rekt,” 2023. [Online]. Available:
https://rekt.news/tornado-gov-rekt/

[49] Samczsun, “Hiding in plain sight,” May 2023. [Online]. Available:
https://www.paradigm.xyz/2021/11/hiding-in-plain-sight

[50] Solidity, “Abstract contracts,” 2023. [Online]. Available: https:
//docs.soliditylang.org/en/v0.8.20/contracts.html#abstract-contracts

[51] ——, “Allow verbatim in solidity assembly blocks,” june 2023.
[Online]. Available: https://github.com/ethereum/solidity/issues/12067

[52] ——, “Function selector,” 2023. [Online]. Available: https://docs.
soliditylang.org/en/v0.8.20/abi-spec.html#function-selector

[53] ——, “Return back loose assembly and forbid optimizer to touch its
output,” june 2023. [Online]. Available: https://github.com/ethereum/
solidity/issues/6517

[54] ——, “Solidity—the solidity doc,” june 2023. [Online]. Available:
https://solidity.readthedocs.io/

[55] ——, “Solidity documentation—contract metadata,” 2023. [Online].
Available: https://docs.soliditylang.org/en/v0.8.19/metadata.html

[56] ——, “Yul — an intermediate language in solc,” june 2023. [Online].
Available: https://docs.soliditylang.org/en/v0.8.20/yul.html#verbatim

[57] Sourcify, “Sourcify— matchwithsimulation implementation in sour-
cify,” 2023. [Online]. Available: https://github.com/ethereum/sourcify/
blob/v2.0.0/packages/lib-sourcify/src/lib/verification.ts#L186-L244

[58] ——, “Sourcify—full vs partial match,” 2023. [Online]. Available:
https://docs.sourcify.dev/docs/full-vs-partial-match/

[59] ——, “Sourcify—prefix checking implementation in sourcify,” 2023.
[Online]. Available: https://github.com/ethereum/sourcify/blob/v2.1.1/
packages/lib-sourcify/src/lib/verification.ts#L287

[60] ——, “Sourcify—replace immutable references,” 2023. [Online].
Available: https://github.com/ethereum/sourcify/blob/v2.6.0/packages/
lib-sourcify/src/lib/verification.ts#L273-L277

[61] ——, “Sourcify—verify deployed contract in sourcify,” 2023.
[Online]. Available: https://github.com/ethereum/sourcify/blob/v2.6.0/
packages/lib-sourcify/src/lib/verification.ts#L71-L158

[62] M. Stephenson, “Medium—ethereum, fomo3d, and dangerous game
theory,” 2023. [Online]. Available: https://medium.com/hackernoon/
fomo3d-and-dangerous-game-theory-97bd5f47ab3b

[63] Tenderly, “Smart contract verification in tenderly,” june
2023. [Online]. Available: https://docs.tenderly.co/monitoring/
smart-contract-verification

[64] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, “Smartcheck: Static analysis of
ethereum smart contracts,” in Proceedings of the 1st international
workshop on emerging trends in software engineering for blockchain,
2018, pp. 9–16.

[65] C. F. Torres, M. Steichen, and R. State, “The art of the scam:
Demystifying honeypots in ethereum smart contracts,” arXiv preprint
arXiv:1902.06976, 2019.

[66] Uniswap, “Uniswap—the ethereum decentralised exchange,” june 2023.
[Online]. Available: https://github.com/Uniswap

[67] Wiki, “Wiki—know your customer,” 2023. [Online]. Available:
https://en.wikipedia.org/wiki/Know your customer

[68] ——, “Wiki—preimage attack,” 2023. [Online]. Available: https:
//en.wikipedia.org/wiki/Preimage attack

[69] Wikipedia, “Tornado cash,” 2023. [Online]. Available: https://en.
wikipedia.org/wiki/Tornado Cash

15

https://blog.ethereum.org/2019/02/22/ethereum-constantinople-st-petersburg-upgrade-announcement
https://blog.ethereum.org/2019/02/22/ethereum-constantinople-st-petersburg-upgrade-announcement
https://ethereum.org/en/dao/#dao-governance
https://ethereum.org/en/developers/docs/evm/opcodes/
https://ethereum-magicians.org/t/potential-security-implications-of-create2-eip-1014/2614/2
https://ethereum-magicians.org/t/potential-security-implications-of-create2-eip-1014/2614/2
https://etherscan.io/chart/verified-contracts
https://etherscan.io
https://etherscan.io/blocks_forked
https://etherscan.io/blocks_forked
https://docs.ipfs.tech
https://github.com/tintinweb/smart-contract-sanctuary
https://owasp.org/www-community/attacks/Path_Traversal
https://owasp.org/www-community/attacks/Path_Traversal
https://ethereum.stackexchange.com/questions/72895/inline-assembly-good-or-bad-practice
https://ethereum.stackexchange.com/questions/72895/inline-assembly-good-or-bad-practice
https://github.com/Rayne/virtual-path
https://github.com/Rayne/virtual-path
https://rekt.news/saddle-finance-rekt2/
https://rekt.news/tornado-gov-rekt/
https://www.paradigm.xyz/2021/11/hiding-in-plain-sight
https://docs.soliditylang.org/en/v0.8.20/contracts.html#abstract-contracts
https://docs.soliditylang.org/en/v0.8.20/contracts.html#abstract-contracts
https://github.com/ethereum/solidity/issues/12067
https://docs.soliditylang.org/en/v0.8.20/abi-spec.html#function-selector
https://docs.soliditylang.org/en/v0.8.20/abi-spec.html#function-selector
https://github.com/ethereum/solidity/issues/6517
https://github.com/ethereum/solidity/issues/6517
https://solidity.readthedocs.io/
https://docs.soliditylang.org/en/v0.8.19/metadata.html
https://docs.soliditylang.org/en/v0.8.20/yul.html#verbatim
https://github.com/ethereum/sourcify/blob/v2.0.0/packages/lib-sourcify/src/lib/verification.ts#L186-L244
https://github.com/ethereum/sourcify/blob/v2.0.0/packages/lib-sourcify/src/lib/verification.ts#L186-L244
https://docs.sourcify.dev/docs/full-vs-partial-match/
https://github.com/ethereum/sourcify/blob/v2.1.1/packages/lib-sourcify/src/lib/verification.ts#L287
https://github.com/ethereum/sourcify/blob/v2.1.1/packages/lib-sourcify/src/lib/verification.ts#L287
https://github.com/ethereum/sourcify/blob/v2.6.0/packages/lib-sourcify/src/lib/verification.ts#L273-L277
https://github.com/ethereum/sourcify/blob/v2.6.0/packages/lib-sourcify/src/lib/verification.ts#L273-L277
https://github.com/ethereum/sourcify/blob/v2.6.0/packages/lib-sourcify/src/lib/verification.ts#L71-L158
https://github.com/ethereum/sourcify/blob/v2.6.0/packages/lib-sourcify/src/lib/verification.ts#L71-L158
https://medium.com/hackernoon/fomo3d-and-dangerous-game-theory-97bd5f47ab3b
https://medium.com/hackernoon/fomo3d-and-dangerous-game-theory-97bd5f47ab3b
https://docs.tenderly.co/monitoring/smart-contract-verification
https://docs.tenderly.co/monitoring/smart-contract-verification
https://github.com/Uniswap
https://en.wikipedia.org/wiki/Know_your_customer
https://en.wikipedia.org/wiki/Preimage_attack
https://en.wikipedia.org/wiki/Preimage_attack
https://en.wikipedia.org/wiki/Tornado_Cash
https://en.wikipedia.org/wiki/Tornado_Cash

[70] wissal haji, “Learn solidity: The factory pat-
tern,” 2023. [Online]. Available: https://betterprogramming.pub/
learn-solidity-the-factory-pattern-75d11c3e7d29

[71] K. Wüst and A. Gervais, “Ethereum eclipse attacks,” ETH Zurich, Tech.
Rep., 2016.

[72] P. Xia, H. Wang, B. Gao, W. Su, Z. Yu, X. Luo, C. Zhang, X. Xiao,
and G. Xu, “Trade or trick? detecting and characterizing scam tokens
on uniswap decentralized exchange,” Proceedings of the ACM on
Measurement and Analysis of Computing Systems, vol. 5, no. 3, pp.
1–26, 2021.

[73] P. Xia, H. Wang, Z. Yu, X. Liu, X. Luo, G. Xu, and G. Tyson,

“Challenges in decentralized name management: the case of ens,” in
Proceedings of the 22nd ACM Internet Measurement Conference, 2022,
pp. 65–82.

[74] P. Xia, H. Wang, B. Zhang, R. Ji, B. Gao, L. Wu, X. Luo, and
G. Xu, “Characterizing cryptocurrency exchange scams,” Computers
& Security, vol. 98, p. 101993, 2020.

[75] Y. Yang, T. Kim, and B.-G. Chun, “Finding consensus bugs in ethereum
via multi-transaction differential fuzzing.” in OSDI, 2021, pp. 349–365.

[76] X. Yu, “Evm opcode jop,” 2023. [Online]. Available: https:
//github.com/xhyumiracle/defcon27/

16

https://betterprogramming.pub/learn-solidity-the-factory-pattern-75d11c3e7d29
https://betterprogramming.pub/learn-solidity-the-factory-pattern-75d11c3e7d29
https://github.com/xhyumiracle/defcon27/
https://github.com/xhyumiracle/defcon27/

	Introduction
	Background
	Smart Contract
	Smart Contract Verification

	Adversary Model
	Motivating Example
	Adversary Model

	Source Code Verifier
	Overview
	Components of Verifier
	Untrusted Source Code Data Acquisition Module (M1)
	On-chain Data Acquisition Module (M2)
	Compilation Module (M3)
	Comparison Module (M4)
	Data Storage Module (M5)
	Display & API Module (M6)

	Shortcuts
	Blackbox Testing in Etherscan

	Security Properties
	Vulnerability Details
	Vulnerabilities Leading to A1
	Exploitable Compiler Features (R1)
	Unchecked Simulating (R2)
	Incomplete Bytecode Validation (R3)

	Vulnerabilities Leading to A2
	Replaceable On-chain Contracts (R4)
	Unverified Linked Libraries (R5)
	Mislabeled Bytecode (R6)
	Path Traversal Risk (R7)
	Inadequate Information Disclosure (R8)

	Evaluation
	Experimental Setup & Ethical Considerations
	Detecting Results
	Contracts Affected by A1-related Vulnerabilities
	Method
	Result

	Contracts Affected by A2-related Vulnerabilities
	Method
	Result

	Related Work
	Threats to Validity
	Conclusion
	References

