
#NDSSSymposium2024

Presented by

Abusing the Ethereum Smart Contract 
Verification Services for Fun and Profit

Pengxiang Ma*1, Ningyu He* 2, Yuhua Huang 1, Haoyu Wang 1, Xiapu Luo 3

1 Huazhong University of Science and Technology, China
2 Peking University, China
3 The Hong Kong Polytechnic University, China



Presented by

#NDSSSymposium2024

• Market cap of Ethereum has 

reached 340 billion USD.

• Smart contract is the killer 

application for Ethereum.

Why Ethereum?

The market cap of Ethereum.

More than tens of millions of 

smart contracts are deployed on 

Ethereum!



Presented by

#NDSSSymposium2024

Ethereum smart contract

A piece of deployed smart contract, stored on-chain in the bytecode format.



Presented by

#NDSSSymposium2024

Unreadable + Unchangeable + Money-related

-> Users don’t trust!

-> Prosperity Issue of Ethereum ☹

Ethereum smart contract



Presented by

#NDSSSymposium2024

• Two steps:

• Request: Anyone can claim he/she has the 

source code of any unverified on-chain 

contract;

• Ask: Anyone can ask for the source code of 

any address if the verification is passed.

Solution: Source Code Verification Service!

Ethereum mainnet

Unreadable contract

Addr: 0x12..
Addr: 0x34..

Addr: 0x56..

“Contract A is the source 
code of contract at address 

0x34..”

Source code: A

(a) Request source code verification

Verifier

“I want the source code of 
the contract at 0x34..”

(b) Ask source code for a contract

Verifier
Addr: 0x34.. Source code: A

Downstream applications

Vulnerability scanner

Code audit

…

Used by

Configuration items

Example of source code 
verification service.

Core idea: 

Source code + Compiling options = 

On-chain bytecode?



Presented by

#NDSSSymposium2024

Due to the anonymity of blockchains, source code verifiers allow anyone

requesting the verification of any unverified contract.

Threat Model

Normal* Malicious

Normal - Discredit (e.g., add fraud 
or phishing info)

Malicious - Cover malicious intent 
(e.g., hide the backdoor)

Actual deployer

Source code
provider

* Assume normal users will not exploit source code verifiers.

What if the source code verifier is exploited …



Presented by

#NDSSSymposium2024

• Smart contract bytecode can be divided into: 

creation code, runtime code, and metadata.

• Creation code: deploy and initialize the 

runtime code;

• Runtime code: runtime logic;

• Metadata: index this contract.

• Three mainstream source code verifiers: 

Etherscan, Sourcify, and Blockscout.

Background Knowledge

Structure of Ethereum 
smart contract.

Creation code Runtime code

Metadatadeploy



Presented by

#NDSSSymposium2024

Structure of Source Code Verifier

Untrusted Source
Code Data Acquisition

Module (M1)

Address

Configuration
Items

Source code
file(s)

On-chain Data
Acquisition

Module (M2)

Compilation
Module (M3)

Comparison
Module (M4)

Data Storage
Module (M5)

Display & API
Module (M6)

ShortcutMatch

Mismatch

Bytecode

Runtime
code

Source code
file(s)

Meta
info

Source
code

Configuration
Items

Bytecode

Runtime
code



Presented by

#NDSSSymposium2024

Structure of Source Code Verifier

Untrusted Source
Code Data Acquisition

Module (M1)

Address

Configuration
Items

Source code
file(s)

On-chain Data
Acquisition

Module (M2)

Compilation
Module (M3)

Comparison
Module (M4)

Data Storage
Module (M5)

Display & API
Module (M6)

ShortcutMatch

Mismatch

Bytecode

Runtime
code

Source code
file(s)

Meta
info

Source
code

Configuration
Items

Bytecode

Runtime
code



Presented by

#NDSSSymposium2024

Adopted Strategies in Different Modules



Presented by

#NDSSSymposium2024

For Sourcify and Blockscout, which are open-sourced:

Step 0: Performing code audit according to principles of unrestorability and consistency;

Step 1: Deploying contracts on testnet;

Step 2: Constructing source code and requesting source code verification service;

Step 3: Investigating the outputs of each module to see if they are expected.

How to identify vulnerabilities?

Untrusted Source
Code Data Acquisition

Module (M1)

On-chain Data
Acquisition

Module (M2)

Compilation
Module (M3)

Comparison
Module (M4)

Data Storage
Module (M5)

Display & API
Module (M6)

Analyzer

Ethereum testnet





  



Presented by

#NDSSSymposium2024

• Ethereum smart contracts allow inline 

assembly, which can be utilized to embed 

opcode sequence into the source code;

• Detection: Compose only a fallback 

function, in which it only has a piece of 

inline assembly. Then, observe if the 

compilation result is the opcode sequence.

Example 1: Exploitable Compiler Features

Embed victim’s opcode into inline
assembly directly.



Presented by

#NDSSSymposium2024

• PoC:

• Construct a contract (foo), and put 

some malicious info in the contract, like 

fraud information;

• Construct another contract (bar) with 

victim’s opcode by inline assembly;

• Put bar behind foo, but take bar as 

the main contract when requesting 

source code verification.

PoC example

Example 1: Exploitable Compiler Features
Actually deployed contract named L1Weth

Phishing and
fraud 

information

Clearly vulnerable function

Name the source code as L1Weth

Fraud information is 
hidden in LlWeth



Presented by

#NDSSSymposium2024

• This type of vulnerability has caused 750K USD financial loss for 

Tornado.cash;

• Because Ethereum contracts are unchangeable, verifiers have not taken 

source code update into the consideration;

• Malicious users can abuse create2 to update on-chain contracts. An 

obvious feature of create2 is: if the creation code is not modified, the 

address of the deployed contract will not be modified either.

Example 2: Replaceable On-chain Contracts



Presented by

#NDSSSymposium2024

PoC example

Example 2: Replaceable On-chain Contracts



Presented by

#NDSSSymposium2024

Consequence Vulnerability Etherscan Sourcify Blockscout

Discredit

Exploitable Compiler Features X X* X*

Unchecked Simulating - X* X*

Incomplete Bytecode Validation - X* X*

Cover malicious 
intent

Replaceable On-chain Contracts X X* X*

Unverified Linked Libraries X X* X*

Mislabelled Bytecode - X* X*

Path Traversal Risk - X* X*

Inadequate Information Disclosure X - X*

Against three mainstream verification services, we have conducted a 

comprehensive detection.

X: exploitable, *: confirmed, and red one: patched.

Overall Results



Presented by

#NDSSSymposium2024

Consequence Vulnerability Etherscan Sourcify Blockscout

Discredit

Exploitable Compiler Features X X* X*

Unchecked Simulating - X* X*

Incomplete Bytecode Validation - X* X*

Cover malicious 
intent

Replaceable On-chain Contracts X X* X*

Unverified Linked Libraries X X* X*

Mislabelled Bytecode - X* X*

Path Traversal Risk - X* X*

Inadequate Information Disclosure X - X*

Etherscan is the least affected. This is partly due to the 

black-box testing method.

Overall Results



Presented by

#NDSSSymposium2024

Consequence Vulnerability Etherscan Sourcify Blockscout

Discredit

Exploitable Compiler Features X X* X*

Unchecked Simulating - X* X*

Incomplete Bytecode Validation - X* X*

Cover malicious 
intent

Replaceable On-chain Contracts X X* X*

Unverified Linked Libraries X X* X*

Mislabelled Bytecode - X* X*

Path Traversal Risk - X* X*

Inadequate Information Disclosure X - X*

Overall Results

Sourcify adopts some user-friendly strategies, which reduces the amount of 
information the requesters need to provide. However, these strategies need additional 

operations on the source code, which could be abused by attackers.



Presented by

#NDSSSymposium2024

Consequence Vulnerability Etherscan Sourcify Blockscout

Discredit

Exploitable Compiler Features X X* X*

Unchecked Simulating - X* X*

Incomplete Bytecode Validation - X* X*

Cover malicious 
intent

Replaceable On-chain Contracts X X* X*

Unverified Linked Libraries X X* X*

Mislabelled Bytecode - X* X*

Path Traversal Risk - X* X*

Inadequate Information Disclosure X - X*

Overall Results

One of the critical reason of so many exploitable vulnerabilities 
in Blockscout is its adopted shortcut, i.e., Blockscout directly 

recognizes the results of Sourcify.



Presented by

#NDSSSymposium2024

Consequence Vulnerability Etherscan Sourcify Blockscout

Discredit

Exploitable Compiler Features X X* X*

Unchecked Simulating - X* X*

Incomplete Bytecode Validation - X* X*

Cover malicious 
intent

Replaceable On-chain Contracts X X* X*

Unverified Linked Libraries X X* X*

Mislabelled Bytecode - X* X*

Path Traversal Risk - X* X*

Inadequate Information Disclosure X - X*

Overall Results

• For ECF: Lots of normal contracts adopt these could-be-abused features to achieve 
functionalities;

• For ROC: Verifiers believe that users should be directly responsible for their 
actions, so they only add prominent warning messages.



Presented by

#NDSSSymposium2024

• For the discredit consequence, the number of potential victims is the one 

of all unverified contracts. Because verified ones cannot be verified again 

in most cases.

• For the first vulnerability, a successful exploitation requires some 

prerequisites, which lower the number.

Impact Scope

Consequence Vulnerability \# Impacted Contracts

Discredit

Exploitable Compiler Features 49K

Unchecked Simulating ~ 58.9M

Incomplete Bytecode Validation ~ 58.9M



Presented by

#NDSSSymposium2024

• For this consequence, the number corresponds to the ones that actually conduct 

behaviors to cover their malicious intents.

• By exploiting the first vulnerability, the attacker was able to replace the source code of a 

malicious proposal with a seemingly harmless one, ultimately causing more than 

750,000 USD financial losses for Tornado.Cash.

Consequence Vulnerability \# Impacted Contracts

Cover 
malicious 

intent

Replaceable On-chain Contracts 2

Unverified Linked Libraries 244

Mislabelled Bytecode 0

Path Traversal Risk 0

Inadequate Information Disclosure 0

Impact Scope



Presented by

#NDSSSymposium2024

• To the best of our knowledge, it is the first work that systematically illustrates the 

design and implementation of Ethereum source code verification services;

• Eight types of vulnerabilities are uncovered, which could be abused to discredit 

normal contracts or cover malicious intents;

• Among three mainstream verifiers, we found 19 exploitable vulnerabilities, 15 

of them have been confirmed and 10 of them have be patched;

• Tens of millions of contracts can be discredited potentially, and malicious 

behaviors in hundreds of contracts may have been covered already;

• Public dataset: https://github.com/source-code-scam-paper/source-scam-all-in-

one

Takeaways

https://github.com/source-code-scam-paper/source-scam-all-in-one
https://github.com/source-code-scam-paper/source-scam-all-in-one


Presented by

#NDSSSymposium2024

Q&A Time
mpx199924@gmail.com
ningyu.he@pku.edu.cn


