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• Market cap of Ethereum has 

reached 340 billion USD.

• Smart contract is the killer 

application for Ethereum.

Why Ethereum?

The market cap of Ethereum.

More than tens of millions of 

smart contracts are deployed on 

Ethereum!
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Ethereum smart contract

A piece of deployed smart contract, stored on-chain in the bytecode format.
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Unreadable + Unchangeable + Money-related

-> Users don’t trust!

-> Prosperity Issue of Ethereum ☹

Ethereum smart contract
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• Two steps:

• Request: Anyone can claim he/she has the 

source code of any unverified on-chain 

contract;

• Ask: Anyone can ask for the source code of 

any address if the verification is passed.

Solution: Source Code Verification Service!

Ethereum mainnet

Unreadable contract

Addr: 0x12..
Addr: 0x34..

Addr: 0x56..

“Contract A is the source 
code of contract at address 

0x34..”

Source code: A

(a) Request source code verification

Verifier

“I want the source code of 
the contract at 0x34..”

(b) Ask source code for a contract

Verifier
Addr: 0x34.. Source code: A

Downstream applications

Vulnerability scanner

Code audit

…

Used by

Configuration items

Example of source code 
verification service.

Core idea: 

Source code + Compiling options = 

On-chain bytecode?
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Due to the anonymity of blockchains, source code verifiers allow anyone

requesting the verification of any unverified contract.

Threat Model

Normal* Malicious

Normal - Discredit (e.g., add fraud 
or phishing info)

Malicious - Cover malicious intent 
(e.g., hide the backdoor)

Actual deployer

Source code
provider

* Assume normal users will not exploit source code verifiers.

What if the source code verifier is exploited …
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• Smart contract bytecode can be divided into: 

creation code, runtime code, and metadata.

• Creation code: deploy and initialize the 

runtime code;

• Runtime code: runtime logic;

• Metadata: index this contract.

• Three mainstream source code verifiers: 

Etherscan, Sourcify, and Blockscout.

Background Knowledge

Structure of Ethereum 
smart contract.

Creation code Runtime code

Metadatadeploy
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Structure of Source Code Verifier

Untrusted Source
Code Data Acquisition

Module (M1)

Address

Configuration
Items

Source code
file(s)

On-chain Data
Acquisition

Module (M2)

Compilation
Module (M3)

Comparison
Module (M4)

Data Storage
Module (M5)

Display & API
Module (M6)

ShortcutMatch

Mismatch

Bytecode

Runtime
code

Source code
file(s)

Meta
info

Source
code

Configuration
Items

Bytecode

Runtime
code
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Structure of Source Code Verifier

Untrusted Source
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Adopted Strategies in Different Modules
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For Sourcify and Blockscout, which are open-sourced:

Step 0: Performing code audit according to principles of unrestorability and consistency;

Step 1: Deploying contracts on testnet;

Step 2: Constructing source code and requesting source code verification service;

Step 3: Investigating the outputs of each module to see if they are expected.

How to identify vulnerabilities?

Untrusted Source
Code Data Acquisition

Module (M1)

On-chain Data
Acquisition

Module (M2)

Compilation
Module (M3)

Comparison
Module (M4)

Data Storage
Module (M5)

Display & API
Module (M6)

Analyzer

Ethereum testnet





  
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• Ethereum smart contracts allow inline 

assembly, which can be utilized to embed 

opcode sequence into the source code;

• Detection: Compose only a fallback 

function, in which it only has a piece of 

inline assembly. Then, observe if the 

compilation result is the opcode sequence.

Example 1: Exploitable Compiler Features

Embed victim’s opcode into inline
assembly directly.
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• PoC:

• Construct a contract (foo), and put 

some malicious info in the contract, like 

fraud information;

• Construct another contract (bar) with 

victim’s opcode by inline assembly;

• Put bar behind foo, but take bar as 

the main contract when requesting 

source code verification.

PoC example

Example 1: Exploitable Compiler Features
Actually deployed contract named L1Weth

Phishing and
fraud 

information

Clearly vulnerable function

Name the source code as L1Weth

Fraud information is 
hidden in LlWeth
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• This type of vulnerability has caused 750K USD financial loss for 

Tornado.cash;

• Because Ethereum contracts are unchangeable, verifiers have not taken 

source code update into the consideration;

• Malicious users can abuse create2 to update on-chain contracts. An 

obvious feature of create2 is: if the creation code is not modified, the 

address of the deployed contract will not be modified either.

Example 2: Replaceable On-chain Contracts
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PoC example

Example 2: Replaceable On-chain Contracts
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Consequence Vulnerability Etherscan Sourcify Blockscout

Discredit

Exploitable Compiler Features X X* X*

Unchecked Simulating - X* X*

Incomplete Bytecode Validation - X* X*

Cover malicious 
intent

Replaceable On-chain Contracts X X* X*

Unverified Linked Libraries X X* X*

Mislabelled Bytecode - X* X*

Path Traversal Risk - X* X*

Inadequate Information Disclosure X - X*

Against three mainstream verification services, we have conducted a 

comprehensive detection.

X: exploitable, *: confirmed, and red one: patched.

Overall Results
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Consequence Vulnerability Etherscan Sourcify Blockscout

Discredit

Exploitable Compiler Features X X* X*

Unchecked Simulating - X* X*

Incomplete Bytecode Validation - X* X*

Cover malicious 
intent

Replaceable On-chain Contracts X X* X*

Unverified Linked Libraries X X* X*

Mislabelled Bytecode - X* X*

Path Traversal Risk - X* X*

Inadequate Information Disclosure X - X*

Etherscan is the least affected. This is partly due to the 

black-box testing method.

Overall Results
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Consequence Vulnerability Etherscan Sourcify Blockscout

Discredit

Exploitable Compiler Features X X* X*

Unchecked Simulating - X* X*

Incomplete Bytecode Validation - X* X*

Cover malicious 
intent

Replaceable On-chain Contracts X X* X*

Unverified Linked Libraries X X* X*

Mislabelled Bytecode - X* X*

Path Traversal Risk - X* X*

Inadequate Information Disclosure X - X*

Overall Results

Sourcify adopts some user-friendly strategies, which reduces the amount of 
information the requesters need to provide. However, these strategies need additional 

operations on the source code, which could be abused by attackers.
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Consequence Vulnerability Etherscan Sourcify Blockscout

Discredit

Exploitable Compiler Features X X* X*

Unchecked Simulating - X* X*

Incomplete Bytecode Validation - X* X*

Cover malicious 
intent

Replaceable On-chain Contracts X X* X*

Unverified Linked Libraries X X* X*

Mislabelled Bytecode - X* X*

Path Traversal Risk - X* X*

Inadequate Information Disclosure X - X*

Overall Results

One of the critical reason of so many exploitable vulnerabilities 
in Blockscout is its adopted shortcut, i.e., Blockscout directly 

recognizes the results of Sourcify.
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Consequence Vulnerability Etherscan Sourcify Blockscout

Discredit

Exploitable Compiler Features X X* X*

Unchecked Simulating - X* X*

Incomplete Bytecode Validation - X* X*

Cover malicious 
intent

Replaceable On-chain Contracts X X* X*

Unverified Linked Libraries X X* X*

Mislabelled Bytecode - X* X*

Path Traversal Risk - X* X*

Inadequate Information Disclosure X - X*

Overall Results

• For ECF: Lots of normal contracts adopt these could-be-abused features to achieve 
functionalities;

• For ROC: Verifiers believe that users should be directly responsible for their 
actions, so they only add prominent warning messages.
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• For the discredit consequence, the number of potential victims is the one 

of all unverified contracts. Because verified ones cannot be verified again 

in most cases.

• For the first vulnerability, a successful exploitation requires some 

prerequisites, which lower the number.

Impact Scope

Consequence Vulnerability \# Impacted Contracts

Discredit

Exploitable Compiler Features 49K

Unchecked Simulating ~ 58.9M

Incomplete Bytecode Validation ~ 58.9M
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• For this consequence, the number corresponds to the ones that actually conduct 

behaviors to cover their malicious intents.

• By exploiting the first vulnerability, the attacker was able to replace the source code of a 

malicious proposal with a seemingly harmless one, ultimately causing more than 

750,000 USD financial losses for Tornado.Cash.

Consequence Vulnerability \# Impacted Contracts

Cover 
malicious 

intent

Replaceable On-chain Contracts 2

Unverified Linked Libraries 244

Mislabelled Bytecode 0

Path Traversal Risk 0

Inadequate Information Disclosure 0

Impact Scope
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• To the best of our knowledge, it is the first work that systematically illustrates the 

design and implementation of Ethereum source code verification services;

• Eight types of vulnerabilities are uncovered, which could be abused to discredit 

normal contracts or cover malicious intents;

• Among three mainstream verifiers, we found 19 exploitable vulnerabilities, 15 

of them have been confirmed and 10 of them have be patched;

• Tens of millions of contracts can be discredited potentially, and malicious 

behaviors in hundreds of contracts may have been covered already;

• Public dataset: https://github.com/source-code-scam-paper/source-scam-all-in-

one

Takeaways

https://github.com/source-code-scam-paper/source-scam-all-in-one
https://github.com/source-code-scam-paper/source-scam-all-in-one


Presented by

#NDSSSymposium2024

Q&A Time
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