
Assessing the Impact of Interface Vulnerabilities
in Compartmentalized Software

NDSS'23, 28th February 2023, San Diego, CA

Hugo Lefeuvre1, Vlad-Andrei Badoiu2, Yi Chien3, Felipe Huici4, Nathan Dautenhahn3, Pierre Olivier1

1The University of Manchester, 2University Politehnica of Bucharest, 3Rice University, 4Unikraft.io

Software compartmentalization promises...

2

Software compartmentalization =

Software compartmentalization promises...

3

Software compartmentalization =
Decompose software into lesser-privileged components
Components only have access to what they need to do their job

Software compartmentalization promises...

Any application

Rest of the app

Component

One process

4

Software compartmentalization =
Decompose software into lesser-privileged components
Components only have access to what they need to do their job

Software compartmentalization promises...

Any application

Rest of the app

Component

One process

Compartmentalization

5

Software compartmentalization =
Decompose software into lesser-privileged components
Components only have access to what they need to do their job

Software compartmentalization promises...

Any application

Rest of the app

Component

One process

Compartmentalization

6

Software compartmentalization =
Decompose software into lesser-privileged components
Components only have access to what they need to do their job

Untrusted /
risky component

Software compartmentalization promises...

Any application

Rest of the app

Component

One process

Compartmentalization

7

Software compartmentalization =
Decompose software into lesser-privileged components
Components only have access to what they need to do their job

Untrusted /
risky component

Trusted / critical
component

Software compartmentalization promises...

Any application

Rest of the app

Component

One process

Compartmentalization

8

Software compartmentalization =
Decompose software into lesser-privileged components
Components only have access to what they need to do their job

Untrusted /
risky component

Trusted / critical
component

Compartment

Compartment

Rest of the app

Component

Communication over
shared memory

Software compartmentalization promises...

Any application

Rest of the app

Component

One process

Compartmentalization

9

Software compartmentalization =
Decompose software into lesser-privileged components
Components only have access to what they need to do their job

Untrusted /
risky component

Trusted / critical
component

Compartment

Compartment

Rest of the app

Component

Communication over
shared memory

Libraries, Modules, Compilation Units,
Files, Functions, Blocks of code, etc.

Software compartmentalization promises...

Any application

Rest of the app

Component

One process

Compartmentalization

10

Software compartmentalization =
Decompose software into lesser-privileged components
Components only have access to what they need to do their job

Untrusted /
risky component

Trusted / critical
component

Compartment

Compartment

Rest of the app

Component

Communication over
shared memory

Libraries, Modules, Compilation Units,
Files, Functions, Blocks of code, etc.

Many mechanisms used: processes,
Intel PKU/PKS, CHERI, etc.

Software compartmentalization promises...

Any application

Rest of the app

Component

One process

Compartmentalization

11

Software compartmentalization =
Decompose software into lesser-privileged components
Components only have access to what they need to do their job

Untrusted /
risky component

Trusted / critical
component

Compartment

Compartment

Rest of the app

Component

Communication over
shared memory

Libraries, Modules, Compilation Units,
Files, Functions, Blocks of code, etc.

Many mechanisms used: processes,
Intel PKU/PKS, CHERI, etc.

Software compartmentalization promises...

Any application

Rest of the app

Component

One process

Compartmentalization

12

Software compartmentalization =
Decompose software into lesser-privileged components
Components only have access to what they need to do their job

Untrusted /
risky component

Trusted / critical
component

Compartment

Compartment

Rest of the app

Component

Communication over
shared memory

Libraries, Modules, Compilation Units,
Files, Functions, Blocks of code, etc.

Many mechanisms used: processes,
Intel PKU/PKS, CHERI, etc.

Software compartmentalization promises...

Any application

Rest of the app

Component

One process

Compartmentalization

13

Software compartmentalization =
Decompose software into lesser-privileged components
Components only have access to what they need to do their job

Untrusted /
risky component

Trusted / critical
component

Compartment

Compartment

Rest of the app

Component

Communication over
shared memory

Libraries, Modules, Compilation Units,
Files, Functions, Blocks of code, etc.

Many mechanisms used: processes,
Intel PKU/PKS, CHERI, etc.

Software compartmentalization promises...

Any application

Rest of the app

Component

One process

Compartmentalization

14

Software compartmentalization =
Decompose software into lesser-privileged components
Components only have access to what they need to do their job

Untrusted /
risky component

Trusted / critical
component

Compartment

Compartment

Rest of the app

Component

Communication over
shared memory

Libraries, Modules, Compilation Units,
Files, Functions, Blocks of code, etc.

Many mechanisms used: processes,
Intel PKU/PKS, CHERI, etc.

Trend: More & more automation

Software compartmentalization promises...

Any application

Rest of the app

Component

One process

Compartmentalization

15

Software compartmentalization =
Decompose software into lesser-privileged components
Components only have access to what they need to do their job

Untrusted /
risky component

Trusted / critical
component

Compartment

Compartment

Rest of the app

Component

Communication over
shared memory

Libraries, Modules, Compilation Units,
Files, Functions, Blocks of code, etc.

Many mechanisms used: processes,
Intel PKU/PKS, CHERI, etc.

Goals of these works: compartmentalization of legacy software
… with a low engineering effort … at a low performance cost

Trend: More & more automation

But interfaces make separation hard...
• Things are not as easy as they seem:

Once separation is enforced, cross-component interfaces
become the attack surface

16

But interfaces make separation hard...
• Things are not as easy as they seem:

Once separation is enforced, cross-component interfaces
become the attack surface

17

Compartment 1 (malicious)

func() api(void* ptr)

resize(int size)

open(FILE* f)

Compartment 2 (trusted)

api(void* ptr)

resize(int size)

open(FILE* f)

Compartment 2 (trusted)

18

Compartment 1 (malicious)

func()
* comp2_secret

But interfaces make separation hard...
• Things are not as easy as they seem:

Once separation is enforced, cross-component interfaces
become the attack surface

19

Compartment 1 (malicious)

func()
api(NULL)

But interfaces make separation hard...
• Things are not as easy as they seem:

Once separation is enforced, cross-component interfaces
become the attack surface

api(void* ptr)

resize(int size)

open(FILE* f)

Compartment 2 (trusted)

api(void* ptr)

resize(int size)

open(FILE* f)

Compartment 2 (trusted)

20

Compartment 1 (malicious)

func()
api(NULL)

• Dereference of corrupted pointer

void api(void* ptr) {
// …
* (char *) ptr = '\0';
// …

}

But interfaces make separation hard...
• Things are not as easy as they seem:

Once separation is enforced, cross-component interfaces
become the attack surface

21

Compartment 1 (malicious)

func()
api(NULL)

• Dereference of corrupted pointer

• Usage of corrupted indexing
information

void resize(int size) {
// …
var = matrix[size];
// …

}

But interfaces make separation hard...
• Things are not as easy as they seem:

Once separation is enforced, cross-component interfaces
become the attack surface

api(void* ptr)

resize(int size)

open(FILE* f)

Compartment 2 (trusted)

22

Compartment 1 (malicious)

func()
api(NULL)

• Dereference of corrupted pointer

• Usage of corrupted indexing
information

• Usage of corrupted object

open(corrupt) void open(FILE* f) {
// …
close(f);
// …

}

But interfaces make separation hard...
• Things are not as easy as they seem:

Once separation is enforced, cross-component interfaces
become the attack surface

api(void* ptr)

resize(int size)

open(FILE* f)

Compartment 2 (trusted)

23

Compartment 1 (malicious)

func()
api(NULL)

• Dereference of corrupted pointer

• Usage of corrupted indexing
information

open(corrupt)

• Usage of corrupted object

• … and many others!

But interfaces make separation hard...
• Things are not as easy as they seem:

Once separation is enforced, cross-component interfaces
become the attack surface

api(void* ptr)

resize(int size)

open(FILE* f)

Compartment 2 (trusted)

api(void* ptr)

resize(int size)

open(FILE* f)

Compartment 2 (trusted)

24

Compartment 1 (malicious)

func()
api(NULL)

• Dereference of corrupted pointer

• Usage of corrupted indexing
information

open(corrupt)

• Usage of corrupted object

• … and many others!

But interfaces make separation hard...
• Things are not as easy as they seem:

Once separation is enforced, cross-component interfaces
become the attack surface

Compartment Interface Vulnerabilities (CIVs)

We unify these vulnerabilities as:

api(void* ptr)

resize(int size)

open(FILE* f)

Compartment 2 (trusted)

25

Compartment 1 (malicious)

func()
api(NULL)

• Dereference of corrupted pointer

• Usage of corrupted indexing
information

open(corrupt)

• Usage of corrupted object

• … and many others!

But interfaces make separation hard...
• Things are not as easy as they seem:

Once separation is enforced, cross-component interfaces
become the attack surface

Compartment Interface Vulnerabilities (CIVs)

CIVs encompass traditional confused
deputies, Iago attacks, "DUIs"

We unify these vulnerabilities as:

api(void* ptr)

resize(int size)

open(FILE* f)

26

Compartment 1 (malicious)

func()
api(NULL)

• Dereference of corrupted pointer

• Usage of corrupted indexing
information

open(corrupt)

• Usage of corrupted object

• … and many others!

LOTS of them in unmodified components.

But interfaces make separation hard...
• Things are not as easy as they seem:

Once separation is enforced, cross-component interfaces
become the attack surface

Compartment Interface Vulnerabilities (CIVs)

CIVs encompass traditional confused
deputies, Iago attacks, "DUIs"

We unify these vulnerabilities as:

Compartment 2 (trusted)

api(void* ptr)

resize(int size)

open(FILE* f)

Compartment 2 (trusted)

27

Compartment 1 (malicious)

func()
api(NULL)

• Dereference of corrupted pointer

• Usage of corrupted indexing
information

open(corrupt)

• Usage of corrupted object

• … and many others!

CIVs encompass traditional confused
deputies, Iago attacks, "DUIs"

Affect all compartmentalization frameworks to various degrees.LOTS of them in unmodified components.

But interfaces make separation hard...
• Things are not as easy as they seem:

Once separation is enforced, cross-component interfaces
become the attack surface

Compartment Interface Vulnerabilities (CIVs)

We unify these vulnerabilities as:

When, and why do CIVs arise?

28

CIVs = Vulnerabilities arising due to lack of or improper Control and
Data flow validation at compartment boundaries

When, and why do CIVs arise?

29

CIVs = Vulnerabilities arising due to lack of or improper Control and
Data flow validation at compartment boundaries

Data Leakages Data Corruption Temporal Violations

Classes of CIVs...

When, and why do CIVs arise?

30

CIVs = Vulnerabilities arising due to lack of or improper Control and
Data flow validation at compartment boundaries

• Exposure of addresses

• Exposure of compartment-
confidential data

Data Leakages Data Corruption Temporal Violations

Classes of CIVs...

When, and why do CIVs arise?

31

CIVs = Vulnerabilities arising due to lack of or improper Control and
Data flow validation at compartment boundaries

• Exposure of addresses

• Exposure of compartment-
confidential data

Data Leakages Data Corruption Temporal Violations

Classes of CIVs...

Data over-sharing, sharing of uninitialized
memory (incl. compiler-added padding)

When, and why do CIVs arise?

32

CIVs = Vulnerabilities arising due to lack of or improper Control and
Data flow validation at compartment boundaries

• Exposure of addresses

• Exposure of compartment-
confidential data

Data Leakages

• Dereference of corrupted pointer

• Usage of corrupted indexing
information

• Usage of corrupted object

Data Corruption Temporal Violations

Classes of CIVs...

Data over-sharing, sharing of uninitialized
memory (incl. compiler-added padding)

When, and why do CIVs arise?

33

CIVs = Vulnerabilities arising due to lack of or improper Control and
Data flow validation at compartment boundaries

• Exposure of addresses

• Exposure of compartment-
confidential data

Data Leakages

• Dereference of corrupted pointer

• Usage of corrupted indexing
information

• Usage of corrupted object

Data Corruption Temporal Violations

Classes of CIVs...

Data over-sharing, sharing of uninitialized
memory (incl. compiler-added padding)

Usage of interface-crossing data without
appropriate sanitization

When, and why do CIVs arise?

34

CIVs = Vulnerabilities arising due to lack of or improper Control and
Data flow validation at compartment boundaries

• Exposure of addresses

• Exposure of compartment-
confidential data

Data Leakages

• Dereference of corrupted pointer

• Usage of corrupted indexing
information

• Usage of corrupted object

• Expectation of API usage ordering

• Usage of corrupted
synchronization primitive

• Shared memory TOCTOU

Data Corruption Temporal Violations

Classes of CIVs...

Data over-sharing, sharing of uninitialized
memory (incl. compiler-added padding)

Usage of interface-crossing data without
appropriate sanitization

When, and why do CIVs arise?

35

CIVs = Vulnerabilities arising due to lack of or improper Control and
Data flow validation at compartment boundaries

• Exposure of addresses

• Exposure of compartment-
confidential data

Data Leakages

• Dereference of corrupted pointer

• Usage of corrupted indexing
information

• Usage of corrupted object

• Expectation of API usage ordering

• Usage of corrupted
synchronization primitive

• Shared memory TOCTOU

Data Corruption Temporal Violations

Classes of CIVs...

Data over-sharing, sharing of uninitialized
memory (incl. compiler-added padding)

Usage of interface-crossing data without
appropriate sanitization

Many causes, missing copies, double fetches,
lack of enforcement of API semantics, ...

When, and why do CIVs arise?

36

CIVs = Vulnerabilities arising due to lack of or improper Control and
Data flow validation at compartment boundaries

Full taxonomy of CIVs in our paper!

• Exposure of addresses

• Exposure of compartment-
confidential data

Data Leakages

• Dereference of corrupted pointer

• Usage of corrupted indexing
information

• Usage of corrupted object

• Expectation of API usage ordering

• Usage of corrupted
synchronization primitive

• Shared memory TOCTOU

Data Corruption Temporal Violations

Classes of CIVs...

Data over-sharing, sharing of uninitialized
memory (incl. compiler-added padding)

Usage of interface-crossing data without
appropriate sanitization

Many causes, missing copies, double fetches,
lack of enforcement of API semantics, ...

How bad is "the CIV problem"?

37

Research questions:

How bad is "the CIV problem"?

38

Research questions:
• How many CIVs are there at legacy, unported APIs?

How bad is "the CIV problem"?

39

Research questions:
• How many CIVs are there at legacy, unported APIs?
• Are all APIs similarly affected by CIVs? (e.g., library v.s. module APIs)

How bad is "the CIV problem"?

40

Research questions:
• How many CIVs are there at legacy, unported APIs?
• Are all APIs similarly affected by CIVs? (e.g., library v.s. module APIs)
• How hard are these CIVs to address when compartmentalizing?

How bad is "the CIV problem"?

41

Research questions:
• How many CIVs are there at legacy, unported APIs?
• Are all APIs similarly affected by CIVs? (e.g., library v.s. module APIs)
• How hard are these CIVs to address when compartmentalizing?
• How bad are they? i.e., if you don't fix them, what can attackers do?

How bad is "the CIV problem"?

42

Research questions:
• How many CIVs are there at legacy, unported APIs?
• Are all APIs similarly affected by CIVs? (e.g., library v.s. module APIs)
• How hard are these CIVs to address when compartmentalizing?
• How bad are they? i.e., if you don't fix them, what can attackers do?

Need to understand these to achieve adequate counter-measures

How bad is "the CIV problem"?

43

This work's approach:

Research questions:
• How many CIVs are there at legacy, unported APIs?
• Are all APIs similarly affected by CIVs? (e.g., library v.s. module APIs)
• How hard are these CIVs to address when compartmentalizing?
• How bad are they? i.e., if you don't fix them, what can attackers do?

Need to understand these to achieve adequate counter-measures

How bad is "the CIV problem"?

44

This work's approach:
• Design a fuzzer / tool specialized to find CIVs: ConfFuzz

Research questions:
• How many CIVs are there at legacy, unported APIs?
• Are all APIs similarly affected by CIVs? (e.g., library v.s. module APIs)
• How hard are these CIVs to address when compartmentalizing?
• How bad are they? i.e., if you don't fix them, what can attackers do?

Need to understand these to achieve adequate counter-measures

How bad is "the CIV problem"?

45

Research questions:
• How many CIVs are there at legacy, unported APIs?
• Are all APIs similarly affected by CIVs? (e.g., library v.s. module APIs)
• How hard are these CIVs to address when compartmentalizing?
• How bad are they? i.e., if you don't fix them, what can attackers do?

This work's approach:
• Design a fuzzer / tool specialized to find CIVs: ConfFuzz
• Apply it at scale to many applications and library interfaces to

gather a data set of real-world CIVs

Need to understand these to achieve adequate counter-measures

How bad is "the CIV problem"?

46

This work's approach:
• Design a fuzzer / tool specialized to find CIVs: ConfFuzz
• Apply it at scale to many applications and library interfaces to

gather a data set of real-world CIVs
• Study, systematize, patternize the resulting data set

Research questions:
• How many CIVs are there at legacy, unported APIs?
• Are all APIs similarly affected by CIVs? (e.g., library v.s. module APIs)
• How hard are these CIVs to address when compartmentalizing?
• How bad are they? i.e., if you don't fix them, what can attackers do?

Need to understand these to achieve adequate counter-measures

47

High-Level Overview:

Fuzzing for CIVs

Fuzzing for CIVs

48

High-Level Overview:
• Instrument application to intercept cross

compartment function calls

Fuzzing for CIVs

49

High-Level Overview:
• Instrument application to intercept cross

compartment function calls
• Based on Intel Pin (DBI)

Fuzzing for CIVs

50

High-Level Overview:
• Instrument application to intercept cross

compartment function calls
• Based on Intel Pin (DBI)

• Interface (boundaries, types) is automatically
detected using binary debug (DWARF) information

Fuzzing for CIVs

51

High-Level Overview:
• Instrument application to intercept cross

compartment function calls
• Based on Intel Pin (DBI)

• Interface (boundaries, types) is automatically
detected using binary debug (DWARF) information

• A fuzzing monitor drives the exploration with
custom CIV mutations

Fuzzing for CIVs

52

High-Level Overview:
• Instrument application to intercept cross

compartment function calls
• Based on Intel Pin (DBI)

• Interface (boundaries, types) is automatically
detected using binary debug (DWARF) information

• A fuzzing monitor drives the exploration with
custom CIV mutations

• The workload is application-specific (benchmark,
test suite, etc.)

Fuzzing for CIVs

53

High-Level Overview:
• Instrument application to intercept cross

compartment function calls
• Based on Intel Pin (DBI)

• Interface (boundaries, types) is automatically
detected using binary debug (DWARF) information

• A fuzzing monitor drives the exploration with
custom CIV mutations

• The workload is application-specific (benchmark,
test suite, etc.)

• The fuzzing monitor automatically triages and
stores crash reports

Study results: Overview

54

Using ConfFuzz we gathered a substantial data set

55

56

25 applications

36 APIs in total

57

25 applications

36 APIs in total

Library APIs Module APIs Internal APIs

58

25 applications

36 APIs in total

16 of which taken
from the literature

Library APIs Module APIs Internal APIs

59

25 applications

36 APIs in total

16 of which taken
from the literature

Found 629
unique CIVs

Library APIs Module APIs Internal APIs

60

25 applications

36 APIs in total

16 of which taken
from the literature

Found 629
unique CIVs

5 security impact typesLibrary APIs Module APIs Internal APIs

Study results: CIV prevalence
"How many CIVs are there at legacy APIs? Are all APIs similarly affected?"

61

Study results: CIV prevalence
"How many CIVs are there at legacy APIs? Are all APIs similarly affected?"

• Confirms: CIVs are widespread among unmodified APIs/code

62

Study results: CIV prevalence
"How many CIVs are there at legacy APIs? Are all APIs similarly affected?"

• Confirms: CIVs are widespread among unmodified APIs/code

• But: there are clear disparities among APIs

63

Study results: CIV prevalence
"How many CIVs are there at legacy APIs? Are all APIs similarly affected?"

• Confirms: CIVs are widespread among unmodified APIs/code

• But: there are clear disparities among APIs
• CIV counts vary 0 – 105 CIVs for a single API

64

Study results: CIV prevalence
"How many CIVs are there at legacy APIs? Are all APIs similarly affected?"

• Confirms: CIVs are widespread among unmodified APIs/code

• But: there are clear disparities among APIs
• CIV counts vary 0 – 105 CIVs for a single API

65

Study results: CIV prevalence
"How many CIVs are there at legacy APIs? Are all APIs similarly affected?"

• Confirms: CIVs are widespread among unmodified APIs/code

• But: there are clear disparities among APIs
• CIV counts vary 0 – 105 CIVs for a single API

66

For each scenario

Study results: CIV prevalence
"How many CIVs are there at legacy APIs? Are all APIs similarly affected?"

• Confirms: CIVs are widespread among unmodified APIs/code

• But: there are clear disparities among APIs
• CIV counts vary 0 – 105 CIVs for a single API

67

Number of vulnerable API endpoints (= has CIVs) versus non-vulnerable

Study results: CIV prevalence
"How many CIVs are there at legacy APIs? Are all APIs similarly affected?"

• Confirms: CIVs are widespread among unmodified APIs/code

• But: there are clear disparities among APIs
• CIV counts vary 0 – 105 CIVs for a single API

68

Study results: CIV prevalence
"How many CIVs are there at legacy APIs? Are all APIs similarly affected?"

• Confirms: CIVs are widespread among unmodified APIs/code

• But: there are clear disparities among APIs
• CIV counts vary 0 – 105 CIVs for a single API

69

• There are large and (almost) totally CIV-free APIs

Study results: CIV prevalence
"How many CIVs are there at legacy APIs? Are all APIs similarly affected?"

• Confirms: CIVs are widespread among unmodified APIs/code

• But: there are clear disparities among APIs
• CIV counts vary 0 – 105 CIVs for a single API

70

• There are large and (almost) totally CIV-free APIs

• There are small and fully vulnerable APIs

Study results: CIV prevalence
"How many CIVs are there at legacy APIs? Are all APIs similarly affected?"

• Confirms: CIVs are widespread among unmodified APIs/code

• But: there are clear disparities among APIs
• CIV counts vary 0 – 105 CIVs for a single API

71

• There are large and (almost) totally CIV-free APIs

• There are small and fully vulnerable APIs

No correlation between API size and CIV count!

Study results: CIV Patterns

"Are all APIs similarly affected? How hard are they to fix?"

• We observe recurring API design patterns that lead to CIVs

72

Study results: CIV Patterns

"Are all APIs similarly affected? How hard are they to fix?"

• We observe recurring API design patterns that lead to CIVs

• These reinforce the idea that the presence of CIVs is influenced by
structural properties rather than API size or quantity of shared data

73

Study results: CIV Patterns

"Are all APIs similarly affected? How hard are they to fix?"

• We observe recurring API design patterns that lead to CIVs

• These reinforce the idea that the presence of CIVs is influenced by
structural properties rather than API size or quantity of shared data

• Highlight one of these patterns here

• Many more in the paper!

74

CIV Pattern: Modular APIs

• Module APIs are the most CIV-vulnerable APIs in
the study (HTTPd, Nginx, Redis, lighttpd, etc.)

75

Apache Core

mod_geoip mod_proxy

Apache Module API

CIV Pattern: Modular APIs

• Module APIs are the most CIV-vulnerable APIs in
the study (HTTPd, Nginx, Redis, lighttpd, etc.)

76

Apache Core

mod_geoip mod_proxy

• More CIVs and worse CIVs on average Apache Module API

CIV Pattern: Modular APIs

• Module APIs are the most CIV-vulnerable APIs in
the study (HTTPd, Nginx, Redis, lighttpd, etc.)

77

Apache Core

mod_geoip mod_proxy

• More CIVs and worse CIVs on average

• Unlike library APIs, module APIs must be very
generic and yield high performance
• Consequence: the application's core internal

state is exposed to the module

Apache Module API

CIV Pattern: Modular APIs

• Module APIs are the most CIV-vulnerable APIs in
the study (HTTPd, Nginx, Redis, lighttpd, etc.)

78

Apache Core

mod_geoip mod_proxy

// A structure that represents the current request
struct request_rec {

apr_pool_t *pool; // request's memory pool
conn_rec *conn; // connection with the client
server_rec *server; // request's virtual host
request_rec *main; // main request pointer
apr_thread_mutex_t *inv_mtx; // callback mutex

} // ... abbreviated

• More CIVs and worse CIVs on average

• Unlike library APIs, module APIs must be very
generic and yield high performance
• Consequence: the application's core internal

state is exposed to the module
request structure
crossing the interface

Apache Module API

CIV Pattern: Modular APIs

• Module APIs are the most CIV-vulnerable APIs in
the study (HTTPd, Nginx, Redis, lighttpd, etc.)

79

Apache Core

mod_geoip mod_proxy

// A structure that represents the current request
struct request_rec {

apr_pool_t *pool; // request's memory pool
conn_rec *conn; // connection with the client
server_rec *server; // request's virtual host
request_rec *main; // main request pointer
apr_thread_mutex_t *inv_mtx; // callback mutex

} // ... abbreviated

• More CIVs and worse CIVs on average

• Unlike library APIs, module APIs must be very
generic and yield high performance
• Consequence: the application's core internal

state is exposed to the module
request structure
crossing the interface

>75 fields, 60% of
which pointers

core internals

Apache Module API

CIV Pattern: Modular APIs

• Module APIs are the most CIV-vulnerable APIs in
the study (HTTPd, Nginx, Redis, lighttpd, etc.)

80

Apache Core

mod_geoip mod_proxy

// A structure that represents the current request
struct request_rec {

apr_pool_t *pool; // request's memory pool
conn_rec *conn; // connection with the client
server_rec *server; // request's virtual host
request_rec *main; // main request pointer
apr_thread_mutex_t *inv_mtx; // callback mutex

} // ... abbreviated

• More CIVs and worse CIVs on average

• Unlike library APIs, module APIs must be very
generic and yield high performance
• Consequence: the application's core internal

state is exposed to the module
request structure
crossing the interface

>75 fields, 60% of
which pointers

core internals

Somewhat counter-intuitive:
modularity does not imply low
compartmentalization complexity

Apache Module API

Study results: Security Impact

• "How bad are they?"

82

Study results: Security Impact

• "How bad are they?"

• Confirms: CIVs are high-impact
• >75% of scenarios present at least a write vulnerability

83

Study results: Security Impact

• "How bad are they?"

• Confirms: CIVs are high-impact
• >75% of scenarios present at least a write vulnerability

• ~70% of write and read, and ~50% of execute vulnerabilities are arbitrary

84

Study results: Security Impact

• "How bad are they?"

• Confirms: CIVs are high-impact
• >75% of scenarios present at least a write vulnerability

• ~70% of write and read, and ~50% of execute vulnerabilities are arbitrary

• Only 8/39 scenarios have execution impact CIVs
• but read and/or write primitives can likely be combined to achieve code execution

85

Study results: Security Impact

• "How bad are they?"

• Confirms: CIVs are high-impact
• >75% of scenarios present at least a write vulnerability

• ~70% of write and read, and ~50% of execute vulnerabilities are arbitrary

• Only 8/39 scenarios have execution impact CIVs
• but read and/or write primitives can likely be combined to achieve code execution

• Here: illustrate security impact with a concrete scenario
• Key extraction in OpenSSL safebox

• More in the paper

86

Security Impact: OpenSSL Key Extraction (1)

• Assume we isolate OpenSSL to protect SSL keys
• for example, from a compromised Nginx

• The key compartment interface is the OpenSSL public API

87

Nginx

OpenSSL

OpenSSL Library API

Security Impact: OpenSSL Key Extraction (1)

• Assume we isolate OpenSSL to protect SSL keys
• for example, from a compromised Nginx

• The key compartment interface is the OpenSSL public API

• We find several CIVs that enable for read, write, and
execution impact

88

Nginx

OpenSSL

OpenSSL Library API

// CIV: option setting API leads to arbitrary R/W
ulong SSL_CTX_set_options(SSL_CTX *ctx, ulong op)
{

return ctx->options |= op;
}

Other CIVs in the paper
OpenSSL option setting primitive – part of the public API

Security Impact: OpenSSL Key Extraction (1)

• Assume we isolate OpenSSL to protect SSL keys
• for example, from a compromised Nginx

• The key compartment interface is the OpenSSL public API

• We find several CIVs that enable for read, write, and
execution impact

89

Nginx

OpenSSL

OpenSSL Library API

// CIV: option setting API leads to arbitrary R/W
ulong SSL_CTX_set_options(SSL_CTX *ctx, ulong op)
{

return ctx->options |= op;
}

Dereference arbitrary pointer, set it, and return it:
arbitrary read and arbitrary write oracle

→ Key extracted

Other CIVs in the paper
OpenSSL option setting primitive – part of the public API

Security Impact: OpenSSL Key Extraction (1)

• Assume we isolate OpenSSL to protect SSL keys
• for example, from a compromised Nginx

• The key compartment interface is the OpenSSL public API

• We find several CIVs that enable for read, write, and
execution impact

90

Nginx

OpenSSL

OpenSSL Library API

// CIV: option setting API leads to arbitrary R/W
ulong SSL_CTX_set_options(SSL_CTX *ctx, ulong op)
{

return ctx->options |= op;
}

Dereference arbitrary pointer, set it, and return it:
arbitrary read and arbitrary write oracle

• Because of CIVs, isolating at the OpenSSL
boundary is weak

Other CIVs in the paper

→ Key extracted

OpenSSL option setting primitive – part of the public API

Security Impact: OpenSSL Key Extraction (2)

• Same scenario, but let's plug at a different interface

• This time, the OpenSSL internal key API
• This is a very popular use-case / application in the literature

91

Nginx

OpenSSL keys

OpenSSL Key API

OpenSSL (rest)

Security Impact: OpenSSL Key Extraction (2)

• Same scenario, but let's plug at a different interface

• This time, the OpenSSL internal key API
• This is a very popular use-case / application in the literature

• Here too, we find key-extraction CIVs

92

Nginx

OpenSSL keys

OpenSSL Key API

void aesni_ecb_encrypt(const uchar *in, uchar *out,
size_t length, const AES_KEY *key, int enc);

OpenSSL (rest)

Prototype of one of the key API endpoints

Security Impact: OpenSSL Key Extraction (2)

• Same scenario, but let's plug at a different interface

• This time, the OpenSSL internal key API
• This is a very popular use-case / application in the literature

• Here too, we find key-extraction CIVs

93

Nginx

OpenSSL keys

OpenSSL Key API

void aesni_ecb_encrypt(const uchar *in, uchar *out,
size_t length, const AES_KEY *key, int enc);Point *in to the key, encrypt with known *key, then decrypt

OpenSSL (rest)

Prototype of one of the key API endpoints

→ Key extracted

Security Impact: OpenSSL Key Extraction (2)

• Same scenario, but let's plug at a different interface

• This time, the OpenSSL internal key API
• This is a very popular use-case / application in the literature

• Here too, we find key-extraction CIVs

• Fixing them requires to make the component stateful

94

Nginx

OpenSSL keys

OpenSSL Key API

void aesni_ecb_encrypt(const uchar *in, uchar *out,
size_t length, const AES_KEY *key, int enc);Point *in to the key, encrypt with known *key, then decrypt

OpenSSL (rest)

Prototype of one of the key API endpoints

→ Key extracted

Security Impact: OpenSSL Key Extraction (2)

• Same scenario, but let's plug at a different interface

• This time, the OpenSSL internal key API
• This is a very popular use-case / application in the literature

• Here too, we find key-extraction CIVs

• Fixing them requires to make the component stateful

95

Nginx

OpenSSL keys

OpenSSL Key API

void aesni_ecb_encrypt(const uchar *in, uchar *out,
size_t length, const AES_KEY *key, int enc);Point *in to the key, encrypt with known *key, then decrypt

Because of CIVs, all OpenSSL isolation use-cases from
the literature are pointless & fixes are non-trivial

OpenSSL (rest)

Prototype of one of the key API endpoints

→ Key extracted

What can we do about CIVs? (1)

Ways forward to tackle CIVs:

96

What can we do about CIVs? (1)

Ways forward to tackle CIVs:

1. Progress towards more systematic, automatic CIV defenses
• we highlight limitations of existing defenses in the paper

97

What can we do about CIVs? (1)

Ways forward to tackle CIVs:

1. Progress towards more systematic, automatic CIV defenses
• we highlight limitations of existing defenses in the paper

2. (Re-)Design interfaces to be CIV-resilient by design
• we provide a set of guidelines to achieve this

98

What can we do about CIVs? (1)

Ways forward to tackle CIVs:

1. Progress towards more systematic, automatic CIV defenses
• we highlight limitations of existing defenses in the paper

2. (Re-)Design interfaces to be CIV-resilient by design
• we provide a set of guidelines to achieve this

Both approaches are complimentary

99

Fundamentally hard: need to
understand API semantics

What can we do about CIVs? (2)

→ (Re-)Design interfaces to be CIV-resilient by design

100

Not enough time here to go over the guidelines, but broadly

What can we do about CIVs? (2)

→ (Re-)Design interfaces to be CIV-resilient by design

101

Not enough time here to go over the guidelines, but broadly

• Not every interface is a good compartmentalization boundary
• choose your interface wisely

What can we do about CIVs? (2)

→ (Re-)Design interfaces to be CIV-resilient by design

102

Not enough time here to go over the guidelines, but broadly

• Not every interface is a good compartmentalization boundary
• choose your interface wisely

• Simplify as much as possible interface-crossing objects
• no system resource handles, not complex structs, synchronization primitives

• if not possible, you should probably plug at a different interface

What can we do about CIVs? (2)

→ (Re-)Design interfaces to be CIV-resilient by design

103

Not enough time here to go over the guidelines, but broadly

• Not every interface is a good compartmentalization boundary
• choose your interface wisely

• Simplify as much as possible interface-crossing objects
• no system resource handles, not complex structs, synchronization primitives

• if not possible, you should probably plug at a different interface

• Enforce API semantics (ordering, concurrency support)

Takeaways

104

Takeaways

• CIVs should be at the center of every compartmentalization approach

105

Takeaways

• CIVs should be at the center of every compartmentalization approach

106

• API design patterns influence CIV prevalence and severity
• it's not so much about the size of the API

• … it's about the complexity of API-crossing objects

Takeaways

• CIVs should be at the center of every compartmentalization approach

107

• API design patterns influence CIV prevalence and severity
• it's not so much about the size of the API

• … it's about the complexity of API-crossing objects

• Addressing CIVs requires more than a few checks
• … strong solutions often require refactoring the API

• automatic compartmentalization is harder that setting & enforcing bounds

Takeaways

• CIVs should be at the center of every compartmentalization approach

108

• API design patterns influence CIV prevalence and severity
• it's not so much about the size of the API

• … it's about the complexity of API-crossing objects

• Addressing CIVs requires more than a few checks
• … strong solutions often require refactoring the API

• automatic compartmentalization is harder that setting & enforcing bounds

• We need more research to address the problem of CIVs

Takeaways

• CIVs should be at the center of every compartmentalization approach

NDSS'23 Paper: https://arxiv.org/abs/2212.12904
Project website: https://conffuzz.github.io Code & Dataset under BSD-3 & CC-BY

109

• API design patterns influence CIV prevalence and severity
• it's not so much about the size of the API

• … it's about the complexity of API-crossing objects

• Addressing CIVs requires more than a few checks
• … strong solutions often require refactoring the API

• automatic compartmentalization is harder that setting & enforcing bounds

• We need more research to address the problem of CIVs

https://arxiv.org/abs/2212.12904
https://arxiv.org/abs/2212.12904
https://arxiv.org/abs/2212.12904
https://arxiv.org/abs/2212.12904
https://arxiv.org/abs/2212.12904
https://arxiv.org/abs/2212.12904
https://conffuzz.github.io

