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Software compartmentalization =
Decompose software into lesser-privileged components
Components only have access to what they need to do their job

Untrusted / 
risky component

Trusted / critical
component

Compartment

Compartment

Rest of the app

Component

Communication over 
shared memory

Libraries, Modules, Compilation Units, 
Files, Functions, Blocks of code, etc.

Many mechanisms used: processes,
Intel PKU/PKS, CHERI, etc.

Goals of these works: compartmentalization of legacy software
… with a low engineering effort … at a low performance cost

Trend: More & more automation
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func()
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void api(void* ptr) {
// …
* (char *) ptr = '\0';
// …

}

But interfaces make separation hard...
• Things are not as easy as they seem:

Once separation is enforced, cross-component interfaces 
become the attack surface
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Compartment 1 (malicious)

func()
api(NULL)

• Dereference of corrupted pointer

• Usage of corrupted indexing 
information

open(corrupt)

• Usage of corrupted object

• … and many others!

CIVs encompass traditional confused 
deputies, Iago attacks, "DUIs"

Affect all compartmentalization frameworks to various degrees.LOTS of them in unmodified components.

But interfaces make separation hard...
• Things are not as easy as they seem:

Once separation is enforced, cross-component interfaces 
become the attack surface

Compartment Interface Vulnerabilities (CIVs)

We unify these vulnerabilities as:



When, and why do CIVs arise?

28

CIVs = Vulnerabilities arising due to lack of or improper Control and 
Data flow validation at compartment boundaries



When, and why do CIVs arise?

29

CIVs = Vulnerabilities arising due to lack of or improper Control and 
Data flow validation at compartment boundaries

Data Leakages Data Corruption Temporal Violations

Classes of CIVs...



When, and why do CIVs arise?

30

CIVs = Vulnerabilities arising due to lack of or improper Control and 
Data flow validation at compartment boundaries

• Exposure of addresses

• Exposure of compartment-
confidential data

Data Leakages Data Corruption Temporal Violations

Classes of CIVs...



When, and why do CIVs arise?

31

CIVs = Vulnerabilities arising due to lack of or improper Control and 
Data flow validation at compartment boundaries

• Exposure of addresses

• Exposure of compartment-
confidential data

Data Leakages Data Corruption Temporal Violations

Classes of CIVs...

Data over-sharing, sharing of uninitialized 
memory (incl. compiler-added padding)



When, and why do CIVs arise?

32

CIVs = Vulnerabilities arising due to lack of or improper Control and 
Data flow validation at compartment boundaries

• Exposure of addresses

• Exposure of compartment-
confidential data

Data Leakages

• Dereference of corrupted pointer

• Usage of corrupted indexing 
information

• Usage of corrupted object

Data Corruption Temporal Violations

Classes of CIVs...

Data over-sharing, sharing of uninitialized 
memory (incl. compiler-added padding)



When, and why do CIVs arise?

33

CIVs = Vulnerabilities arising due to lack of or improper Control and 
Data flow validation at compartment boundaries

• Exposure of addresses

• Exposure of compartment-
confidential data

Data Leakages

• Dereference of corrupted pointer

• Usage of corrupted indexing 
information

• Usage of corrupted object

Data Corruption Temporal Violations

Classes of CIVs...

Data over-sharing, sharing of uninitialized 
memory (incl. compiler-added padding)

Usage of interface-crossing data without 
appropriate sanitization



When, and why do CIVs arise?

34

CIVs = Vulnerabilities arising due to lack of or improper Control and 
Data flow validation at compartment boundaries

• Exposure of addresses

• Exposure of compartment-
confidential data

Data Leakages

• Dereference of corrupted pointer

• Usage of corrupted indexing 
information

• Usage of corrupted object

• Expectation of API usage ordering

• Usage of corrupted 
synchronization primitive

• Shared memory TOCTOU

Data Corruption Temporal Violations

Classes of CIVs...

Data over-sharing, sharing of uninitialized 
memory (incl. compiler-added padding)

Usage of interface-crossing data without 
appropriate sanitization



When, and why do CIVs arise?

35

CIVs = Vulnerabilities arising due to lack of or improper Control and 
Data flow validation at compartment boundaries

• Exposure of addresses

• Exposure of compartment-
confidential data

Data Leakages

• Dereference of corrupted pointer

• Usage of corrupted indexing 
information

• Usage of corrupted object

• Expectation of API usage ordering

• Usage of corrupted 
synchronization primitive

• Shared memory TOCTOU

Data Corruption Temporal Violations

Classes of CIVs...

Data over-sharing, sharing of uninitialized 
memory (incl. compiler-added padding)

Usage of interface-crossing data without 
appropriate sanitization

Many causes, missing copies, double fetches, 
lack of enforcement of API semantics, ...



When, and why do CIVs arise?

36

CIVs = Vulnerabilities arising due to lack of or improper Control and 
Data flow validation at compartment boundaries

Full taxonomy of CIVs in our paper!
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This work's approach:
• Design a fuzzer / tool specialized to find CIVs: ConfFuzz
• Apply it at scale to many applications and library interfaces to 

gather a data set of real-world CIVs
• Study, systematize, patternize the resulting data set

Research questions:
• How many CIVs are there at legacy, unported APIs?
• Are all APIs similarly affected by CIVs? (e.g., library v.s. module APIs)
• How hard are these CIVs to address when compartmentalizing?
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High-Level Overview:
• Instrument application to intercept cross 

compartment function calls
• Based on Intel Pin (DBI)

• Interface (boundaries, types) is automatically 
detected using binary debug (DWARF) information

• A fuzzing monitor drives the exploration with 
custom CIV mutations

• The workload is application-specific (benchmark, 
test suite, etc.)

• The fuzzing monitor automatically triages and 
stores crash reports
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Using ConfFuzz we gathered a substantial data set
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25 applications

36 APIs in total

16 of which taken 
from the literature

Found 629 
unique CIVs

5 security impact typesLibrary APIs Module APIs Internal APIs
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• There are large and (almost) totally CIV-free APIs

• There are small and fully vulnerable APIs

No correlation between API size and CIV count!
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Study results: CIV Patterns

"Are all APIs similarly affected? How hard are they to fix?"

• We observe recurring API design patterns that lead to CIVs

• These reinforce the idea that the presence of CIVs is influenced by 
structural properties rather than API size or quantity of shared data

• Highlight one of these patterns here

• Many more in the paper!
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• Module APIs are the most CIV-vulnerable APIs in 
the study (HTTPd, Nginx, Redis, lighttpd, etc.)
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Apache Core

mod_geoip mod_proxy

• More CIVs and worse CIVs on average

• Unlike library APIs, module APIs must be very 
generic and yield high performance
• Consequence: the application's core internal 

state is exposed to the module

Apache Module API
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Apache Core

mod_geoip mod_proxy

// A structure that represents the current request
struct request_rec {

apr_pool_t *pool; // request's memory pool
conn_rec *conn; // connection with the client
server_rec *server; // request's virtual host
request_rec *main; // main request pointer
apr_thread_mutex_t *inv_mtx; // callback mutex

} // ... abbreviated

• More CIVs and worse CIVs on average

• Unlike library APIs, module APIs must be very 
generic and yield high performance
• Consequence: the application's core internal 

state is exposed to the module
request structure 
crossing the interface

>75 fields, 60% of 
which pointers

core internals

Somewhat counter-intuitive: 
modularity does not imply low 
compartmentalization complexity

Apache Module API
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Study results: Security Impact

• "How bad are they?"

• Confirms: CIVs are high-impact
• >75% of scenarios present at least a write vulnerability

• ~70% of write and read, and ~50% of execute vulnerabilities are arbitrary

• Only 8/39 scenarios have execution impact CIVs
• but read and/or write primitives can likely be combined to achieve code execution

• Here: illustrate security impact with a concrete scenario
• Key extraction in OpenSSL safebox

• More in the paper
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// CIV: option setting API leads to arbitrary R/W
ulong SSL_CTX_set_options(SSL_CTX *ctx, ulong op)
{

return ctx->options |= op;
}

Dereference arbitrary pointer, set it, and return it: 
arbitrary read and arbitrary write oracle

• Because of CIVs, isolating at the OpenSSL 
boundary is weak

Other CIVs in the paper

→ Key extracted

OpenSSL option setting primitive – part of the public API
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OpenSSL Key API

void aesni_ecb_encrypt(const uchar *in, uchar *out, 
size_t length, const AES_KEY *key, int enc);Point *in to the key, encrypt with known *key, then decrypt

Because of CIVs, all OpenSSL isolation use-cases from 
the literature are pointless & fixes are non-trivial

OpenSSL (rest)

Prototype of one of the key API endpoints

→ Key extracted
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What can we do about CIVs? (1)

Ways forward to tackle CIVs:

1. Progress towards more systematic, automatic CIV defenses
• we highlight limitations of existing defenses in the paper

2. (Re-)Design interfaces to be CIV-resilient by design
• we provide a set of guidelines to achieve this

Both approaches are complimentary

99
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Not enough time here to go over the guidelines, but broadly

• Not every interface is a good compartmentalization boundary
• choose your interface wisely

• Simplify as much as possible interface-crossing objects
• no system resource handles, not complex structs, synchronization primitives

• if not possible, you should probably plug at a different interface

• Enforce API semantics (ordering, concurrency support)
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NDSS'23 Paper: https://arxiv.org/abs/2212.12904
Project website: https://conffuzz.github.io Code & Dataset under BSD-3 & CC-BY
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