Assessing the Impact of Interface Vulnerabilities
in Compartmentalized Software

Hugo Lefeuvre!, Vlad-Andrei Badoiu?, Yi Chien3, Felipe Huici*, Nathan Dautenhahn3, Pierre Olivier!
IThe University of Manchester, 2University Politehnica of Bucharest, 3Rice University, “Unikraft.io

NDSS'23, 28t February 2023, San Diego, CA

MAN CHESTER

tyfI\A nchester

Software compartmentalization promises...

Software compartmentalization =

Software compartmentalization promises...

Software compartmentalization =
Decompose software into lesser-privileged components
Components only have access to what they need to do their job

Software compartmentalization promises...

Software compartmentalization =
Decompose software into lesser-privileged components
Components only have access to what they need to do their job

One process
Component

Rest of the app

Any application

Software compartmentalization promises...

Software compartmentalization =
Decompose software into lesser-privileged components
Components only have access to what they need to do their job

One process

Component Compartmentalization

. >

| 4

Rest of the app

Any application

Software compartmentalization promises...

Software compartmentalization =
Decompose software into lesser-privileged components
Components only have access to what they need to do their job

One process
Untrusted /
risky component

T

Component Compartmentalization

. >

| 4

Rest of the app

Any application

Software compartmentalization promises...

Software compartmentalization =
Decompose software into lesser-privileged components
Components only have access to what they need to do their job

One process

Untrusted /
risky component
Trusted / critical | | = Component Compartmentalization
component >>
[
4
Rest of the app

Any application

Software compartmentalization promises...

Software compartmentalization =
Decompose software into lesser-privileged components
Components only have access to what they need to do their job

One process
Untrusted /
risky component

iti Component
Trusted / critical 1B P
component

Rest of the app

Any application

Compartmentalization

. >

Compartment

Component

Compartment

Rest of the app

Communication over
shared memory

Software compartmentalization promises...

Software compartmentalization =
Decompose software into lesser-privileged components
Components only have access to what they need to do their job

One process Libraries, Modules, Compilation Units, Compartment

Untrusted / Files, Functions, Blocks of code, etc.
risky component

[Component]
Trusted / critical Component Compartmentalization

component | >> ____________________________ Communication over
V shared memory

Rest of the app Compartment

Rest of the app
Any application

Software compartmentalization promises...

Software compartmentalization =
Decompose software into lesser-privileged components
Components only have access to what they need to do their job
One process Libraries, Modules, Compilation Units, Compartment Many mechanisms used: processes,

Untrusted / Files, Functions, Blocks of code, etc. Intel PKU/PKS, CHERI, etc.
risky component

[Component]
Trusted / critical Component Compartmentalization

component | >> ____________________________ Communication over
V shared memory

Rest of the app Compartment

Rest of the app
Any application

Software compartmentalization promises...

Software compartmentalization =
Decompose software into lesser-privileged components
Components only have access to what they need to do their job

One process Libraries, Modules, Compilation Units, Compartment Many mechanisms used: processes,
Untrusted / Files, Functions, Blocks of code, etc. Intel PKU/PKS, CHERI, etc.

risky component
y P [Component]

Trusted / critical Component o | Compartmentalization
component 4 Sepafate legacy softwa I 5 __ @ Communication over
Mt g Compartment shared memory

Rest of the app

Rest of the app
Any application

Software compartmentalization promises...

Software compartmentalization =
Decompose software into lesser-privileged components
Components only have access to what they need to do their job

One process Libraries, Modules, Compilation Units, Compartment Many mechanisms used: processes,

Untrusted / Blocks of code, etc. Intel PKU/PKS, CHERI, etc.

risky component
Y P [Component]

Trusted / critical

component _——=" 4elegacyso™*c< -\ — N —r Communication over

_________________ C ; ; shared memory
Rest of the app ompartmen
Rest of the app

Any application

Software compartmentalization promises...

Software compartmentalization =
Decompose software into lesser-privileged components
Components only have access to what they need to do their job

One process Libraries, Modules, Compilation Units, Compartment Many mechanisms used: processes,
Untrusted / Trend: Fi locks of code, etc. Intel PKU/PKS, CHERI, etc.
risky component - 7Iner & Fj [
Y P ner G"anularitieq Component
iti Component .
Trusted/ critica e frware Trend: More internal boundaries
component . geparate \egacy SO .) Y Communication over
Trend: S€P 4 shared memory
Rest of the app Compartment
Rest of the app

Any application

Software compartmentalization promises...

Software compartmentalization =
Decompose software into lesser-privileged components
Components only have access to what they need to do their job

One process Libraries, Modules, Compilation Units, Compartment Many mechanisms used: processes,

Untrusted / Trend: Fi locks of code, etc. Intel PKU/PKS, CHERI, etc.

risky component - TIner & Fj [
y p ner Gr anularitjac Component
iti Component .

Trusted/ critica e frware Trend: More internal boundaries

component . geparate \egacy SO .) Y Communication over

Trend: S€P 4 shared memory
Rest of the app Compartment

Trend: More & more automation

Rest of the app
Any application

Software compartmentalization promises...

Software compartmentalization =
Decompose software into lesser-privileged components
Components only have access to what they need to do their job

One process Libraries, Modules, Compilation Units, Compartment Many mechanisms used: processes,

Untrusted / Trend: Fi locks of code, etc. Intel PKU/PKS, CHERI, etc.

risky component - TIner & Fj [
y P ner G"anularitieq Component
iti Component]

Trusted/ critical - frware Trend: More internal boundaries

component _ceparate legacy SO :) YT Communication over

Trend- ep v shared memory
Rest of the app Compartment

Trend: More & more automation

Rest of the app
Any application

Goals of these works: compartmentalization of legacy software
... with a low engineering effort ... at a low performance cost

But interfaces make separation hard...

* Things are not as easy as they seem:

Once separation is enforced, cross-component interfaces
become the attack surface

But interfaces make separation hard...

* Things are not as easy as they seem:

Once separation is enforced, cross-component interfaces
become the attack surface

Compartment 1 (malicious) Compartment 2 (trusted)

wfunc() api(void* ptr)

resize(int size)

open(FILE* f)

But interfaces make separation hard...

* Things are not as easy as they seem:

Once separation is enforced, cross-component interfaces
become the attack surface

Compartment 1 (malicious) Compartment 2 (trusted)

. .
f@a’func() * comp2_secret api(void* ptr)

resize(int size)
— {“ﬂf f)

e

But interfaces make separation hard...

* Things are not as easy as they seem:

Once separation is enforced, cross-component interfaces
become the attack surface

Compartment 1 (malicious) Compartment 2 (trusted)

api(NULL Q
qunc() Pi() 1> api(void* ptr)

resize(int size)

open(FILE* f)

But interfaces make separation hard...

* Things are not as easy as they seem:

Once separation is enforced, cross-component interfaces
become the attack surface

Compartment 1 (malicious)

Compartment 2 (trusted)

W func()

api(NULL) Q_

- api(void* ptr)
resize(int size)

open(FILE* f)

* Dereference of corrupted pointer

void api(void* ptr) {
/] ..
* (char *) ptr = '\0';
/] ..

}

20

But interfaces make separation hard...

* Things are not as easy as they seem:

Once separation is enforced, cross-component interfaces
become the attack surface

Compartment 1 (malicious) Compartment 2 (trusted)

* Dereference of corrupted pointer

qunc() api(NULL) > api(void* ptr) e Usage of corrupted indexing

information
”esize(oo) resize(int size)

open(FILE* f) vo}c/j resize(int size) {

- var = matrix[size];

/] .

- - - }

21

But interfaces make separation hard...

* Things are not as easy as they seem:

Once separation is enforced, cross-component interfaces
become the attack surface

Compartment 1 (malicious) Compartment 2 (trusted)
* Dereference of corrupted pointer
W func() api(NULL) > api(void* ptr) e Usage of corrupted indexing
information
resj e (o) ~ resize(int size) » Usage of corrupted object

> open(FILE* f)

: void open(FILE* f) { :

S E
close(f);

S -

open(corrupt)

22

But interfaces make separation hard...

* Things are not as easy as they seem:

Once separation is enforced, cross-component interfaces
become the attack surface

Compartment 1 (malicious) Compartment 2 (trusted)
* Dereference of corrupted pointer
W func() api(NULL) > api(void* ptr) e Usage of corrupted indexing
information
r'esiZe(oo) ~ resize(int size) » Usage of corrupted object

> open(FILE* f) ..and many others!

open(corrupt)

23

But interfaces make separation hard...

* Things are not as easy as they seem:

Once separation is enforced, cross-component interfaces
become the attack surface

We unify these vulnerabilities as:
Compartmentinterface Vulnerabilities (CIVs)

Compartment 1 (malicious) Compartment 2 (trusted)
* Dereference of corrupted pointer
api(NULL . :
wﬁmc() pi() > api(void* ptr) * Usage of corrupted indexing
information
r'esiZe(oo) ~ resize(int size) » Usage of corrupted object
> open(FILE* f) « ..and many others!
open(corrupt)

24

But interfaces make separation hard...

* Things are not as easy as they seem:

Once separation is enforced, cross-component interfaces
become the attack surface

We unify these vulnerabilities as:
Compartmentinterface Vulnerabilities (CIVs)

Compartment 1 (malicious) Compartment 2 (trusted)
* Dereference of corrupted pointer
api(NULL . :
wﬁmc() pi() > api(void* ptr) * Usage of corrupted indexing
information
r'esiZe(oo) ~ resize(int size) » Usage of corrupted object
> open(FILE* f) « ..and many others!
open(corrupt)

S CIVs encompass traditional confused
deputies, lago attacks, "DUIs"

25

But interfaces make separation hard...

* Things are not as easy as they seem:

Once separation is enforced, cross-component interfaces
become the attack surface

We unify these vulnerabilities as:
Compartmentinterface Vulnerabilities (CIVs)

Compartment 1 (malicious) Compartment 2 (trusted)
* Dereference of corrupted pointer
api(NULL . :
wﬁmc() pi() > api(void* ptr) * Usage of corrupted indexing
information
r'esiZe(oo) ~ resize(int size) » Usage of corrupted object
> open(FILE* f) « ..and many others!
open(corrupt)

S CIVs encompass traditional confused
deputies, lago attacks, "DUIs"

LOTS of them in unmodified components. 26

But interfaces make separation hard...

* Things are not as easy as they seem:

Once separation is enforced, cross-component interfaces
become the attack surface

We unify these vulnerabilities as:
Compartmentinterface Vulnerabilities (CIVs)

Compartment 1 (malicious) Compartment 2 (trusted)
* Dereference of corrupted pointer
api(NULL . :
wﬁmc() pi() > api(void* ptr) * Usage of corrupted indexing
information
r'esiZe(oo) ~ resize(int size) » Usage of corrupted object
> open(FILE* f) « ..and many others!
open(corrupt)

S CIVs encompass traditional confused
deputies, lago attacks, "DUIs"

LOTS of them in unmodified components. Affect all compartmentalization frameworks to various degrees. 27

When, and why do CIVs arise?

CIVs = Vulnerabilities arising due to lack of or improper Control and
Data flow validation at compartment boundaries

When, and why do CIVs arise?

CIVs = Vulnerabilities arising due to lack of or improper Control and
Data flow validation at compartment boundaries

Classes of ClVs...

Data Leakages Data Corruption Temporal Violations

When, and why do CIVs arise?

CIVs = Vulnerabilities arising due to lack of or improper Control and
Data flow validation at compartment boundaries

Classes of ClVs...

Data Leakages Data Corruption Temporal Violations

* Exposure of addresses

* Exposure of compartment-
confidential data

When, and why do CIVs arise?

CIVs = Vulnerabilities arising due to lack of or improper Control and

Data flow validation at compartment boundaries

Classes of ClVs...

Data Leakages

Data Corruption

Temporal Violations

* Exposure of addresses

* Exposure of compartment-
confidential data

Data over-sharing, sharing of uninitialized
memory (incl. compiler-added padding)

When, and why do CIVs arise?

CIVs = Vulnerabilities arising due to lack of or improper Control and

Data flow validation at compartment boundaries

Classes of ClVs...

Data Leakages

Data Corruption

Temporal Violations

* Exposure of addresses

* Exposure of compartment-
confidential data

Dereference of corrupted pointer

Usage of corrupted indexing
information

Usage of corrupted object

Data over-sharing, sharing of uninitialized
memory (incl. compiler-added padding)

When, and why do CIVs arise?

CIVs = Vulnerabilities arising due to lack of or improper Control and

Data flow validation at compartment boundaries

Classes of ClVs...

Data Leakages

Data Corruption

Temporal Violations

* Exposure of addresses

* Exposure of compartment-
confidential data

Dereference of corrupted pointer

Usage of corrupted indexing
information

Usage of corrupted object

Data over-sharing, sharing of uninitialized
memory (incl. compiler-added padding)

Usage of interface-crossing data without
appropriate sanitization

When, and why do CIVs arise?

CIVs = Vulnerabilities arising due to lack of or improper Control and

Data flow validation at compartment boundaries

Classes of ClVs...

Data Leakages

Data Corruption

Temporal Violations

* Exposure of addresses

* Exposure of compartment-
confidential data

* Dereference of corrupted pointer

e Usage of corrupted indexing
information

* Usage of corrupted object

Expectation of APl usage ordering

Usage of corrupted
synchronization primitive

Shared memory TOCTOU

Data over-sharing, sharing of uninitialized
memory (incl. compiler-added padding)

Usage of interface-crossing data without
appropriate sanitization

When, and why do CIVs arise?

CIVs = Vulnerabilities arising due to lack of or improper Control and
Data flow validation at compartment boundaries

Classes of ClVs...

Data Leakages Data Corruption Temporal Violations
* Exposure of addresses * Dereference of corrupted pointer * Expectation of APl usage ordering
* Exposure of compartment- e Usage of corrupted indexing * Usage of corrupted
confidential data information synchronization primitive
* Usage of corrupted object * Shared memory TOCTOU
Data over-sharing, sharing of uninitialized Usage of interface-crossing data without Many causes, missing copies, double fetches,

memory (incl. compiler-added padding) appropriate sanitization lack of enforcement of APl semantics, ...

When, and why do CIVs arise?

CIVs = Vulnerabilities arising due to lack of or improper Control and
Data flow validation at compartment boundaries

Classes of ClVs...

Data Leakages Data Corruption Temporal Violations
* Exposure of addresses * Dereference of corrupted pointer * Expectation of APl usage ordering
* Exposure of compartment- e Usage of corrupted indexing * Usage of corrupted
confidential data information synchronization primitive
* Usage of corrupted object * Shared memory TOCTOU
Data over-sharing, sharing of uninitialized Usage of interface-crossing data without Many causes, missing copies, double fetches,
memory (incl. compiler-added padding) appropriate sanitization lack of enforcement of APl semantics, ...

Full taxonomy of CIVs in our paper!

How bad is "the CIV problem"?

Research questions:

How bad is "the CIV problem"?

Research questions:
* How many ClVs are there at legacy, unported APIs?

How bad is "the CIV problem"?

Research questions:
* How many ClVs are there at legacy, unported APIs?
* Are all APIs similarly affected by CIVs? (e.qg., library v.s. module APIs)

How bad is "the CIV problem"?

Research questions:

* How many ClVs are there at legacy, unported APIs?

* Are all APIs similarly affected by CIVs? (e.qg., library v.s. module APIs)
* How hard are these ClVs to address when compartmentalizing?

How bad is "the CIV problem"?

Research questions:

* How many ClVs are there at legacy, unported APIs?

* Are all APIs similarly affected by CIVs? (e.qg., library v.s. module APIs)
* How hard are these ClVs to address when compartmentalizing?

* How bad are they? i.e., if you don't fix them, what can attackers do?

How bad is "the CIV problem"?

i Need to understand these to achieve adequate counter-measures
Research questions:

* How many ClVs are there at legacy, unported APIs?

* Are all APIs similarly affected by CIVs? (e.qg., library v.s. module APIs)
* How hard are these ClVs to address when compartmentalizing?

* How bad are they? i.e., if you don't fix them, what can attackers do?

How bad is "the CIV problem"?

i Need to understand these to achieve adequate counter-measures
Research questions:

* How many ClVs are there at legacy, unported APIs?

* Are all APIs similarly affected by CIVs? (e.qg., library v.s. module APIs)
* How hard are these ClVs to address when compartmentalizing?

* How bad are they? i.e., if you don't fix them, what can attackers do?

This work's approach:

How bad is "the CIV problem"?

i Need to understand these to achieve adequate counter-measures
Research questions:

* How many ClVs are there at legacy, unported APIs?

* Are all APIs similarly affected by CIVs? (e.qg., library v.s. module APIs)
* How hard are these ClVs to address when compartmentalizing?

* How bad are they? i.e., if you don't fix them, what can attackers do?

This work's approach:
* Design a fuzzer / tool specialized to find CIVs: ConfFuzz

How bad is "the CIV problem"?

Research questions:

Need to understand these to achieve adequate counter-measures

How many CIVs are there at legacy, unported APIs?

Are all APIs similarly affected by CIVs? (e.q., library v.s. module APIs)
How hard are these ClVs to address when compartmentalizing ?
How bad are they? i.e., if you don't fix them, what can attackers do?

This work's approach:

* Design a fuzzer / tool specialized to find CIVs: ConfFuzz

* Apply it at scale to many applications and library interfaces to
gather a data set of real-world CIVs

How bad is "the CIV problem"?

i Need to understand these to achieve adequate counter-measures
Research questions:

* How many ClVs are there at legacy, unported APIs?

* Are all APIs similarly affected by CIVs? (e.qg., library v.s. module APIs)
* How hard are these ClVs to address when compartmentalizing?

* How bad are they? i.e., if you don't fix them, what can attackers do?

This work's approach:
* Design a fuzzer / tool specialized to find CIVs: ConfFuzz

* Apply it at scale to many applications and library interfaces to
gather a data set of real-world CIVs

e Study, systematize, patternize the resulting data set

Fuzzing for CIVs

High-Level Overview:

Fuzzing for CIVs

High-Level Overview: e e, |
* Instrument application to intercept cross tumentation]) J
Untrusted — Trusted

compartment function calls © Sl — W]

Function calls, "simulating" isolation

One process

Fuzzing for CIVs

High-Level Overview: e e, |
* Instrument application to intercept cross tumentation]) J
Untrusted — Trusted

compartment function calls © e — W]

Function calls, "simulating" isolation

° Based on |nte| Pin (DB') e eeeeetee et eememeetteeet ettt sttt st reneseees s

One process

Fuzzing for CIVs o o

?5\

...... SRR TR

High-Level Overview: I |
* Instrument application to intercept cross mentaton]) |
Untrusted ——— Trusted

compartment function calls © Component | —— LJ
Function calls, "simulating" isolation ;

° Based on |nte| P|n (DBl) et b et e b bR seE b b a R e e et
* Interface (boundaries, types) is automatically

detected using binary debug (DWARF) information ©

One process

Fuzzing for CIVs i

Deduplicates, @

App & libraries

arguments, return Vatee

High-Level Overview: ey Tester

Instrumentation j /

Instrument application to intercept cross
Untrusted — Trusted
compartment function calls © e — W]
. 3 unction calls, "simulating" isolation i

° Based on |nte| Pin (DB') R F .. e et s

Interface (boundaries, types) is automatically
detected using binary debug (DWARF) information ©
A fuzzing monitor drives the exploration with
custom CIV mutations ©

One process

51

Fuzzing for CIVs i

Deduplicates, @

App & libraries

........................

AN

Orders mutaags (memory, @ , 7 /1 Workioad

High-Level Overview: B e s
* Instrument application to intercept cross — 'm? d / Genertes ot

compartment function calls ©] componert :_J“"r‘m“ Confruze

« Based on Intel Pin (DBI) ' Foncioncalls "smulating'solation ¢+ & componerts

* Interface (boundaries, types) is automatically

detected using binary debug (DWARF) information ©
* A fuzzing monitor drives the exploration with

custom CIV mutations ©
 The workload is application-specific (benchmark,

test suite, etc.) ©

52

e Deduplicates, Q) . App & Iipraries
reproduces, minirhizes y (— T
e, @Detect interface

CrashdB
| | R : g
High-Level Overview: et e .G :
* Instrumentapplication to interceptcross i mentaton]) Genetesapypectc
5i Untrusted —_— Trusted workload {optiona
compartment function calls © g} | Component —“LJ o
: Function calls, "simulating" isolation O Components

e Based on Intel Pin (DB|) et e e es e e e e

* Interface (boundaries, types) is automatically

detected using binary debug (DWARF) information ©
* A fuzzing monitor drives the exploration with

custom CIV mutations ©
 The workload is application-specific (benchmark,

test suite, etc.) ©
* The fuzzing monitor automatically triages and

stores crash reports

Study results: Overview

Using ConfFuzz we gathered a substantial data set

L Crashes L API Coverage Impact (of which arbitra
‘ ™ ‘ Application | Compartment API ’ References Raw | Dedup. Victims } Callers | Crwegrage 5 Read | I:lf'ri!e([Exec] ﬁ?)c [Null]|
f— Tibmarkdown @2 92 | 13 3 T T00% (4/4) | 10 (8) 700 0@ |1 3
mod_markdown 381 71 5 1 100% (1/1) 62 (52) 17 (14) 2(D 0 30
aspell libaspell 278 8 1 1 349 (48/141) | T (7) T(7) 240 0 3
bind9 libxml2 (write API) 0 0 0 1 86% (13/15) 0(0) 0(0) 0(0) 0 0
bzip2 Tibhz2 677, 151 6 5 1 T 2% 5% 3502 T(0) 0@ [0 0
¢URL Tibnghttp2 61 7 2 i 50% (18/36) | 3 (3) 55 0@ |1 3
exif libexif 400 7 1 1 10% (13/129) | 3 (3) 0(0) 00 0 5
libaveodec 3le 20 3 4 319% (19760) 13 (12) 12(12) 00 3 7
FFmpeg libavfilter 51 1 1 2 12% (2/16) 1(1) 0(0) 0(0) 0 1
hbavformat 217 9 2 3 52% (10719) &(7) (1) (V1)) 0 7
file Tibmagic 50 |5 T T 3% (70 | 502 T 0@ |0 3
- Tibcurl 122] 3 14 2 T 90% (18720) | 2 (2) 702 o 1 T
at Tibpere 81 2 1 1 1% (818) | 22 0(0) 00 |2 0
Inkeoane Tibpng 671 % |3 1 1 6% (14730) | 2 () 702 0(0) [0 1
8 scap Tibpoppler [16] 8T |4 2 1 100% (9/9) | 4 (3) ENES) 0@ [0 2
B libxml2-tests | libxml2 (write API) 0 0 0 1 100% (47/47) | 0(0) 0 (0 0 0 0
& [Tightpd mod_deflate 17 |26 3 T 100% 6/6) | 16 (1) | 3 (0) T |2 g
Image Tibghostscript 51 &7 14 2 T T00% (1/11) | 4 (2) (D) 00 |3 g
e Tibpng [67] TS | 44 T 3 3% (TH | 22 79) 0 |2 19
agic Tt 671 197 | 14 2 T 30% (13/43) | 3 03) O] 0@ [0 13
Nei Tibpcre 7 10 T T 93% (17135) | 8 (1 70 0@ |6)
ginx mod_geoip 521 776 | 25 2 1 35% (5/13) | 21 (1) | 4 (D) T |1 10
P Tibmarkdown 2] & |5 3 T 100% @/4) | 3 (1) 000 0 |1 p)
libpoppler [16] 195 9 1 1 6% (24/379) 8 (6) 7(7 0(0) 1 4
Redis mod_redisbloom 389 23 1 1 42% (8/19) 18 (13) 6(4) 0 0 13
mod_redisearch 381 21 1 1 54% (18/33) 15 (14) 14 (11) 0 0 12
Isync libpopt 167 8 1 1 90% (9/10) 4 (3) 2{() 0{0) 0 5
squid libxml2 226 12 1 1 70% (7/10) 9(5) 3(3) 40 0 4
su libaudit 0 0 0 1 66% (2/3) 0 0 (0 00 0 0
. libpcay 162 8 2 1 50% (20/40) 8(3) 5(5) 0(0) 0 4
Wireshark [P0l 7T T T 85%(@7 0 Em 0 Em 0 Em 0 T
| [Total: [5508 | 379 | 47 | 38 | N/A | 246(192) | 124 (105) | 12(5) | 24 | 195 |
cURL libssl [5] 198 27 1 1 25% (14/56) 18 (10) 5(4 1(1) 0 17
CPA Tibgpgmme 74 [0 T T O T T 0@ |0 3
= GPG libgerypt [5] 4221 105 1 1 15% (15/95) 64 (60) 4(0) 00 77 20
£ [Memcached | internal_hashtable [33] 7037 | 16 1 T 50% (6/12) | 10(3) 7(0) 0 |1 6
5 e Tnternal_libssl-keys | [45], [60]. [15]. [34] | 599 | 46 1 1 50% (%) | 32(1) 38 (0) 00 [0 72
“ ginx Tibssl BLTL 221 511 | 336 | 39 3 T 1% (11/96) | 16 (13) O3 [2() |0 76
sudo internal_auth-api 191 5 1 1 100% (5/5) 54 0 0 0 4
) libapparmor Bl 3 1 1 100% (2/2) 2(2) 2(y 0(0) 0 2
| [Total: [9863 | 250 | 9 | 8 | N/A | 154(97) | 607 |3 |78 | 103 |

. . Crashes . . API Coverage Impact (of which arbitra
TM | Application | Compartment API References Raw | Dedup. Victims Callers] Cau:iage Read] I;Vrf!e(] Exec |):3;'33{'] Null
HTTPd libmarkdown [42] 192 13 3 1 100% (4/4) 10 (8) T(7) 0 () | 4
mod_markdown 381 71 5 1 100% (1/1) 62 (52) 17 (14) 2(1) 0 30
aspell libaspell 278 3 1 1 34%9% (48/141) | T (N T 2(1) 0 3
bind9 libxml2 (write API) 0 0 0 1 86% (13/15) 0{0) 0 () 0 () 0 0
bzip2 Tibbz2 671, 15] % |3 1 1 2% (51%) |5 10 0@ |0 0
cURL libnghttp2 6l 7 2 1 50% (18/36) 3(3) 5(5) 0 () 1 3
exif libexif 400 7 1 1 10% (13/129) | 3 (3) 0 0 () 0 5
libavcodec il6 20 3 4 31% (19/60) 13 (12) 12 (12) 0 (0) 3 7
FFmpeg libavfilter 51 1 1 2 12% (2/16) 1(I) 0 () 0 0 1
hbaviormat 217 9 2 3 329 (10/19) 87 1l 0 (0) 0 7
file libmagic 150 5 1 1 63% (7/11) 5(2) 1 0 () 0 4
: Tibcurl 7] 713 2 T 90% (18720) | 2 (2) 70 0 1 T
it Tibpere 8T | 2 i T 3% (%/18) | 20 0(0) 0 |2 0
o | Inkscape Tibpng 1671 % |3 1 T 36% (1430) | 2(D) 70 0 [0 T
g : Tibpoppler [16] 8T | 4 3 T 100% (979) | 3 (3) 7@ 0 |0 p)
B libxml2-tests | libxml2 (write API) 0 0 0 1 100% (47747) | 0(0) 0 () 0 () 0 0
A lighttpd mod_deflate 117 26 2 1 100% (6/6) 16 (11) 5(0) 1(1) 2 9
Image libghostscript [5] 67 14 2 1 100% (11/11) | 4 (2) 1 0 () 3 9
Magick libpng |67] Tia 44 1 2 229 (UITT) 24(2) 9(9) 2(0) 2 39
&l TibGiT 671 97 |14 3 T 30% (13/43) | 3 3) 56 0 |0 3
Nei libpere 144 10 1 1 93% (14/15) 8(7) 3(3) 0 (0) [2
ginx mod_geoip 321 776 | 25 3 T 35% (5/14) | 21 (1) | 4 (D) () |1 10
Oruls Tibmarkdown @] & 3 3 1 100% @3) [3D 0(0) o) 1 p)
libpoppler [16] 195 9 1 1 6% (24/379) 81(6) TN 0 () 1 4
Redis mod_redisbloom 389 23 1 1 42% (8/19) 18 (13) 64 0 () 0 13
mod_redisearch 381 21 1 1 54% (18/33) 15(14) 14 (11) 0 () 0 12
ISyne libpopt 167 8 1 1 90% (9/10) 4(3) 2(0) 0 () 0 5
squid libxml2 226 12 1 1 T0% (7/10) 915 3(3) 4 (1) 0 4
su libaudit 0 0 0 1 66% (2/3) 00 0 0 0 0
. libpca 162 8 2 1 50% (20/40) 8 (3) 5(5) 0(0) 0 4
Wireshark]ihE]ibP 'y} T T 1 85% (6/7) | 0(0) 0 (0) 0@ |0 T
[Total: [5508 | 379 | 47 3® | N/A | 246(192) | 124 (105) | 12(5) | 24 195 |
cURL libssl [5] 198 27 1 1 25% (14/36) 18 (10) 5(4) 1(1) 0 17
GPA hibgpgme 174 9 1 1 49 (3/72) T(2) 00 0 (0) 0 6
= GPG libgerypt [5] 4221 105 1 1 15% (15/95) 64 (60) 4 () 0 77 20
£ [Memcached | internal_hashiable [@3] 3037 |16 1 1 50% (&/12) | 10 (3) 270) 0 |1 6
- - internal_libsslkeys | [45]. [60]. [15]. [34] | 599 | 46 1 1 30% (74) | 32 (D) 28 (0) 0@ |0 b
< ginx Tibssl 5L TTT. 221 511 | 336 | 39 2 T 1% (11/96) | 16 (13) 0(13) [2() [0 76
cud mternal_auth-api 191 5 1 1 100% (5/5) 5(4) 0 () 0 () 0 4
sudo Tibapparmor 97 3 T 1 100% (272) | 2 (2) 2(0) 0 |0 2
[Total: [9863 | 250 | 9 8 | NA [154(97) |60 |3 |78 103 |

25 applications ——_

36 APIs in total — |

. . Crashes . . API Coverage Impact (of which arbitra
T™M | Application | Compartment API References Raw | Dedup. Victims Callers] Cau:iage Read] I;Vrf!e(] Exec |):3;'33{'] Null
HTTPd libmarkdown [42] 192 13 3 1 100% (4/4) 10 (8) T(7) 0 () | 4
mod_markdown 381 71 5 1 100% (1/1) 62 (52) 17 (14) 2(1) 0 30
—p. | aspell libaspell 278 3 1 1 34%9% (48/141) | T (N T 2(1) 0 3
bind9 libxml2 (write API) 0 0 0 1 86% (13/15) 0{0) 0 () 0 () 0 0
bzip2 Tibbz2 671, 15] % |3 1 1 2% (51%) |5 10 0@ |0 0
> " -URL libnghttp2 6l 7 2 1 50% (18/36) 3(3) 5(5) 0 () 1 3
exif libexif 400 7 1 1 10% (13/129) | 3 (3) 0 0 () 0 5
libavcodec il6 20 3 4 31% (19/60) 13 (12) 12 (12) 0 (0) 3 7
FFmpeg libavfilter 51 1 1 2 12% (2/16) 1(I) 0 () 0 0 1
hbaviormat 217 9 2 3 329 (10/19) 87 1l 0 (0) 0 7
file libmagic 150 5 1 1 63% (7/11) 5(2) 1 0 () 0 4
: Tibcurl 7] 713 2 T 90% (18720) | 2 (2) 70 0 1 T
it Tibpere 8T | 2 i T 3% (%/18) | 20 0(0) 0 |2 0
o | nkscape Tibpng 1671 % |3 1 T 36% (1430) | 2(D) 70 0 [0 T
g : Tibpoppler [16] 8T | 4 3 T 100% (979) | 3 (3) 7@ 0 |0 p)
B libxml2-tests | libxml2 (write API) 0 0 0 1 100% (47747) | 0(0) 0 () 0 () 0 0
A lighttpd mod_deflate 117 26 2 1 100% (6/6) 16 (11) 5(0) 1(1) 2 9
Image libghostscript [5] 67 14 2 1 100% (11/11) | 4 (2) 1 0 () 3 9
Magick libpng |67] Tia 44 1 2 229 (UITT) 24(2) 9(9) 2(0) 2 39
&l TibGiT 671 97 |14 3 T 30% (13/43) | 3 3) 56 0 |0 3
Nei libpere 144 10 1 1 93% (14/15) 8(7) 3(3) 0 (0) [2
ginx mod_geoip 321 776 | 25 3 T 35% (5/14) | 21 (1) | 4 (D) () |1 10
Oruls Tibmarkdown @] & 3 3 1 100% @3) [3D 0(0) o) 1 p)
libpoppler [16] 195 9 1 1 6% (24/379) 81(6) TN 0 () 1 4
Redis mod_redisbloom 389 23 1 1 42% (8/19) 18 (13) 64 0 () 0 13
mod_redisearch 381 21 1 1 54% (18/33) 15(14) 14 (11) 0 () 0 12
ISyne libpopt 167 8 1 1 90% (9/10) 4(3) 2(0) 0 () 0 5
squid libxml2 226 12 1 1 T0% (7/10) 915 3(3) 4 (1) 0 4
su libaudit 0 0 0 1 66% (2/3) 00 0 0 0 0
. libpca 162 8 2 1 50% (20/40) 8 (3) 5(5) 0(0) 0 4
Wireshark]ihE]ibP 'y} T T 1 85% (6/7) | 0(0) 0 (0) 0@ |0 T
Total: [5508 | 379 | 47 3® | N/A | 246(192) | 124 (105) | 12(5) | 24 195 |
cURL libssl [5] 198 27 1 1 25% (14/36) 18 (10) 5(4) 1(1) 0 17
GPA hibgpgme 174 9 1 1 49 (3/72) T(2) 00 0 (0) 0 6
= GPG libgerypt [5] 4221 105 1 1 15% (15/95) 64 (60) 4 () 0 77 20
£ | Memcached | internal_hashiable [@3] 3037 |16 1 1 50% (&/12) | 10 (3) 270) 0 |1 6
5 a internal_libsslkeys | [45]. [60]. [15]. [34] | 599 | 46 1 1 30% (74) | 32 (D) 28 (0) 0@ |0 b
< ginx Tibssl 5L TTT. 221 511 | 336 | 39 2 T 1% (11/96) | 16 (13) 0(13) [2() [0 76
cud mternal_auth-api 191 5 1 1 100% (5/5) 5(4) 0 () 0 () 0 4
sudo Tibapparmor 97 3 T 1 100% (272) | 2 (2) 2(0) 0 |0 2
| [Total: [9863 | 250 | 9 8 | NA [154(97) |60 |3 |78 103 |

Library APls Module APIs | Internal APls

25 applications ——_

36 APIs in total — |

. Crashes L API Coverage Impact (of which arbitrary)
T™ | Application | Compartment API References Raw | Dedup. Victims Callers J Caue%age Read J I;Vn!e] Exec | ;;3;'0{' | Null
e libmarkdown [42] 192 13 3 1 100% (4/4) 10 (8) 7(7) 00 1 4
e mod_markdown 381 71 5 1 100% (1/1) 62 (52) 17 (14) 2(1) 0 30
g | aspell libaspell 278 8 1 1 34% (48/141) | T(7) T(7) 2(0) 0 3
bind9 libxml2 (write API) 0 0 0 1 86% (13/15) | 0(D) 0 (0) 0(0) 0 0
bzip2 libbz2 [67], [3] 16 3 1 1 62% (5/8) 5(2) 1() 0(0) 0 0
= |"cURL libnghttp2 61 7 2 1 50% (18/36) | 3 (3) 51(5) 0(0) 1 3
exif libexif 400 7 1 1 10% (13/129) | 3 (3) 0(0) 0(0) 0 5
libavcodec ilo 20 3 4 3% (19%/60) 13 (12) 12 (12) 0(0) 3 7
FFmpeg libavfilter 51 1 1 2 12% (2/16) 1(D) 0 (0) 0(0) 0 1
libavformat 217 9 2 3 52% (10/19) | 8(7) I (1) 0 0 T
file libmagic 150 5 1 1 63% (7/11) 5(2) 1(I) 0(0) 0 4
. Tibcurl [22] 13 4 2 1 90% (18/20) | 2(2) 2(2) 0(0) | 1
gt libpcre 81 2 1 1 44% (8/18) 2(2) 0 (0) 0(0) 2 0
- Inksca libpng [67] 66 3 1 1 46% (14/30) | 2(D) 21(2) 0(0) 0 1
= pe libpoppler [16] 81 4 2 1 100% (9/9) 4 (3) 4 (4) 0(0) 0 2
= libxmlI2-tests | libxml2 (write API) 0 0 0 1 100% (47/47) | 0(D) 0 (0) 0(0) 0 0
B lighttpd mod_deflate 117 26 2 1 100% (6/6) 16 (11) 5(0) 1(1) 2 9
Ima libghostscript [5] a7 14 2 1 100% (11/11) | 4 (2) 1(D) 0(0) 3 9

M g.ek Tibpng [67] 718 44 | 2 BHEATTH |23 99 2(0) 2 39

agic libtiff [67] 197 14 2 1 30% (13/43) | 3(3) 6 (6) 0(0) 0 13
. libpcre 144 10 | i 93% (14/15) | 8(T) 3(3) 0(0) 6 2

Blaics mod_geoip [52] 276 25 2 1 35% (5/14) 21 (17) 4 (1) 1(1) 1 10
Okular libmarkdown [42] 64 5 3 | 100% (4/4) 3(0) 0 (0) 0(0) | 2
libpoppler [16] 195 9 1 1 6% (24/379) | B (6) 7(7) 0(0) 1 4

Redi mod_redisbloom 389 23 1 1 42% (8/19) 18 (13) 6 (4) 0(0) 0 13

mod_redisearch 381 21 1 1 54% (18/33) 15 (14) 14 (11) 0 0 12
rsync libpopt 167 8 1 1 90% (9/10) 4(3) 2(0) 0(0) 0 5
squid libxml2 226 12 1 1 T0% (7/10) 9(5) 3(3) 4 (1) 0 4
su libaudit 0 0 0 1 66% (2/3) 0 (D) 0 (D) 0(0) 0 0
. libpeay 162 8 2 1 509% (20/140) | B (3) 51(5) 0(0) 0 4
D=t]i::lz]]ibp 42 1 1 1 853% (6/7) 0 (D) 0 (D) 0(0) 0 1

Total: | 5508 | 379 | 47 | 38 | N/A | 246 (192)] 124 (105)] 12 (5) | 24 195 |

cURL libssl [5] 198 27 1 1 25% (14/56) 18 (10) 5(4) 1() 0 17
GPA libgpgme 174 9 1 1 45 (3/72) T(2) 0(0) 0(0) 0 6

= GPG libgerypt [5] 4221 | 105 1 1 15% (15/95) | 64 (60) 4 (0) 0(0) 77 20
% [43] 4037 | 16 1 1 50% (6/12) 10 (3) 2(0) 0(0) | [}

= [45], [60], [15]. [34] | 399 46 1 1 50% (2/4) 32 (1) 28 (0) 0(0) 0 22

“ [5], 1], [22], [51] 346 39 2 1 1% (11/96) 16 (13) 19 (13) 2 (1) 0 26
191 5 1 1 100% (5/5) 5(4) 0 (0) 0(0) 0 4
| libapparmor 97 3 1 1 100% (2/2) 2(2) 2(0) 0(0) 0 2

| | Total: [9863 | 250] 9 [8] N/A] 154 (97)] 60 (17)] 3(2) | 78 103]

Library APls Module APIs | Internal APls

Crashes

API Coverage

Impact (of which arbitrary)

25 applications ——_

36 APIs in total — |

16 of which taken

from the literature

T™ | Application | Compartment API References Raw | Dedup. Victims Callers] Coverage Read] Write] Exec | Alloc] Null
e 1 libmarkdown [42] 192 13 3 1 100% (4/4) 10 (8) T(7) 0 () | 4
R mod_markdown 381 71 5 1 100% (1/1) 62 (52) 17 (14) 2(1) 0 30

—p. | aspell libaspell 278 3 1 1 34%9% (48/141) | T (N T 2(1) 0 3
bind9 libxml2 (write API) 0 0 0 1 86% (13/15) 0{0) 0 () 0 () 0 0
bzip2 Tibbz2 671 5] % 5 i i 2% 5% 35 T(0) 0 |0 0
> ["-URL libnghttp2 6l 7 2 1 50% (18/36) 3(3) 5(5) 0 () 1 3
exif libexif 400 7 1 1 10% (13/129) | 3 (3) 0 0 () 0 5
libavcodec il6 20 3 4 31% (19/60) 13 (12) 12 (12) 0 (0) 3 7
FFmpeg libavfilter 51 1 1 2 12% (2/16) 1(I) 0 () 0 0 1
hbavformat 217 9 2 3 329 (10/19) 87 1l 0 (0) 0 7
file libmagic 150 5 1 1 63% (7/11) 5(2) 1 0 () 0 4
: Tibcurl 271 T 3 1 90% (18720) | 2 (2) 70 0 1 T
git Tibpcre S) i i 34% &%) 20 00 0 |2 0
. Tbpn, —67] 66 13 i T 36% (14730) [2 (D) 70 0@ [0 T
I]ihpT)IE}plm' ~>16] A 3 i 100% ©/9) [43 7@ 0@ [0 3
B libxml2-tests | libxml2 (write API) 0 0 0 1 100% (47747) | 0(0) 0 () 0 () 0 0
3 | Tighupd mod_deflate 17 | 26 3 i 100% (6/6) | 16 (11) | 3(0) T 2 9
Image libghostscript [5] 67 14 2 1 100% (11/11) | 4 (2) 1 0 () 3 9
oy Tibpng 671 I8 | 44 i 3 3% (07T [20 79)) |2 19
agic TG 671 o7 |13 3 T 0% (13743) [30 516) 0@ [0 3
. hibpere 144 10 1 1 93% (14/15) 8(7) 3(3) 0 (0) [2
Dlaias mod_geoip 321 376 25 3 1 B G5 [2007 4 T 1 10
Orular Tbmarkdown £9) & 13 3 T 100% @/3) [3D 00) 0 1 3
libpoppler [16] 195 9 1 1 6% (24/379) 81(6) TN 0 () 1 4
Redi mod_redisbloom 3R89 23 1 1 42% (8/19) 18 (13) 64 0 () 0 13
mod_redisearch 381 21 1 1 54% (18/33) 15(14) 14 (11) 0 () 0 12
ISyne libpopt 167 8 1 1 90% (9/10) 4(3) 2(0) 0 () 0 5
squid libxml2 226 12 1 1 T0% (7/10) 915 3(3) 4 (1) 0 4
su libaudit 0 0 0 1 66% (2/3) 00 0 0 0 0
. libpca 162 8 2 1 50% (20/40) 8 (3) 5(5) 0(0) 0 4
L]iII:Ileibp 71 i i 85% /7] [0(0) 00 0@ [0 i
Total: 5508 [319 | 47 3 | NA [24%6(19) | 2A(05) [205 | A 05 |
cURL libssl [5] 198 27 1 1 25% (14/36) 18 (10) 5(4) 1(1) 0 17
GPA hibgpgme 174 9 1 1 49 (3/72) T(2) 00 0 (0) 0 6
- 5] 327 [105 i i 5% (15/95) | 63 (60) | 4 (0) 0@ |77 70
E (@3] 3037 1 16 i T 30% 6/12) | 10 (3) 710) 0 1 5
< [45], 1601, (151 [34] [399 | 46 i i 50% 74 [32 (D) 78 (0) 0@ [0 27
“ 1100 221 517 | 336 | 39 3 1 1% (11/96) [16 (13) [1913 [2() |0 76
191 5 1 1 100% (5/5) 5(4) 0 () 0 () 0 4
97 3 1 1 100% (2/2) 2(2) 2(0) 0(0) 0 2
| (0863 [250 | O 8 | NA |15400) |60 |30 |78 T03 |

Library APls Module APIs | Internal APls

. . Crashes . . API Coverage Impact (of which arbitrary)
T™M | Application | Compartment API References Raw | Dedup. Victims Callers] Coverage Read] I:‘Vn".fe] Exec | ;;3;'0{'] Null

A Tibmarkdown 2] 02 [13 3 T 100% (@/4) | 10 (8) 7 0@ [1 3

S Hithd mod_markdown 38T [71 5 1 100% (/) [6232 |74 |2 |0 30
25 applications ——__ aspell Tibaspell 778 [8 1 1 33% @140 [70D T () [0 3
Bindd Tibxmi2 (write AP) 0 0 0 T 86% (13/15) | 0 (0) 0(0) 0@ |0 0
bzip2 Tibbz2 671, 5] % 3 i i 52% 5/%) [352 T(0) 0@ |0 0
. ¥ [CURL. Tbnghttp2 61 |7 3 T 50% (18736) | 3 (3) 555 0@ |1 3
36 APIs in total oxif AL 300 |7 i T 0% (137129) | 3 (3) 0(0) 0 0 3
Thavcodec 36 [20 3 3 3% (10/60) [13 (12 [12(12) [0@ |3 7
FFmpeg Tibavfilter 5T |1 i 3 2% (716) [1D 010) 0@ |0 i
Tbaviormat T 19 3 3 33% (10/19) | 8 (7) T 0@ [0 7
file Tibmagic 50 5 i i 53% (77 |5 WE)) 0@ |0 3
: Tibcurl 220 3 13 3 T 90% (18720) | 2 (2) 7 0@ |1 1
] ait Tibpcre 8T |2 i T 3% (818) |2 010) o |2 0
16 of which taken . ITbpng —67] %6 |3 i 1 6% (14730) [2 (D) I 0 [0 i
f he li I Tbpoppler =>16) 85T | 2 2 T 100% O/9) | 4 (3) @ 0@ |0 2
rom the literature X [Tibxm2-tests | Tibxml2 (write API) 0 0 0 T 100% @7/47) | 0(0) 0 (0) 00 |0 0
5 | Tightpd mod_deflate 17 | 26 3 T 100% &/6) | 16 (I | 5(0) T |2 9
R Tibghostscript 5] 67 |13 3 i 100% (/1D | 4) i) 0@ |3 9

g Tibpng 671 778 | 44 i 3 3% (T | 20 79) 7@ |2 39

agic Tburt 671 o7 | 13 2 1 30% (13/43) |3 0) 510) 0@ |0 3
: Tibpcre 4 10 i 1 93% (14/15) | 8 (1) 03 o 16 3

biginx. mod_geoip 521 776 | 25 2 1 3% 514 [21 (7 [4D T |1 10
Okular Tbmarkdown @ & 3 3 1 100% @/3) [3 (D (D) o |1 2
Tibpoppler [16] 05 |9 1 T 6% (24/379) | 8 (0) 7 0 |1 3

- mod_redisbloom 389 | 23 1 1 1% ®19) [183 6@ 0@ [0 T3

Redis mod_redisearch |/ | 21 1 T 54% (18/33) | 15(18) |14 (1) 0@ |0 2
TSync Tibpopt 67 8 1 1 30% (9710) | 4 (3) 700 0@ [0 3
squid Tibxml2 376 | 12 I T 70% (7710) | 9 (3) 303) A [0 3
Found 629 — Su Tibaudit 0 0 0 T 6% (273) [00 00 0w |0 0
) . hacan 62 |8 2 1 50% (20/40) | 8 (3) 5065 0@ |0 3
unique CIVs ~_ Wireshark =5 TR —— 1 i i 85% &/ [010 o) 0@ [0 1

Total: ~SSoe 379 77 | 38 | NA [246(19) | 124 (105 | 2 | 22| 195

' 5] 8 |27 1 1 25% (14/56) | 18 (10) |5 (@) T [0 17
74 79 1 1 ATy [T 00 0@ [0 8

- 5] 737 [105 i i 15% (15/95) | 64 (60) | 4 (0) 0@ |77 70
E [@3] 3037 | 16 1 1 30% (&/12) | 10(3) 710) 0 |1 3

= 571601, (151, 1341 [599 | 46 i 1 50% (@) | 32 (D) 38 (0) 0@ |0 73

< 22, 1] | 396 |39 3 1 1% (11/96) [16 (13) [19(13) [2() [0 I3
~_ | 01 |5 i T 100% (5/5) | 5 @ 0(0) 0@ |0 3
S 3 i i 100% 22) | 22 70) 0@ [0 3

| 0863 *250 9 | 8§ | NA |[154(07) [60(D [3@ |78 [103 |

Library APIs

25 applications ——_

36 APIs in total — |

16 of which taken

Module APIs

Internal APIs

5 security impact types

Impact (of whlh arbitrary)

from the literature

Found 629
unique CIVs

L Crashes L API Coverage
T™ | Application | Compartment API References Raw | Dedup. Victims Callers] Crw:iage Read] Write]l Exec | Alloc] Null
— Tibmarkdown @2 92 | 13 3 1 100% @4 10 (8) 7 [00) |1 3
iR mod_markdown /T | 71 5 1 100% (/) 6232 1704 2@ [0 30
—p. | aspell libaspell 278 3 1 1 34%9% (48/141) T (7) T(7) 2(1) 0 3
Bind? Tibxml2 (write APD) 0 0 0 i 86% (13/15) 0 (0) 0(0) 0@ [0 0
bzip2 Tibbz2 671 5] % 5 i i 2% 378 | 52 T(0) 0 |0 0
> ["-URL libnghttp2 6l 7 2 1 50% (18/36) 3(3) 5(5) 0 (0) 1 3
exif libexif 400 7 1 1 10% (13/129) | 3 (3) 0 (0) 0 () 0 5
libavcodec il6 20 3 4 31% (19/60) 13 (12) 12 (12) 0 (0) 3 7
FFmpeg libavfilter 51 1 1 2 12% (2/16) 1(1) 0 (0) 0 (0) 0 1
hbavformat 217 9 2 3 329 (10/19) 8 (7) (1) 0 (0) 0 7
file libmagic 150 5 1 1 63% (7/11) 5(2) 1(I) 0 (0) 0 4
: Tibcurl 271 3[4 3 1 90% (18720) | 2 (2) 7 0 |1 1
git Tibpcre S) i i 1% ®18) | 22 00 0 |2 0
. ITbpng —67] 66 13 i T 36% (13730) 2D) 0@ [0 T
T TbpoppIer ~>16] A 3 i 100% 979) 4 3) 7@ 0@ [0 3
S [ToxmDtess | Tbxml2 (write APT) 0 0 0 1 100% @7/37) | 0(0) 0(0) 0@ [0 0
5 [Tighupd mod_deflate 17 | 26 3 i 100% (6/6) | 16 (1T} | 3(0) T 2 9
Image Tibghostscript 3] 67 [1a 3 1 100% (/1D 4 () e 0@ |3 9
S Tibpng 1671 778 | 44 i 3 3% (7T 20 79)) |2 19
agic TG 671 97 | 14 3 T 0% (13743) | 3 03) 5(6) 0@ [0 3
N hibpere 144 10 1 1 93% (14/15) 8 (7) 3(3) 0 (0) [2
ginx mod_geoip 521 776 | 25 3 1 BE G5 2070 4 T 1 10
Orular Tbmarkdown £9) 4 13 3 T 100% @3 3D 0(0) 0 1 3
libpoppler [16] 195 9 1 1 6% (24/379) 8 (6) T(7) 0 () 1 4
e mod_redisbloom /0 [23 i 1 D% @0 18 [6@ 0@ 10 3
mod_redisearch 381 21 1 1 54% (18/33) 15(14) 14 (11) 0 () 0 12
ISyne libpopt 167 8 1 1 90% (9/10) 4 (3) 2 (D) 0 (0) 0 5
squid libxml2 226 12 1 1 T0% (7/10) 9(5) 3(3) 4(1) 0 4
— su Tibaudit 0 0 0 i 56% (73) . 0(0) 0(0) 0@ [0 0
L — 162 8 2 1 50% (20/40) 8 (3) 5(5) 0(0) 0 4
~—_ Wireshark =5 TR ——— 71 i i 85% &) 0(0) 0(0) 0@ [0 1
Total: ~SSoeb| 379 77 | 38 | NA 216 (192) | 124 (105) | 12 (5) | 24 105
o0 Tibssl 5] 08 | 27 1 1 5% (14/56) | 18 (10) | 5 (@) T [0 7
‘G% bEpgme 73 10 i T WOy T 00 0@ 10 3
. |cro o 5] 327 [105 i i 15% (15/95) | 64 (60) | 4 (0) 0@ |77 70
£ [Memcached | internal] [@3] 3037 | 16 i 1 50% (6/12) | 10(3) 710) 0 1 5
5 P internal_libssi-keys 3], [60], [15]. [34] | 599 | 46 i i 50% (74 | 32 (D) 78 (0) 0@ [0 27
“ gmx TibssI TSNL22L 511 [336 [39 3 1 1% (11/96) | 16 (13) [1913 [2() |0 76
cudo internal_auth-api \ 191 5 1 1 100% (5/5) 5(4) 0 (0) 0 (0) 0 4
Tibapparmor e i i 100% (272 | 2 (2) 7(0) 0 |0 p)
| | Total: 9863 T 250 9 [8] N/A 154 (97)] 60 (17)] 3(2) I 78 103 60

Study results: CIV prevalence

"How many CIVs are there at legacy APIs? Are all APIs similarly affected?”

Study results: CIV prevalence

"How many CIVs are there at legacy APIs? Are all APIs similarly affected?”
* Confirms: ClVs are widespread among unmodified APIs/code

Study results: CIV prevalence

"How many CIVs are there at legacy APIs? Are all APIs similarly affected?”
* Confirms: ClVs are widespread among unmodified APIs/code
* But: there are clear disparities among APIs

Study results: CIV prevalence

"How many CIVs are there at legacy APIs? Are all APIs similarly affected?”
* Confirms: ClVs are widespread among unmodified APIs/code

* But: there are clear disparities among APIs
* CIV countsvary 0 — 105 CIVs for a single API

Study results: CIV prevalence

"How many CIVs are there at legacy APIs? Are all APIs similarly affected?”
* Confirms: ClVs are widespread among unmodified APIs/code

* But: there are clear disparities among APIs
* CIV countsvary 0 — 105 CIVs for a single API

Fuzzed API Elements (No Vulnerability Found) =] Fuzzed API Elements (Vulnerable) [

N 7/ By f o N o I :
R /B . L 100"/38“/ rrrrrrrr 22/6/@ 21°/~;~~—;——~77—3—6‘—/729—/——23ty~—; rrrrrrrr 64A> rr -
‘ 16% _|

! | 50/) 44/
60% 57% [25% | 83% H 50% 80/ 37/ H 42/ 40/ b
18 75% - . |_| ’ 1 I H g 50% III |;| ' 66% l:l |:| |:| . |:| |:| 100% ﬂ m 50,43 ; 50/ 0% | -

]\\ma‘w%‘”osaﬂ?\ﬂ\%\a‘eﬂ%ﬁﬁ‘“? %avo?%%%%“ﬁ*o %mst%‘\g\%*‘\ % ?‘“b%f‘*‘\\e 1% ﬁ%@%&\“‘\’g@as%\“ \e*ﬁ\ﬁ“?%‘bBE%Z"S%%%%@%\°§\a%%‘ el ?\%}‘33 a‘ﬁ%ﬂ\\“xﬁ“\bﬂ‘“

o\ ?\e

N# of API Elements
N
o

Study results: CIV prevalence

"How many CIVs are there at legacy APIs? Are all APIs similarly affected?”
* Confirms: CIVs are widespread among unmodified APIs/code

* But: there are clear disparities among APIs
* CIV countsvary 0 — 105 ClVs for a single API

Fuzzed API Elements (No Vulnerability Found) =] Fuzzed API Elements (Vulnerable) [

o
€ 60 ‘
o 50 — 8% L 0% L nLn S A

qE> 40 / : er QP,O,’?’,O,'? ,O,f, fq;; ,e,d, API. ,e,' em ,e,”,t,s, V%’!'??f?‘? !e,, _|
T 0 e g R TR A A 77 R AR R A AR RN Ry VAR A A I
< 20 — | o% LY 1000/ 38% 50/57/ """ 25/6 '/" 21°/ "1’""1"'"]"3’6'/"29'/”23‘7”'1 """" 646 """" i =i 37/ """ 44/42/ """"""""""" —
Y— 10 _75/ 60/ ﬁ ﬂ H : 66"/ ’Zl |:| 83/ H 50/ U/ ﬂ 80/ 50/{) , H 40/ O/ % 16/_
q:o.: 0 e N |_| H 50% ; F‘ ; F:| III 10.—. m ; 5 O.—. ; I=|

“—

2P fios S0, M My octe AR VAE P wouft crehipss i Zina p2°
l\mma‘\‘\‘g‘\”‘a%%“%“fﬁ‘\%w% hetl) %aW?Ma%g i é’ n % ?\“b%;“*\\’% s o:é??““\“‘\i%@ a0 \e“‘??\"@\ %‘ Y e°§§‘%%v°"é’\ ‘°§‘%%% il a“ik%a*\\“s?ﬁ“‘

For each scenario

66

Study results: CIV prevalence

"How many CIVs are there at legacy APIs? Are all APIs similarly affected?”
* Confirms: CIVs are widespread among unmodified APIs/code

* But: there are clear disparities among APIs
* CIV countsvary 0 — 105 ClVs for a single API

Fuzzed API Elements (No Vulnerability Found) =] Fuzzed API Elements (Vulnerable) [

2]
< 60 :
@ 50 — 8% Lo L S B S S S [B S S Sy S B SN
5 40 = P ,/, : P,f QPF’,’?’,O,’? ,°,f, ’f‘,’z,? ?,d, API ,‘?’?,”??ﬁf,s, ‘,’V(’??f?‘?/‘?,
ljiJ 30 = L0209 B1% . 22/ """"""" N O o o 2--3- - 4 4') """"""""""""" 3B%
< 20 |- P ow - 100°/38/ ——————— Rty ‘~~:~—6'/e 21/—':"'——:——'":'——36—/'29—/——23%—: —————— 64""6’3’/"'3 ——— s R
b 10 _75/ i 60% ﬁ H Hsd/ 50/ 57/] 25% 660/ lz' |:| % | 8% H 50% 100/ ﬂ 80% 50/6 ‘ 37/ H 44/ 42/ 40/ 50/ 0/ 16% |
+ 0 = L |_| H 1 F‘ ; F:| III = m ; | Ifl
z

Zina

‘%%%ﬁ?\o‘ﬁ%‘ﬁ\g‘g“% ﬁ’?\\\)? %a\,o?gg%\g\%\e{&g g\‘ \8{3‘\‘\ gg‘e ?\(\b‘yﬂ\?‘é pa\\\b 3 3&\\%3?%\({\0(\%@&2:%\1\ \e\\‘??\b% (e?\\bfiseog\g?%popg\ \0‘?\5\;?\%(\‘p§ ?\ba 2 aﬂ\\‘%a\f\\\gﬁ‘aﬂ\bﬂ\b

R |\\b‘“"“\§\d'om

Number of vulnerable API endpoints (= has CIVs) versus non-vulnerable

67

Study results: CIV prevalence

"How many CIVs are there at legacy APIs? Are all APIs similarly affected?”
* Confirms: ClVs are widespread among unmodified APIs/code

* But: there are clear disparities among APIs
* CIV countsvary 0 — 105 CIVs for a single API

Fuzzed API Elements (No Vulnerability Found) =] Fuzzed API Elements (Vulnerable) [

N 7/ By f o N o I :
R /B . L 100"/38“/ rrrrrrrr 22/6/@ 21°/~;~~—;——~77—3—6‘—/729—/——23ty~—; rrrrrrrr 64A> rr -
‘ 16% _|

! | 50/) 44/
60% 57% [25% | 83% H 50% 80/ 37/ H 42/ 40/ b
18 75% - . |_| ’ 1 I H g 50% III |;| ' 66% l:l |:| |:| . |:| |:| 100% ﬂ m 50,43 ; 50/ 0% | -

]\\ma‘w%‘”osaﬂ?\ﬂ\%\a‘eﬂ%ﬁﬁ‘“? %avo?%%%%“ﬁ*o %mst%‘\g\%*‘\ % ?‘“b%f‘*‘\\e 1% ﬁ%@%&\“‘\’g@as%\“ \e*ﬁ\ﬁ“?%‘bBE%Z"S%%%%@%\°§\a%%‘ el ?\%}‘33 a‘ﬁ%ﬂ\\“xﬁ“\bﬂ‘“

o\ ?\e

N# of API Elements
N
o

Study results: CIV prevalence

"How many CIVs are there at legacy APIs? Are all APIs similarly affected?”
* Confirms: ClVs are widespread among unmodified APIs/code

* But: there are clear disparities among APIs
* CIV countsvary 0 — 105 CIVs for a single API

Fuzzed API Elements (No Vulnerability Found) =] Fuzzed API Elements (Vulnerable) [

[2]
g 28 fer\ ,,,,, ,,,,, o e N
qE> 40 A ST A U S U SR SR S AN SN S 1% N [SO S ,,,,, f ,,,,, ,/,,P@P?'?',Q'?9",’?42,??6’,%‘,’?!,€'¢m¢ﬁf$¥%’!’7¢f€b!¢,_
i | I SRR TR R S R N o N T : o
o 30 — | 22/ """"""" 29/ """" o o 281 449 4/35%
< 20 %I Ry % 100% 38% ot :'——5—07/""— ————— 2—5—‘—/"'&'—60'/6 21°/~4: """ 3——":'——3—6—/ ————— 23% 64A> —————— L "'éf/ """" —447 ——————————————— g —
5 10 1K oo ﬁ ﬂ H g 50% 57/ 7 % ’zl |:| ']' e F| H |:| 50% 100% ﬂ Ij[80% 50/‘) ‘ H 42/ 40/ 50/ 0% | 1|6=|%—
B3 0 f = T =
§ e \x-(

C 0\ =) \ \(1 \o

\b“‘a(\dﬁ\%%%qb) \ \mgc ﬁe\ﬁ?\gaqo?ég@g“&o mga \Ss‘\xrog‘% 9\%?‘1‘\\9% gal e“gs\s \‘\\m ‘%\\gs \e\tﬁ O‘e?\bs%zog\gQ @?83’3@"(\8@5?\%('(‘@ \\;g 5 %a\f\\\g{“ﬂbﬂ

* There are large and (almost) totally CIV-free APls

Study results: CIV prevalence

"How many CIVs are there at legacy APIs? Are all APIs similarly affected?”
* Confirms: ClVs are widespread among unmodified APIs/code

* But: there are clear disparities among APIs
* CIV countsvary 0 — 105 CIVs for a single API

Fuzzed API Elements (No Vulnerability Found) =] Fuzzed API Elements (Vulnerable) [

n
I= 60 ——N————————————— ‘

Qo 50 8N SRR S S D o 0% N SRS S R S U S S S S
qE.> 40 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 1 1 1 1 1 1 } 1 1 1 1 1 1 1 } } / propon‘/on of fuzzed APl elements vulnerable
w | ; : : : ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ : ‘ ‘

— — -] (R o B R R, L SO F1 R e [ol [‘,,,,L,,2Q/,,,‘,,,,L,,,,‘,,,,J,,,,L,,,,‘,,,,J,,,,‘ ,,,,, (.
o 30 : : L oo : 57/ : : 22/ : : : : : : 29/ : ‘ : : 128 L o44% : : : . 35%
< 20) |51 8% =f 100% A% = P Rt ‘*"'&'*60'/0 21°/ I R I AR~ Vil 2% 1"'645""'0' ~ B e e £ I
u ‘ ; 1 60% : : ‘ 50/ 57 -1 25% 4% |- %, 3% 50% &4 80% Xogo. || 37% 4% 42% adon. ‘ = 16%
o 10 HER Y o5 Badil & ﬂ 50/ 66"/ l:l |:| o W A E F‘ III 100/ ﬂ SV Y% | = T |:| 7050% 0% ||]
* 0 A1 = ‘ 1 ; = |:| 1 1R e = —]
pd

‘”o%%wﬁ R ‘W’ﬁ ?%%%“é‘%%s W‘“&%‘*‘Sf“‘ ?\3‘%6% Z’&f‘*‘\\’% 5 ‘l‘%\\\%«é‘; %‘é{’“\q R \e\“ﬁ\"%“%‘“*603%%909&"‘°‘°§‘a%%‘ “’§ R Seitartes”

el \\'Oma \d\‘o\(\ ‘Oﬂ%

* There are large and (almost) totally CIV-free APls

* There are small and fully vulnerable APIs

Study results: CIV prevalence

"How many CIVs are there at legacy APIs? Are all APIs similarly affected?”
* Confirms: ClVs are widespread among unmodified APIs/code

* But: there are clear disparities among APIs
* CIV countsvary 0 — 105 CIVs for a single API

Fuzzed API Elements (No Vulnerability Found) =] Fuzzed API Elements (Vulnerable) [

| 0% |

0
¢ g0 | feeN o e N
qE_) a0 =1y S S S SR Y A (] I T S N S S R ,/,,P,’?P,O,’?’,O,’?,O,ffL,’z,??,d,{“,’,D/,‘?’?’T’?ﬁfs,‘@(’?‘?f‘?"?/‘?,
E -1l 773777577,77} fffff 22/ fffff A S 25/44/35/

; : : ¥ 0o o L 22% L 80% 1o :,,,,,:,,,,:,,,,‘,,,29/ ,,,,, L Cedo S v O (T S S Sy A -
3 ?8 _75 777777 Feo f 7k M : 50/ 57% [25% o0 21% a¥ |] g, 2% 2 5;5/ o (oo N || 37 [4% 42%4d/ 16%
c — el 50% | = 6% ﬂ |:| A L H 100% ﬂ 8% Y% L T I e 50% 0% 7
zZ

: / = | ' ‘
o2 \dﬁ‘éggﬂbﬂ% 73\\0“90 ‘W’?\M ?351%\@\%?{&@ m@%‘\mo‘\\ gge ?\“b%?ﬂ\? 0n%% \‘%\é{%ﬂ\\oﬂ@ﬁ gg:%m \e\\g?\bgo??\bsf%zog\g%popg\ "*o\og\sear \b§ \\’}‘3‘3 a“\\\%a\f\\\gﬁ‘aﬂ\bﬂ\b

o\ g\\ S\ dl W}ﬂ

* There are large and (almost) totally CIV-free APls
* There are small and fully vulnerable APIs
No correlation between APl size and CIV count!

Study results: CIV Patterns

"Are all APIs similarly affected? How hard are they to fix?"
* We observe recurring API design patterns that lead to CIVs

Study results: CIV Patterns

"Are all APIs similarly affected? How hard are they to fix?"
* We observe recurring API design patterns that lead to CIVs

* These reinforce the idea that the presence of CIVs is influenced by
structural properties rather than API size or quantity of shared data

Study results: CIV Patterns

"Are all APIs similarly affected? How hard are they to fix?"
* We observe recurring API design patterns that lead to CIVs

* These reinforce the idea that the presence of CIVs is influenced by
structural properties rather than API size or quantity of shared data

* Highlight one of these patterns here
* Many more in the paper!

CIV Pattern: Modular APls

e Module APIs are the most CIV-vulnerable APIs in
the study (HTTPd, Nginx, Redis, lighttpd, etc.)

(ii‘/\” A
é >
mod_geoip mod_proxy

N/

Apache Module API

Apache Core

TTTTTTTTTTTTTTTTT

75

CIV Pattern: Modular APls

e Module APIs are the most CIV-vulnerable APIs in

A

- 3
7> -
Q

the study (HTTPd, Nginx, Redis, lighttpd, etc.) mod_g<1p 7d_pmxy
* More CIVs and worse CIVs on average Apache Module AP
Apache Core

TTTTTTTTTTTTTTTTT

CIV Pattern: Modular APls

* Module APIs are the most CIV-vulnerable APIs in yd , >d
. . . mod_geoip mod_proxy
the study (HTTPd, Nginx, Redis, lighttpd, etc.) \ /
* More CIVs and worse CIVs on average Apache Module API
* Unlike library APIs, module APIs must be very Apache Core
generic and yield high performance
* Consequence: the application's core internal / APACHE

state is exposed to the module

CIV Pattern: Modular APlIs

* Module APIs are the most ClIV-vulnerable APIs in S,
the study (HTTPd, Nginx, Redis, lighttpd, etc.) \ /_

* More CIVs and worse CIVs on average Apache Module API
* Unlike library APIs, module APIs must be very Apache Core
generic and yield high performance
* Consequence: the application's core internal / ARACHE
state is exposed to the module
request structure // A structure that represents the current request

struct request_rec {
apr_pool_t *pool; // request's memory pool
conn_rec *conn; // connection with the client
server_rec *server; // request's virtual host
request_rec *main; // main request pointer
apr_thread_mutex_t *inv_mtx; // callback mutex
Y // ... abbreviated

crossing the interface

CIV Pattern: Modular APlIs

* Module APIs are the most ClIV-vulnerable APIs in S,
the study (HTTPd, Nginx, Redis, lighttpd, etc.) \ /_

* More CIVs and worse CIVs on average Apache Module API
* Unlike library APIs, module APIs must be very Apache Core
generic and yield high performance
* Consequence: the application's core internal / ARACHE
state is exposed to the module
request structure // A structure that represents the current request

struct request_rec {
apr_pool_t *pool; /#request's memory pool
conn_rec *conn; //f connection with the client
server_rec *server\ // request's virtual host
request_rec *main; main request pointer
apr_thread _mutex_t *invsatx; // callbagk

}// ... abbreviated core internals

>75 fields, 60% of
which pointers

crossing the interface

CIV Pattern: Modular APls

e Module APIs are the most CIV-vulnerable APIs in

2.8
'S Q
mod_geoip

. . . mod_proxy
the study (HTTPd, Nginx, Redis, lighttpd, etc.) \ /
* More CIVs and worse CIVs on average Apache Module AP!
* Unlike library APls, module APls must be very Apache Core
generic and yield high performance
* Consequence: the application's core internal / ARAGHE
state is exposed to the module
request structure // A structure that represents the current request
crossing the interface Stru:;t)risgzii:_:scc)oi; //request's memory pool
Somewhat counter-intuitive: e A L (et el
modularity does not imply low T e e
. . . YA/ ... abbreviated core internals
compartmentalization complexity /
>75 fields, 60% of

which pointers

Study results: Security Impact

* "How bad are they?"

Study results: Security Impact

* "How bad are they?"

* Confirms: CIVs are high-impact
* >75% of scenarios present at least a write vulnerability

Study results: Security Impact

* "How bad are they?"

* Confirms: CIVs are high-impact

* >75% of scenarios present at least a write vulnerability
e ~70% of write and read, and ~50% of execute vulnerabilities are arbitrary

Study results: Security Impact

* "How bad are they?"

* Confirms: CIVs are high-impact
* >75% of scenarios present at least a write vulnerability
e ~70% of write and read, and ~50% of execute vulnerabilities are arbitrary

* Only 8/39 scenarios have execution impact CIVs
* but read and/or write primitives can likely be combined to achieve code execution

Study results: Security Impact

* "How bad are they?"

* Confirms: CIVs are high-impact
* >75% of scenarios present at least a write vulnerability
e ~70% of write and read, and ~50% of execute vulnerabilities are arbitrary

* Only 8/39 scenarios have execution impact CIVs
* but read and/or write primitives can likely be combined to achieve code execution

* Here: illustrate security impact with a concrete scenario
* Key extraction in OpenSSL safebox

* More in the paper

Security Impact: OpenSSL Key Extraction (1)

* Assume we isolate OpenSSL to protect SSL keys
e for example, from a compromised Nginx

* The key compartment interface is the OpenSSL public API

OpenSSL

OpenSSL Library API

o

NGiNX

Security Impact: OpenSSL Key Extraction (1)

* Assume we isolate OpenSSL to protect SSL keys
e for example, from a compromised Nginx

* The key compartment interface is the OpenSSL public API

 We find several CIVs that enable for read, write, and
execution impact OpensSSL

OpenSSL Library API

\

WNginx
Other CIVs in the paper
OpenSSL option setting primitive — part of the public API .
\N NGiNX
IV: option setting API leads to arbitrary R/W

ulong SSL_CTX set_options(SSL_CTX *ctx, ulong op)
{

return ctx->options |= op;

}

Security Impact: OpenSSL Key Extraction (1)

* Assume we isolate OpenSSL to protect SSL keys
e for example, from a compromised Nginx

* The key compartment interface is the OpenSSL public API

 We find several CIVs that enable for read, write, and w
execution impact OpensSSL

OpenSSL Library API

\

WNginx

Other CIVs in the paper

OpenSSL option setting primitive — part of the public API .

\N NGiNX

IV: option setting API leads to arbitrary R/W

Dereference arbitrary pointer, set it, and return it: ulong SSL_CTX_set_options(SSL_CTX *ctx, ulong op)

. . . o {
arbitrary read and arbitrary write oracle — return ctx->options |= op;

- Key extracted }

Security Impact: OpenSSL Key Extraction (1)

* Assume we isolate OpenSSL to protect SSL keys
e for example, from a compromised Nginx

* The key compartment interface is the OpenSSL public API

 We find several CIVs that enable for read, write, and ﬂ’
execution impact OpenSSL
. . OpenSSL Lib API
* Because of ClIVs, isolating at the OpenSSL = " =
boundary is weak i
Other CIVs in the paper
OpenSSL option setting primitive — part of the public API .
gy NGIMNX
IV: option setting API leads to arbitrary R/W
Dereference arbitrary pointer, set it, and return it: ulong SSL_CTX_set_options(SSL_CTX *ctx, ulong op)
arbitrary read and arbitrary write oracle — {

= return ctx->options |= op;

- Key extracted }

Security Impact: OpenSSL Key Extraction (2)

e Same scenario, but let's plug at a different interface
* This time, the OpenSSL internal key API

* This is a very popular use-case / application in the literature
OpenSSL keys

OpenSSl‘Key API

OpenSSL (rest)

Nginx

NGiNX

Security Impact: OpenSSL Key Extraction (2)

e Same scenario, but let's plug at a different interface
* This time, the OpenSSL internal key API

* This is a very popular use-case / application in the literature
OpenSSL keys

* Here too, we find key-extraction CIVs

> OpenSSl‘Key API

OpenSSL (rest)
Nginx

Prototype of one of the key API endpoints NGiNX

void aesni_ecb encrypt(const uchar *in, uchar *out,
size_t length, const AES_KEY *key, int enc);

Security Impact: OpenSSL Key Extraction (2)

e Same scenario, but let's plug at a different interface
* This time, the OpenSSL internal key API

* This is a very popular use-case / application in the literature sﬂ;
OpenSSL key

* Here too, we find key-extraction CIVs

> OpenSSl‘Key API
OpenSSL (rest)

Nginx

Prototype of one of the key API endpoints NGiNX

void aesni_ecb encrypt(const uchar *in, uchar *out,
—>size t length, const AES_KEY *key, int enc);

Point *in to the key, encrypt with known *key, then decrypt =—
- Key extracted

Security Impact: OpenSSL Key Extraction (2)

e Same scenario, but let's plug at a different interface
* This time, the OpenSSL internal key API

* This is a very popular use-case / application in the literature sﬂ;
OpenSSL key

* Here too, we find key-extraction CIVs

> OpenSSl‘Key API

* Fixing them requires to make the component stateful
OpenSSL (rest)

Nginx

Prototype of one of the key API endpoints NGiNX

void aesni_ecb encrypt(const uchar *in, uchar *out,
—>size t length, const AES_KEY *key, int enc);

Point *in to the key, encrypt with known *key, then decrypt =—
- Key extracted

Security Impact: OpenSSL Key Extraction (2)

e Same scenario, but let's plug at a different interface
* This time, the OpenSSL internal key API

* This is a very popular use-case / application in the literature sﬂ]
OpenSSL key

* Here too, we find key-extraction CIVs

> OpenSSl‘Key API

* Fixing them requires to make the component stateful
L OpenSSL (rest)

Because of ClIVs, all OpenSSLisolation use-cases from
the literature are pointless & fixes are non-trivial Nginx

Prototype of one of the key API endpoints NGiNX

void aesni_ecb encrypt(const uchar *in, uchar *out,
—>size t length, const AES_KEY *key, int enc);

Point *in to the key, encrypt with known *key, then decrypt =—
- Key extracted

What can we do about CIVs? (1)

Ways forward to tackle ClVs:

What can we do about CIVs? (1)

Ways forward to tackle ClVs:

1. Progress towards more systematic, automatic CIV defenses
* we highlight limitations of existing defenses in the paper

What can we do about CIVs? (1)

Ways forward to tackle ClVs:

1. Progress towards more systematic, automatic CIV defenses
* we highlight limitations of existing defenses in the paper

2. (Re-)Design interfaces to be CIV-resilient by design
* we provide a set of guidelines to achieve this

What can we do about CIVs? (1)

Ways forward to tackle ClVs:

1. Progress towards more systematic, automatic CIV defenses
* we highlight limitations of existing defenses in the paper

2. (Re-)Design interfaces to be CIV-resilient by design rundamentally hard: need to
« we provide a set of guidelines to achieve this understand API semantics

Both approaches are complimentary

What can we do about CIVs? (2)

— (Re-)Design interfaces to be ClV-resilient by design

Not enough time here to go over the guidelines, but broadly

What can we do about CIVs? (2)

— (Re-)Design interfaces to be ClV-resilient by design
Not enough time here to go over the guidelines, but broadly

* Not every interface is a good compartmentalization boundary
* choose your interface wisely

What can we do about CIVs? (2)

— (Re-)Design interfaces to be ClV-resilient by design

Not enough time here to go over the guidelines, but broadly

* Not every interface is a good compartmentalization boundary
* choose your interface wisely

* Simplify as much as possible interface-crossing objects

* no system resource handles, not complex structs, synchronization primitives
* if not possible, you should probably plug at a different interface

What can we do about CIVs? (2)

— (Re-)Design interfaces to be ClV-resilient by design

Not enough time here to go over the guidelines, but broadly

* Not every interface is a good compartmentalization boundary
* choose your interface wisely

* Simplify as much as possible interface-crossing objects

* no system resource handles, not complex structs, synchronization primitives
* if not possible, you should probably plug at a different interface

* Enforce APl semantics (ordering, concurrency support)

Takeaways

Takeaways

* ClIVs should be at the center of every compartmentalization approach

Takeaways

* ClIVs should be at the center of every compartmentalization approach

* API design patterns influence CIV prevalence and severity
* it's not so much about the size of the API
e ...it's about the complexity of APl-crossing objects

Takeaways

* ClIVs should be at the center of every compartmentalization approach

* API design patterns influence CIV prevalence and severity
* it's not so much about the size of the API
e ...it's about the complexity of APl-crossing objects

* Addressing CIVs requires more than a few checks

* ... strong solutions often require refactoring the API
* automatic compartmentalization is harder that setting & enforcing bounds

Takeaways

* ClIVs should be at the center of every compartmentalization approach

* API design patterns influence CIV prevalence and severity
* it's not so much about the size of the API
e ...it's about the complexity of APl-crossing objects
* Addressing CIVs requires more than a few checks
* ... strong solutions often require refactoring the API
* automatic compartmentalization is harder that setting & enforcing bounds

* We need more research to address the problem of CIVs

Takeaways

* ClIVs should be at the center of every compartmentalization approach

* API design patterns influence CIV prevalence and severity
* it's not so much about the size of the API
e ...it's about the complexity of APl-crossing objects
* Addressing CIVs requires more than a few checks
* ... strong solutions often require refactoring the API
* automatic compartmentalization is harder that setting & enforcing bounds

* We need more research to address the problem of CIVs

NDSS'23 Paper: https://arxiv.org/abs/2212.12904
Project website: https://conffuzz.github.io = Code & Dataset under BSD-3 & CC-BY

https://arxiv.org/abs/2212.12904
https://arxiv.org/abs/2212.12904
https://arxiv.org/abs/2212.12904
https://arxiv.org/abs/2212.12904
https://arxiv.org/abs/2212.12904
https://arxiv.org/abs/2212.12904
https://conffuzz.github.io

