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Goals of these works: compartmentalization of legacy software
... with a low engineering effort ... at a low performance cost
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But interfaces make separation hard...

* Things are not as easy as they seem:

Once separation is enforced, cross-component interfaces
become the attack surface

Compartment 1 (malicious)

Compartment 2 (trusted)

W func()

api(NULL) Q_

- api(void* ptr)
resize(int size)

open(FILE* f)

* Dereference of corrupted pointer

void api(void* ptr) {
/] ..
* (char *) ptr = '\0';
/] ..

}
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But interfaces make separation hard...

* Things are not as easy as they seem:

Once separation is enforced, cross-component interfaces
become the attack surface

Compartment 1 (malicious) Compartment 2 (trusted)

* Dereference of corrupted pointer

qunc() api(NULL) > api(void* ptr) e Usage of corrupted indexing

information
”esize(oo) resize(int size)

open(FILE* f) vo}c/j resize(int size) {

- var = matrix[size];

/] .

- - - }
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* Things are not as easy as they seem:

Once separation is enforced, cross-component interfaces
become the attack surface

Compartment 1 (malicious) Compartment 2 (trusted)
* Dereference of corrupted pointer
W func() api(NULL) > api(void* ptr) e Usage of corrupted indexing
information
resj e (o) ~ resize(int size) » Usage of corrupted object

> open(FILE* f)

: void open(FILE* f) { :

S E
close(f);

S -

open(corrupt)
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But interfaces make separation hard...

* Things are not as easy as they seem:

Once separation is enforced, cross-component interfaces
become the attack surface

We unify these vulnerabilities as:
Compartmentinterface Vulnerabilities (CIVs)

Compartment 1 (malicious) Compartment 2 (trusted)
* Dereference of corrupted pointer
api(NULL . :
wﬁmc() pi( ) > api(void* ptr) * Usage of corrupted indexing
information
r'esiZe(oo) ~ resize(int size) » Usage of corrupted object
> open(FILE* f) « ..and many others!
open(corrupt)

S CIVs encompass traditional confused
deputies, lago attacks, "DUIs"

LOTS of them in unmodified components.  Affect all compartmentalization frameworks to various degrees. 27
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When, and why do CIVs arise?

CIVs = Vulnerabilities arising due to lack of or improper Control and
Data flow validation at compartment boundaries

Classes of ClVs...

Data Leakages Data Corruption Temporal Violations
* Exposure of addresses * Dereference of corrupted pointer * Expectation of APl usage ordering
* Exposure of compartment- e Usage of corrupted indexing * Usage of corrupted
confidential data information synchronization primitive
* Usage of corrupted object * Shared memory TOCTOU
Data over-sharing, sharing of uninitialized Usage of interface-crossing data without Many causes, missing copies, double fetches,
memory (incl. compiler-added padding) appropriate sanitization lack of enforcement of APl semantics, ...

Full taxonomy of CIVs in our paper!
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How bad is "the CIV problem"?

i Need to understand these to achieve adequate counter-measures
Research questions:

* How many ClVs are there at legacy, unported APIs?

* Are all APIs similarly affected by CIVs? (e.qg., library v.s. module APIs)
* How hard are these ClVs to address when compartmentalizing?

* How bad are they? i.e., if you don't fix them, what can attackers do?

This work's approach:
* Design a fuzzer / tool specialized to find CIVs: ConfFuzz

* Apply it at scale to many applications and library interfaces to
gather a data set of real-world CIVs

e Study, systematize, patternize the resulting data set
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* A fuzzing monitor drives the exploration with
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 The workload is application-specific (benchmark,

test suite, etc.) ©
* The fuzzing monitor automatically triages and

stores crash reports



Study results: Overview

Using ConfFuzz we gathered a substantial data set

L Crashes L API Coverage Impact (of which arbitra
‘ ™ ‘ Application | Compartment API ’ References Raw | Dedup. Victims } Callers | Crwegrage 5 Read | I:lf'ri!e( [ Exec ] ﬁ?)c [ Null ]|
f— Tibmarkdown @2 92 | 13 3 T T00% (4/4) | 10 (8) 700 0@ |1 3
mod_markdown 381 71 5 1 100% (1/1) 62 (52) 17 (14) 2(D 0 30
aspell libaspell 278 8 1 1 349 (48/141) | T (7) T(7) 240 0 3
bind9 libxml2 (write API) 0 0 0 1 86% (13/15) 0(0) 0(0) 0(0) 0 0
bzip2 Tibhz2 677, 151 6 5 1 T 2% 5% 3502 T(0) 0@ [0 0
¢URL Tibnghttp2 61 7 2 i 50% (18/36) | 3 (3) 55 0@ |1 3
exif libexif 400 7 1 1 10% (13/129) | 3 (3) 0(0) 00 0 5
libaveodec 3le 20 3 4 319% (19760) 13 (12) 12(12) 00 3 7
FFmpeg libavfilter 51 1 1 2 12% (2/16) 1(1) 0(0) 0(0) 0 1
hbavformat 217 9 2 3 52% (10719) &(7) (1) (V1)) 0 7
file Tibmagic 50 |5 T T 3% (70 | 502 T 0@ |0 3
- Tibcurl 122] 3 14 2 T 90% (18720) | 2 (2) 702 o 1 T
at Tibpere 81 2 1 1 1% (818) | 22 0(0) 00 |2 0
Inkeoane Tibpng 671 % |3 1 1 6% (14730) | 2 () 702 0(0) [0 1
8 scap Tibpoppler [16] 8T |4 2 1 100% (9/9) | 4 (3) ENES) 0@ [0 2
B libxml2-tests | libxml2 (write API) 0 0 0 1 100% (47/47) | 0(0) 0 (0 0 0 0
& [ Tightpd mod_deflate 17 |26 3 T 100% 6/6) | 16 (1) | 3 (0) T |2 g
Image Tibghostscript 51 &7 14 2 T T00% (1/11) | 4 (2) (D) 00 |3 g
e Tibpng [67] TS | 44 T 3 3% (TH | 22 79) 0 |2 19
agic Tt 671 197 | 14 2 T 30% (13/43) | 3 03) O] 0@ [0 13
Nei Tibpcre 7 10 T T 93% (17135) | 8 (1 70 0@ |6 )
ginx mod_geoip 521 776 | 25 2 1 35% (5/13) | 21 (1) | 4 (D) T |1 10
P Tibmarkdown 2] & |5 3 T 100% @/4) | 3 (1) 000 0 |1 p)
libpoppler [16] 195 9 1 1 6% (24/379) 8 (6) 7(7 0(0) 1 4
Redis mod_redisbloom 389 23 1 1 42% (8/19) 18 (13) 6(4) 0 0 13
mod_redisearch 381 21 1 1 54% (18/33) 15 (14) 14 (11) 0 0 12
Isync libpopt 167 8 1 1 90% (9/10) 4 (3) 2{() 0{0) 0 5
squid libxml2 226 12 1 1 70% (7/10) 9(5) 3(3) 40 0 4
su libaudit 0 0 0 1 66% (2/3) 0 0 (0 00 0 0
. libpcay 162 8 2 1 50% (20/40) 8(3) 5(5) 0(0) 0 4
Wireshark [P0l 7T T T 85%( @7 0 Em 0 Em 0 Em 0 T
| [ Total: [ 5508 | 379 | 47 | 38 |  N/A | 246(192) | 124 (105) | 12(5) | 24 | 195 |
cURL libssl [5] 198 27 1 1 25% (14/56) 18 (10) 5(4 1(1) 0 17
CPA Tibgpgmme 74 [0 T T O T T 0@ |0 3
= GPG libgerypt [5] 4221 105 1 1 15% (15/95) 64 (60) 4(0) 00 77 20
£ [Memcached | internal_hashtable [33] 7037 | 16 1 T 50% (6/12) | 10(3) 7(0) 0 |1 6
5 e Tnternal_libssl-keys | [45], [60]. [15]. [34] | 599 | 46 1 1 50% (%) | 32(1) 38 (0) 00 [0 72
“ ginx Tibssl BLTL 221 511 | 336 | 39 3 T 1% (11/96) | 16 (13) O3 [ 2() |0 76
sudo internal_auth-api 191 5 1 1 100% (5/5) 54 0 0 0 4
) libapparmor Bl 3 1 1 100% (2/2) 2(2) 2(y 0(0) 0 2
| [ Total: [9863 | 250 | 9 | 8 | N/A | 154(97) | 607 |3 |78 | 103 |
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A lighttpd mod_deflate 117 26 2 1 100% (6/6) 16 (11) 5(0) 1(1) 2 9
Image libghostscript [5] 67 14 2 1 100% (11/11) | 4 (2) 1 0 () 3 9
Magick libpng |67] Tia 44 1 2 229 (UITT) 24(2) 9(9) 2(0) 2 39
&l TibGiT 671 97 |14 3 T 30% (13/43) | 3 3) 56 0 |0 3
Nei libpere 144 10 1 1 93% (14/15) 8(7) 3(3) 0 (0) [ 2
ginx mod_geoip 321 776 | 25 3 T 35% (5/14) | 21 (1) | 4 (D) () |1 10
Oruls Tibmarkdown @] & 3 3 1 100% @3) [ 3D 0(0) o) 1 p)
libpoppler [16] 195 9 1 1 6% (24/379) 81(6) TN 0 () 1 4
Redis mod_redisbloom 389 23 1 1 42% (8/19) 18 (13) 64 0 () 0 13
mod_redisearch 381 21 1 1 54% (18/33) 15(14) 14 (11) 0 () 0 12
ISyne libpopt 167 8 1 1 90% (9/10) 4(3) 2(0) 0 () 0 5
squid libxml2 226 12 1 1 T0% (7/10) 915 3(3) 4 (1) 0 4
su libaudit 0 0 0 1 66% (2/3) 00 0 0 0 0
. libpca 162 8 2 1 50% (20/40) 8 (3) 5(5) 0(0) 0 4
Wireshark ]ihE]ibP 'y} T T 1 85% (6/7) | 0(0) 0 (0) 0@ |0 T
[ Total: [5508 | 379 | 47 3® | N/A | 246(192) | 124 (105) | 12(5) | 24 195 |
cURL libssl [5] 198 27 1 1 25% (14/36) 18 (10) 5(4) 1(1) 0 17
GPA hibgpgme 174 9 1 1 49 (3/72) T(2) 00 0 (0) 0 6
= GPG libgerypt [5] 4221 105 1 1 15% (15/95) 64 (60) 4 () 0 77 20
£ [Memcached | internal_hashiable [@3] 3037 |16 1 1 50% (&/12) | 10 (3) 270) 0 |1 6
- - internal_libsslkeys | [45]. [60]. [15]. [34] | 599 | 46 1 1 30% (74) | 32 (D) 28 (0) 0@ |0 b
< ginx Tibssl 5L TTT. 221 511 | 336 | 39 2 T 1% (11/96) | 16 (13) 0(13) [ 2() [0 76
cud mternal_auth-api 191 5 1 1 100% (5/5) 5(4) 0 () 0 () 0 4
sudo Tibapparmor 97 3 T 1 100% (272) | 2 (2) 2(0) 0 |0 2
[ Total: [ 9863 | 250 | 9 8 | NA [154(97) |60 |3 |78 103 |




25 applications ——_

36 APIs in total — |

. . Crashes . . API Coverage Impact (of which arbitra
T™M | Application | Compartment API References Raw | Dedup. Victims Callers ] Cau:iage Read ] I;Vrf!e( ] Exec | ):3;'33{' ] Null
HTTPd libmarkdown [42] 192 13 3 1 100% (4/4) 10 (8) T(7) 0 () | 4
mod_markdown 381 71 5 1 100% (1/1) 62 (52) 17 (14) 2(1) 0 30
—p. | aspell libaspell 278 3 1 1 34%9% (48/141) | T (N T 2(1) 0 3
bind9 libxml2 (write API) 0 0 0 1 86% (13/15) 0{0) 0 () 0 () 0 0
bzip2 Tibbz2 671, 15] % |3 1 1 2% (51%) |5 10 0@ |0 0
> " -URL libnghttp2 6l 7 2 1 50% (18/36) 3(3) 5(5) 0 () 1 3
exif libexif 400 7 1 1 10% (13/129) | 3 (3) 0 0 () 0 5
libavcodec il6 20 3 4 31% (19/60) 13 (12) 12 (12) 0 (0) 3 7
FFmpeg libavfilter 51 1 1 2 12% (2/16) 1(I) 0 () 0 0 1
hbaviormat 217 9 2 3 329 (10/19) 87 1l 0 (0) 0 7
file libmagic 150 5 1 1 63% (7/11) 5(2) 1 0 () 0 4
: Tibcurl 7] 713 2 T 90% (18720) | 2 (2) 70 0 1 T
it Tibpere 8T | 2 i T 3% (%/18) | 20 0(0) 0 |2 0
o | nkscape Tibpng 1671 % |3 1 T 36% (1430) | 2(D) 70 0 [0 T
g : Tibpoppler [16] 8T | 4 3 T 100% (979) | 3 (3) 7@ 0 |0 p)
B libxml2-tests | libxml2 (write API) 0 0 0 1 100% (47747) | 0(0) 0 () 0 () 0 0
A lighttpd mod_deflate 117 26 2 1 100% (6/6) 16 (11) 5(0) 1(1) 2 9
Image libghostscript [5] 67 14 2 1 100% (11/11) | 4 (2) 1 0 () 3 9
Magick libpng |67] Tia 44 1 2 229 (UITT) 24(2) 9(9) 2(0) 2 39
&l TibGiT 671 97 |14 3 T 30% (13/43) | 3 3) 56 0 |0 3
Nei libpere 144 10 1 1 93% (14/15) 8(7) 3(3) 0 (0) [ 2
ginx mod_geoip 321 776 | 25 3 T 35% (5/14) | 21 (1) | 4 (D) () |1 10
Oruls Tibmarkdown @] & 3 3 1 100% @3) [ 3D 0(0) o) 1 p)
libpoppler [16] 195 9 1 1 6% (24/379) 81(6) TN 0 () 1 4
Redis mod_redisbloom 389 23 1 1 42% (8/19) 18 (13) 64 0 () 0 13
mod_redisearch 381 21 1 1 54% (18/33) 15(14) 14 (11) 0 () 0 12
ISyne libpopt 167 8 1 1 90% (9/10) 4(3) 2(0) 0 () 0 5
squid libxml2 226 12 1 1 T0% (7/10) 915 3(3) 4 (1) 0 4
su libaudit 0 0 0 1 66% (2/3) 00 0 0 0 0
. libpca 162 8 2 1 50% (20/40) 8 (3) 5(5) 0(0) 0 4
Wireshark ]ihE]ibP 'y} T T 1 85% (6/7) | 0(0) 0 (0) 0@ |0 T
Total: [5508 | 379 | 47 3® | N/A | 246(192) | 124 (105) | 12(5) | 24 195 |
cURL libssl [5] 198 27 1 1 25% (14/36) 18 (10) 5(4) 1(1) 0 17
GPA hibgpgme 174 9 1 1 49 (3/72) T(2) 00 0 (0) 0 6
= GPG libgerypt [5] 4221 105 1 1 15% (15/95) 64 (60) 4 () 0 77 20
£ | Memcached | internal_hashiable [@3] 3037 |16 1 1 50% (&/12) | 10 (3) 270) 0 |1 6
5 a internal_libsslkeys | [45]. [60]. [15]. [34] | 599 | 46 1 1 30% (74) | 32 (D) 28 (0) 0@ |0 b
< ginx Tibssl 5L TTT. 221 511 | 336 | 39 2 T 1% (11/96) | 16 (13) 0(13) [ 2() [0 76
cud mternal_auth-api 191 5 1 1 100% (5/5) 5(4) 0 () 0 () 0 4
sudo Tibapparmor 97 3 T 1 100% (272) | 2 (2) 2(0) 0 |0 2
| [ Total: [ 9863 | 250 | 9 8 | NA [154(97) |60 |3 |78 103 |




Library APls Module APIs | Internal APls

25 applications ——_

36 APIs in total — |

. Crashes L API Coverage Impact (of which arbitrary)
T™ | Application | Compartment API References Raw | Dedup. Victims Callers J Caue%age Read J I;Vn!e ] Exec | ;;3;'0{' | Null
e libmarkdown [42] 192 13 3 1 100% (4/4) 10 (8) 7(7) 00 1 4
e mod_markdown 381 71 5 1 100% (1/1) 62 (52) 17 (14) 2(1) 0 30
g | aspell libaspell 278 8 1 1 34% (48/141) | T(7) T(7) 2(0) 0 3
bind9 libxml2 (write API) 0 0 0 1 86% (13/15) | 0(D) 0 (0) 0(0) 0 0
bzip2 libbz2 [67], [3] 16 3 1 1 62% (5/8) 5(2) 1() 0(0) 0 0
= |"cURL libnghttp2 61 7 2 1 50% (18/36) | 3 (3) 51(5) 0(0) 1 3
exif libexif 400 7 1 1 10% (13/129) | 3 (3) 0(0) 0(0) 0 5
libavcodec ilo 20 3 4 3% (19%/60) 13 (12) 12 (12) 0(0) 3 7
FFmpeg libavfilter 51 1 1 2 12% (2/16) 1(D) 0 (0) 0(0) 0 1
libavformat 217 9 2 3 52% (10/19) | 8(7) I (1) 0 0 T
file libmagic 150 5 1 1 63% (7/11) 5(2) 1(I) 0(0) 0 4
. Tibcurl [22] 13 4 2 1 90% (18/20) | 2(2) 2(2) 0(0) | 1
gt libpcre 81 2 1 1 44% (8/18) 2(2) 0 (0) 0(0) 2 0
- Inksca libpng [67] 66 3 1 1 46% (14/30) | 2(D) 21(2) 0(0) 0 1
= pe libpoppler [16] 81 4 2 1 100% (9/9) 4 (3) 4 (4) 0(0) 0 2
= libxmlI2-tests | libxml2 (write API) 0 0 0 1 100% (47/47) | 0(D) 0 (0) 0(0) 0 0
B lighttpd mod_deflate 117 26 2 1 100% (6/6) 16 (11) 5(0) 1(1) 2 9
Ima libghostscript [5] a7 14 2 1 100% (11/11) | 4 (2) 1(D) 0(0) 3 9

M g.ek Tibpng [67] 718 44 | 2 BHEATTH |23 99 2(0) 2 39

agic libtiff [67] 197 14 2 1 30% (13/43) | 3(3) 6 (6) 0(0) 0 13
. libpcre 144 10 | i 93% (14/15) | 8(T) 3(3) 0(0) 6 2

Blaics mod_geoip [52] 276 25 2 1 35% (5/14) 21 (17) 4 (1) 1(1) 1 10
Okular libmarkdown [42] 64 5 3 | 100% (4/4) 3(0) 0 (0) 0(0) | 2
libpoppler [16] 195 9 1 1 6% (24/379) | B (6) 7(7) 0(0) 1 4

Redi mod_redisbloom 389 23 1 1 42% (8/19) 18 (13) 6 (4) 0(0) 0 13

mod_redisearch 381 21 1 1 54% (18/33) 15 (14) 14 (11) 0 0 12
rsync libpopt 167 8 1 1 90% (9/10) 4(3) 2(0) 0(0) 0 5
squid libxml2 226 12 1 1 T0% (7/10) 9(5) 3(3) 4 (1) 0 4
su libaudit 0 0 0 1 66% (2/3) 0 (D) 0 (D) 0(0) 0 0
. libpeay 162 8 2 1 509% (20/140) | B (3) 51(5) 0(0) 0 4
D=t ]i::lz]]ibp 42 1 1 1 853% (6/7) 0 (D) 0 (D) 0(0) 0 1

Total: | 5508 | 379 | 47 | 38 | N/A | 246 (192) ] 124 (105) ] 12 (5) | 24 195 |

cURL libssl [5] 198 27 1 1 25% (14/56) 18 (10) 5(4) 1() 0 17
GPA libgpgme 174 9 1 1 45 (3/72) T(2) 0(0) 0(0) 0 6

= GPG libgerypt [5] 4221 | 105 1 1 15% (15/95) | 64 (60) 4 (0) 0(0) 77 20
% [43] 4037 | 16 1 1 50% (6/12) 10 (3) 2(0) 0(0) | [}

= [45], [60], [15]. [34] | 399 46 1 1 50% (2/4) 32 (1) 28 (0) 0(0) 0 22

“ [5], 1], [22], [51] 346 39 2 1 1% (11/96) 16 (13) 19 (13) 2 (1) 0 26
191 5 1 1 100% (5/5) 5(4) 0 (0) 0(0) 0 4
| libapparmor 97 3 1 1 100% (2/2) 2(2) 2(0) 0(0) 0 2

| | Total: [ 9863 | 250 ] 9 [ 8 ] N/A ] 154 (97) ] 60 (17) ] 3(2) | 78 103 ]




Library APls Module APIs | Internal APls

Crashes

API Coverage

Impact (of which arbitrary)

25 applications ——_

36 APIs in total — |

16 of which taken

from the literature

T™ | Application | Compartment API References Raw | Dedup. Victims Callers ] Coverage Read ] Write ] Exec | Alloc ] Null
e 1 libmarkdown [42] 192 13 3 1 100% (4/4) 10 (8) T(7) 0 () | 4
R mod_markdown 381 71 5 1 100% (1/1) 62 (52) 17 (14) 2(1) 0 30

—p. | aspell libaspell 278 3 1 1 34%9% (48/141) | T (N T 2(1) 0 3
bind9 libxml2 (write API) 0 0 0 1 86% (13/15) 0{0) 0 () 0 () 0 0
bzip2 Tibbz2 671 5] % 5 i i 2% 5% 35 T(0) 0 |0 0
> ["-URL libnghttp2 6l 7 2 1 50% (18/36) 3(3) 5(5) 0 () 1 3
exif libexif 400 7 1 1 10% (13/129) | 3 (3) 0 0 () 0 5
libavcodec il6 20 3 4 31% (19/60) 13 (12) 12 (12) 0 (0) 3 7
FFmpeg libavfilter 51 1 1 2 12% (2/16) 1(I) 0 () 0 0 1
hbavformat 217 9 2 3 329 (10/19) 87 1l 0 (0) 0 7
file libmagic 150 5 1 1 63% (7/11) 5(2) 1 0 () 0 4
: Tibcurl 271 T 3 1 90% (18720) | 2 (2) 70 0 1 T
git Tibpcre S ) i i 34% &%) 20 00 0 |2 0
. Tbpn, —67] 66 13 i T 36% (14730) [ 2 (D) 70 0@ [0 T
I ]ihpT)IE}plm' ~>16] A 3 i 100% ©/9) [ 43 7@ 0@ [0 3
B libxml2-tests | libxml2 (write API) 0 0 0 1 100% (47747) | 0(0) 0 () 0 () 0 0
3 | Tighupd mod_deflate 17 | 26 3 i 100% (6/6) | 16 (11) | 3(0) T 2 9
Image libghostscript [5] 67 14 2 1 100% (11/11) | 4 (2) 1 0 () 3 9
oy Tibpng 671 I8 | 44 i 3 3% (07T [ 20 79) ) |2 19
agic TG 671 o7 |13 3 T 0% (13743) [ 30 516) 0@ [0 3
. hibpere 144 10 1 1 93% (14/15) 8(7) 3(3) 0 (0) [ 2
Dlaias mod_geoip 321 376 25 3 1 B G5 [ 2007 4 T 1 10
Orular Tbmarkdown £9) & 13 3 T 100% @/3) [ 3D 00) 0 1 3
libpoppler [16] 195 9 1 1 6% (24/379) 81(6) TN 0 () 1 4
Redi mod_redisbloom 3R89 23 1 1 42% (8/19) 18 (13) 64 0 () 0 13
mod_redisearch 381 21 1 1 54% (18/33) 15(14) 14 (11) 0 () 0 12
ISyne libpopt 167 8 1 1 90% (9/10) 4(3) 2(0) 0 () 0 5
squid libxml2 226 12 1 1 T0% (7/10) 915 3(3) 4 (1) 0 4
su libaudit 0 0 0 1 66% (2/3) 00 0 0 0 0
. libpca 162 8 2 1 50% (20/40) 8 (3) 5(5) 0(0) 0 4
L ]iII:Ileibp 71 i i 85% /7] [ 0(0) 00 0@ [0 i
Total: 5508 [ 319 | 47 3 | NA [ 24%6(19) | 2A(05) [ 205 | A 05 |
cURL libssl [5] 198 27 1 1 25% (14/36) 18 (10) 5(4) 1(1) 0 17
GPA hibgpgme 174 9 1 1 49 (3/72) T(2) 00 0 (0) 0 6
- 5] 327 [ 105 i i 5% (15/95) | 63 (60) | 4 (0) 0@ |77 70
E (@3] 3037 1 16 i T 30% 6/12) | 10 (3) 710) 0 1 5
< [45], 1601, (151 [34] [ 399 | 46 i i 50% 74 [ 32 (D) 78 (0) 0@ [0 27
“ 1100 221 517 | 336 | 39 3 1 1% (11/96) [ 16 (13) [ 1913 [ 2() |0 76
191 5 1 1 100% (5/5) 5(4) 0 () 0 () 0 4
97 3 1 1 100% (2/2) 2(2) 2(0) 0(0) 0 2
| (0863 [ 250 | O 8 | NA |15400) |60 |30 |78 T03 |




Library APls Module APIs | Internal APls

. . Crashes . . API Coverage Impact (of which arbitrary)
T™M | Application | Compartment API References Raw | Dedup. Victims Callers ] Coverage Read ] I:‘Vn".fe ] Exec | ;;3;'0{' ] Null

A Tibmarkdown 2] 02 [ 13 3 T 100% (@/4) | 10 (8) 7 0@ [1 3

S Hithd mod_markdown 38T [ 71 5 1 100% (/) [ 6232 |74 |2 |0 30
25 applications ——__ aspell Tibaspell 778 [ 8 1 1 33% @140 [ 70D T () [0 3
Bindd Tibxmi2 (write AP) 0 0 0 T 86% (13/15) | 0 (0) 0(0) 0@ |0 0
bzip2 Tibbz2 671, 5] % 3 i i 52% 5/%) [ 352 T(0) 0@ |0 0
. ¥ [ CURL. Tbnghttp2 61 |7 3 T 50% (18736) | 3 (3) 555 0@ |1 3
36 APIs in total oxif AL 300 |7 i T 0% (137129) | 3 (3) 0(0) 0 0 3
Thavcodec 36 [ 20 3 3 3% (10/60) [ 13 (12 [ 12(12) [ 0@ |3 7
FFmpeg Tibavfilter 5T |1 i 3 2% (716) [ 1D 010) 0@ |0 i
Tbaviormat T 19 3 3 33% (10/19) | 8 (7) T 0@ [0 7
file Tibmagic 50 5 i i 53% (77 |5 WE)) 0@ |0 3
: Tibcurl 220 3 13 3 T 90% (18720) | 2 (2) 7 0@ |1 1
] ait Tibpcre 8T |2 i T 3% (818) |2 010) o |2 0
16 of which taken . ITbpng —67] %6 |3 i 1 6% (14730) [ 2 (D) I 0 [0 i
f he li I Tbpoppler =>16) 85T | 2 2 T 100% O/9) | 4 (3) @ 0@ |0 2
rom the literature X [ Tibxm2-tests | Tibxml2 (write API) 0 0 0 T 100% @7/47) | 0(0) 0 (0) 00 |0 0
5 | Tightpd mod_deflate 17 | 26 3 T 100% &/6) | 16 (I | 5(0) T |2 9
R Tibghostscript 5] 67 |13 3 i 100% (/1D | 4 ) i) 0@ |3 9

g Tibpng 671 778 | 44 i 3 3% (T | 20 79) 7@ |2 39

agic Tburt 671 o7 | 13 2 1 30% (13/43) |3 0) 510) 0@ |0 3
: Tibpcre 4 10 i 1 93% (14/15) | 8 (1) 03 o 16 3

biginx. mod_geoip 521 776 | 25 2 1 3% 514 [ 21 (7 [ 4D T |1 10
Okular Tbmarkdown @ & 3 3 1 100% @/3) [ 3 (D (D) o |1 2
Tibpoppler [16] 05 |9 1 T 6% (24/379) | 8 (0) 7 0 |1 3

- mod_redisbloom 389 | 23 1 1 1% ®19) [ 183 6@ 0@ [0 T3

Redis mod_redisearch |/ | 21 1 T 54% (18/33) | 15(18) |14 (1) 0@ |0 2
TSync Tibpopt 67 8 1 1 30% (9710) | 4 (3) 700 0@ [0 3
squid Tibxml2 376 | 12 I T 70% (7710) | 9 (3) 303) A [0 3
Found 629 — Su Tibaudit 0 0 0 T 6% (273) [ 00 00 0w |0 0
) . hacan 62 |8 2 1 50% (20/40) | 8 (3) 5065 0@ |0 3
unique CIVs ~_ Wireshark =5 TR —— 1 i i 85% &/ [ 010 o) 0@ [0 1

Total: ~SSoe 379 77 | 38 | NA [ 246(19) | 124 (105 | 2 | 22| 195

' 5] 8 |27 1 1 25% (14/56) | 18 (10) |5 (@) T [0 17
74 79 1 1 ATy [T 00 0@ [0 8

- 5] 737 [ 105 i i 15% (15/95) | 64 (60) | 4 (0) 0@ |77 70
E [@3] 3037 | 16 1 1 30% (&/12) | 10(3) 710) 0 |1 3

= 571601, (151, 1341 [ 599 | 46 i 1 50% (@) | 32 (D) 38 (0) 0@ |0 73

< 22, 1] | 396 |39 3 1 1% (11/96) [ 16 (13) [ 19(13) [ 2() [0 I3
~_ | 01 |5 i T 100% (5/5) | 5 @ 0(0) 0@ |0 3
S 3 i i 100% 22) | 22 70) 0@ [0 3

| 0863 *250 9 | 8§ | NA |[154(07) [60(D [3@ |78 [ 103 |




Library APIs

25 applications ——_

36 APIs in total — |

16 of which taken

Module APIs

Internal APIs

5 security impact types

Impact (of whlh arbitrary)

from the literature

Found 629
unique CIVs

L Crashes L API Coverage
T™ | Application | Compartment API References Raw | Dedup. Victims Callers ] Crw:iage Read ] Write ]l Exec | Alloc ] Null
— Tibmarkdown @2 92 | 13 3 1 100% @4 10 (8) 7 [00) |1 3
iR mod_markdown /T | 71 5 1 100% (/) 6232 1704 2@ [0 30
—p. | aspell libaspell 278 3 1 1 34%9% (48/141) T (7) T(7) 2(1) 0 3
Bind? Tibxml2 (write APD) 0 0 0 i 86% (13/15) 0 (0) 0(0) 0@ [0 0
bzip2 Tibbz2 671 5] % 5 i i 2% 378 | 52 T(0) 0 |0 0
> ["-URL libnghttp2 6l 7 2 1 50% (18/36) 3(3) 5(5) 0 (0) 1 3
exif libexif 400 7 1 1 10% (13/129) | 3 (3) 0 (0) 0 () 0 5
libavcodec il6 20 3 4 31% (19/60) 13 (12) 12 (12) 0 (0) 3 7
FFmpeg libavfilter 51 1 1 2 12% (2/16) 1(1) 0 (0) 0 (0) 0 1
hbavformat 217 9 2 3 329 (10/19) 8 (7) (1) 0 (0) 0 7
file libmagic 150 5 1 1 63% (7/11) 5(2) 1(I) 0 (0) 0 4
: Tibcurl 271 3[4 3 1 90% (18720) | 2 (2) 7 0 |1 1
git Tibpcre S ) i i 1% ®18) | 22 00 0 |2 0
. ITbpng —67] 66 13 i T 36% (13730) 2D ) 0@ [0 T
T TbpoppIer ~>16] A 3 i 100% 979) 4 3) 7@ 0@ [0 3
S [ ToxmDtess | Tbxml2 (write APT) 0 0 0 1 100% @7/37) | 0(0) 0(0) 0@ [0 0
5 [Tighupd mod_deflate 17 | 26 3 i 100% (6/6) | 16 (1T} | 3(0) T 2 9
Image Tibghostscript 3] 67 [ 1a 3 1 100% (/1D 4 () e 0@ |3 9
S Tibpng 1671 778 | 44 i 3 3% (7T 20 79) ) |2 19
agic TG 671 97 | 14 3 T 0% (13743) | 3 03) 5(6) 0@ [0 3
N hibpere 144 10 1 1 93% (14/15) 8 (7) 3(3) 0 (0) [ 2
ginx mod_geoip 521 776 | 25 3 1 BE G5 2070 4 T 1 10
Orular Tbmarkdown £9) 4 13 3 T 100% @3 3D 0(0) 0 1 3
libpoppler [16] 195 9 1 1 6% (24/379) 8 (6) T(7) 0 () 1 4
e mod_redisbloom /0 [ 23 i 1 D% @0 18 [ 6@ 0@ 10 3
mod_redisearch 381 21 1 1 54% (18/33) 15(14) 14 (11) 0 () 0 12
ISyne libpopt 167 8 1 1 90% (9/10) 4 (3) 2 (D) 0 (0) 0 5
squid libxml2 226 12 1 1 T0% (7/10) 9(5) 3(3) 4(1) 0 4
— su Tibaudit 0 0 0 i 56% (73) . 0(0) 0(0) 0@ [0 0
L — 162 8 2 1 50% (20/40) 8 (3) 5(5) 0(0) 0 4
~—_ Wireshark =5 TR ——— 71 i i 85% &) 0(0) 0(0) 0@ [0 1
Total: ~SSoeb| 379 77 | 38 | NA 216 (192) | 124 (105) | 12 (5) | 24 105
o0 Tibssl 5] 08 | 27 1 1 5% (14/56) | 18 (10) | 5 (@) T [0 7
‘G% bEpgme 73 10 i T WOy T 00 0@ 10 3
. |cro o 5] 327 [ 105 i i 15% (15/95) | 64 (60) | 4 (0) 0@ |77 70
£ [Memcached | internal ] [@3] 3037 | 16 i 1 50% (6/12) | 10(3) 710) 0 1 5
5 P internal_libssi-keys 3], [60], [15]. [34] | 599 | 46 i i 50% (74 | 32 (D) 78 (0) 0@ [0 27
“ gmx TibssI TSNL22L 511 [ 336 [ 39 3 1 1% (11/96) | 16 (13) [ 1913 [ 2() |0 76
cudo internal_auth-api \ 191 5 1 1 100% (5/5) 5(4) 0 (0) 0 (0) 0 4
Tibapparmor e i i 100% (272 | 2 (2) 7(0) 0 |0 p)
| | Total: 9863 T 250 9 [ 8 ] N/A 154 (97) ] 60 (17) ] 3(2) I 78 103 60
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Study results: CIV prevalence

"How many CIVs are there at legacy APIs? Are all APIs similarly affected?”
* Confirms: ClVs are widespread among unmodified APIs/code

* But: there are clear disparities among APIs
* CIV countsvary 0 — 105 CIVs for a single API

Fuzzed API Elements (No Vulnerability Found) =] Fuzzed API Elements (Vulnerable) [

N 7/ By f o N o I :
R /B . L 100"/38“/ rrrrrrrr 22/6/@ 21°/~;~~—;——~77—3—6‘—/729—/——23ty~—; rrrrrrrr 64A> rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr -
‘ 16% _|

! | 50/ ) 44/
60% 57% [ 25% | 83% H 50% 80/ 37/ H 42/ 40/ b
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Study results: CIV prevalence

"How many CIVs are there at legacy APIs? Are all APIs similarly affected?”
* Confirms: CIVs are widespread among unmodified APIs/code

* But: there are clear disparities among APIs
* CIV countsvary 0 — 105 ClVs for a single API
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"How many CIVs are there at legacy APIs? Are all APIs similarly affected?”
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* But: there are clear disparities among APIs
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No correlation between APl size and CIV count!
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Study results: CIV Patterns

"Are all APIs similarly affected? How hard are they to fix?"
* We observe recurring API design patterns that lead to CIVs

* These reinforce the idea that the presence of CIVs is influenced by
structural properties rather than API size or quantity of shared data

* Highlight one of these patterns here
* Many more in the paper!
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CIV Pattern: Modular APls

e Module APIs are the most CIV-vulnerable APIs in
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mod_geoip

. . . mod_proxy
the study (HTTPd, Nginx, Redis, lighttpd, etc.) \ /
* More CIVs and worse CIVs on average Apache Module AP!
* Unlike library APls, module APls must be very Apache Core
generic and yield high performance
* Consequence: the application's core internal / ARAGHE
state is exposed to the module
request structure // A structure that represents the current request
crossing the interface Stru:;t)risgzii:_:scc)oi; //request's memory pool
Somewhat counter-intuitive: e A L (et el
modularity does not imply low T e e
. . . YA/ ... abbreviated core internals
compartmentalization complexity /
>75 fields, 60% of

which pointers
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Study results: Security Impact

* "How bad are they?"

* Confirms: CIVs are high-impact
* >75% of scenarios present at least a write vulnerability
e ~70% of write and read, and ~50% of execute vulnerabilities are arbitrary

* Only 8/39 scenarios have execution impact CIVs
* but read and/or write primitives can likely be combined to achieve code execution

* Here: illustrate security impact with a concrete scenario
* Key extraction in OpenSSL safebox

* More in the paper
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* Assume we isolate OpenSSL to protect SSL keys
e for example, from a compromised Nginx

* The key compartment interface is the OpenSSL public API

 We find several CIVs that enable for read, write, and ﬂ’
execution impact OpenSSL
. . OpenSSL Lib API
* Because of ClIVs, isolating at the OpenSSL = " =
boundary is weak i
Other CIVs in the paper
OpenSSL option setting primitive — part of the public API .
gy NGIMNX
IV: option setting API leads to arbitrary R/W
Dereference arbitrary pointer, set it, and return it: ulong SSL_CTX_set_options(SSL_CTX *ctx, ulong op)
arbitrary read and arbitrary write oracle — {

= return ctx->options |= op;

- Key extracted }
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* Here too, we find key-extraction CIVs

> OpenSSl‘Key API

* Fixing them requires to make the component stateful
L OpenSSL (rest)

Because of ClIVs, all OpenSSLisolation use-cases from
the literature are pointless & fixes are non-trivial Nginx

Prototype of one of the key API endpoints NGiNX

void aesni_ecb encrypt(const uchar *in, uchar *out,
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What can we do about CIVs? (1)

Ways forward to tackle ClVs:

1. Progress towards more systematic, automatic CIV defenses
* we highlight limitations of existing defenses in the paper

2. (Re-)Design interfaces to be CIV-resilient by design  rundamentally hard: need to
« we provide a set of guidelines to achieve this understand API semantics

Both approaches are complimentary
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What can we do about CIVs? (2)

— (Re-)Design interfaces to be ClV-resilient by design

Not enough time here to go over the guidelines, but broadly

* Not every interface is a good compartmentalization boundary
* choose your interface wisely

* Simplify as much as possible interface-crossing objects

* no system resource handles, not complex structs, synchronization primitives
* if not possible, you should probably plug at a different interface

* Enforce APl semantics (ordering, concurrency support)
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