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Motivation
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–Algorithmic improvements can increase efficiency across targets
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Backround – Fuzzing

–Dynamic analysis technique
–Applies random inputs (testcases) to a target to see if it crashes

–Traditional separation: grammar-based vs. mutational
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Background – Mutation Scheduling
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DARWIN – Evolution Strategy
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DARWIN - Contributions

–Leveraging Evolution Strategy to optimize mutation scheduling

–Keeping execution speed high

–No target-dependent parameters

–Easy to integrate into mutational fuzzers
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Evaluation

–Is mutation scheduling a dynamic problem?

–Does it make sense to trade in speed for efficiency?

–Is there an improvement in

–Coverage?

–Time to coverage?

–Bugs?
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Evaluation - Coverage

–Binutils suite, bsdtar, djpeg, jhead, tcpdump

–Edge coverage: +6.77% vs. MOPT, +1.73% vs. AFL
–+4.38% vs. static variant (AFL-S)!

–At disadvantage for targets expecting highly-structured input
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Evaluation - FuzzBench
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Evaluation - MAGMA

–MAGMA: Benchmark suite to find 
backported bugs

–Different reports, in this case: 
survival analysis (“time to bug”)

–DARWIN finds 15/21 bugs fastest
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Magma: A ground-truth fuzzing benchmark, Hazimeh et al., 2020



Evaluation - Crashes

–Crash experiment based on coverage targets
–Max: unique bugs within one run

–Uniq: unique bugs over all ten runs

–DARWIN variants outperform MOPT, AFL, EcoFuzz, and AFL-S

–One novel bug in objcopy: memory leak
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DARWIN AFL AFL-S MOPT EcoFuzz-D EcoFuzz

Max 7 4 5 1 18 1

Unique 20 12 12 2 26 1



Conclusion

–DARWIN is the first ES-based mutation scheduler

–Adaptive optimization outperforms static optimization

–Significant improvement in bug-finding capabilities
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