
Patrick Jauernig, Domagoj Jakobovic, Stjepan Picek, 
Emmanuel Stapf, Ahmad-Reza Sadeghi

DARWIN: Survival of the Fittest 
Fuzzing Mutators



Motivation

–Fuzzing research is quite mature

–Key drivers for adoption:
–Enabling technologies (firmware rehosting, …)

–Platforms (OSS-Fuzz, ClusterFuzz)

–Lots of technical improvements (fast snapshots, coverage tracing)

28.02.20232



Motivation

–Fuzzing research is quite mature

–Key drivers for adoption:
–Enabling technologies (firmware rehosting, …)

–Platforms (OSS-Fuzz, ClusterFuzz)

–Lots of technical improvements (fast snapshots, coverage tracing)

–Algorithmic improvements can increase efficiency across targets

28.02.20232



Backround – Fuzzing

–Dynamic analysis technique
–Applies random inputs (testcases) to a target to see if it crashes

–Traditional separation: grammar-based vs. mutational

28.02.20233

Fuzzer

Program
Testcase

Feedback

Grammar

𝑆 → 𝑥𝐴 | 𝑦𝑆
𝐴 → 𝑦𝐴 | 𝑧𝐵
𝐵 → 𝑧

Seeds



Background – Mutational Fuzzers

28.02.20234

Program
Input



Background – Mutational Fuzzers

28.02.20234

Deterministic
Stage

Program
Input



Background – Mutational Fuzzers

28.02.20234

Deterministic
Stage

Havoc Stage Program
Input



Background – Mutational Fuzzers

28.02.20234

Deterministic
Stage

Havoc Stage Splicing Program
Input



Background – Mutational Fuzzers

28.02.20234

Deterministic
Stage

Havoc Stage Splicing Program
Input



Background – Mutational Fuzzers

28.02.20234

Deterministic
Stage

Havoc Stage Splicing Program
Input

Feedback



Background – Mutation Scheduling

28.02.20235

Deterministic
Stage

Havoc Stage Splicing

Mutation 
Scheduler

Program

Selected Mutation

Input

Feedback



Related Work in Algorithmic Improvements

28.02.20236



Related Work in Algorithmic Improvements

28.02.20236

Mutation Schedulers

MOPT [Lyu et al., USENIX Security 2019]

Fuzzergym [Drozd et al., arXiv 2018]

[Böttinger et al., SPW 2018]



Related Work in Algorithmic Improvements

28.02.20236

Mutation Schedulers

MOPT [Lyu et al., USENIX Security 2019]

Fuzzergym [Drozd et al., arXiv 2018]

[Böttinger et al., SPW 2018]

Location Optimization

FairFuzz [Lemieux et al., ASE 2018]

Steelix [Li et al., ESEC/FSE 2017]

[Rajpal et al., arXiv 2017]



Related Work in Algorithmic Improvements

28.02.20236

Mutation Schedulers

MOPT [Lyu et al., USENIX Security 2019]

Fuzzergym [Drozd et al., arXiv 2018]

[Böttinger et al., SPW 2018]

Location Optimization

FairFuzz [Lemieux et al., ASE 2018]

Steelix [Li et al., ESEC/FSE 2017]

[Rajpal et al., arXiv 2017]

Other Scheduling Approaches

EcoFuzz [Yue et al., USENIX Security 2020]

NeuFuzz [Wang et al., IEEE Access 2019]



Related Work in Algorithmic Improvements

28.02.20236

Mutation Schedulers

MOPT [Lyu et al., USENIX Security 2019]

Fuzzergym [Drozd et al., arXiv 2018]

[Böttinger et al., SPW 2018]

Location Optimization

FairFuzz [Lemieux et al., ASE 2018]

Steelix [Li et al., ESEC/FSE 2017]

[Rajpal et al., arXiv 2017]

Other Scheduling Approaches

EcoFuzz [Yue et al., USENIX Security 2020]

NeuFuzz [Wang et al., IEEE Access 2019]

• Fail to show improvements in 
practice

• Introduce per-target parameters

• Fail to show improvements in 
practice

• Introduce per-target parameters



Related Work in Algorithmic Improvements

28.02.20236

Mutation Schedulers

MOPT [Lyu et al., USENIX Security 2019]

Fuzzergym [Drozd et al., arXiv 2018]

[Böttinger et al., SPW 2018]

Location Optimization

FairFuzz [Lemieux et al., ASE 2018]

Steelix [Li et al., ESEC/FSE 2017]

[Rajpal et al., arXiv 2017]

Other Scheduling Approaches

EcoFuzz [Yue et al., USENIX Security 2020]

NeuFuzz [Wang et al., IEEE Access 2019]

• Fail to show improvements in 
practice

• Introduce per-target parameters

• Fail to show improvements in 
practice

• Introduce per-target parameters

• Optimize location, but not the 
associated operation

• Expensive (to integrate)

• Optimize location, but not the 
associated operation

• Expensive (to integrate)



Related Work in Algorithmic Improvements

28.02.20236

Mutation Schedulers

MOPT [Lyu et al., USENIX Security 2019]

Fuzzergym [Drozd et al., arXiv 2018]

[Böttinger et al., SPW 2018]

Location Optimization

FairFuzz [Lemieux et al., ASE 2018]

Steelix [Li et al., ESEC/FSE 2017]

[Rajpal et al., arXiv 2017]

Other Scheduling Approaches

EcoFuzz [Yue et al., USENIX Security 2020]

NeuFuzz [Wang et al., IEEE Access 2019]

• Fail to show improvements in 
practice

• Introduce per-target parameters

• Fail to show improvements in 
practice

• Introduce per-target parameters

• Optimize location, but not the 
associated operation

• Expensive (to integrate)

• Optimize location, but not the 
associated operation

• Expensive (to integrate)

• Optimization goal applied very 
early in fuzzing loop

• Interesting: combining seed 
selection and mutation 
scheduling

• Optimization goal applied very 
early in fuzzing loop

• Interesting: combining seed 
selection and mutation 
scheduling



DARWIN

28.02.20237

Bitflip

…

…

Overwrite Bytes

Target

Havoc Stage

25%

S
e

le
ct

 M
u

ta
ti

o
n

25%

25%

25%

Testcase



DARWIN

28.02.20238

Bitflip

…

…

Overwrite Bytes

Target

Havoc Stage

F
e

e
d

b
a

ck

New Probability Distribution

8%

S
e

le
ct

 M
u

ta
ti

o
n

1%

0%

9%

DARWIN
Mutation Scheduler

Testcase



DARWIN

28.02.20238

Bitflip

…

…

Overwrite Bytes

Target

Havoc Stage

F
e

e
d

b
a

ck

New Probability Distribution

8%

S
e

le
ct

 M
u

ta
ti

o
n

1%

0%

9%

DARWIN
Mutation Scheduler

Testcase



DARWIN – Evolution Strategy

28.02.20239

Parent Children

5% 1% 0% 9%

8% 1% 2% 9%

8% 1% 5% 9%

8% 3% 0% 9%

P
e

rt
u

rb
a

ti
o

n

8%

1%

0%

9%



DARWIN – Evolution Strategy

28.02.202310

Parent Children

Fitness function
determines next parent

5% 1% 0% 9%

8% 1% 2% 9%

8% 1% 5% 9%

8% 3% 0% 9%

P
e

rt
u

rb
a

ti
o

n

8%

1%

0%

9%

fitness = #new unique paths



DARWIN – Evolution Strategy

28.02.202311

Parent Children

Fitness function
determines next parent

5% 1% 0% 9%

8% 1% 2% 9%

8% 1% 5% 9%

8% 3% 0% 9%

P
e

rt
u

rb
a

ti
o

n

8%

1%

0%

9%

fitness = #new unique paths



DARWIN – Evolution Strategy

–Very simple and efficient

–Problem: very local algorithm
– Low probability of escaping local optima

28.02.202312

1%

7%

0%

3%



DARWIN – Evolution Strategy

–Very simple and efficient

–Problem: very local algorithm
– Low probability of escaping local optima

–Solution: multi-parent ES
–µ parents, λ children

– 5 parents, 4 children seemed best

–Cycle through best parent solutions

– In addition: Binary representation

28.02.202312

1%

7%

0%

3%



DARWIN – Evolution Strategy

–Very simple and efficient

–Problem: very local algorithm
– Low probability of escaping local optima

–Solution: multi-parent ES
–µ parents, λ children

– 5 parents, 4 children seemed best

–Cycle through best parent solutions

– In addition: Binary representation

28.02.202312

1%

7%

0%

3%

False

True

False

True



DARWIN - Contributions

–Leveraging Evolution Strategy to optimize mutation scheduling

–Keeping execution speed high

–No target-dependent parameters

–Easy to integrate into mutational fuzzers

28.02.202313



Evaluation

–Is mutation scheduling a dynamic problem?

–Does it make sense to trade in speed for efficiency?

–Is there an improvement in

–Coverage?

–Time to coverage?

–Bugs?

28.02.202314



Evaluation - Coverage

–Binutils suite, bsdtar, djpeg, jhead, tcpdump

–Edge coverage: +6.77% vs. MOPT, +1.73% vs. AFL
–+4.38% vs. static variant (AFL-S)!

–At disadvantage for targets expecting highly-structured input

28.02.202315

cxxfiltsize



Evaluation – Mutation Histories

28.02.202316

cxxfilt DARWIN MOPT AFL



Evaluation – Mutation Histories

28.02.202316

cxxfilt DARWIN MOPT AFL

• Optimum is relatively static
• Cycles are still wasted on optimization 
• Optimum is relatively static
• Cycles are still wasted on optimization 



Evaluation – Mutation Histories

28.02.202316

cxxfilt

size

DARWIN MOPT AFL

• Optimum is relatively static
• Cycles are still wasted on optimization 
• Optimum is relatively static
• Cycles are still wasted on optimization 



Evaluation – Mutation Histories

28.02.202316

cxxfilt

size

DARWIN MOPT AFL

• Optimum is relatively static
• Cycles are still wasted on optimization 
• Optimum is relatively static
• Cycles are still wasted on optimization 

• Still adapting with more diverse parents
• Further optimization useful here
• Still adapting with more diverse parents
• Further optimization useful here



Evaluation - FuzzBench

28.02.202317

20

30

40

50

60

70

80

90

100

FuzzBench

DARWIN AFL MOPT



Evaluation - FuzzBench

28.02.202318

20

30

40

50

60

70

80

90

100

FuzzBench

DARWIN AFL MOPT



Evaluation - MAGMA

–MAGMA: Benchmark suite to find 
backported bugs

–Different reports, in this case: 
survival analysis (“time to bug”)

–DARWIN finds 15/21 bugs fastest

28.02.202319

Magma: A ground-truth fuzzing benchmark, Hazimeh et al., 2020



Evaluation - Crashes

–Crash experiment based on coverage targets
–Max: unique bugs within one run

–Uniq: unique bugs over all ten runs

–DARWIN variants outperform MOPT, AFL, EcoFuzz, and AFL-S

–One novel bug in objcopy: memory leak

28.02.202320

DARWIN AFL AFL-S MOPT EcoFuzz-D EcoFuzz

Max 7 4 5 1 18 1

Unique 20 12 12 2 26 1



Conclusion

–DARWIN is the first ES-based mutation scheduler

–Adaptive optimization outperforms static optimization

–Significant improvement in bug-finding capabilities

28.02.202321

Contact: darwin@sanctuary.dev


