InfoMasker: Preventing Eavesdropping Using Phoneme-Based Noise

Peng Huang, Yao Wei, Peng Cheng, Zhongjie Ba, Li Lu, Feng Lin, Fan Zhang, Kui Ren

Eavesdropping with Smart Devices

Widespread of smart devices equipped with microphone

• Developers are committed for privacy protection

Eavesdropping with Smart Devices

- Still an unsolved problem
 - Third-party operating systems
 - Malicious fake applications
 - Uncontrolled legal recordings
 - Hidden Recorders

- Need to physically block voice eavesdroppers
 - Makes the voice privacy controllable to the users.

Problem Setup

Application scenario

Design goals

- Effectiveness
 - Successfully mislead human ears
 - Successfully mislead automaticspeech-recognition tools
- Robustness
 - Could not be removed by noise reduction methods
- User-friendly
 - Should not disturb users

Existing Methods to Jam Microphone

- Electromagnetic interference-based jamming
 - Pros: No disturbance to users
 - Cons: Limited coverage & Affect other devices
- Adversarial example-based jamming
 - Pros: No need for special hardware
 - Cons: No effect to human ear& generalization ability
- Ultrasound-based jamming
 - Pros: No disturbance to users & Reasonable coverage

Principle of Ultrasound-Based Microphone Jamming

- Nonlinearity in microphone will cause self-demodulation of input signals.
 - Zhang et al. (2017) inject inaudible voice commands to microphone via ultrasound[13]
- Nonlinearity in microphone

Principle of Ultrasound-Based Microphone Jamming

- Nonlinearity in microphone will cause self-demodulation of input signals.
 - Zhang et al. (2017) inject inaudible voice commands to microphone via ultrasound[13]
- Inject audible noise n(t) with inaudible ultrasound

1. High demand for noise energy vs. Limited transmission energy

- 2. Target speech recognition tools (human and ASR) have strong denoising ablility
 - Common noises with limited energy will be easily removed
- Cocktail party effect[4] in human ear

Human brain can easily focus on the target speech in a noisy environment

- 2. Target speech recognition tools (human and ASR) have strong denoising ablility
 - Common noises with limited energy will be easily removed
- Noise reduction methods in ASR

September 3, 2024 Zhejiang University 10

- 2. Target speech recognition tools (human and ASR) have strong denoising ablility
 - Common noises with limited energy will be easily removed
- Both methods rely on the differences between the noise and the speech

	Structure		
Time Domain	Speaking Rate		
	Random Gaps		
	Intensity		
Frequency Domain	Fundamental Frequency (F0)		
	Timbre		
Spatial	_		

Jamming Strategy: Energetic v.s. Informational

Energetic masking: Covering

Masked wave

Characteristics

Pros: No need for prior knowledge

Cons: High energy requirement & Easily to remove

Informational Masking: Disturbing

Origin Word: desk

Phonogram: / desk /

Inject / I / / de I sk / → desk? disk?

Characteristics

Pros: Low energy requirement & Hard to remove

Cons: Needs prior knowledge

Informational Masking for Human Speech Jamming

- Prior knowledge for jamming human speech
 - Signal structure: a series of phonemes

- Frequency domain properties: User dependent
 - Fundamental frequency (F0)
 - Timbre
- Time domain properties: Varying and uncertain

Main idea: Inject phonemes similar to the target speech to disturb it

Phoneme-Based Jamming Noise Design

Noise structure

Noise Series

I : Accelerated continuous vowels

II: Vowels with random speed and gap

■: Continuous consonants

Function

Inject enough phoneme per unit time

Narrow down the difference in speaking rate

Increase the diversity of the noise

System Workflow

- User Registration
 - Get the user's voice features
- Data Augmentation
 - Get enough data for noise generation
- Noise Generation
 - Get the noise
- Jamming
 - Inject the noise to microphone

User Registration

- Purpose: Obtain enough phoneme data with similar timbre as the user.
- · Extracting from the user's speech is time consuming, and so not practical

 Extract user's voice feature from short registration audios and match speech data from public corpus

Data Augmentation

• Increase the amount of phonemes while retaining similarity with original data

• *Method:* Fine-tune the emotional-related speech properties^[6].

Phonetical	Modification	Emotional Impact			
Properties	Range	†	+		
Speech Rate	0.3-1.8	Fear or Disgust	Sadness		
F0 Mean	0.9-1.1	Anger or Happiness	Disgust or Sadness		
F0 Contour	0.7-1.3	Anger or Happiness	Sadness		
Energy	0.5-2.0	-	-		
Sequential Order	-	-	-		

Data Augmentation

- Increase the amount of phonemes while retaining similarity with original data
- *Method:* Fine-tune the emotional-related speech properties^[6].

Noise Transmission

• Lower-sideband modulation to achieve higher transmission energy

Conventional Modulation

 $s(t) = \sqrt{2n(t)}\cos(2\pi f_c t)$

Spectrum:
$$f_c$$

Single-sideband Modulation

$$s(t) = n(t)\cos(2\pi f_c t) + \hat{n}(t)\sin(2\pi f_c t)$$

Audible Signal:

$$|n^2(t)| = \sqrt{2} |\frac{1}{2} (n^2(t) + \hat{n}(t))|$$

User Study Results:

Noise	Normalized Energy				
Noise	DSB-AM	LSB-AM	USB-AM		
White Noise	1.00	1.49	1.29		
Phoneme-Based Noise	2.77	4.14	3.61		

Noise Transmission

• **Pre-compensation** to reduce distortion during transmission

• Estimate $h_1(t)$ and $h_2(t)$, pre-compensate s(t) with $h_1(t) \circledast h_2^{-1}(t)$

System Overview

System & Hardware

Evaluation: Experimental Setting

- Speech recognition tools
 - 4 Commercial ASR tools
 - 2 Open–Source ASR tools
 - Human recognition
- Datasets
 - LibriSpeech^[7] for most experiments
 - TIMIT^[8] for training targeted ASRs
 - Harvard Sentences^[9] for human recognition

- Evaluate aspects
 - Effectiveness
 - Robustness
- Scenarios
 - Digital domain
 - Real-world jamming
 - Case study: A common office

Evaluation: Effectiveness

- Digital domain
 - 27000 words for each ASR
 - Compared with [0, 8] kHz bandlimited white noise.
- Real-world jamming
 - 70 hours data

SNR	<-4	[-4,-2]	[-2, 0]	[0,2]	[2,4]	>4	Clear
Avg WER(%)	85.8	81.6	77.6	70.2	56.4	42.3	11.5
Min WER(%)	68.6	77.0	62.4	62.2	45.3	30.3	-
Digital WER(%)	88.6	85.4	68.8	48.67	28.9	17.0	4.1

Evaluation: Effectiveness

- Comparisions with existing works
 - Two previous works and one commercial device.
 - With the presence of noise reduction methods
- Real-world end-to-end scenario

Evaluation: Robustness

Speech enhancement method^[10]

• Makes the distrubed speech harder to be recognized

• Speech Separation[11]

Specialized ASR

Evluation: Case Study

Setting

Results

Tunas	WER(%)					
Types	Phone A	Phone B	Laptop	iPad		
Α	98.0	98.2	95.7	99.3		
В	98.8	98.4	88.1	93.8		
C	98.5	56.4	95.8	98.6		
D	95.7	97.7	97.9	95.3		
Amplifiers On	25.8	26.3	32.5	32.0		
Clear	16.0	7.1	19.9	15.5		

Thank You!

Peng Huang, Yao Wei, Peng Cheng, Zhongjie Ba, Li Lu, Feng Lin, Fan Zhang, Kui Ren

References

- [1] N. Roy, H. Hassanieh, and R. Roy Choudhury, "Backdoor: Making microphones hear inaudible sounds," in *Proceedings of the 15th An- nual International Conference on Mobile Systems, Applications, and Services*, ser. MobiSys '17. New York, NY, USA: Association for Computing Machinery, 2017, p. 2–14.
- [2] L. Li, M. Liu, Y. Yao, F. Dang, Z. Cao, and Y. Liu, "Patronus: Preventing unauthorized speech recordings with support for selective unscrambling," in *Proceedings of the 18th Conference on Embedded Networked Sensor Systems*, ser. SenSys '20. New York, NY, USA: Association for Computing Machinery, 2020, p. 245–257.
- [3] Y. Chen, H. Li, S.-Y. Teng, S. Nagels, Z. Li, P. Lopes, B. Y. Zhao, and H. Zheng, "Wearable microphone jamming," in *Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems*, ser. CHI '20. New York, NY, USA: Association for Computing Machinery, 2020, p. 1–12.
- [4] D. S. Brungart, "Informational and energetic masking effects in the perception of two simultaneous talkers," *The Journal of the Acoustical Society of America*, vol. 109, no. 3, pp. 1101–1109, Mar. 2001.
- [5] L. Wan, Q. Wang, A. Papir, and I. Lopez-Moreno, "Generalized End-to-End Loss for Speaker Verification," in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2018, Calgary, AB, Canada, April 15-20, 2018, 2018, pp. 4879-4883.
- [6] R. Cowie *et al.*, "Emotion recognition in human-computer interaction," in *IEEE Signal Processing Magazine*, vol. 18, no. 1, pp. 32-80, Jan 2001.

References

- [7] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, "Librispeech: An asr corpus based on public domain audio books," in 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2015, pp. 5206-5210.
- [8] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, D. S. Pallett, and N. L. Dahlgren, "Timit acoustic-phonetic continuous speech corpus Idc93s1," 1993.
- [9] "IEEE recommended practice for speech quality measurements," *IEEE Transactions on Audio and Electroacoustics*, vol. 17, no. 3, pp. 225–246, 1969.
- [10] X. Hao, X. Su, R. Horaud, and X. Li, "FullSubNet: A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech Enhancement," arXiv:2010.15508 [cs, eess], Jan. 2021.
- [11] C. Subakan, M. Ravanelli, S. Cornell, M. Bronzi, and J. Zhong, "Attention Is All You Need In Speech Separation," in *ICASSP 2021 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, Toronto, ON, Canada, Jun. 2021, pp. 21–25.
- [12] G. K. C. Chen and J. J. Whalen, "Comparative RFI Performance of Bipolar Operational Amplifiers," in 1981 IEEE International Symposium on Electromagnetic Compatibility, Aug. 1981, pp. 1-5.
- [13] G. Zhang, C. Yan, X. Ji, T. Zhang, T. Zhang, and W. Xu, "DolphinAttack: Inaudible Voice Commands," in *Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (CCS)*, Dallas, Texas, USA, Oct. 2017, pp. 103-117.