

BARS: Local Robustness Certification for Deep Learning based Traffic Analysis Systems

Kai Wang, Zhiliang Wang, Dongqi Han, Wenqi Chen, Jiahai Yang, Xingang Shi, Xia Yin

Traffic Analysis Meeting Deep Learning

Source: https://www.solarwinds.com/netflow-traffic-analyzer/use-cases/network-traffic-analysis

<u>Traffic</u> is an important data source for analyzing network activities and detecting cyberspace attack.

Source: https://towardsdatascience.com/training-deep-neural-networks-9fdb1964b964

Deep learning has been widely applied for data analysis.

DL-based Traffic Analysis Systems

- Zero-positive NIDS (NDSS'18, CCS'19)
- Concept drift detection system (USENIX Security'21)
- Supervised multi-classification system (INFOCOM'21, CCS'18)

ACID (INFOCOM'21)

Kitsune (NDSS'18)

CADE (USENIX Security'21)

DL-based Traffic Analysis Systems

How does DL-based traffic analysis systems perform in practice?

They frequently suffer from adversarial attack due to the vulnerability of deep learning.

Adversarial Attack Meeting Robustness Certification

Vanilla randomized smoothing (ICML'19)

Adversarial Attack Meeting Robustness Certification

Can you give me a suitable robustness certification framework for DL-based traffic analysis systems?

Unfortunately, existing robustness certification frameworks are not suitable for traffic analysis. We need to design a special one under the following three motivations.

Traffic Analysis

Meeting

Highly heterogeneous features (CCS'17, ICISSP'18)

Traffic features (CCS'17)

Existing Certification Methods

 ℓ_p robustness guarantee (ICLR'21, ICLR'19, ICML'19, ICML'20)

We need dimension-heterogenous certification!

Traffic Analysis

Varied model designs (NDSS'18, USENIX Security'21, INFOCOM'21)

CADE (USENIX Security'21)

Existing Certification Methods

Needing special designs (ICLR'19, NeurlPS'20, NeurlPS'18)

Special linear relaxation (NeurlPS'18)

We need universal certification!

Traffic Analysis

Adversarial operating environments (USENIX Security'21, INFOCOM'20)

Blind adversarial perturbations (USENIX Security'21)

Existing Certification Methods

No real-time certification (CCS'21, ICLR'21, NeurIPS'21)

Independent of data distribution (CCS'21)

Low efficiency (ICLR'21, NeurIPS'21)

We need real-time certification!

Classical Randomized Smoothing

Classical isotropic noise

Classical Randomized Smoothing

Local robustness region

Classical isotropic noise is not suitable for highly heterogeneous features!

Optimized Randomized Smoothing

We need adaptive smoothing noise!

Optimized Randomized Smoothing

Transform classical isotropic noise to optimized anisotropic noise.

Overview

BARS (Boundary-Adaptive Randomized Smoothing)

Training Stage

Certification Stage

- Dimension-heterogenous smoothing
- Assuming nothing about model designs
- Efficient implementation in parallel

Distribution Transformer

Optimizing Noise Shape

Move noised samples close to classification boundary.

Optimizing Noise Shape

Optimize the shared scale factor for tight robustness guarantee.

Quantitatively Evaluating Robustness (Detection Threshold)

Kitsune (NDSS'18)

Too small or too large threshold

Ideal threshold

Kitsune (NDSS'18)

(b) 16 AEs (m = 16).

Kitsune (NDSS'18)

Feature Mapper (FM) Anomaly Detector (AD) Ensemble Layer θ_1 θ_2 $\theta_{n_{a-2}}$ $\theta_{n_{a-1}}$ θ_{n_a} Kitsune (NDSS'18)

Mean robustness radius (Robustness)

Coefficient of variation for robustness radius (Fitting capability)

	AE Number	m	MRR	CVR	F_1 Score
	1	100	3.4749	0.1409	0.9796
	2	80	4.5540	0.2525	0.9793
	Ideal number	75	4.2375	0.3740	0.9797
	8	43	2.3316	0.6326	0.9806
	16	16	0.9923	0.6729	0.9806
	32	7	0.4628	0.8025	0.9802
	64	2	2.5844	0.3210	0.9784
	100	1	2.2312	0.2712	0.9782
	_				

Application Case

Reducing False Alarms

Vanilla CADE

Noise data augmentation retraining

	FNR				
Benign	Benign SSH-Bruteforce DoS-Hulk Total				
0.0283	0.0128	0.0066	0.0190	0.0000	

Retraining

Application Case

Evasion Attack Awareness

Precision F_1 Score Method Recall V.R.S. 0.6861 0.8380 0.7544 0.9489 0.9819 0.9181 BARS-L 0.9455 BARS-G 1.0000 0.9720

Smoothed evasion sample

Evasion sample robustness region

Application Case w

Evasion Attack Defense

Vanilla ACID

Evasion Success Rate						
Random	PGD	B.A.P.				
0.3069	1.0000	1.0000				

ACID (INFOCOM'21)

Noise Data Augmentation Retraining

Evasion Success Rate					
Random	PGD	B.A.P.			
0.2024	0.4006	0.8475			

Sertified Accuracy

Robustness Radius

Feature	Radius	Description
Init Fwd Win Byts	5.1728×10^{-2}	Total number of bytes sent in initial window in forward direction.
Fwd IAT Max	9.3542×10^{-2}	Maximum time between two packets sent in forward direction.
Mean Radius	1.8561×10^{-1}	Mean robustness radius in all dimensions.

Certification Stage

Classification results are sensitive to these weakly robust features. They are important!

How is its fidelity?

Please replace the values of important features with random numbers.

F ₁	F ₂	F_3	 F_n
0.1	0.5	0.9	 0.1
0.3	0.6	0.9	 0.2
0.2	0.8	0.8	 0.4
0.5	0.5	0.7	 0.2

Original features

F ₁	F_2	F_3	 F_n
0.1	0.5	ξ	 0.1
0.3	0.6	ξ	 0.2
0.2	0.8	ξ	 0.4
0.5	0.5	ξ	 0.2

Metric	Vanilla	Random	BARS-L	BARS-G
Precision Recall F_1 Score	1.0000	0.9928	0.9423	0.9064
	1.0000	0.9040	0.7918	0.7707
	1.0000	0.9397	0.8605	0.8330

Replaced values

Performance under random feature values

Summary

We propose a general robustness certification framework for DL-based traffic analyzers.

Dimension-heterogeneous, universal, real-time

We show how to apply the framework to five domain-specific problems of traffic analysis.

 Quantitatively evaluating robustness, reducing false alarms, evasion attack awareness, evasion attack defense, explaining attack detection

We implement the framework on three practical DL-based traffic analyzers.

Zero-positive NIDS, concept drift detection system, supervised multi-classification system

Thank you!

BARS: Local Robustness Certification for Deep Learning based Traffic Analysis Systems

Presenter: Kai Wang k-wang20@mails.tsinghua.edu.cn

