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Why we need Consensus Protocols

Originally talked in distributed systems..

Disorder
Crash
Restart

A fundamental problem in distributed computing and multi-agent systems is to achieve overall system
reliability in the presence of a number of faulty processes.

Network env...


https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Multi-agent_system

In Blockchain System, how we get consensus?
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An Example of Blockchain Consensus Protocols

PBFT (Practical Byzantine Fault Tolerant)? (OSDI 1999 By Lamport)

Preprepare Phase Prepare Phase Commit Phase
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Commit phase: * The protocol can tolerate f byzantine nodes in a network
with 3f+1 nodes;

Preprepare phase:

* Leader broadcasts prepare
packet with new blocks.

e Other nodes execute the block
and send sign packets.

Prepare phase:

« If the node has received 2f+1 sign
packets, send the commit packet.

N4 N4

+ If the node has received 2f+1
commit packets, record the blocks + leaderid = (BlockHeight + viewid) % node_num.

into the blockchain. i . .
+ If the consensus time exceeds the timeout, viewChange
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Consensus Protocol Vulnerabilities in recent years

A vulnerability in Hyperledger Fabric
JAXCVE-2021-43667 Detail

1 func ChannelHeader (env xcb.Envelope)
(¥cb.ChannelHeader, error) {

Description 2 + if env == nil {
Avulnerability has been detected in HyperLedger Fabric v1.4.0, v2.0.0, 3+ return nil, errors.New("Invalid envelope
payload is nil and sending this message with the method 'forwardToL« payload. can’t be nil")

4 + }
envPayload, err :=
UnmarshalPayload (env.Payload)
if err != nil {
return nil, err

}

@ NIST: NVD Base S(ore:- 10 return chdr, nil
11 }

Fabric. If leveraged, any leader node will crash.

Severrty CVSS Version 3.x CVSS Version 2.0

CVSS 3.x Severity and Metrics:

® < o

Though consensus protocols are proved to be correct and complete in theory,
they may contain code flaws during implementation,




Consensus Protocol Vulnerabilities in recent years

4 basic steps to trigger this bu

| [@ processmessage | | -b[@ process mewsage | | (@O Node 1 decrypts and validates all
B N R N I e JI | 3 : the ‘Envelope’ messages.
w decrypt& Channel 1 forward_ generate .
§ : validate || _header |;| to_leader [ submit | | @ Node 2 is elected as a new
_________ N — T leader and Node 1 is the follower.
[ Leader ]Q,LP[ Follower ] ) ,
- B ® Some unprocessed ‘Envelope
. | messages in Node 1 will be
b orderea pof Tl ] | forwarded to th lead
~ | P ) 1 et | orwarded to the new leader.
§ {Proposal] :@ invalid memory occurs | @ Node2 handles these packets by
v @) e e——— ‘ordered’ function without
[ Candidate |—>| Leader ] validating them.



Challenges to Test Consensus Protocols

Challenge 1l: How to model the consensus state in real-time?

Preprepare Phase Prepare Phase Commit Phase

States of consensus protocols are dynamic and complex.

Consensus phase is dynamically changing.

° * Nodes may be in different consensus rounds.

Sending packets without knowing the states is ineffective.

Cannot progress the consensus and test deeper logic.
* Most invalid packets.

How Peach acts State model is fixed, thus most of the testing inputs are invalid.

<output>...</output> @ <input>...</input> <output>...</output>




How to Test Consensus Protocols

Challenge 2: How to construct multi-dimension inputs according to the state?

What to send? (Type & Content)
« Which type of the packet should be sent? <DataModel>...</DataModel>
* How to generate the packet field more reasonably?

Types are fixed and field are mutated ‘randomly’.

Where to send? (Target)
«  Leader node or not? <Monitor class="“Process”>...</Monitor>
* Send to one node or 1/3 of the nodes or all other L . .

nodes? Destinations are fixed in the data model

How Peach acts x



LOKI Overall Design

Key Insight:Masquerading as a normal node to fetch neighbour’s states and fuzz
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LOKI Step 1: listen from the blockchain node

ELOCc SySien I |State Model Builder | _____ i Message Guider] i
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1) LOKI first listens from the blockchain and decrypts the received Messages.

Construction & Updating
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LOKI Step 2: State model construction and update

ELOCc SySien I |State Model Builder | _____ i Message Guider] i
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2) The State model builder constructs and updates the state model according to the received messages.

3.2 determine next
message type
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LOKI Step 2: State model construction and update

State model Construction:
+ Before the fuzzing process.

+ Decrypt and analyze the type of
the received messages.

+ Each edge has a same weight

State model Update:
» Together with the fuzzing process.

+ If a new message is received, LOKI
adds a new edge and tracks the
subsequent messages.

Receive/Send
heartbeat

Receive/Send
new view

—>| heartbeat,, response,

®

.?

newView, viewdata,, viewchange,

Message

Loop

Send new

Receive new
consensus

—%preprepare prepare, H commit, reply,

—>|requestn preprepare,[<» prepare,<*commit,<>reply,

An example of PBFT state model



LOKI Step 3: Message type decision
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3) Message Guider determines next message type based on the state model and updates it.

3.2 determine next
message type

Construction & Updating
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LOKI Step 4: Seed Selection

Blockchain System I

Consensus Protocol
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4) LOKI selects the corresponding seeds from the message pool with the chosen message type.
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LOKI Step 5: Message mutation
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5) Content Mutator mutates seeds according to message specifications and generates new messages.
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LOKI Step 5: Message mutation

Numeric type mutation:

specy
. Decoder <type,, size;>

+ Randomly convert it to another number. St | (protobut,rLe) [ | <types, sizez>
+ Especially, to border values such as l

INT_MAX and 0. PrePrepare P, PrePrepare Specification PrePrepare P,

. . + View:uint64 = 0x08 l recursively + View:uint64 = 0xf408
Stnng type mUtatlon: + Proposal:struct{Proposal} = prop mutate ”1+ Proposal:struct{Proposal} = prop'

. . + PrevSigns:[]*Signature = signs + PrevSigns:[]*Signature = newsigns

» Bytes/bits flip. Proposalspecifcation | | .
Structure type mutation: An example of message mutation

* Recursively mutates each field.

<uint64, 8>,|<struct{<uint64,8>,<string,8>...}, unfixed> [<signature, 32> ...

Cryptography field mutation:

numeric structure cryptography
» Use the inherent cryptographic components.

» Mutate other content before the cryptography An example of structure type mutation

related fields.
16



LOKI Step 6: Send mutated messages

Blockchain System I
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6) Finally, LOKI encrypts and signs the messages and then sends them.
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LOKI Step 7: Bug analyzer monitoring
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7) The bug analyzer monitors the execution information of blockchain system all the time.
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LOKI Step 7: Bug analyzer monitoring

2 _types of bugs supported

Memory-related bugs:

ASAN instrumented. Debug with
GDB/LLDB.

Lead to node crash.

Consensus Logic bugs:

Liveness bugs and Safety bugs.

Lead to consensus failure or
invalid data store.

Node
Execution

Bug Analyzer

Memory
Monitor

Consensus
Monitor

memory
node crash related bug
down ? found

crash dump

variable

Safety bug

changed:

> Liveness bug

message
sequence

|

re-execute &
reproduce
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20 Bugs Found in 4 Blockchain Systems

20 bugs in 4 blockchain systems with 9 CVE ids

TABLE IL PREVIOUSLY-UNKNOWN CONSENSUS PROTOCOL VULNERABILITIES FOUND BY LOKI IN 24 HOURS ON 4 COMMONLY-USED BLOCKCHAIN.

# Platform Bug Type Bug Description Identifier

1 Go-Ethereum Invalid Memory  SIGBUS: read a invalid memory when generating DAG on multiple nodes. CVE-2021-42219
2 Go-Ethereum Invalid Memory  SIGSEGV: nil pointer in newBlockIter during block sync with fast mode. CVE-2021-43668
3  Go-Ethereum Data Race Resource access conflict in dialScheduler when miner enters network. Bug#23965

4 Go-Ethereum Unexpected Panic VM crashes when executing multiple transactions in system contract EIP-1283. Bug#23866

5 Go-Ethereum Liveness The chain indexer that caused repeated “chain reorged during section processing” errors. Bug#24447

6 Diem Unexpected Panic The address conflicts with other processes when restarting consensus nodes. Bug#1339041

7 Diem Unexpected Panic The validator node try to fetch an unreachable hash from cache. Bug#9753

8 Diem Liveness Malicious nodes cause the failure of processing some transactions and stucks the chain Bug#10228

9  Fabric Unexpected Panic Orderer crashes down after receiving an invalid config message. Bug#15828

10 Fabric Invalid Memory Leader fails after receiving a nil payload message forwarded by followers. CVE-2021-43667
11 Fabric Unexpected Panic Orderer breakdowns when marshalling an invalid envelope formation. Bug#18529

12 Fabric Unexpected Panic Leader in consensus protocol crashes down when parsing an invalid Envelope Header. ~ CVE-2021-43669
13 Fabric Safety Repeatedly creating channel after receiving requests with the same Channel name. CVE-2022-45196
14 FISCO-BCOS Memory Unfree Memory is not freed when dealing with sustained consensus packets. CVE-2021-35041
15 FISCO-BCOS Unexpected Panic Private key cannot be parsed by consensus protocol. CVE-2021-40243
16 FISCO-BCOS Bad Free Front service of a consensus node attempts to free an unallocated memory. Bug#72

17 FISCO-BCOS Invalid Memory Read an invalid memory when starting a block sync process. Bug#71

18 FISCO-BCOS Liveness Bug in checking txpool limit when receive transactions from p2p. CVE-2021-46359
19 FISCO-BCOS Liveness Block not be executed if the synchronization execute it before the addExecutor. Bug#2132

20 FISCO-BCOS Safety A fake proposal’s header leads to the successful consensus of illegal blocks. CVE-2022-28936

QeThereum

~1~ HYPERLEDGER

*¢" FABRIC

o N =
AscoBoos 2 diem
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Case 1: FISCO-BCOS Consensus Protocol Bug (CVE-2021-35041)

Node Killed by OS when handling malicious packets

Listing 1: Code that constantly allocate new memory *+ The node will consistently allocate for a big
1| ssize_t P2PMessageRC2::decode(const byte memory and be k|"ed by the OS f|na"y

* buffer, size_t size){ . i
2 * An attacker can craft a packet with a big value of
3 m_length = ntohl (x((uint32_t*)&

buffer [offset])); m—length
4 if (size < m_length) {

5|// the value of PACKET_INCOMPLETE is 0
6 return dev::network:: 00
PACKET_INCOMPLETE;

6000

// code for handling the decoding result
ssize_t result = message->decode(s->
m_data.data(), s->m_data.size());

7
8
9}
0
1

000 e

memory used (in Mig)

13| else if (result == 0) { 2000
14| // m_length size of memory is allocated
15 s->doRead () ;

16 break; 3

)
time (in seconds)
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Compared with Existing Tools: Peach, Fluffy & Twins

Coverage Comparison among other tools

TABLE III. BRANCH COVERAGE OF LOKI AND OTHER TOOLS. ’-’
MEANS THAT THE TOOL DOES NOT SUPPORT THE BLOCKCHAIN.

Go-Ethereum Diem Fabric FISCO-BCOS

LOKI 10058 31534 12117 14794
Peach 6794 25018 9182 8870
Fluffy 3566 - -

Twins - 8053 - -
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Compared with Existing Tools: Peach, Fluffy & Twins

Coverage Trends Comparison among other tools

. (a) Branch coverage on Go-Ethereum . (b) Branch coverage on Diem
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Bars refer to the coverage while the lines describe the increment percentage of LOKI compared with Peach.
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Multiple LOKI nodes

Coverage under different numbers of LOKI nodes
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* More Oracles

» Hard fork?

* Leader fairness?
» Cooperation among LOKI nodes

» Share the message pool

» Targeted at the same nodes
* More Blockchains

* Quorum
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Thank You

Please contact: mafc19@mails.tsinghua.edu.cn for more details
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