LOKI: State-Aware Fuzzing Framework for the
Implementation of Blockchain Consensus Protocols

Fuchen Ma, Yuanliang Chen, Meng Ren, Yuanhang Zhou, Yu Jiang,
Ting Chen, Huizhong Li and Jiaguang Sun

WeBank

il AR R 1T

Why we need Consensus Protocols

Originally talked in distributed systems..

Disorder
Crash
Restart

A fundamental problem in distributed computing and multi-agent systems is to achieve overall system
reliability in the presence of a number of faulty processes.

Network env...

https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Multi-agent_system

In Blockchain System, how we get consensus?

1 1
1 1
I 1
1 1
1 1
1 1
: :
I POW i ZAB
i i
1 1
1 1
1 1
1 1
: |
i POC ! PAXOS
i i
1 1
1 1
i i
E Work Stake E CET
! <O Proof !
\ ! \
N / N
\“~_ ‘¢’, \“~_ -
Based on Game Theory Based on CAP theorem

An Example of Blockchain Consensus Protocols

PBFT (Practical Byzantine Fault Tolerant)? (OSDI 1999 By Lamport)

Preprepare Phase Prepare Phase Commit Phase

OREFONC
‘@vl/'@‘k'{{‘@
X LR]
OO
XN

Commit phase: * The protocol can tolerate f byzantine nodes in a network
with 3f+1 nodes;

Preprepare phase:

* Leader broadcasts prepare
packet with new blocks.

e Other nodes execute the block
and send sign packets.

Prepare phase:

« If the node has received 2f+1 sign
packets, send the commit packet.

N4 N4

+ If the node has received 2f+1
commit packets, record the blocks + leaderid = (BlockHeight + viewid) % node_num.

into the blockchain. i . .
+ If the consensus time exceeds the timeout, viewChange

4

Consensus Protocol Vulnerabilities in recent years

A vulnerability in Hyperledger Fabric
JAXCVE-2021-43667 Detail

1 func ChannelHeader (env xcb.Envelope)
(¥cb.ChannelHeader, error) {

Description 2 + if env == nil {
Avulnerability has been detected in HyperLedger Fabric v1.4.0, v2.0.0, 3+ return nil, errors.New("Invalid envelope
payload is nil and sending this message with the method 'forwardToL« payload. can’t be nil")

4 + }
envPayload, err :=
UnmarshalPayload (env.Payload)
if err != nil {
return nil, err

}

@ NIST: NVD Base S(ore:- 10 return chdr, nil
11 }

Fabric. If leveraged, any leader node will crash.

Severrty CVSS Version 3.x CVSS Version 2.0

CVSS 3.x Severity and Metrics:

® < o

Though consensus protocols are proved to be correct and complete in theory,
they may contain code flaws during implementation,

Consensus Protocol Vulnerabilities in recent years

4 basic steps to trigger this bu

| [@ processmessage | | -b[@ process mewsage | | (@O Node 1 decrypts and validates all
B N R N I e JI | 3 : the ‘Envelope’ messages.
w decrypt& Channel 1 forward_ generate .
§ : validate || _header |;| to_leader [submit | | @ Node 2 is elected as a new
_________ N — T leader and Node 1 is the follower.
[Leader]Q,LP[Follower]) ,
- B ® Some unprocessed ‘Envelope
. | messages in Node 1 will be
b orderea pof Tl] | forwarded to th lead
~ | P) 1 et | orwarded to the new leader.
§ {Proposal] :@ invalid memory occurs | @ Node2 handles these packets by
v @) e e——— ‘ordered’ function without
[Candidate |—>| Leader] validating them.

Challenges to Test Consensus Protocols

Challenge 1l: How to model the consensus state in real-time?

Preprepare Phase Prepare Phase Commit Phase

States of consensus protocols are dynamic and complex.

Consensus phase is dynamically changing.

° * Nodes may be in different consensus rounds.

Sending packets without knowing the states is ineffective.

Cannot progress the consensus and test deeper logic.
* Most invalid packets.

How Peach acts State model is fixed, thus most of the testing inputs are invalid.

<output>...</output> @ <input>...</input> <output>...</output>

How to Test Consensus Protocols

Challenge 2: How to construct multi-dimension inputs according to the state?

What to send? (Type & Content)
« Which type of the packet should be sent? <DataModel>...</DataModel>
* How to generate the packet field more reasonably?

Types are fixed and field are mutated ‘randomly’.

Where to send? (Target)
« Leader node or not? <Monitor class="“Process”>...</Monitor>
* Send to one node or 1/3 of the nodes or all other L . .

nodes? Destinations are fixed in the data model

How Peach acts x

LOKI Overall Design

Key Insight:Masquerading as a normal node to fetch neighbour’s states and fuzz

Blockchain System ‘ State Model Builder | _____ i Message Guider] i

T
1. listen| | - 3 311guid;
1 —:'| Receiver |—'| Decryption |
: 2. update¢
I
|
I
S '
I
|
I

A
|
|
|
[state, [istaten | sstatec, [dstates, | .+ istat :
e va Vo » |
| |m po= o R o !
- - . |
|
v va o e
‘ - 4. selectseeds
|
|

I
I
|
roadcas 51 mutat
Consensus Protocol . o Sdproade ﬁ'—i Publisher H Encryption |<‘|—_|&ae Content Mutator
[1

Target Determination

3.2 determine next
message type

Uupdate

Construction & Updating

Nedeo _pu_Pm__Pa __Pm P

Message pool

‘ i:litfg:A:I_:af_ly_:z:(a?:::::::::::__:::::::::::::::::::::]
@ 7. monitqr ! | Bug Detection ‘ | Crash Analysis I |Bug Reproduce| i

LOKI Step 1: listen from the blockchain node

ELOCc SySien I |State Model Builder | _____ i Message Guider] i

1. listen|§ ! ; ; 3!1guid; .
T'| Receiver |>+ Decryption | ——] Target Determination
! 2. update¢

| 3.2 determine next
! message type
I
|
I
I

@ I
I

‘-@E@% “ l .
: L ro Le T 4. select seeds
Brond - A 5| mutate
Consensus Protocol o+ Sroecesy H Publisher |<—I Encryption]“I—J* Content Mutator
'@b I P
.

1) LOKI first listens from the blockchain and decrypts the received Messages.

Construction & Updating

Nedeo _pu Bm P

Istate,, 5 AStatey |- Statec, | dstate,,

i_Bug Analyzer
Jmonitor : | Bug Detection ‘ | Crash Analysis | |Bug Reproducel

10

LOKI Step 2: State model construction and update

ELOCc SySien I |State Model Builder | _____ i Message Guider] i

T
1. listen| | ; ; 3!1guid; .
.@ 1 j"| Receiver *—".Denqptlon | —— Target Determination
2. update

|

|
i | Constructi OTr&-Updatin;
| in,__pn Pn ey 01
= p p
|
|

@ |
| Dequeue
: L L] L. 4. select seeds
Consensus Protocol « Shroadeast I [Tp .| O mutate
— ublisher Encryption Content Mutator
@ { it} B 1
d

2) The State model builder constructs and updates the state model according to the received messages.

3.2 determine next
message type

P

[State f AStatey |- Statec, | dstate,, | .+ Statey,

i_Bug Analyzer
Jmonitor : | Bug Detection ‘ | Crash Analysis | |Bug Reproducel

11

LOKI Step 2: State model construction and update

State model Construction:
+ Before the fuzzing process.

+ Decrypt and analyze the type of
the received messages.

+ Each edge has a same weight

State model Update:
» Together with the fuzzing process.

+ If a new message is received, LOKI
adds a new edge and tracks the
subsequent messages.

Receive/Send
heartbeat

Receive/Send
new view

—>| heartbeat,, response,

®

.?

newView, viewdata,, viewchange,

Message

Loop

Send new

Receive new
consensus

—%preprepare prepare, H commit, reply,

—>|requestn preprepare,[<» prepare,<*commit,<>reply,

An example of PBFT state model

LOKI Step 3: Message type decision

Blockchain System | |State Model Builder |

T
1. listen| | 9 "
1 j"| Receiver |>+ Decryption |
2. update §

|

|

I

|

|

I

|

|
@ I

|

—_— — | o
: L L] L. 4. select seeds
Consensus Protocol « Shroadeast I [Tp : 5| mutate
— ublisher Encryption Content Mutator
) 1l - Eneryption [i
2

3) Message Guider determines next message type based on the state model and updates it.

3.2 determine next
message type

Construction & Updating

Nedeo _pu Bm P

Istate,, 5 AStatey |- Statec, | dstate,,

i_Bug Analyzer
jmonitor : | Bug Detection ‘ | Crash Analysis | |Bug Reproducel

13

LOKI Step 4: Seed Selection

Blockchain System I

Consensus Protocol

caae”

1. listen

ﬁi"| Receiver |>+ Decryption |

i,
roadcasi

|State Model Builder |

Message Guider] i

311 guid; .
——] Target Determination
3.2 determine next
imessage type

2. update ¢
Construction & Updating

Nedeo P Pm Pa Pn P

et g fteen s fotec g efstatn) .- ot

4. select seeds

|
|
I
|
|
|
|
|
|
|
|
|
I
|
|
t
|
|
|
|

|
|
|
|
I
|
|
I
I
|
|
|
|

6.
T
T

[monitor

Publisher |<—| Encryption

Bug Analyzer

5| mutate | S
l r Content Mutator
1 1

| Bug Detection ‘ | Crash Analysis | |Bug Reproduce

4) LOKI selects the corresponding seeds from the message pool with the chosen message type.

14

LOKI Step 5: Message mutation

ELOCc SySien I |State Model Builder | _____ i Message Guider] i

1. listen I 311 guid; .
— | —— Target Determination
|
|
.@ |
|
@ |
|
|
.@ I
|
: : 4. select seeds
Consensus Protocol _6-broadcas H Publisher T — ontent Mutator
e e e e 3
L —— i
7. monitor : | Bug Detection ‘ | Crash Analysis | |Bug Reproducel !

Receiver |>+ Decryption |
2. update ¢

Construction & Updating

3.2 determine next
message type

Nedeo P Pm Pa Pn P

«statey,

5) Content Mutator mutates seeds according to message specifications and generates new messages.

15

LOKI Step 5: Message mutation

Numeric type mutation:

specy
. Decoder <type,, size;>

+ Randomly convert it to another number. St | (protobut,rLe) [| <types, sizez>
+ Especially, to border values such as l

INT_MAX and 0. PrePrepare P, PrePrepare Specification PrePrepare P,

. . + View:uint64 = 0x08 l recursively + View:uint64 = 0xf408
Stnng type mUtatlon: + Proposal:struct{Proposal} = prop mutate ”1+ Proposal:struct{Proposal} = prop'

. . + PrevSigns:[]*Signature = signs + PrevSigns:[]*Signature = newsigns

» Bytes/bits flip. Proposalspecifcation | | .
Structure type mutation: An example of message mutation

* Recursively mutates each field.

<uint64, 8>,|<struct{<uint64,8>,<string,8>...}, unfixed> [<signature, 32> ...

Cryptography field mutation:

numeric structure cryptography
» Use the inherent cryptographic components.

» Mutate other content before the cryptography An example of structure type mutation

related fields.
16

LOKI Step 6: Send mutated messages

Blockchain System I

|State Model Builder |

Message Guider

T
1. listen| | ; ; 3!1guid; .
1 j"| Receiver |>+ Decryption | ——] Target Determination
2. update ¢ 3.2 determine next
Construction & Updating pressage bype
e _pe Pn et Por Pay

Istate,, 5 AStatey |- Statec, | dstate,,

daaa”

Consensus Protocol 'I

6) Finally, LOKI encrypts and signs the messages and then sends them.

1

)

|

|

|

|

|

|

|

|

|

|

|

|

|

|

T

i,

roadcasf |
T

Il

TBugAmalyzer
! | Bug Detection ‘ | Crash Analysis | |Bug Reproducel

=

. monitor’

17

LOKI Step 7: Bug analyzer monitoring

ELOCc SySien I |State Model Builder | _____ i Message Guider] i

1. listen I ; ; 3!1guid; .
1 j"| Receiver |>+ Decryption | ——] Target Determination
2. update¢

|
|
I
|
|
I
|
|
@ I
: L F L. 4. select seeds
Consensus Protocol « Shroadeast I [Tp .| O mutate
s ublisher Encryption Content Mutator

7) The bug analyzer monitors the execution information of blockchain system all the time.

3.2 determine next
message type

Construction & Updating

Nedeo _pu Bm P

=)

Bug Analyzer
| Bug Detection ‘ | Crash Analysis | |Bug Reproduce I

=

. monitor’

18

LOKI Step 7: Bug analyzer monitoring

2 _types of bugs supported

Memory-related bugs:

ASAN instrumented. Debug with
GDB/LLDB.

Lead to node crash.

Consensus Logic bugs:

Liveness bugs and Safety bugs.

Lead to consensus failure or
invalid data store.

Node
Execution

Bug Analyzer

Memory
Monitor

Consensus
Monitor

memory
node crash related bug
down ? found

crash dump

variable

Safety bug

changed:

> Liveness bug

message
sequence

|

re-execute &
reproduce

19

20 Bugs Found in 4 Blockchain Systems

20 bugs in 4 blockchain systems with 9 CVE ids

TABLE IL PREVIOUSLY-UNKNOWN CONSENSUS PROTOCOL VULNERABILITIES FOUND BY LOKI IN 24 HOURS ON 4 COMMONLY-USED BLOCKCHAIN.

Platform Bug Type Bug Description Identifier

1 Go-Ethereum Invalid Memory SIGBUS: read a invalid memory when generating DAG on multiple nodes. CVE-2021-42219
2 Go-Ethereum Invalid Memory SIGSEGV: nil pointer in newBlockIter during block sync with fast mode. CVE-2021-43668
3 Go-Ethereum Data Race Resource access conflict in dialScheduler when miner enters network. Bug#23965

4 Go-Ethereum Unexpected Panic VM crashes when executing multiple transactions in system contract EIP-1283. Bug#23866

5 Go-Ethereum Liveness The chain indexer that caused repeated “chain reorged during section processing” errors. Bug#24447

6 Diem Unexpected Panic The address conflicts with other processes when restarting consensus nodes. Bug#1339041

7 Diem Unexpected Panic The validator node try to fetch an unreachable hash from cache. Bug#9753

8 Diem Liveness Malicious nodes cause the failure of processing some transactions and stucks the chain Bug#10228

9 Fabric Unexpected Panic Orderer crashes down after receiving an invalid config message. Bug#15828

10 Fabric Invalid Memory Leader fails after receiving a nil payload message forwarded by followers. CVE-2021-43667
11 Fabric Unexpected Panic Orderer breakdowns when marshalling an invalid envelope formation. Bug#18529

12 Fabric Unexpected Panic Leader in consensus protocol crashes down when parsing an invalid Envelope Header. ~ CVE-2021-43669
13 Fabric Safety Repeatedly creating channel after receiving requests with the same Channel name. CVE-2022-45196
14 FISCO-BCOS Memory Unfree Memory is not freed when dealing with sustained consensus packets. CVE-2021-35041
15 FISCO-BCOS Unexpected Panic Private key cannot be parsed by consensus protocol. CVE-2021-40243
16 FISCO-BCOS Bad Free Front service of a consensus node attempts to free an unallocated memory. Bug#72

17 FISCO-BCOS Invalid Memory Read an invalid memory when starting a block sync process. Bug#71

18 FISCO-BCOS Liveness Bug in checking txpool limit when receive transactions from p2p. CVE-2021-46359
19 FISCO-BCOS Liveness Block not be executed if the synchronization execute it before the addExecutor. Bug#2132

20 FISCO-BCOS Safety A fake proposal’s header leads to the successful consensus of illegal blocks. CVE-2022-28936

QeThereum

~1~ HYPERLEDGER

*¢" FABRIC

o N =
AscoBoos 2 diem

20

Case 1: FISCO-BCOS Consensus Protocol Bug (CVE-2021-35041)

Node Killed by OS when handling malicious packets

Listing 1: Code that constantly allocate new memory *+ The node will consistently allocate for a big
1| ssize_t P2PMessageRC2::decode(const byte memory and be k|"ed by the OS f|na"y

* buffer, size_t size){ . i
2 * An attacker can craft a packet with a big value of
3 m_length = ntohl (x((uint32_t*)&

buffer [offset])); m—length
4 if (size < m_length) {

5|// the value of PACKET_INCOMPLETE is 0
6 return dev::network:: 00
PACKET_INCOMPLETE;

6000

// code for handling the decoding result
ssize_t result = message->decode(s->
m_data.data(), s->m_data.size());

7
8
9}
0
1

000 e

memory used (in Mig)

13| else if (result == 0) { 2000
14| // m_length size of memory is allocated
15 s->doRead () ;

16 break; 3

)
time (in seconds)

21

Compared with Existing Tools: Peach, Fluffy & Twins

Coverage Comparison among other tools

TABLE III. BRANCH COVERAGE OF LOKI AND OTHER TOOLS. ’-’
MEANS THAT THE TOOL DOES NOT SUPPORT THE BLOCKCHAIN.

Go-Ethereum Diem Fabric FISCO-BCOS

LOKI 10058 31534 12117 14794
Peach 6794 25018 9182 8870
Fluffy 3566 - -

Twins - 8053 - -

22

Compared with Existing Tools: Peach, Fluffy & Twins

Coverage Trends Comparison among other tools

. (a) Branch coverage on Go-Ethereum . (b) Branch coverage on Diem
® 10 " -10
80 &0 —
5] 11 [DoLoKr 48% & 3| |loLokr 25%
2 gl |00Peach 1 J0Peach
o | [DeFw o 00 Twins
O s Ty 1% O 2 20%
5 S
s 04 46% =}
8 S 1
& H M & ol [= = = =] 5%
20 40 60 80 100 120 20 40 60 80 100 120
. (c) Branch coverage on Fabric . (d) Branch coverage on FISCO-BCOS
10 -10
o ()
&0 =)
< 12| [J0LoKI . s & 9| [Dookr| 66%
a
Q [opeach Q [oPeach
1) 1)
8 . 3% 8§ 1 — 65%
< =
% H H H H H - § 05 —‘ H —‘ —‘ —‘ o
0.8
ks kol
a 5% &
20 40 60 80 100 120 20 40 60 80 100 120

Bars refer to the coverage while the lines describe the increment percentage of LOKI compared with Peach.

23

Multiple LOKI nodes

Coverage under different numbers of LOKI nodes

Results ° 10% (a) Ethereum ° 10¢ (b) Diem
&0 . o0 .
< o
— 1 -
+ Coverage finally converges 2 00 2 22
at a similar value. (with +- S ™ — ok 56 —io]
5% of the variance) £ 0.8 — 2LOKI £ 24 —2.LOKI
£ 0.7 — 1-LOKI £ 929 — 1-LOKI
+ More LOKI nodes may & 0 30 60 90 120 & 0 30 60 90 120

slightly accelerate the Time [min] Time [min]
coverage increment. -10° (¢) Fabric 104 (@ FISCO-BCOS

[—3-Lokt

— 2-LOKI

— 1-LOKI — 1-LOKI

0 30 60 90 120 -0 30 60 90 120
Time [min] Time [min]

— 3-LOKI
— 2-LOKI

Branch Coverage
—
Branches Coverage
—_
=N

24

* More Oracles

» Hard fork?

* Leader fairness?
» Cooperation among LOKI nodes

» Share the message pool

» Targeted at the same nodes
* More Blockchains

* Quorum

25

Thank You

Please contact: mafc19@mails.tsinghua.edu.cn for more details

26

mailto:mafc19@mails.tsinghua.edu.cn

