

Access Your Tesla without Your Awareness

Compromising Keyless Entry System of Model 3

Kun Jiang¹, Xinyi Xie¹, Rui Dai¹, Lihui Wang¹, Jun Lu¹, Qing Li¹² and Jun Yu¹²

¹ Security Laboratory of Shanghai Fudan Microelectronics Group Co. Ltd, China

² State Key Laboratory of ASIC & System, Fudan University, Shanghai, China

Network and Distributed System Security Symposium, NDSS 2023

Motivation & Who we are

Motivation

- My colleague bought a Model 3 for his wife (during sales promotion) ^_^
- Model 3 has equipped with Key Card, BLE Key Fob and Phone Key

Motivation & Who we are

Motivation

- My colleague bought a Model 3 for his wife (during a sales promotion) ^_^
- Tesla introduced Key Card, BLE Key Fob and Phone Key

♦ Familiar with

- Contactless Smart Card
- *RFID* (**ISO 14443**)
- Side Channel Attack and Countermeasures
- Cyber-Physical Systems Security

Key Card & Phone Key

Pairing and Authentication Protocols Recovery

Key Card IC Details

- **◆** Java Card Manufactured by NXP
 - Banking Payment
 - National ID
 - Electronic Passport
- ◆ Common Criteria EAL 5 or 6 + Certified
 - RSA, ECC, AES
 - Simple Power Analysis Protection
 - Differential Power Analysis Protection
 - Timing Analysis Protection
 - Fault Injection Protection

Key Card Sniffer Setup

- ◆ ISO 14443 Spy
 - MP300 TCL3 or NomadLAB Contactless spy tool
 - Set up as the picture

◆ Powerful Protocol Analyzer

- MPManager or RGPA Software
- Use 3 Key Cards for testing
- Communication data logging

Key Card

- **♦** Challenge and Response Authentication Protocol
 - Exchange ECC 256bit Public Key
- Something Unknown
 - Elliptic Curve Parameters
 - Response = g(Challenge), g(*) Function

Key Card & Phone Key

- **♦** Something in Common
 - Elliptic Curve Parameters and Key Pair Format
- **◆** Tesla Mobile App Contains More Information
 - Bluetooth HCl Logs
 - Cryptography Operations
- **◆** Widely Used Tools for Static Analysis & Dynamical Analysis
 - JDAX, IDA, Frida,...

Key Card & Phone Key

- Elliptic Curve Parameters
 - NIST P256 Curve Parameters
- Cryptography Operations
 - ECDH, AES, SHA-1
- \bullet g(*) Function
 - Related to the ECDH share secret and AES operations
 - Re-established with guessing and a programmable Java card for testing

Keycard Pairing and Authentication

Keycard Pairing and Authentication

Keycard Pairing and Authentication

The vehicle does not verify Keycard certificates. It makes unofficial products work.

Unofficial Products may lead to threats

- **◆** A Customized Key Card for POC
 - Generate a key pair based on NIST p-256
 - Support related cryptography operations
 - Back door command to read the ECC private key

◆ Other Unofficial products leakage example

UNCATEGORIZED · TESLA

Teen hacker says he's found way to remotely control 25 Tesla EVs around the world

BY KATRINA NICHOLAS, JORDAN ROBERTSON AND BLOOMBERG January 12, 2022 at 4:53 PM GMT+8 Updated January 13, 2022 at 5:27 PM GMT+8

Phone Key Pairing

Phone Key Keyless Entry Authentication

Security Analysis

- Private Key Protection
 - Key Card and Vehicle: Private keys are both securely stored in a Secure Element (SE)
 - Phone Key: Protected by KeyStore (Android)
- **◆** Replay Attack Protection
 - Phone Key involves the counter by AES-GCM Mode
- Potential Issues
 - Dose not enable the BLE link layer encryption
 - Vehicles use Static BLE MAC Address
- The **update of token** *G* does not depend on the change of connection states. It fixed over a couple of hours

Susceptible to Relay or MitM attacks

Two Attack devices

- One fake as the Vehicle, One fake as the Phone Key
- Real-time message relay

One Attack device

Round-trip message relay

BLE Relay Attack

GATT Layer Relay: Gattacker (S J.), Btlejuice (D C.)

- Not support for link layer encryption
- Detectable added latency

Link layer relay: Sniffle Relay (NCC Group). 2022.

- Can circumvent link layer encryption.
- Need customize link layer stack

Analog Relay: Staat et al. 2022

- Simple hardware, low latency
- Limited relay distance

BLE Relay Attack

GATT Layer Relay: Gattacker (S J.), Btlejuice (D C.)

- Not support for link layer encryption
- Detectable added latency

Link layer relay: Sniffle Relay (NCC Group). 2022.

- Can circumvent link layer encryption.
- Need customize link layer stack

Analog Relay: Staat et al. 2022

- Simple hardware, low latency
- Limited relay distance

Attack Phases

- **♦** BLE MAC Spoof
 - Get the MAC address and Public key of model 3 according to the BLE advertisement
 - Change the MAC address of a attack device same as Model 3

Attack Phases

Attestations Capture

- approaches the Phone Key to get attestation *A* and relay it
- Vehicle side attack device gets the token *G* and relay it
- The attacker will get attestation [A, B] as a pair

Attack Phases

Unlock and Access

- Attack will use Attestation pairs to unlock and access the Model 3
- Token G fixed for hours will lead to multiple access

Proof of Concept

Customized Android Device

- Customized the BLE firmware and disabled MAC address rotation during advertising
- Customized the android framework and enable arbitrary modify the BLE MAC address.
- TESmLA application performs BLE GATT relay attack

Devices	Model	OS version	Software Version
Attack device B	Google Pixel 5A	customized Android 11	TESmLA 2.0
Attack device A	Samsung Galaxy S9	Android 11	TESmLA 2.0
Phone Key	Motorola Edge S	Android 11	Tesla 4.23
	iPhone 12 Pro	iOS 15.4.1	Tesla 4.14.1
Vehicle	Model 3	v11.0(2022.4.5.1)	

• It happens silently in the background and out of awareness of the car owner.

Countermeasures

PIN to Drive

- It is worth noting that this feature disobeys the intention of PKES
- It is not the default setting of Model 3

◆ Refresh the Token *G* Frequently

• To a certain degree, refreshing the token fast enough will reduce the attack window

Enable BLE link layer encryption

- Enabling BLE encryption will improve the difficulty of analysis and device spoofing
- However, it is circumvented by NCC Group, as mentioned in previous related works

◆ TOF based secure ranging (UWB)

• The PKES system can employ the Time of Flight (TOF) to avoid MitM or Relay attacks

Disclosure

◆ Dec. 2021

Begin the Project.

◆ Mar. 2022

Inform Vulnerabilities To Tesla

◆ Aug. 2022

CVE-2022-37709

♦ Other disclosure

https://github.com/fmsh-seclab/TesMla

Thanks

We thank the anonymous reviewers for their constructive and helpful comments and feedback

Thank Sultan Qasim Khan from the NCC Group for sharing their contributions to BLE Sniffle Relay

Contacts

Jiang Kun jiangkun@fmsh.com.cn

Xie Xinyi xiexinyi@fmsg.com.cn

Questions?

