EEEEEEEEEEEEEEEEEE
IIIIIIIIIIIIIIIIIII

Accountable Javascript
Code Delivery

llkan Esiyok* (CISPA),

Pascal Berrang (University of Birmingham and Nimiq),
Katriel Cohn-Gordon (Meta),
Robert Kuennemann (CISPA)

NDSS 2023, San Diego

v

-, . Motivation

Web application
HTML i
First access
Js Js Js
Web server Browser

The web is ephemeral

v

-, . Motivation

Web application
h
HTML Some other access
or
some other user
Js Js
Web server Browser

The web page looks the same but the active content has changed

v

-, . Motivation

A compromised or malicious web server can easily target classes of users:
« The web server might insert malware based on browser fingerprint

Web application

HTML

Js Js

Malicious Web server Browser

VI

-, . Motivation

A compromised or malicious web server can easily target classes of users:
« The web server might insert malware based on browser fingerprint
 The server might use the browser for cryptojacking

Web application

HTML

Js Js @

Browser

Malicious Web server

v

-, . Motivation

A compromised or malicious web server can easily target classes of users:
« The web server might insert malware based on browser fingerprint
 The server might use the browser for cryptojacking

Web application

HTML

Js Js w

Browser

Malicious Web server

There is a lack of trust between developers and users in web infrastructure

v

-, . Security goals

« Our target audience: websites that want to establish and maintain trust to their
users

« Examples:

\"I

-, . Security goals

« Qur target audience: websites that want to establish and maintain trust to their
users

« Examples:

P M .I R wants users to trust that they
“ roton al really encrypt their emails

v

-, . Security goals

Our target audience: websites that want to establish and maintain trust to their

users
Examples:

- k' Proton Mail

v

v

wants users to trust that they
really encrypt their emails

wants users to trust that they
don’t have access to users’ funds

RAR/R

SV,

Security goals

%1\

« Qur target audience: websites that want to establish and maintain trust to their
users

« Examples:

v

u pn Mail wants users to trust that they
fOtOﬂ Ql really encrypt their emails

wants users to trust that they
don’t have access to users’ funds

v

Code Verify : allow users to trust
that the web client keeps their

v

S

WhatsApp messages secret

10

v

N /
-

Risk mitigation strategies

%>

T

v

-, . Risk mitigation strategies

« Auditing

@ Works for App stores

& Malicious server can choose to load unaudited code in runtime

Browser
‘ unaudited code

@

MII
o

-
L \
b g N
App Store Audit Web server External audit

: 2 . af

Developer Developer

v

N /
-

Risk mitigation strategies

%>
« Accountability
@ Works for App stores (Developers can be held accountable for malicious code)
@ No public record of the code and the developer's identity
Ph;ne
‘ Browser
. I
@ - () un I(Dne:v?llr?zre;;ig: : :3 be
matched with code
App Store Developer ID <> Code Web server
= =
13 = =

Developer Developer

VI

., . Accountable JS

Provide accountable delivery of active content, using :

14

VI

., . Accountable JS

Provide accountable delivery of active content, using :

Efficient and easy
code signing

Q

Proof of origin

15

VI

& 7
P
%>

16

Accountable JS

Provide accountable delivery of active content, using :

Efficient and easy Public transparency
code signing Logs

(C

Proof of origin

Proof that everyone
receives the same
code in a timeframe

VI

& 7
P
%>

17

Accountable JS

Provide accountable delivery of active content, using :

Efficient and easy Public transparency
code signing Logs

(C

Proof of origin

Proof that everyone
receives the same
code in a timeframe

Sub-protocol for
non-repudiable

—)
—

Proof that content was
received by individual
user

ACCOUNTABLE JS

v

., . Accountable JS

ﬁ

o

Manifest

A

Web application

HTML

Js Js Js

Web server Browser

* Provide a signed manifest enumerating all the active content

* Browser extension
* Measures the delivered active content and compares with the manifest

18

VI

., . Accountable JS

« Separate the developer and the web server

« Use public transparency logs

n @ <URL, sign(skD, @ verify(pkD, @)=1

" r
| 3 < sign(skL, <URL, @ >) = Q
Developer | @ @ Log Manifest

Manifest

19

Web server

v

\Il/

_ Manifest file

%>

 Simple text file in JSON format

« List of metadata for each active content in the web page

manifest.json

{
"url": "https://helloworld.com/index.html",
"name'": "Hello world application",
"manifest_version": "v1.0",
"description": "",
"contents": [

{
""seq": 0,

"type": "inline",

"load": "sync",

"hash": "sha256-XTOyF1DRjbn5ymbnsaslnag4+53huda@TZ3bRPIcrAA=",
"dynamic": false,

"trust": "assert"

20

v

-, . Manifest file

e Each active content metadata must have a trust declaration

« The compliance check method is decided based on trust value

21

v

-, . Manifest file

 Trust values: assert

 The developer provides hash of active content and asserts that it behaves as
intended

22

v

-, . Manifest file

 Trust values: assert

 The developer provides hash of active content and asserts that it behaves as
intended

« Measurement —compliance check:

« Compare the delivered hash against the hash in the manifest

23

v

-, . Manifest file

 Trust values: assert

 The developer provides hash of active content and asserts that it behaves as
intended

Measurement — compliance check:

Compare the delivered hash against the hash in the manifest

e (Case studies:

24

v

-, . Manifest file

 Trust values: assert

 The developer provides hash of active content and asserts that it behaves as
intended

Measurement — compliance check:

Compare the delivered hash against the hash in the manifest

e (Case studies:

Self contained applications : WhatsApp web

25

v

-, . Manifest file

 Trust values: assert

 The developer provides hash of active content and asserts that it behaves as
intended

Measurement — compliance check:

Compare the delivered hash against the hash in the manifest

e (Case studies:

Self contained applications : WhatsApp web

Developer vouches for their own content

26

v

-, . Manifest file

 Trust values: assert

 The developer provides hash of active content and asserts that it behaves as
intended

Measurement — compliance check:

Compare the delivered hash against the hash in the manifest

e (Case studies:

Self contained applications : WhatsApp web

Developer vouches for their own content

Trusted third party code : JQuery

27

v

-, . Manifest file

 Trust values: assert

 The developer provides hash of active content and asserts that it behaves as
intended

Measurement — compliance check:

Compare the delivered hash against the hash in the manifest

e (Case studies:

Self contained applications : WhatsApp web

Developer vouches for their own content

Trusted third party code : JQuery

Developer pins the third-party code to a precise version that was
audited

28

v

-, . Manifest file

* Trust values: delegate

 The developer refers the trust to the third-party that provides the element

29

v

-, . Manifest file

* Trust values: delegate
 The developer refers the trust to the third-party that provides the element

 Now the third party is taking the responsibility for this code

30

v

-, . Manifest file

* Trust values: delegate
 The developer refers the trust to the third-party that provides the element
 Now the third party is taking the responsibility for this code

 The developer doesn’t want to vouch for the third-party

31

v

-, . Manifest file

* Trust values: delegate

 The developer refers the trust to the third-party that provides the element
 Now the third party is taking the responsibility for this code
 The developer doesn’t want to vouch for the third-party

« Or she always wants to use the latest version

32

v

-, . Manifest file

* Trust values: delegate

 The developer refers the trust to the third-party that provides the element
 Now the third party is taking the responsibility for this code

 The developer doesn’t want to vouch for the third-party

« Or she always wants to use the latest version

« Case study:
* The third-party willing to vouch for their code : Nimig Wallet
< > ¢ (.

Cryptocurrency
shop

Nimiq Wallet
iframe

33

v

-, . Manifest file

 Trust values: blind-trust

 The developer blindly trusts the active content without identifying the code

34

v

-, . Manifest file

 Trust values: blind-trust

 The developer blindly trusts the active content without identifying the code

 The developer is responsible to properly sandbox that code

35

v

-, . Manifest file

* Trust values: blind-trust
 The developer blindly trusts the active content without identifying the code
 The developer is responsible to properly sandbox that code

« Measurement —compliance check:

« Compare delivered sandbox against the sandbox in manifest

36

v

-, . Manifest file

 Trust values: blind-trust

 The developer blindly trusts the active content without identifying the code
 The developer is responsible to properly sandbox that code
« Measurement —compliance check:
« Compare delivered sandbox against the sandbox in manifest
« Case study:

 The third-party code through Adbidding blind-trusted :
* Adsense (blind-trust + sandbox) + Nimig Wallet (delegate)

37

v

-, . Manifest file

 Trust values: blind-trust

 The developer blindly trusts the active content without identifying the code
 The developer is responsible to properly sandbox that code
« Measurement —compliance check:
« Compare delivered sandbox against the sandbox in manifest
« Case study:

 The third-party code through Adbidding blind-trusted :
© Adsense (blind-trust + sandbox) + Nimig Wallet (delegate)

38

v

-, . Manifest file

 Trust values: blind-trust

 The developer blindly trusts the active content without identifying the code
 The developer is responsible to properly sandbox that code
« Measurement —compliance check:
« Compare delivered sandbox against the sandbox in manifest
« Case study:

 The third-party code through Adbidding blind-trusted :
© Adsense (blind-trust + sandbox) + Nimig Wallet (delegate)

@ Adsense (blind-trust) + Nimig Wallet (delegate + sandbox)

39

Ve,

Measurement procedure

« Content scripts collect active content metadata

top-level content script @
EERE =
: J

« > cC

iframe's a y
content script — rpostMessage
1. monitor DOM E external | ..

2. pass modifications @ ----§------- '

external | ...

HTML active

nOdes Mutation Content external
Observer ™ external

40

\"I

-, . Measurement procedure

- Compliance check : measures the active content and compares w/ manifest

(
€ -> C | < | e I O, I
global active | g
. content list eternal | -
top-level content script A oxermal | -
SRR =
J signed
manifest
iframe’s e M
content script . ?pOSt €55a8¢ generateMan Y :
| < ifost compliance
1. monitor DOM : external | .. (developer checker
e : mode) (user mode)
2. pass modifications @ --- -8 ------ external | .
_ green / red
‘ manifest signal
r % A
HTML active
nodes : content | external | ...
DOM . Mutation - |
Observer external | .. L Q

41

v

S °
- Evaluation
%0/,1 N

« Compatibility and performance analysis on the case studies

« How much does Accountable JS extension affect page load time?

* Lighthouse metrics:
* Time until browser paints the first pixel,

+ Total blocking time

42

v

-, . Evaluation results

Case study First pixel Total blocking time
Baseline Accountable JS Baseline Accountable JS
Trusted third-party 462 +21 0 +0
(IQuery)
Delegate trust 262 -10 172 +87
(Nimig Wallet)
Untrusted third-party 747 +9] 159 +77
(Adsense + Nimig Wallet)
Total page load

Baseline Code Verify Accountable JS

WhatsApp Web 204 +16 +40

« Baseline is all extensions disabled
e All numbers are in milliseconds

« Change below 100 ms is considered imperceptible

43

v

-, . Related work

« Content Security Policy (CSP)

@ List of valid sources

YA

v

-, . Related work

« Content Security Policy (CSP)

@ List of valid sources
© Unknown resources denied

45

v

-, . Related work

« Content Security Policy (CSP)

@ List of valid sources
© Unknown resources denied
@ No accountability

46

v

-, . Related work

« Content Security Policy (CSP)

@ List of valid sources

©@ Unknown resources denied

@ No accountability

©® Not designed to know the order of resources in the webpage

 Resource A loaded before B might mean something different from
B then A

* This can be used for microtargeting

47

v

\Il/

" Related work

%>

« Content Security Policy (CSP)

@ List of valid sources

©@ Unknown resources denied

@ No accountability

©® Not designed to know the order of resources in the webpage

 Resource A loaded before B might mean something different than
B then A

* This can be used for microtargeting
@ No delegation support

Manifest —

|
\/
T Delegated

Manifest

v

45 |/vvv

v

-, . Related work

« Code Verify from Meta

© Likewise implementing accountability for active content

We're publishing the libraries
E—— — @ for WhatsApp 2.2202.8and ~——> é

- @ they hash to 6405e...46dd98fa %
Gotit! s
&———— P.S.If youtry to change the hash
WhatSApp for this version, we’'ll ignore you. Cloudflare
Servers Audit Endpoint

N 4

Can | get the latest What's the hash for
JavaScript libraries WhatsApp version

for WhatsApp? 2.2202.8-?

Sure, here'’s the
JavaScript code for It's 6405e...46dd98fa
version 2.2202.8

N

WhatsApp Web user
with Code Verify installed

e \
’ \
s \
i b
° OR o
The hash the extension The hash the extension computed
computed matches the hash | doesn't match what | received: my
49 received from a trusted third local copy isn't what WhatsApp
party. expected, and may have been

tampered with.

v

-, . Related work

« Code Verify from Meta

© Likewise implementing accountability for active content

@ Manifest is hashed not signed -> no accountability

50

v

-, . Related work

« Code Verify from Meta
© Likewise implementing accountability for active content
@ Manifest is hashed not signed -> no accountability
@ No history of versions -> no transparency

« Public cannot know how often the versions change

51

v

- Conclusion

%>

« Accountable JS

52

v

-, . Conclusion

« Accountable JS

@ improve the trust on security-critical websites

53

v

-, . Conclusion

« Accountable JS
@ improve the trust on security-critical websites

© enhance security by deterrence

54

v

-, . Conclusion

« Accountable JS
@ improve the trust on security-critical websites
© enhance security by deterrence

@ increase transparency

 public can see how their data is used

55

v

-, . Conclusion

56

Accountable JS

v

o
o

Improve the trust on security-critical websites
enhance security by deterrence

increase transparency

 public can see how their data is used

become part of the browsers some day

v

- Conclusion

%>

 What will you find in the paper?

57

v

- Conclusion

%>

 What will you find in the paper?

« Details about Accountable JS protocol flow

58

v

-, . Conclusion

 What will you find in the paper?
« Details about Accountable JS protocol flow

« Case studies and evaluations on CSP and Code Verify

59

v

-, . Conclusion

 What will you find in the paper?
« Details about Accountable JS protocol flow

« Case studies and evaluations on CSP and Code Verify

« Threat model and assumptions

60

v

-, . Conclusion

 What will you find in the paper?
« Details about Accountable JS protocol flow
« Case studies and evaluations on CSP and Code Verify
« Threat model and assumptions
* Protocol verification details

 Automated protocol verification : Tamarin and SAPIC

61

I
\\/

- _ End

%>

 Thank you very much

62

v

-, . Manifest file

63

« Active content types

-~

o

inline

src attribute

~

javascript without

/

-

N\

external

outsourced

\

the scripts that are

/

event_handler

~

html element that
includes e.g. onclick

/

o

/

-

iframe

N

might have its own

S

manifest

J

v

-, . Manifest file

64

Browser

Window Load Event

« Execution order and static-dynamic content

Manifest

Web application
HTML

JS JS JS

\4

Web application

HTML

JS [JS] [JS]

Web server

Static Elements

Create new JS
element

\ 4

Web application

HTML

JS] [JS] [JS

\4

JS |=

Dynamic Elements

v

., . Protocol verification

« Security protocol

» Establish security guarantees - formal methods

65

v

., . Protocol verification

« Security protocol
» Establish security guarantees - formal methods

« Analysed with Tamarin Prover + SAPIC

66

e,

N
>

%>

Security properties

67

v

-, . Security properties

Accountable JS Code Verify

« Authentication of origin « Authentication of origin
 Transparency

« Accountability Non-accountability
 End-to-end guarantee « End-to-end guarantee

Authentication of origin : The client executes active content only if the corresponding manifest
was generated by the honest developer unless the developer is corrupted (or Cloudflare in CV),
Transparency : If the client executes code then its manifest is present in a transparency log,
Accountability : When the public accepts a claim, then even if the client was corrupted,

the code must exist in the logs and the server must have sent that data

Non-accountability : The data provided to the client is not sufficient to prove they received

certain content from the web server, even if web server and Cloudflare are honest.

End-to-end guarantee : Only by corrupting the developer it is possible to distribute malicious code.

68

v

-, . Security properties

« Accountability and authentication of origin
« Aclient executes the code only if it was made public by the developer

69

v

-, . Security properties

Accountability and authentication of origin

A client executes the code only if it was made public by the developer

 Non-repudiation of reception

A client wants to present false claim about the executed code

70

v

-, . Security properties

« Accountability and authentication of origin

« Aclient executes the code only if it was made public by the developer

 Non-repudiation of reception

« Aclient wants to present false claim about the executed code

« Accountability of latest version

« Aclient wants to ensure he is delivered the latest code

71

v

-, . Security properties

« Accountability and authentication of origin

« Aclient executes the code only if it was made public by the developer

 Non-repudiation of reception

« Aclient wants to present false claim about the executed code

« Accountability of latest version

« Aclient wants to ensure he is delivered the latest code

Security properties of the Code Verify are discussed in the paper

72

e,

-, . Transparency logs

« Clients can verify they received the latest and the same version of the code
as any other user

« Public append-only log:

 Trusted, efficient, available
 Provides non-equivocation
« Third-party auditors and monitors keep it honest

« Trillian : allows to prove append operations efficiently

« Misbehaviour can be detected by trusted public auditors or by honest
logs distributing such proofs (with gossiping)

73

I
\\/
=

%>

Transparency logs - availability, scalability

« Use load balancing, avoid single point of failure
« Stapling method decreases the number of requests to the log

 Websites that frequently update active content:

Websites that frequently update their active contents can
create significant burden on the log size. We calculate ap-
proximately how many times each log can be updated for a
limited time and space. We assume a non-leaf node overhead
i1s approximately 100 bytes and for the leaf nodes it is 700
bytes(signature 600 bytes + 100 bytes). If a log provider
has 100 TB of space for 5 years, it can contain 137 billion
signatures in total. To make sense of this number, take the
following example. We start with a log of 10M URLs with
eight updates per month on average. The number of URLs
also increases exponentially at a rate of 1% with each update
(i.e. also eight times per month). ° This number would be well
below 137 billion signatures.

74

v

., . Limitations

« Active content injected by other browser extensions
« Data-only attacks

 e.g. modified button labels or redirect form URLS, change recipient’s wallet
address during payment transaction

75

~N\°Ipp,,
SY% o protocol flow

@,
JIL’IL IL\\\

Code stapling

Ledger

Web Server Developer
(¢, v) := measure(HTML)
com = sign(skp, (¢, v, URL))
>
si9r, sig; = sign(skr, com)
€ <

76

~\7] 7,
&% . Protocol flow
-

-
@’IL lL\\\

e Code delivery

Client Web Server

n & {0,1}*| sign(skc, (n, URL))
>
gy = sign(skw, (HTML', n, sig })

). (@ a0) = measﬁre(HTML’)
2) veﬂf(pkW) SigWa (HTML’, n, 37’9L>)
3) verif(pkL, SigLa <90,9 vla URL)))

77

