HeteroScore: Evaluating and Mitigating Cloud Security Threats Brought by Heterogeneity

<u>Chongzhou Fang</u>, Najmeh Nazari, Behnam Omidi, Han Wang, Aditya Puri, Manish Arora, Setareh Rafatirad, Houman Homayoun, and Khaled N. Khasawneh

March 2, 2023

Contents

- Introduction
- Threat Model
- HeteroScore
- Evaluation
- Discussion
- Conclusion

Introduction

Motivation

Clouds are becoming increasingly heterogeneous

- New applications being invented
- New devices being introduced
- Performance-cost trade-off
- 4 ..

Motivation

Micro-architectural attacks have become a threat to cloud users

- Side-channel attack
- Transient execution attack
- Rowhammer attack
- 4 .

A Recap of REPTTACK¹

Co-location: an important prerequisite of micro-architectural attacks

senter: Chongzhou Fang NDSS'23 March 2, 2023 6/32

¹ Fang, Chongzhou, et al. "REPTTACK: Exploiting Cloud Schedulers to Guide Co-Location Attacks." NDSS/22.> 🔞 🖹 > 4 📱 > 4 🚆 > 4 🧸 > 9 0 0 0

A Recap of REPTTACK¹

Co-location: an important prerequisite of micro-architectural attacks

Repttack¹

Motivation: to Quantitatively Measure Security Threats

How insecure is your cluster when facing this kind of attack?

We need a quantitative metric that can:

• reflect the heterogeneity of a cluster

Motivation: to Quantitatively Measure Security Threats

How insecure is your cluster when facing this kind of attack?

We need a quantitative metric that can:

reflect the heterogeneity of a cluster

Contributions:

- Heterogeneity Score (HeteroScore)
- Scheduler-level mitigation technologies inspired by HeteroScore

Cloud Provider

Neutral

Cloud Provider

Neutral

Attacker

- Can only perform actions like non-malicious users
- Goal: co-locate with a specific target victim instance

Cloud Provider

Neutral

Attacker

- Can only perform actions like non-malicious users
- Goal: co-locate with a specific target victim instance

Our Focus

Only on scheduler level, not on hardware level

HeteroScore

Presenter: Chongzhou Fang

Definition and Explanation of HeteroScore

Node representation: multiple 'label-value' description (d-dimension here)

$$\mathbf{N}^{(i)} = (x_1^{(i)}, x_2^{(i)}, ..., x_k^{(i)}, ..., x_d^{(i)})^{\mathrm{T}}$$

 $(x_k^{(i)} = 0 \text{ means corresponding description is missing})$ Cluster representation (n servers in the cluster):

$$\mathcal{C} = \{\mathbf{N}^{(1)}, \mathbf{N}^{(2)}, ..., \mathbf{N}^{(i)}, ..., \mathbf{N}^{(n)}\}$$

Presenter: Chongzhou Fang NDSS'23 March 2, 2023 11/3

Definition and Explanation of HeteroScore

HeteroScore calculation:

$$\mathcal{H}_c = 1 - \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{I}\{\rho(\mathbf{N}^{(i)}, \mathbf{N}^{(j)}) \le t_h\}}{n^2}$$

where

$$\rho(\mathbf{N}^{(i)}, \mathbf{N}^{(j)}) = \sqrt{\sum_{k=1}^{d} (x_k^{(i)} - x_k^{(j)})^2}$$

and

$$\mathbf{I}\{*\} = \begin{cases} 1, & \text{Given condition } * \text{ is satisfied}, \\ 0, & \text{Otherwise}. \end{cases}$$

Definition and Explanation of HeteroScore

 \mathcal{H}_c : Depicts the sparsity of \mathcal{C}

$$\mathcal{H}_c = 1 - \frac{\sum_{i=1}^n \sum_{j=1}^n \mathbf{I}\{\rho(\mathbf{N}^{(i)}, \mathbf{N}^{(j)}) \le t_h\}}{n^2}$$

13/32

Algorithms

Scheduler-Level Mitigation Inspired by HeteroScore

Hiding Label Defence (HLD)

Hiding certain labels from users during scheduling.

15/32

Scheduler-Level Mitigation Inspired by HeteroScore

Hiding Label Defence (HLD)

Hiding certain labels from users during scheduling.

Randomly Hiding Label Defence (R-HLD)

Randomly selecting labels to hide from users during scheduling.

Presenter: Chongzhou Fang

Evaluation

Visualization Results

Simulation Environment Setting

- Randomly generated cluster
- n_l : #. of label-value pairs
- n_c : #. of potential choices in each pair

Visualization Results

Visualization of Defence

HeteroScore Results in Clusters

Simulated Cluster Settings

- A Python simulator simulating the scheduling policies of cloud frameworks
- Nodes and instances are randomly generated

Physical Cluster Settings

• 40-node Kubernetes cluster in CloudLab

Simulator Results

Table: Co-location rates for varying cluster sizes and degree of heterogeneity.

#. of Nodes	\mathcal{H}_c	Co-location Rate	
		1-Instance Attack	10-Instance Attack
100	0.9878	51.16%	92.65%
	0.9497	34.04%	65.88%
	0.7126	11.10%	37.42%
	0.4070	4.07%	26.33%
	0	1.12%	8.09%
1,000	0.9975	41.53%	79.20%
	0.9522	15.89%	37.30%
	0.7381	13.78%	22.74%
	0.4084	7.74%	12.35%
	0	1.90%	3.23%
10,000	0.9988	19.88%	65.23%
	0.9437	14.06%	44.09%
	0.7335	7.33%	28.81%
	0.4138	6.42%	9.40%
	0	0.80%	0.87%

Results in Physical Clusters

Results of HLD & R-HLD

(a) Results of applying HLD.

(b) Results of applying R-HLD.

Case Study of University Clusters

Cluster Settings

- University-scale computing clusters managed by SLURM
- Cluster A: 73 servers Cluster B: 194 servers

HeteroScore Calculation

Cluster	Label Set	Labels	
Cluster A	1	Partition: Low, Partition: Med	
	2	GPU-related labels	
	3	Partition: High	
	4	Partition: Low, Partition: Med,	
		Partition: High, GPU-related labels	
Cluster B	1	Partitions	
	2	Partitions, GPU	
	3	Bandwidth	
	4	Partitions, Bandwidth, GPU	

Benchmarks

- Network benchmark: downloads contents of specific sizes from the Internet
- Rodinia-Hotspot

Discussion

Choices of Mitigation Strategies

HLD

- More controllable
- Cost more deterministic

R-HLD

Cost more balanced

Choices of Mitigation Strategies

HLD

- More controllable
- Cost more deterministic

R-HLD

Cost more balanced

Combining both strategies

- Selecting a subset of labels to apply R-HLD
- Applying R-HLD with non-uniform parameters

Conclusion

Conclusion

A Metric

- Quantitatively measures the heterogeneity of a cluster
- Can be linked to co-location security

Conclusion

A Metric

- Quantitatively measures the heterogeneity of a cluster
- Can be linked to co-location security

Mitigation Technologies

- HLD
- R-HLD

Thank you!

 Presenter:
 Chongzhou Fang
 NDSS'23
 March 2, 2023
 32 / 32