

Human Drivers' Situation Awareness of Autonomous Driving Under Physical-world Attacks

Katherine Zhang*, Purdue University
Claire Chen, Pennsylvania State University
Dr. Aiping Xiong, Pennsylvania State University

Background

- Al in autonomous vehicles (AVs) are vulnerable to attack [1, 2]
 - Physical-world attacks: Tampering with physical objects on the road to cause AI errors
- In an SAE level 3 automation system, when the AI fails, the human driver needs to take over
- For safe operation, human drivers need to be aware of attacks and AI vulnerabilities
 - o Communication from the vehicle concerning risk, Al behavior, etc.

Conditional Automation

Eyes-off

Automated driving system

Image: https://www.unity.de/en/services/systems-engineering/automated-driving-through-systems-engineering/automated-driving-through-systems-engineering/automated-driving-through-systems-engineering/automated-driving-through-systems-engineering/automated-driving-through-systems-engineering/automated-driving-through-systems-engineering/automated-driving-through-systems-engineering/automated-driving-through-systems-engineering/automated-driving-through-systems-engineering/automated-driving-through-systems-engineering/automated-driving-through-systems-engineering/automated-driving-through-systems-engineering/automated-driving-through-systems-engineering/automated-driving-through-systems-engineering/automated-driving-dr

^{[1]:} K. Eykholt et al., "Robust physical-world attacks on deep learning visual classification," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 1625–1634.

^{[2]:} Y. Man et al., "{GhostImage}: Remote perception attacks against camera-based image classification systems," in 23rd International Symposium on Research in Attacks, Intrusions and Defenses, 2020, pp. 317–332.

Prior Work

- Used in this study:
 - Manipulated stop sign [1]
 - Dirty-road patch [2]
- Humans are capable of detecting attack conditions that Al cannot
- But, little research done on whether humans can detect attacks as being causes of AI errors
- They tend to trust the AI to function normally under attack conditions [3]
 - Over-trust → increased risk
 - Vehicle must communicate risks to driver
- Unclear what information drivers need to increase their situation awareness

Research Questions

Are human drivers able to **detect** physical-world attacks and **project** how they affect Al's driving?

What **information do human drivers expect** to make them **more aware** of attacks and take over if needed?

Methodology

- Qualtrics survey, N = 100
 - Participants were car owners, recruited through Prolific

Methodology - Part 2

- Attack scenario images detection and projection
 - How much do participants agree with the following statements
 [7-point Likert scale: Completely disagree (1)—Completely agree
 (7)]?
 - Detection task:
 - I think the image shows the lane lines clearly.
 - I think the *current AI system in AV*s will detect the lane lines of the road in the image.
 - Projection task:
 - I think a *human* driver will navigate the above road condition safely.
 - I think the *current AI system in AV*s will navigate the above road condition safely.

Benign condition

Adversarial condition

Methodology - Part 3

Video of attack

- Scenarios were not called "attacks"
- Asked to imagine that they were driving in an AV using autonomous driving, and that they needed to be alert to potentially take control
- After video, asked two free-response questions
 - What do you think happened in the video?
 - What information should the AI system provide about the situation so that human drivers can safely take over control?

(GIF only shows key moments, not full video used)

Results - Quantitative (Part 2)

Detection tasks

- Participants can detect benign vs. adversarial $(F_{(1,99)} = 336.34, p < .001)$
- Generally rated Al lower than humans ($F_{(1,99)} = 36.18$, p < .001)
- O 3-way interaction of agent type * image type * scenario ($F_{(1,99)}$ = 15.22, p < .001):
 - In adversarial conditions, scenarios were rated the same difficulty for humans, but for Al, the stop sign was rated more difficult
 - Stop sign studies have been out for some time and may be known to the public

Results - Qualitative (Part 3)

Most common responses to: "What information should the AI system provide about the situation so that human drivers can safely take over control?"

Dirty Road (N = 43):

- An alert (audio, audio + visual)
- Explanation of Al errors or decision-making
 - Vehicle should explain that the Al "...had detected something impairing its ability to make judgement on the road condition." (P47)
- Request for the driver take over
 - Vehicle should indicate "That the AI is unable to safely navigate and the human will need to interact immediately." (P34)

Stop Sign (N = 57):

- Explicit mention of the stop sign
 - "The AI system should acknowledge there's a stop sign approaching..." (P81)
- Alerts and explanations, like dirty road
 - "[The AI] should tell the human that it is having trouble telling if there is a stop sign." (P80)
- 25 unsure or confused
 - May not have understood that they needed to take over

Discussion

- Participants seem to be unaware that scenarios were attacks
 - In the dirty road scenario, many participants noted AI error, but still treated it more as an accident rather than an attack
 - Could be due to participants drawing from prior driving experience
 - Ex: Dirty road attack could be interpreted as black ice causing car to slip
 - Shows that mental representations of driving are based on prior experience, which can cause misconceptions when considering AV driving
- Different attacks are perceived differently
 - Different situations require different tasks and effort
 - Influences risk assessment
- Participants have different expectations of what info to receive to take over control
 - Also dependent on scenario

Future Work

- Conduct study with a driving simulator
 - Get participant reactions more akin to that of real driving
- Further investigate in-car risk communication
 - O How do drivers react and feel when the vehicle conveys information?
 - What information leads to safer driving?
- Investigate more attack types
- Experiment with varying factors in attacks in more detail
 - E.g.: object positioning, different textures, etc.

Acknowledgments

Thank you to Dr. Aiping Xiong, my advisor and co-author, and Claire Chen, teammate and co-author.

Results - Quantitative (Part 3)

Avg. agreement level

- Significantly less satisfied with AI performance in dirty road video ($t_{(1,98)} = -10.63$, p < .001)
- Humans would handle it better in the dirty road scenario ($t_{(1,98)} = 5.79$, p < .001)
- Participants wanted take over more in the dirty road scenario ($t_{(1,98)} = 6.66$, p < .001)
- Believed neither scenario was due to attack, more likely an accident
 - While more people in dirty road condition noted Al error, they treated it more as an accident ($t_{(1,98)} = 3.98$, p < .001), and less as an attack ($t_{(1,98)} = -2.16$, p = .033)

Limitations

- Only investigated two cases of attack
 - Many other potential types of attacks
 - Many different variables that can affect perception (object texture, shape, position, etc.)
- We only used simulated driving videos/images, and framed them as hypothetical scenarios
- Minor extraneous differences between benign and adversarial images (e.g. size of the oncoming truck in the dirty road images)
 - Likely negligible effect on results, but can be better controlled in future work
- Only 100 participants
- Sample might not be reflective of general population
 - Most were 18-44 years old, with at least some college

Methodology - Part 3 cont.

- How much did participants agree with the following statements (7-point Likert scale)?
 - I am satisfied with the AV's behavior in the situation.
 - I would drive more safely than AI in this situation.
 - I would take over the Al's driving in this situation.
 - I believe this situation was caused by accident
 - I believe this situation was caused by intentional attack.

Results - Quantitative (Parts 1 & 4)

- Knowledge, attitudes before and after
 - Mostly similar between before and after, and between different scenarios
 - O Both scenario groups were made more aware of how AVs use AI to perceive the environment after viewing the video ($F_{(1,98)} = 20.73$, p < .001)
 - Participants who viewed dirty road had lowered trust after video ($F_{(1,98)} = 4.56$, p = .035)
 - Accordingly, their wariness also went up $(F_{(1,98)} = 12.36, p < .001)$

Results - Quantitative (Part 2)

Projection tasks

- Rated both human and AI less capable of driving in adversarial conditions (F_(1,99) = 275.1, p < .001)
- Also rated Al less capable than humans, but more so with dirty road (F_(1,99) = 110.92, p < .001)

Results - Qualitative (Part 3)

Most common response content to: "What happened in the video?"

Dirty Road (N = 43):

- Al malfunction, error, confusion
 - "The Al confused the blurriness on the ground and did not stay in its lane." (P100)
- Incorrect Al lane detection
- Road surface condition (marks, ice, etc)
 - "...[the] mark on the ground could have been a patch of black ice..." (P76)

Stop Sign (N = 57):

- Most believed car/Al stopped at the sign
- Fewer believed that AI did not stop at sign, or human had to intervene
 - "...the Al ignored the stop sign and the human had to stop the car themselves." (P2)
- Only 3 mentioned malignant sign
 - "...the entity in charge of driving encountered a somewhat odd looking (possibly vandalized) stop sign..." (P97)