Location Spoofing Attacks on Autonomous Fleets

Jinghan Yang

Autonomous Driving

- Bring personal convenience:
 - Personal freedom.
 - Saving money.
 - Safety

Autonomous Driving

- In a community level:
 - Saving parking space.
 - Need less cars in total.
 - Reducing traffic jam.

Ridesharing

Is Autonomous Driving Safe?

Is Autonomous Driving Vulnerable to Malicious Attacks?

Can we make the autonomous driving car make mistakes?

How does autonomous car work?

Attack Autonomous Driving's Perception.

Attack to the perception module

Is Autonomous Driving Vulnerable to Malicious Attacks?

Is the autonomous driving's localization system also vulnerable to malicious attacks?

Autonomous Driving's (GPS) Localization

Attacking Devices: GPS Spoofers

A Practical GPS Location Spoofing Attack in Road Navigation Scenario. (Zeng et. al.)

Low-cost portable GPS spoofers.

• Lunch box size.

Physically realized in New York.

A Practical GPS Location Spoofing Attack in Road Navigation Scenario. (Zeng et. al.)

Original navigation route

On-route spoofed location

Attack An Autonomous Driving Fleet

Manhattan in New York

Attacks

- Two attack types:
 - Delay Attack

Service Failure Attack

Proposed Methods

Manhattan in New York

Attacking Pipeline

Proposed Methods

Static spoofers

$$\begin{split} \max_{x,y,M'} \sum_{k \in K} \sum_{i \in V} \sum_{j \in \mathcal{N}(i)} y_{i,j}^k \cdot c_{i,j} & \text{(1a)} \\ \sum_{j \in \mathcal{N}(i)} y_{j,i}^k &= \sum_{u \in \mathcal{N}(j)} y_{j,u}^k & \forall k \in \{1,\dots,K\}, i \in V : i \neq s_k, d_k \\ & \text{(1b)} \\ \sum_{i \in \mathcal{N}(s_k)} y_{s_k,i}^k &= \sum_{i \in \mathcal{N}(d_k)} y_{i,d_k}^k = 1 & \forall k \in \{1,\dots,K\} \\ & \text{(1c)} \\ y_{i,j} + y_{j,i} &\leq 1 & \forall i,j \in V & \text{(1d)} \\ M'_{i,u,\alpha} &= \sum_{j \in V} M_{j,u,\alpha} x_{i,j} F_{i,j} + M_{i,u,\alpha} \cdot \left(1 - \sum_j x_{i,j}\right) \forall i \in V, \alpha \in A \\ & \text{(1e)} \\ y_{i,i+\alpha}^k &= \sum_{j \in \mathcal{N}(i)} y_{j,i}^k M'_{i,d_k,\alpha} & \forall k \in \{1,\dots,K\}, i \in V \setminus s_k, \alpha \in A \\ & \text{(1f)} \\ y_{s_k,s_k+\alpha}^k &= M'_{s_k,d_k,\alpha} & \forall k \in \{1,\dots,K\}, \alpha \in A & \text{(1g)} \\ \sum_{i \in \mathcal{N}(i)} x_{i,j} &\leq B; & \sum_i x_{i,j} \leq 1 & \forall i \in V. & \text{(1h)} \end{split}$$

Proposed Methods

Dynamic spoofers

Open streetMap and Uber Movement

Geolocation information: Open streetMap

• Traffic: Uber Movement.

Manhattan

Experiment Results

Spoofing Budget	#Target Cars	Travel Time	Proposed Delay Ratio	Greedy Delay Ratio	Random Delay Ratio
1	1	200	0.90	0.89	0.03
5	5	200 262	2.0	1.2	0.09
5	10	242.7	1.11	0.67	0.05
10	20	252	1.0	0.78	0.09

TABLE IV: The delay ratio in the *dynamic-dynamic* case in a dist-1000 traffic network induced by spoof devices with spoofing radius 1.

Experiment Results

