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Security Problems of Smart Contracts

Crypto scammers took a record $14
billion in 2021

Crypto hackers have stolen nearly $2
- ¢ v » = billion this year—Here's why it's a
growing problem
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Really stupid “smart contract” bug let

hackers steal $31 million in dicital fain

, . FBI: Crooks are using these DeFi flaws to
Company says it has contacted the hacker in an attempt to recove steal your money

12/1/2021, 3:41 PM

The FBIl warns investors that flaws in smart contracts are
being exploited by attackers to steal funds from DeFl
platforms.
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Smart Contracts Basics

= Smart Contracts

Software programs hosted by blockchains
Manage financial assets

Automatically manage their own accounts
In charge of significant financial assets
Public entities

= Qur focus is on Ethereum
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Vulnerabilities (selected)

Software

Accessible Selfdestruct

e Attackers may destroy contracts

by calling self-destruct function

e An attacker may jump to an
arbitrary function

Assert Violation

e Attackers abuse constant error
state of a smart contract

Integer Under/Overflow

e Integers flip when incremented
over the feasible range

Runtime

Blockchain

Many Vulnerabilities

e Transaction reordering may lead
to race conditions

DoS with Failed Call

Difficult Patching

e Unchecked Calls in a loop may
lead to DoS
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Time Dependency

Extensive Security Testing

e Dependence on block values
may lead to unpredictable state

Weak Randomness

e Contracts can receive, but not
send, cryptocurrency

e Generation of randomness in
smart contracts is difficult

More info available at Smart Contract Weakness Classification (SWC) Registry: hitps://sweregistry.io/



https://swcregistry.io/

Security Testing of Smart Contracts

Can we combine all tools into one?



ldea: One ML-based Tool that Learns from Many

" Existing Vulnerability
| Detection Methods i

Training
Phase

' New Vulnerability
' Detection Methods |

Transfer
Learning
Phase

Deployment
Phase




Tackled Challenges
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Approach: Multi-output Architecture
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Approach: Transfer Learning

Bytecode —>
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Dataset and Data Labeling

= ~3.6 million Smart Contracts

= 4 vulnerability scanning tools
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10 Ethereum and Testnets Mythril, Oyente, Vandal, Maian
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Our Datasets

e 279.726 instances after cleaning up and deduplicating ~3.6 million smart contracts

* Main Dataset is used in initial training (ca. 60.000 samples per vulnerability)

* Extension Dataset is utilized for Transfer Learning (ca. 20.000 samples per vulnerability)

* Underrepresented Dataset is used for Transfer Learning to show applicability for minority classes
* Labeling done using 3 vulnerability scanning tools: Mythril (T1), Oyente (T2), Vandal (T3)

No vulnerabilities
uncheckedCall
reentrantCall
money_concurrency
callstack

Time Dependency
Assert Violation

80% training set
10% validation set
10% test set

Label of a data sample
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Evaluation of Model and Transfer Learning

= We can detect all 11 vulnerabilities using single scan
= Efficient inference: scanning the smart contract in less then 0.2 sec (with GPU)
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Ground Truth Analysis

» Studied thousands of security audits
« 373 available, compilable, and relevant samples



Conclusion

= We presented DNN-based vulnerability detection approach for smart
contracts

= ESCORT is the first framework extendable to new vulnerability types

It has good effectiveness across different vulnerability classes

= |t operates directly on bytecode, yet independent from decompilers

= |t has superior performance during inference time

= Future work
— Investigating the effectiveness of transfer learning with less training data
— Localization of vulnerabilities in bytecode
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