§ S NDss %
L

Smarter Contracts:

Detecting Vulnerabilities
in Smart Contracts with Deep Transfer Learning

Christoph Sendner?, Huili Chen?, Hossein Fereidooni3, Lukas Petzil, Jan Konig?, Jasper Stang!,

Alexandra Dmitrienko!, Ahmad-Reza Sadeghi3, Farinaz Koushanfar?

lUniversity of Wuerzburg, 2UC San-Diego, 3TU Darmstadt

Security Problems of Smart Contracts

Crypto scammers took a record $14
billion in 2021

Crypto hackers have stolen nearly $2
- ¢ v » = billion this year—Here's why it's a
growing problem

Published Fri, Aug 19 2022-10:31 AM EDT

Really stupid “smart contract” bug let

hackers steal $31 million in dicital fain

, . FBI: Crooks are using these DeFi flaws to
Company says it has contacted the hacker in an attempt to recove steal your money

12/1/2021, 3:41 PM

The FBIl warns investors that flaws in smart contracts are
being exploited by attackers to steal funds from DeFl
platforms.

= -
il Written by Liam Tung, Contributing Writer on Aug. 30, 2022

Smart Contracts Basics

= Smart Contracts

Software programs hosted by blockchains
Manage financial assets

Automatically manage their own accounts
In charge of significant financial assets
Public entities

= Qur focus is on Ethereum

é

\ 4

ethereum

block n-1 block n block n+1

-—}-

Account Code

9
I3
—

Smart Contract f/

Vulnerabilities (selected)

Software

Accessible Selfdestruct

e Attackers may destroy contracts

by calling self-destruct function

e An attacker may jump to an
arbitrary function

Assert Violation

e Attackers abuse constant error
state of a smart contract

Integer Under/Overflow

e Integers flip when incremented
over the feasible range

Runtime

Blockchain

Many Vulnerabilities

e Transaction reordering may lead
to race conditions

DoS with Failed Call

Difficult Patching

e Unchecked Calls in a loop may
lead to DoS

—~ A T W P T e et Y R Y VE Y e e B

Time Dependency

Extensive Security Testing

e Dependence on block values
may lead to unpredictable state

Weak Randomness

e Contracts can receive, but not
send, cryptocurrency

e Generation of randomness in
smart contracts is difficult

More info available at Smart Contract Weakness Classification (SWC) Registry: hitps://sweregistry.io/

https://swcregistry.io/

Security Testing of Smart Contracts

Can we combine all tools into one?

ldea: One ML-based Tool that Learns from Many

" Existing Vulnerability
| Detection Methods i

Training
Phase

' New Vulnerability
' Detection Methods |

Transfer
Learning
Phase

Deployment
Phase

Tackled Challenges

AN

/

No dependency on source code > > Bytecode

Approach: Multi-output Architecture

Bytecode —>

Feature
Extractor

Feature
Extractor

Vulnerability Type 1

Vulnerability Type n

-~
v
000 u

-’

Vulnerability
Branches

Approach: Transfer Learning

Bytecode —>

Vulnerability Type n+1

Dataset and Data Labeling

= ~3.6 million Smart Contracts

= 4 vulnerability scanning tools

s (1] (3
Google Bytecode | —
BigQuery Preprocessing J —>
A Labeled
[Geth] Download ‘ Bytti:ode
Bytecode —
Plam v v A ¢
Bytecode " —
[Erigon] I :: Labeling c@
3a4 J | Contracts J Vulnerability
Vulnerability Labels

Scanners

10 Ethereum and Testnets Mythril, Oyente, Vandal, Maian

11

Our Datasets

e 279.726 instances after cleaning up and deduplicating ~3.6 million smart contracts

* Main Dataset is used in initial training (ca. 60.000 samples per vulnerability)

* Extension Dataset is utilized for Transfer Learning (ca. 20.000 samples per vulnerability)

* Underrepresented Dataset is used for Transfer Learning to show applicability for minority classes
* Labeling done using 3 vulnerability scanning tools: Mythril (T1), Oyente (T2), Vandal (T3)

No vulnerabilities
uncheckedCall
reentrantCall
money_concurrency
callstack

Time Dependency
Assert Violation

80% training set
10% validation set
10% test set

Label of a data sample

Bl Main Dataset

0 10000 20000 30000 40000 50000 60000 70000
Number of data samples

12

Evaluation of Model and Transfer Learning

= We can detect all 11 vulnerabilities using single scan
= Efficient inference: scanning the smart contract in less then 0.2 sec (with GPU)

13

Ground Truth Analysis

» Studied thousands of security audits
« 373 available, compilable, and relevant samples

Conclusion

= We presented DNN-based vulnerability detection approach for smart
contracts

= ESCORT is the first framework extendable to new vulnerability types

It has good effectiveness across different vulnerability classes

= |t operates directly on bytecode, yet independent from decompilers

= |t has superior performance during inference time

= Future work
— Investigating the effectiveness of transfer learning with less training data
— Localization of vulnerabilities in bytecode

14

