Him of Many Faces: Characterizing Billion-scale Adversarial and Benign Browser Fingerprints on Commercial Websites

Shujiang Wu, Pengfei Sun†, Yao Zhao†, Yinzhi Cao Johns Hopkins University, †F5

Problem Statement

→ How to generate adversarial fingerprints

Problem Statement

- → How to generate adversarial fingerprints
- → Differences between adversarial and benign fingerprints

Measurement methodology

Step 1: Traffic Analysis

- → Bot and Fraud Detection/Defense
- → Attack Type Classification
- → Dataset

Step 2: Fingerprint Analysis

- → Generative Tool Analysis
- → Generative Strategy Analysis
- → Statistical Analysis

Pass/Block

Real-time Model

- 1. URL
- 2. Cookie
- 3. TCP/IP FP
- 4. IP Address
- 5. ASN
- 6. Username
- 7. TLS Fingerprint
- 8. User Behavior

Pass/Block

Offline Model

- 1. IP Reputation
- 2. ASN Reputation
- 3. User Reputation
- 4. Device Reputation
- 5. Header Reputation
- 6. Behavior per session

Pass/Block

Measurement methodology

Step 1: Traffic Analysis

- → Bot and Fraud Detection/Defense
- → Attack Type Classification
- → Dataset

Step 2: Fingerprint Analysis

- → Generative Tool Analysis
- → Generative Strategy Analysis
- → Statistical Analysis

Conclusion

Pass/Block

Attack Type

Attack Type

Phase II: Follow-up Attacks

Phase I: Account-related Attacks

19

Phase I: Account-related Attacks

Phase II: Follow-up Attacks

Attack Type

%	Benign	Account Take Over	Fraud	Fake Account	Anonymous Scraping	Logged-in Scraping	Gift card Cracking
Rest. A	55.1	34.5	3.9	3.4	-	<0.1	3.1
Bank A	99.8	0.2	-	-	-	-	-
Bank B	46.4	52.9	<0.1	0.7	<0.1	-	-
Bank C	86.8	8.7	4.0	0.1	<0.1	0.4	-
Finance A	75.5	24.5	-	-	-	-	-
Finance B	98.7	0.1	-	-	0.5	0.6	-
Finance C	77.8	22.2	-	<0.1	-	-	-
Shop A	91.4	1.2	7.3	0.1	-	<0.1	<0.1
Shop B	48.4	0.2	1.0	-	22.5	27.8	<0.1
Airline A	79.4	0.1	-	<0.1	2.6	17.9	<0.1
Airline B	80.7	9.4	-	-	3.9	6.1	-
ISP A	99.8	0.2	<0.1	-	-	-	-
ISP B	99.5	0.5	-	-	-	-	-
ISP C	86.8	13.1	-	<0.1	-	0.1	-

Measurement methodology

Step 1: Traffic Analysis

- → Bot and Fraud Detection/Defense
- → Attack Type Classification
- → Dataset

Step 2: Fingerprint Analysis

- → Generative Tool Analysis
- → Generative Strategy Analysis
- → Statistical Analysis

Dataset

Collected 36 billion HTTP(s) requests Between January 2021 and June 2021 Based on 14 websites:

- → 15.3 billion (42.5% of the total) adversarial
- → 20.7 billion (57.5% of the total) benign

Measurement methodology

Step 1: Traffic Analysis

- → Bot and Fraud Detection/Defense
- → Attack Type Classification
- → Dataset

Step 2: Fingerprint Analysis

- → Generative Tool Analysis
- → Generative Strategy Analysis
- → Statistical Analysis

- 1. User Agent
- 2. Historical timestamp
- 3. Plugins
- 4. Font list
- 5. Canvas image
- 6. GPU vendor and renderer
- 7. Screen resolution
- 8. devicePixelRatio

. . .

Measurement methodology

Step 2: Fingerprint Analysis

→ Generative Tool Analysis

Conclusion

Scripting tools

Emulated browsers Virtual machines

Measurement methodology

Step 1: Traffic Analysis

- → Bot and Fraud Detection/Defense
- → Attack Type Classification
- → Dataset

Step 2: Fingerprint Analysis

- → Generative Tool Analysis
- → Generative Strategy Analysis
- → Statistical Analysis ———

K-L divergence Empty rate Unique rate

Conclusion

Measurement methodology

Step 1: Traffic Analysis

- → Bot and Fraud Detection/Defense
- → Attack Type Classification
- → Dataset

Step 2: Fingerprint Analysis

- \rightarrow Generative Tool Analysis
- → Generative Strategy Analysis
- → Statistical Analysis

Generative Tool Analysis

1. Scripting tools

Simple applications (e.g., written in Python) Send HTTP requests to target websites

2. Emulated browsers

Headless browsers, extensions, tailor-made browsers Driven by automated tools like Selenium

3. Virtual machines

Combination with emulated browsers

Generative Tool Analysis

	Attack Type	Attack tools percentage				
		Scripting	Browsers	VM		
z ^{z²}	Account Takeover	82.4	15.5	0.3		
	Fake Account	49.2	50.6	0.1		
	Fraud	30.0	69.6	0.4		
	Scraping	93.4	6.6	<0.1		
	Gift card Cracking	97.5	2.2	0.3		

Choose different tools according to the difficulty of operation

Measurement methodology

Step 1: Traffic Analysis

- → Bot and Fraud Detection/Defense
- → Attack Type Classification
- → Dataset

Step 2: Fingerprint Analysis

- → Generative Tool Analysis
- → Generative Strategy Analysis
- → Statistical Analysis

Conclusion

Generative Strategy Analysis

1. Keep

Keep the original value User Agent → Requests

2. Block

Disable or can not support
Browser fingerprint → NULL-NULL-NULL

3. Mimic

Replace to another device's value

4. Randomize

Add noise or modify the value WebGL render → NVIDIA GTX 1081

Adversarial Generative Strategies

Tools	Adversarial Strategy	%Request	%FP	#Req per FP
Scripting	Keep tool's fingerprints	3.1%	<0.1%	155,552.6
Scripting	Mimicking benign fingerprints disabling JavaScript	77.6%	7.2%	657.5

Scripting tools are the most popular in practice due to its high performance.

Adversarial Generative Strategies

Tools	Adversarial Strategy	%Request	%FP	#Req per FP
	Mimic	1.0%	9.0%	7.1
	Mimic+Block	0.8%	3.5%	14.9
	Mimic+Block+Randomize	0.1%	0.2%	31.5
	Mimic+Randomize	0.2%	1.2%	8.0
Browsers	Keep	2.4%	0.4%	348.6
	Block	3.9%	<0.1%	5,151.5
	Block+Randomize	9.0%	60.3%	9.2
	Randomize	0.1%	0.1%	105.3
	Grey	1.2%	7.2%	10.3

"Randomize" and "Block" are the most popular strategies for emulated browser tools.

Adversarial Generative Strategies

Tools	Adversarial Strategy	%Request	%FP	#Req per FP
	Mimic	1.0%	9.0%	7.1
	Mimic+Block	0.8%	3.5%	14.9
	Mimic+Block+Randomize	0.1%	0.2%	31.5
	Mimic+Randomize	0.2%	1.2%	8.0
Browsers	Keep	2.4%	0.4%	348.6
	Block	3.9%	<0.1%	5,151.5
	Block+Randomize	9.0%	60.3%	9.2
	Randomize	0.1%	0.1%	105.3
	Grey	1.2%	7.2%	10.3

"Mimic" is less popular probably because adversaries need to obtain a large database of benign browser fingerprints.

Generative Strategies Credential Stuffing Case Study

The Attacker gets thousands of account names and passwords.

Step 1: the Attacker builds a dataset linking the fake browser fingerprint and account.

	%Request	%Account	%FP	#Requests per account	#Requests per FP
Probe	2.0%	>0.1%	1.1%	112.8	46.1
Takeover Attempt	92.9%	99.8%	98.4%	1.3	1.0
Gray	5.0%	0.2%	0.5%	32.9	2.3

Generative Strategies Credential Stuffing Case Study

The Attacker gets thousands of account names and passwords.

Step 1: the Attacker builds a dataset linking the fake browser fingerprint and account.

Step 2: The Attacker chooses a few test accounts to detect the defense system.

	%Request	%Account	%FP	#Requests per account	#Requests per FP
Probe	2.0%	>0.1%	1.1%	112.8	46.1
Takeover Attempt	92.9%	99.8%	98.4%	1.3	1.0
Gray	5.0%	0.2%	0.5%	32.9	2.3

Generative Strategies Credential Stuffing Case Study

The Attacker gets thousands of account names and passwords.

Step 1: the Attacker builds a dataset linking the fake browser fingerprint and account.

Step 2: The Attacker chooses a few test accounts to detect the defense system.

Step 3: The Attacker deploys the account take over attack.

	%Request	%Account	%FP	#Requests per account	#Requests per FP
Probe	2.0%	>0.1%	1.1%	112.8	46.1
Takeover Attempt	92.9%	99.8%	98.4%	1.3	1.0
Gray	5.0%	0.2%	0.5%	32.9	2.3

Outline

Measurement methodology

Step 1: Traffic Analysis

- → Bot and Fraud Detection/Defense
- → Attack Type Classification
- → Dataset

Step 2: Fingerprint Analysis

- → Generative Tool Analysis
- → Generative Strategy Analysis
- → Statistical Analysis

Feature Name	Kullback-Leiber Divergence		
	Adv. Benign	Benign Benign	Adv. Adv.
User-Agent	1.6±1.2	0.8±1.8	1.9±1.6
Timestamp	4.2±5.6	0.5±0.6	2.0±1.5
Plugins	2.1±1.9	0.4±0.3	1.6±1.3
Font list	2.2±1.5	0.8±1.8	1.9±1.5
Canvas Image	2.7±1.5	0.9±1.9	1.9±1.5
Vendor + Renderer	5.7±2.8	0.8±1.7	2.5±2.5
Screen Resolution	5.3±3.0	0.4±0.3	2.2±1.5
devicePixelRatio	5.7±4.9	0.9±1.6	2.4±2.5
IP	1.7±0.9	0.4±1.7	1.6±2.3
ASN	3.6±1.5	2.0±1.9	3.0±1.4
FP	3.8±1.9	0.5±0.5	0.2±0.6
FP + IP + ASN	2.6±2.0	0.1±0.2	0.01±0.1

The K-L divergence Adv./ Benign >> Adv./Adv. Adv./ Benign >> Benign/Benign

Feature Name	Kullback-Leiber Divergence		
	Adv. Benign	Benign Benign	Adv. Adv.
User-Agent	1.6±1.2	0.8±1.8	1.9±1.6
Timestamp	4.2±5.6	0.5±0.6	2.0±1.5
Plugins	2.1±1.9	0.4±0.3	1.6±1.3
Font list	2.2±1.5	0.8±1.8	1.9±1.5
Canvas Image	2.7±1.5	0.9±1.9	1.9±1.5
Vendor + Renderer	5.7±2.8	0.8±1.7	2.5±2.5
Screen Resolution	5.3±3.0	0.4±0.3	2.2±1.5
devicePixelRatio	5.7±4.9	0.9±1.6	2.4±2.5
IP	1.7±0.9	0.4±1.7	1.6±2.3
ASN	3.6±1.5	2.0±1.9	3.0±1.4
FP	3.8±1.9	0.5±0.5	0.2±0.6
FP + IP + ASN	2.6±2.0	0.1±0.2	0.01±0.1

Adversarial fingerprint Good at User-Agent, Plugin, Font list

Feature Name	Kullback-Leiber Divergence		
	Adv. Benign	Benign Benign	Adv. Adv.
User-Agent	1.6±1.2	0.8±1.8	1.9±1.6
Timestamp	4.2±5.6	0.5±0.6	2.0±1.5
Plugins	2.1±1.9	0.4±0.3	1.6±1.3
Font list	2.2±1.5	0.8±1.8	1.9±1.5
Canvas Image	2.7±1.5	0.9±1.9	1.9±1.5
Vendor + Renderer	5.7±2.8	0.8±1.7	2.5±2.5
Screen Resolution	5.3±3.0	0.4±0.3	2.2±1.5
devicePixelRatio	5.7±4.9	0.9±1.6	2.4±2.5
IP	1.7±0.9	0.4±1.7	1.6±2.3
ASN	3.6±1.5	2.0±1.9	3.0±1.4
FP	3.8±1.9	0.5±0.5	0.2±0.6
FP + IP + ASN	2.6±2.0	0.1±0.2	0.01±0.1

Adversarial fingerprint
Bad at Timestamp, vendor/renderer,
Screen resolution, devicePixelRatio

Feature Name	Empty Rate %		
	Benign	Adv.	
User-Agent	<0.1	<0.1	
Timestamp	2.1	64.4	
Plugins	4.4	46.3	
Font list	11.8	50.1	
Canvas Image	4.5	46.6	
Vendor + Renderer	1.4	86.2	
Screen Resolution	0.1	43.1	
devicePixelRatio	0.0	82.4	
IP	0.0	0.0	
ASN	0.0	0.0	
FP	0.0	<0.1	
FP + IP + ASN	0.0	0.0	

Adversarial fingerprints have more empty values compared with benign.

1.6% shared, 8.1% are purely adversarial, 90.3% purely benign

- → Fake dataset is small
- Create a lot of nonexistent values

Benign fingerprints often evolve over time, while adversarial ones mostly stay stable.

Outline

Measurement methodology

- Step 1: Traffic Analysis
 - → Bot and Fraud Detection/Defense
 - → Attack Type Classification
 - → Dataset
- Step 2: Fingerprint Analysis
 - → Generative Tool Analysis
 - → Generative Strategy Analysis
 - → Statistical Analysis

- --> First billion-scale measurement study of browser fingerprints
- (i) adversaries are adopting various tools and strategies to generate adversarial fingerprints.

- --> First billion-scale measurement study of browser fingerprints
- (i) adversaries are adopting various tools and strategies to generate adversarial fingerprints.
- (ii) adversarial fingerprints are significantly different from benign ones in many metrics.

- --> First billion-scale measurement study of browser fingerprints
- (i) adversaries are adopting various tools and strategies to generate adversarial fingerprints.
- (ii) adversarial fingerprints are significantly different from benign ones in many metrics.
- (iii) adversarial fingerprints vary across different attack types.

Thanks

https://github.com/bfpmeasurementgithub/browser-fingeprintmeasurement

buaasniper@gmail.com

