
Automata-Based Automated 
Detection of State Machine Bugs in 

Protocol Implementations



Introduction

• Work done as part of the SSF aSSIsT project

– Goal: Develop techniques to automatically detect bugs and 
vulnerabilities in network protocol implementations.

– Method: Protocol State Fuzzing (a.k.a. Model Learning).

This paper:

• Presents a general, automated, black-box technique to detect 
state machine bugs in protocols starting from:

1. a state machine model of the implementation;

2. a catalogue of bug patterns for the protocol.

• Evaluates it on SSH servers and DTLS servers and clients.



Datagram TLS (DTLS)

Test of Time

Award Winner

NDSS 2020



DTLS Handshake



SUT 🔨

Model Learning (🔨) infers 
state machine automatically

👤

specification

/
model 

checker

ClientHello

HelloVerifyRequest

Protocol 
State 

Fuzzer

black-box!



SUT 🔨

Model Learning infers 

state machine automatically

specification

ClientHello

HelloVerifyRequest

Protocol 
State 

Fuzzer

black-box!

JSSE Server

 124 states!

 approximate!

Manual Analysis
 Is time-consuming

 Requires expertise

 Can miss bugs



SUT 🔨
ClientHello

HelloVerifyRequest

Protocol 
State 

Fuzzer

black-box!

JSSE Server

 124 states!

 approximate!

Automatic Analysis

Bug Detector

(Model Checker)



Bug Patterns Encoded as DFAs

captures sequences without 

client Certificate ending in a server ChangeCipherSpec

all “other”

symbols
set subtraction



The Missing Certc Bug Pattern

Allows for

renegotiations



Technique in a Nutshell

Bug Pattern 

∩asDFA

=

Generate and 
Validate Seq. 

validated bug sequences

Bug 
Detector

SUT Model



no reply

parameterization

multiple 
messages

client/serv
er

Mealy machine 
model of Java 

Server (pruned)

7 handshake-completed state



7 handshake-completed state

Mealy machine model 
of Java Server (pruned 

and colored)

Vulnerabilities

in red

Valid handshake

path in blue



Missing Certc

Missing 
CertVer

CKE before Certc

CertVer before CKE

7



Bug Detection Framework

Test 
Harness

Bug 
Detector

HelloVerifyRequest

ClientHello

validated bug sequences

bug 
pattern

catalogue

SUT Model

ClientHello

HelloVerifyRequest
LearnerSUT

Needed

infrastructure

Necessary

input

Necessary

input



Assembling a Bug Catalogue

spec.

Missing Certc

CVE-2020-
2655

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2655


Invalid Handshake
(client)

all “other”

server symbols

all “other”

client symbols



Evaluation Setup

 DTLS servers (18 bug patterns)

 DTLS clients (16 bug patterns)

 SSH servers (16 bug patterns)

 24 new bug patterns, largely owing to three general bug patterns

 Specific bug patterns are small (all less than 10 nodes)

 Models generated for all SUTs (two day learning time bound)

 Test harness/learning tools: DTLS-Fuzzer[1] and SSH-Mapper[2]

 SUTs: test programs for nine DTLS and three SSH libraries, 
new versions and (for DTLS) versions used in prior work. 

[1]: P. Fiterău-Broştean, B. Jonsson, K. Sagonas and F. Tåquist, "DTLS-Fuzzer: A DTLS Protocol State Fuzzer," IEEE Conference on Software Testing, Verification and 
Validation (ICST 2022), pp. 456-458, doi: 10.1109/ICST53961.2022.00051.

[2]: https://hdl.handle.net/2066/184275



Evaluation Results (Nutshell)

 Detected and validated automatically all bugs found 
in prior work on DTLS [1] and SSH [2].

 Detected new bugs (incl. those prior work missed) 
and new vulnerabilities in Java clients.

 All but one bug were validated successfully.

 All bugs were reported to developers
→ fixes in four libraries.

[1] Fiterau-Brostean, P., Jonsson, B., Merget, R., De Ruiter, J., Sagonas, K., and Somorovsky, J. (2020). Analysis of DTLS implementations using protocol state fuzzing. 
In 29th USENIX Security Symposium (USENIX Security 20) (pp. 2523-2540). 

[2] Fiterău-Broştean, P., Lenaerts, T., Poll, E., de Ruiter, J., Vaandrager, F., and Verleg, P. (2017). Model learning and model checking of SSH implementations. 
In Proceedings of the 24th ACM SIGSOFT International SPIN Symposium on Model Checking of Software (pp. 142-151).



Results on DTLS Servers

🔧 Bug patterns found with our systematic approach.

Blue bug patterns are for new (types of) bugs.

🔧🔧🔧

🔧🔧🔧

🔧🔧🔧



🔧 Bug patterns found with our systematic approach.

Blue bug patterns are for new (types of) bugs.

🔧
🔧
🔧

🔧

🔧🔧🔧
🔧

🔧🔧

🔧
🔧
🔧
🔧

🔧
🔧🔧

🔧🔧🔧

Results on DTLS Clients



Quantitative Measurements for 
DTLS Client Experiments

Our technique:

 Handles large models (e.g., 387 states for OpenSSL) 

 Given reasonably accurate models (after two days)

– Successfully validates all bugs (one test/bug)

– Finishes in under one minute (even when 10 bugs are 
detected)

 Works reasonably well even with inaccurate models

– Detects fewer bugs

– Needs more time/tests to validate them



Read the Paper for

 More tables and experiments.

 How to systematically assemble a bug 
pattern catalogue.

 Application and evaluation on SSH Servers.

 Related work.

 Information about the paper's artifact.



In Summary


