Automata-Based Automated
Detection of State Machine Bugs In
Protocol Implementations

Paul Fiteriu-Brostean®, Bengt Jonsson,* Konstantinos Sagonas*' and Fredrik Taquist*
*Department of Information Technology, Uppsala University, Uppsala, Sweden
TSchool of Electrical and Computer Engineering, National Technical Univesity of Athens, Athens, Greece

ZXEXNEG
o %
N =
yiyh 2 O [5
H 3
i '75 3
a (=
C
.
M)

Introduction

« Work done as part of the SSF aSSIsT project

— Goal: Develop technigues to automatically detect bugs and
vulnerabillities in network protocol implementations.

— Method: Protocol State Fuzzing (a.k.a. Model Learning).
This paper:

* Presents a general, automated, black-box technigue to detect
state machine bugs in protocols starting from:

1. a state machine model of the implementation;
2. a catalogue of bug patterns for the protocol.

 Evaluates it on SSH servers and DTLS servers and clients.

Datagram TLS (DTLS)

The Design and Implementation of Datagram TLS

Nagendra Modadugu
Stanford University

nagendra@cs.stanford.edu

Abstract

A number of applications have emerged over recent
years that use datagram transport. These applications
include real time video conferencing, Internet telephony,
and online games such as Quake and StarCraft. These ap-
plications are all delay sensitive and use unreliable data-
gram transport. Applications that are based on reliable
transport can be secured using TLS, but no compelling al-
ternative exists for securing datagram based applications.
In this paper we present DTLS, a datagram capable ver-
sion of TLS. DTLS is extremely similar to TLS and there-
fore allows reuse of pre-existing protocol infrastructure.
Our experimental results show that DTLS adds minimal
overhead to a previously non-DTLS capable application.

Eric Rescorla
RTFEM, Inc.
ekr@rtfm.com

a number of unsatisfactory choices for providing security.
First, they can use IPsec [18]. However, IPsec is not well
suited for client-server application models and is difficult
to package with applications since it runs in the kernel.
Section 2.1 has a detailed discussion of why IPsec has
been found to be a less than satisfactory option. Second,
they can design a custom application layer security pro-
tocol. SIP, for instance, uses a variant of S/MIME [2] to
secure its traffic. Grafting S/MIME into SIP took vastly
more effort than did running the TCP variant of SIP over
TLS. Third, one can rehost the application on TCP and use
TLS. Unfortunately many such applications depend on
datagram semantics and have unacceptable performance
when run over a stream protocol such as TCP.

The obvious alternative is to design a generic channel
security protocol that will do for long lived applications

Test of Time
Award Winner
NDSS 2020

DTLS Handshake

Client Server
flight 1 ClientHello (CH)
HelloVerifyRequest (HVR) flight 2
flight 3 ClientHello (CH)

ServerHello (SH)
| Certificate (Certy) | ,
[ServerKeyExchange (SKE) | | flight 4
| CertificateRequest (CertReq) |

ServerHelloDone (SHD)

| Certificate (Cert,) |
. ClientKeyExchange (CKE)
flight 5 | CertificateVerify (CertVer) |

ChangeCipherSpec (CCS.)
Finished* (Fin, 1*
inishe ql(r in,) >‘ %

ChangeCipherSpec (CCSy) flight 6
handshake Finished™ (Fing)

completed - Application™ (App) -

Fig. 2: TLS/DTLS handshake. Messages unique to DTLS are colored blue,
optional messages are in [square brackets] and encrypted messages are marked
by an asterisk®. Inside parentheses, we show the abbreviations we will use.

Model Learning *\) infers
state machine automatically

ClientHello /
black-box! HelloVerifyRequest

ClientHello Protocol enerates
SUT - > State b2
HelloVerifyRequest Fuzzer

X

! / analyzes>
model

\/ tester checker

&

specification

JSSE Server
e 124 states!
e approximate!

Model Learning infers W
state machine automatically

black-box! |

ClientHello Protocol
- > State generates

< L

SUT

HelloVerifyRequest Fuzzer

analyzes

Manual Analysis
e |s time-consuming
e Requires expertise
e Can miss bugs

tester

&

specification

JSSE Server

Automatic AnalysIS -1z saes

e approximate!

black-box!

ClientHello Protocol
- > State generates

hal »

HelloVerifyRequest Fuzzer

analyzes

Bug Detector
(Model Checker)

Bug Patterns Encoded as DFAS

all “other” set subtraction }
symbols

W —{Cert.}

captures sequences without
client Certificate ending in a server ChangeCipherSpec

The Missing Cert. Bug Pattern

DTLS Handshake

CH(ECDH)

—>

<«

HVR

CH(ECDH)

—>

—

SH

Cert,
SKE(ECDH)
CertReq

SHD

CKE(ECDH)

cCs,

Fin,

ccs,

Fin,

7 U —{Cert)

N\
certreq - H/bug\

SH (4

Allows for
renegotiations

Technigue In a Nutshqll

(I

SUT Model

Bug Pattern

w — {Cert.}

CCS,
Hag

validated bug sequences

Generate and
— . _
Validate Seq.

|
|
|
| BuginSUTDFA G/

|
L s
. \
| |
|

"

Detector

Mealy machine
model of Java
Server (pruned)

parameterization

CKE(ECDH)/ -

client/serv
er

no reply
"H(ECDH) / SH.Cert,(RSA).SKE(ECDH).CertReq.SHD « multiple
messages
App /-

App /-
A(close_notify) /2
A(unexpected_msg) / -

CCS, /-
Fing / CCS ;. Fing

Alclose_notify) /-
A(unexpected_msg) /-

CH(ECDH) / -
CKE(ECDH)/ -
Fin, /-
App /-
Cert, /-

Cert (empty) / -
Fin, / CCS Fin, CertVer/ -
handshake-completed state

Mealy machine model
of Java Server (pruned
and colored)

Valid handshake
path in blue

Vulnerabilities
in red

App /-
A(close_notily) /-
A(unexpected msg)/ -

CertVer CKE(ECDH) /- |
Cel’tVEl"/,”-’ ,‘ICCSC/-

Fin, /CCS.Find (e
CKE(ECDH) /-
Fin, /-
App /-
Cert,, /-

Cerl(empty) /-
Fin, / CCSg.Fing CertVer/-
handshake-completed state

A(close_notify) /*
A(unexpected msg)/ -

CH(ECDH) / HVR
CKE before Cert,
App/
H(ECDH) / SH.Cert (RSA).SKE(ECDH).CertReq,SHD Missing Cert,
App/ -
CertXs CKE(ECDH) /-
°D‘ \ pp/-
' CCS, /-
CKE(ECDH) /- CertVer/ Ce‘t/ App /-
A(close notify) /-
A(unexpected msg)/ - ' .
App/ App / - App 11 1D Mlssmg
CertVer
CertVer before CKE Ver ECKE(ECDH)/-.'
'. R U —{CertVer} % —{CertVer}
.‘ C.el‘tVle"/f’- ;CCSC /-
.' D Fing [CCSFind ey -
DA /- CKE(ECDH) /-
CCs, @ : fine /-
> . pp/-
CCS, /- Cert, /-

3 , Cerl(empty) / -
Fin, / CCS.Fing CertVer/-
App /- 6
A(close_notify) / *

A(unexpected msg)/ -

Bug Detection Framework

Necessary
Input

Needed
Infrastructure
SUT Model
ClientHello Test
* *1 Harness |* >
HelloVerifyRequest

validated bug sequences a /\

A

Bug
Detector e’&a —)
Necessary bug ¥ bug
Input pattern DFA
catalogue GG(;)

Assembling a Bug Catalogue

9% =
¥ bug
DFA
- &

Missing Cert,

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2655

Invalid Handshake
(client) U, J{Alert}

11 bH] A
all “other
server symbols;

all “other”
client symbols

Evaluation Setup

o DTLS servers (18 bug patterns)

o DTLS clients (16 bug patterns)

o SSH servers (16 bug patterns)

o 24 new bug patterns, largely owing to three general bug patterns
« Specific bug patterns are small (all less than 10 nodes)

« Models generated for all SUTs (two day learning time bound)
 Test harness/learning tools: DTLS-Fuzzer[1] and SSH-Mapper|[2]

o SUTs: test programs for nine DTLS and three SSH libraries,
new versions and (for DTLS) versions used in prior work.

[1]: P. Fiterau-Brostean, B. Jonsson, K. Sagonas and F. Taquist, "DTLS-Fuzzer: A DTLS Protocol State Fuzzer," IEEE Conference on Software Testing, Verification and
Validation (ICST 2022), pp. 456-458, doi: 10.1109/1CST53961.2022.00051.

[2]: https://hdl.handle.net/2066/184275

Evaluation Results (Nutshell)

« Detected and validated automatically all bugs found
in prior work on DTLS [1] and SSH [2].

« Detected new bugs (incl. those prior work missed)
and new vulnerabilities in Java clients.

o All but one bug were validated successfully.

o All bugs were reported to developers
— fixes in four libraries.

[1] Fiterau-Brostean, P., Jonsson, B., Merget, R., De Ruiter, J., Sagonas, K., and Somorovsky, J. (2020). Analysis of DTLS implementations using protocol state fuzzing.
In 29th USENIX Security Symposium (USENIX Security 20) (pp. 2523-2540).

[2] Fiterau-Brostean, P., Lenaerts, T., Poll, E., de Ruiter, J., Vaandrager, F., and Verleg, P. (2017). Model learning and model checking of SSH implementations.
In Proceedings of the 24th ACM SIGSOFT International SPIN Symposium on Model Checking of Software (pp. 142-151).

Results on DTLS Servers

VULNERABILITIES (), KNOWN BUGS (), AND NEW BUGS (/) DETECTED IN VARIOUS DTLS SERVER IMPLEMENTATIONS.

GnuTLS JSSE MbedTLS OpenSSL PionDTLS Scandim TinyDTLSC TinyDTLS® WolfSSL

Bug Pattern 3519367 371 1202 1601 2161 2260 LLIb LLlk edd8lfc 209 200-MI6 262 53a0d97 84148 400 47.1r

Certificate-less Client Authentication
Certificate Verify-less Client Authentication
ChangeCipherSpec before Certificate Verify
ClientKeyExchange before Certificate
Continue After Closure Alert
Continue After Fatal Error Airt
Early Finished
Finished before ChangeCipherSpec
HelloVerifyRequest Retransmission
Insecure Renegotiation - - - - - - - - - - - - - 4 v
Internal Error on Finished - - - - - - v v - - v v - -
[nvalid DecryptError Alert - - - - - - - - - - - - - 4 v
[nvalid Finished as Retransmission - - - - - - v v . - . - - -
Invalid HelloVerifyRequest v
f Multiple Certificate : v
Multiple ChangeCipherSpec - - - v - - - - -
Non-conforming Cookie v v v - - v v v v
Unauthenticated ClientKeyExchange - - - Voo - - - -

NSNS~
NS
NS
A
<

®x

«" Bug patterns found with our systematic approach.
Blue bug patterns are for new (types of) bugs.

Results on DTLS Clients

GouTLS ISSE MbedTLS ~ OpenSSL PionDTLS Scandiim TiyDTLS® TinyDTLSE WolfSSL

Bug Pattern 367371 12021600 2161 2260 1LLIb LLIk edd8lfc 209 2.00-M16 262 53a0d97 8414f8a 400 47.1r
CertificateRequest before Certificate - - v v - - 4 4

o Continue After Closure Alert vV v vV v vV v . .

; Continue After Fatal Error Alert v v v V/ v v v -
Early Finished - - - - - - v v

; Finished Before ChangeCipherSpec 4 - - -
Invalid DecryptError Alert - - - - - - - v v
Multiple Certificate t v v v v 4 4 - -

o~ Multiple CertificateRequest v v v v 4 4 v v

o Multiple ChangeCipherSpec - - - - v : :

o Multiple ServerKeyExchange v v - v v v v

o Premaiure HelloRequest v v -

o~ ServerHello Flight Restar - - - 4

< Switching Cipher Suite v v - - -
Unexpected ClientHello v v 4 Vv v
Unrequested Certificate - - - - - v v - - - -
Wrong Certificate Type v v Vv v v v v v v v

#" Bug patterns found with our systematic approach.

Blue bug patterns are for new (types of) bugs.

Quantitative Measurements for
DTLS Client Experiments

Our technique:
« Handles large models (e.g., 387 states for OpenSSL)

e Given reasonably accurate models (after two days)
— Successfully validates all bugs (one test/bug)

— Finishes in under one minute (even when 10 bugs are
detected)

« Works reasonably well even with inaccurate models

— Detects fewer bugs

— Needs more time/tests to validate them

Read the Paper for

- More tables and experiments.

> How to systematically assemble a bug
pattern catalogue.

> Application and evaluation on SSH Servers.
> Related work.
> Information about the paper's artifact.

In Summary

—
JSSE Server
* 124 states!

\' approximate!

Automatic Analysis

black-box! N

ClientHello Protocol
SUT — State generates
HelloVerifyRequest Fuzzer
l/ -
Gy
%, /i
(=N

Bug Detector
(Model Checker)

Bug Patterns Encoded as DFAs

W —{Cert.}

CCSq

captures sequences without
client Certificate ending in a server ChangeCipherSpec

Bug Pattern

-
w —{Cert. }

1

——

F T

B P~
{ i BuginSUT DFA 'a’/

| N

Bug Detector

validated bug sequences Generate and

Validate Seq.

P

rs

Results on DTLS Servers

VULNERABILITIES (), KNOWN BUGS (¥), AND NEW BUGS (/) DETECTED IN VARIOUS DTLS SERVER IMPLEMENTATIONS.

GnuTLS JSSE
3519367 371

MbedTLS OpenSSL FionDTLS TiyDTLSC TmDILS® WalfSSL

2161 2260 L1lb LLIk edSlfc 209 200-Ml6 262 530d97 8414182

Scandivm

1202 1601

Bug Pattem 400 470

Centficate-less Client Authentication
CertificaleVerify-less Client Authentication
ChangeCipherSpec before CertificateVerify
ClientKeyExchange before Certificate
Continue Afier Closure Alert

Continue After Fatal Error Ain

Early Finished

Finished before ChangeCipherSpec
HelloVerifyRequest Retransmission - - - - - - - - - v - -
Insecure Renegotiation - - - - - - - - - - - - - v v
Intermal Error on Finished - - - - - VoV - - v v - -
Invalid DecryptEirrar Alert - ER— - - - - - - - - v v
Invalid Finished as Relransmission D - - - - VooV
Invalid HelloVerifyRequest Voo -

Multiple Certificate - v

Multiple ChangeCipherSpec - - e [- - - -
Non-conforming Cookie v v/ - - [VooV
Unauthenticated ClientKeyExchange - . v - -

CRRSSsSN

<=
h S3CA 6 0 0 o

N

%, Bug patterns found with our systematic approach.
Blue bug patterns are for new (types of) bugs.

