Privacy-Preserving Database Fingerprinting

Tianxi Ji¹, Erman Ayday², Emre Yilmaz³, Ming Li⁴, Pan Li²

¹Texas Tech University, ²Case Western Reserve University,

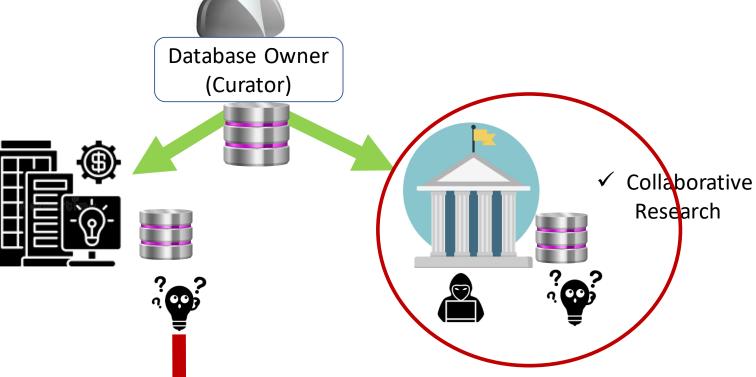
³University of Houston-Downtown, ⁴University of Texas at Arlington

NDSS 2023, San Diego, CA, USA

Motivation

- ✓ Do-it-Yourself Calculations
- ✓ Personalized Advertisements

BLACK MARKET



Unauthorized Redistribution; Make pirate copy

Curious; What is Alice's Salary?

- Prevent illegal redistribution
- Protect data privacy

Techniques

- Database Fingerprinting
 - Imperceptible
 - Prevent illegal redistribution
 - Identify source of data leakage
 - Hold the traitor(s) liable for redistribution

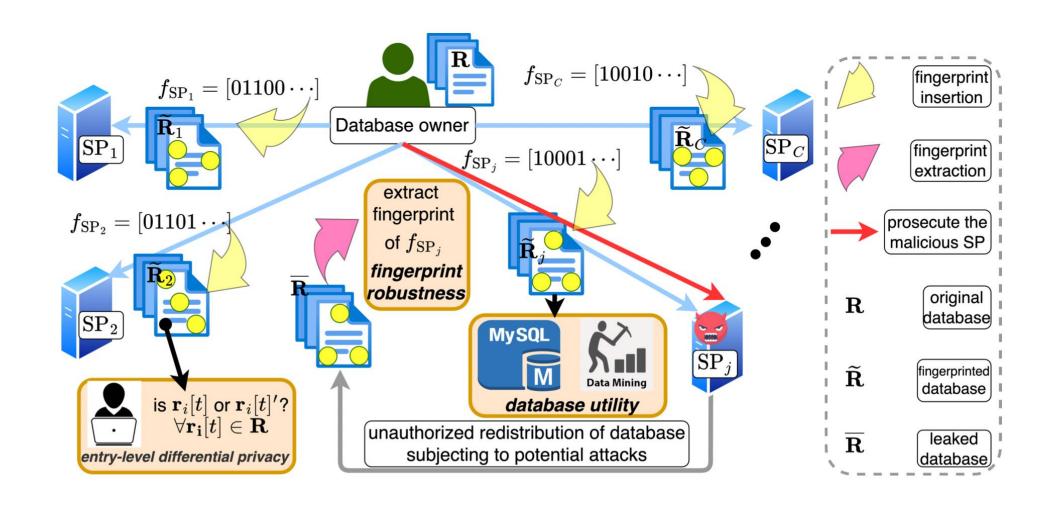
- Differential Privacy (DP)
 - Obfuscate individuals' data
 - Defend against adversarial inference

Challenges

- Prevent illegal redistribution
 - Protect data privacy
- Orthogonal objectives
 - Liability via fingerprinting requires adding different noises to all copies i.e., recipients receive **different** copies of DBs
 - Privacy via data sanitization requires adding noise once i.e., recipients can receive the same copy of DB
- Both fingerprinting and DP compromise DB utility
 - Sequential approach (fingerprinting followed by DP) is suboptimal
- Need a unified scheme to maintain DB utility

Privacy-Preserving DB Fingerprinting

Privacy-Preserving DB Fingerprinting



Definitions

- Relational DB
 - A collection of T-tuples, each is an individual
 - Each record has an immutable pseudo-id, i.e., primary key
- Neighboring relational DB
 - Two DBs differ only by one entry (an attribute of a single individual)
- Sensitivity of relational DB
 - The maximum change of an entry
- ϵ -entry-level DP: $\Pr[\mathcal{M}(\mathbf{R}) = S] \le e^{\epsilon} \Pr[\mathcal{M}(\mathbf{R}') = S]$ $\mathbf{R}, \mathbf{R}' \in \mathcal{D}, \mathcal{S} \in \operatorname{Range}(\mathcal{M}), \epsilon > 0$

Intermediate scheme: bit-level randomization

- Design principle
 - Fingerprinting schemes performs XOR between insignificant bits of data w. binary marks
 - Random: selection of bits and value marks
 - The randomness can be leverage to achieve privacy
- A bit-level randomization scheme pseudorandomly selects some bits of data entries and changes their values by XORing them with random binary marks, B, and $B \sim \text{Bernoulli}(p)$

Theorem: Given R with Δ , bit-level randomization preserves

 ϵ -entry-level DP if it marks last $K = \lfloor \log_2 \Delta \rfloor + 1$ bits, $p = \frac{1}{e^{\epsilon/K} + 1}$

ϵ -entry-level DP fingerprinting

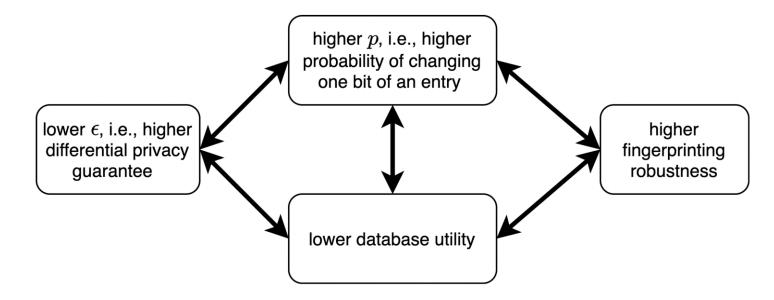
Collect all fingerprintable bits

$$\mathcal{P} = \{ \mathbf{r}_i[t, k] | i \in [1, N], t \in [1, T], k \in [1, \min\{K, K_t\}] \}$$

N: # of rows, K_t : # of bits to represent attribute t, $K = \lfloor \log_2 \Delta \rfloor + 1$

- Key steps
 - Generate the fingerprint (binary bit-string) of a SP using Hash function
 - Fingerprint a bit in \mathcal{P} (i.e., $\mathbf{r}_i[t,k] \oplus B$) if a specific condition holds
 - The condition is carefully designed such that $\Pr[B=1] = \frac{1}{e^{\epsilon/K}+1}$

Theoretical analysis: associating privacy, fingerprint robustness, DB utility



Closed form association between **privacy** (ϵ), **randomization** (p), **robustness** (against random flipping, subset, correlation attacks), and DB **utility** (accuracy, statistics, e.g., marginal/joint distribution)

Cumulative privacy loss due to multiple sharing

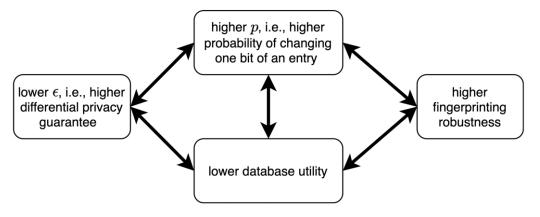
- Practical concern of DP
 - Privacy degrades linearly if the same statistics are repeatedly shared
 - The same is true for repeatedly sharing a DB with multiple SPs

- Resort to Sparse Vector Technique (SVT)
 - Only releases a noisy result when it is beyond a noisy threshold
 - Pays the cost of privacy only for queries satisfying a certain condition, i.e.,

$$function(DB) + noise_1 \ge \Gamma + noise_2$$

Cumulative privacy loss control via SVT

- Design principle
 - For C SPs asking for the DB
 - Only share fingerprinted copies with certain privacy and robustness requirements
 - Requirements on privacy and robustness can be quantified via DB utility



Consider $function(DB) = ||\mathcal{M}(\mathbf{R}) - \mathbf{R}||_{1,1}$

Associate with **privacy** (ϵ), **randomization** (p), and **robustness**

Share fingerprinted DB with \emph{C} SPs via SVT

Key steps:

- Generate a fingerprinted copy, $\mathcal{M}(\mathbf{R})$, with privacy budget ϵ
- Sample two Laplace noises $\mu \sim \text{Lap}(\frac{\Delta}{\epsilon_2})$ and $\rho \sim \text{Lap}(\frac{\Delta}{\epsilon_3})$
- Only share $\mathcal{M}(\mathbf{R})$ if $\big||\mathcal{M}(\mathbf{R}) \mathbf{R}|\big|_{1,1} + \mu \geq \Gamma + \rho$

Theorem: Preserve is (ϵ_0, δ_0) -entry-level DP.

$$\epsilon_0 = \sqrt{2C \ln(1/\delta')} (\epsilon + \epsilon_2 + \epsilon_3) + C(\epsilon(e^{\epsilon} - 1) + (\epsilon_2 + \epsilon_3)(e^{\epsilon_2 + \epsilon_3} - 1)) \delta_0 = 2\delta'$$

Experiments

Two DBs

- Nursery school application: 12,960 records, 8 categorical attributes, 4 classes
- Census: 32,561 records, 14 discrete or categorical attributes, 2 classes
- Attributes are encoded as integers before fingerprinting

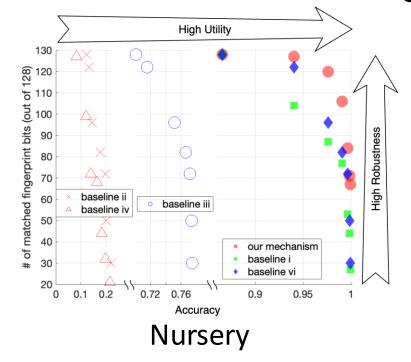
Baselines

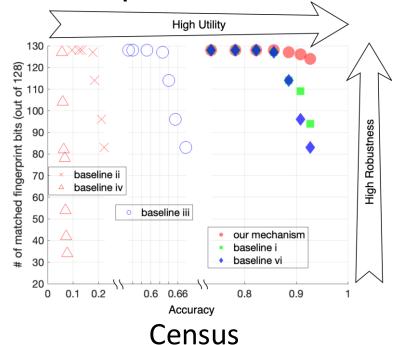
baseline (i)	data perturbation followed by fingerprinting	two-step
baseline (ii)	data synthesis followed by fingerprinting	two-step
baseline (iii)	k-anonymity-based fingerprinting	two-step
baseline (iv)	privacy-protection fingerprinting via Gaussian noise by Hu et al.	one-step
baseline (v)	data perturbation only via local differential privacy	no liability
baseline (vi)	fingerprinting only via mechanism developed by Li at al.	no privacy

Experiments

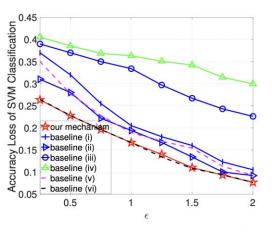
- Use 128 bits for fingerprint and consider 50% random bit flipping attack
- *x*-axis: accuracy of fingerprinted DB

• y-axis: match of extracted fingerprint from compromised DB





Experiments



To a seline (i)

baseline (ii)

baseline (iii)

baseline (iv)

baseline (v)

baseline (vi)

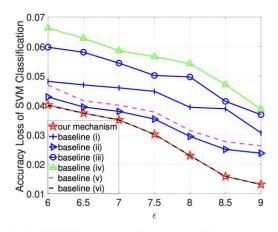
baseline (vi)

baseline (vi)

baseline (vi)

(a) SVM on Nursery Database.

(b) PCA on Nursery Database.



13
120
9 wour mechanism
+ baseline (i)
baseline (ii)
baseline (iii)
baseline (iv)
- baseline (v)
7 baseline (v)
7 6 6.5 7 7.5 8 8.5 9

(a) SVM on Census Database.

(b) PCA on Census Database.

Conclusions

- Developed the first privacy-preserving DB fingerprinting scheme
- Connect privacy, fingerprint robustness, and DB utility
- Use SVT to control cumulative privacy loss

- Future work
 - Mitigate correlation attacks
 - Improve utility by utilizing data distribution
 - Defend against membership inference attack

Contact: Tianxi Ji

tiji@ttu.edu

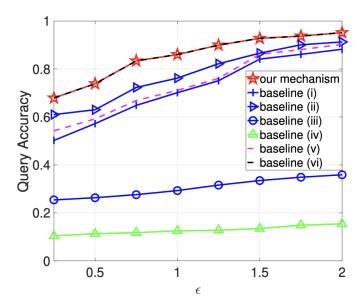
Entry-level DP v.s. DP

No matter what learning-based inference attack the malicious SP conducts, its inference capability can never be higher than $\frac{\psi e^{\epsilon}}{\psi e^{\epsilon}+1}$, i.e., $\operatorname{InfCap} \leq \frac{\psi e^{\epsilon}}{\psi e^{\epsilon}+1}$, where $\psi = \frac{\Pr(\boldsymbol{r}_i[t]=\zeta_1|\mathbf{R}_{/\boldsymbol{r}_i[t]})}{\Pr(\boldsymbol{r}_i[t]=\zeta_2|\mathbf{R}_{/\boldsymbol{r}_i[t]})}$ is the ratio of the malicious SP's prior knowledge of the unknown entry $\boldsymbol{r}_i[t]$ taking different values (i.e., ζ_1 and ζ_2) given all other entries are known.

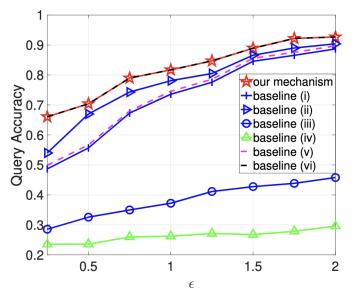
- All entries in DB satisfying ϵ -entry-level DP are naturally ϵ -DP for DB
- Privacy amplification occur when ϵ' -DP holds for DB and $\epsilon' < \epsilon$
 - Subsampling
 - Shuffling

DB utility: SQL query

Q1 :SELECT PmyKey FROM Nursery WHERE
 children = more AND social = slightly_prob
Q2 :SELECT PmyKey FROM Nursery WHERE
 parent = usual AND finance = incov



(a) Accuracy of Q1.

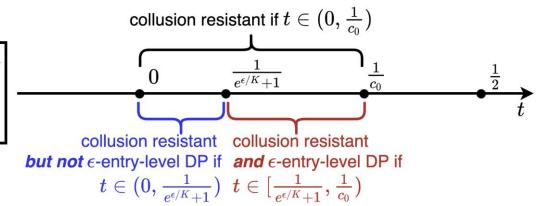


(b) Accuracy of Q2.

Collusion attack

- Malicious SPs combine their versions of fingerprinted DBs to forge a pirated copy with the hope that none of them can be traced back
- Achieve collusion-resistant, privacy-preserving fingerprinting by leverage randomness of Tardos code

- 1 Sample a random variable p from probability density function $f(p|t) = \frac{1}{2\arcsin(1-2t)} \frac{1}{\sqrt{p(1-p)}}, t \in (0,0.5).$
- Generate the Tardos fingerprint string, i.e., $\mathbf{f} \sim Bernoulli(p)$.



Application on Genomic DB

