VICEROY:

GDPR-/CCPA-compliant Verifiable Accountless Consumer Requests

Scott Jordan¹, Yoshimichi Nakatsuka¹, Ercan Ozturk¹, Andrew Paverd², Gene Tsudik¹

¹ University of California, Irvine

² Microsoft

Data Protection Regulations

- GDPR (General Data Protection Regulation)
 - data subjects in the EU/EEA
- CCPA (California Consumer Privacy Act)
 - consumers who are California residents
- ...
- Grant consumers legal rights over their data:
 - Access
 - Correct
 - Delete

Verifiable Consumer Request (VCR)

- Request from a consumer to a service provider (e.g., website) to access/modify/delete personal data
- Website must verify authenticity of request
 - Otherwise, there are privacy consequences
- Verification is straightforward when consumer has an account
 - Ask the consumer to log in etc.
- But what about consumers without accounts?
 - Data protection regulations still apply

How are "Accountless" consumers currently verified?

Government-issued ID

Signed statement

Credit card number

Phone interview

Ad-hoc, Insecure, Privacy-invasive

Why not use Cookies 💝 ?

When submitting a VCR, accountless consumers could authenticate themselves by providing the unique cookies they received when accessing the service.

Pros:

Privacy-preserving

> Server learns nothing new

Cons:

- Cookies might not be unguessable
- Must securely sent over the network
- Require secure storage

Cookies are **symmetric** authentication tokens

Introducing VICEROY

A framework enabling **accountless** consumers to request their data in a **secure** and **privacy preserving** manner.

Specifically, VICEROY...

- allows consumers to generate VCRs without relying on symmetric tokens,
- allows website operators to efficiently and securely verify VCRs,
- can be integrated into existing websites with minimal changes.

Overview of VICEROY

Trusted Client Device

Client Device

Server

1. Setup phase

2. Visiting a website

3. Proving data ownership

Key management

Challenge: Will the user have to store a large number of cryptographic keys (e.g., one per session)?

Solution: Use Derivable Asymmetric Keys (e.g., BIP32)

- User only has to store one master private key
- Master private key can be stored offline on trusted client device
- Client can use multiple devices rooted in a single trusted device

Implementation

Security Analysis

- Unforgeability
 - Only the client who originally interacted with server can create a valid VCR.

- Replay resistance
 - A server will accept a valid VCR at most once.

- Unlinkability
 - Honest-but-curious server should be unable to link a VCR to a specific client, or to link multiple VCRs to the same client.

Trace properties verified using the Tamarin Prover

Non-trace property verified through manual inspection

Evaluation (Latency)

Browsing a new web page:

Key Derivation	Wrapper Generation	Wrapper Verification	Wrapper Storage
24.6 ms	0.4 ms	18.8 ms	6.5 ms

Generating and verifying a VCR:

	VCR Generation	VCR Verification
VCR Flow	1357.4 ms	1.5 ms

Evaluation (Data transfer & Storage)

Data transfer:

	Request	Response	Total
Obtain Wrapper	0.72 kB	0.38 kB	1.10 kB
Issue VCR	0.99 kB	0.28 kB	1.27 kB

Client-side storage requirement:

One year of VICEROY usage: 23 MB

Open research questions

- Linking through metadata
 - Hide IP address, use TEE/PIR when retrieving data
- Shared devices (a.k.a., roommate problem)
 - For example, two people watching smart TV
 - Owns the collected data?
- 3rd party cookie support
 - How to extend VICEROY to allow clients exercise their rights over data collected by 3rd parties (e.g., advertising networks)?
- New business opportunity: Cookie wrapper storage
 - Consumers may need to store their cookies and wrappers indefinitely
 - Cookies and wrappers can be stored by external service
 - "VCR as a service"?

Conclusion

VICEROY -A privacy-preserving and scalable framework for producing *proofs of data* ownership

Designed to support multiple devices, Web environment, and long-term use

Proof of concept implementation that is easy to integrate into browsers

Latency, bandwidth, and storage evaluation show VICEROY is efficient

Questions? Email: nakatsuy@uci.edu

Appendix

Verifiable Consumer Request (VCR)

With account

- Standard
- Secure

Verifiable Consumer Request (VCR)

With account

- Standard
- Secure

Accountless

- Ad-hoc
- Insecure
- Privacy-invasive

VCR Requirements

- Unforgeability
- Replay resistance
- Consumer Privacy
 - Request Specific consumer
 - Multiple requests Single consumer

Asymmetric Solution: Setup & Interaction

Asymmetric Solution: Setup & Interaction

Asymmetric Solution: VCR Issuance

Challenges

- Key Explosion
- Secure Key Management
- Long-Term Storage
- Multiple Device Support
- Server-side storage modification

VICEROY: GDPR-/CCPA-compliant Verifiable Accountless Consumer Requests

- Key Explosion
 - Session-based key generation based on BIP32
- Secure Key Management:
 - Trusted consumer device
- Long-Term Storage:
 - Untrusted, third-party storage
- Multiple Device Support:
 - Device-independent key generation and synced storage
- Server-side storage modification:
 - Cookie wrapper

BIP 32 - Hierarchical Deterministic Wallets

Child Key Derivation Function $\sim CKD(x,n) = HMAC-SHA512(x_{Chain}, x_{PubKey} || n)$

VICEROY - Device provisioning

VICEROY - Wrapper issuance

VICEROY - Data exchange

VICEROY - VCR Issuance

