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1. Backgrounds: Traffic Encryption

 Traffic encryption is widely adopted on the Internet.
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Encrypted Plaintext Encrypted Plaintext

May 2019, 94% of all Google 

web traffic is encrypted.1
Nearly 80% of web pages loaded 

by Firefox use HTTPS.2

[1] https://transparencyreport.google.com/https/overview?hl=en

[2] Predicts 2017: Network and Gateway Security.

Encrypted Plaintext

Over 98% Alexa top 1k 

websites support HTTPS.

https://transparencyreport.google.com/https/overview?hl=en


1. Backgrounds: Abused Traffic Encryption

 Traffic Encryption is double-edged.

 Attackers abuse traffic encryption to conceal their

behaviors, e.g., data breach, and exfiltration.

 It is reported that, 70% attacks were constructed

by encrypted traffic in 2020.
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30%

Encrypted

Plaintext

[3] Cisco Encrypted Traffic Analytics White Paper, Cisco.

Over 70% attacks were constructed 

by encrypted attack traffic.



1. Backgrounds: Malicious Traffic Detection

 Attackers can easily evade the existing detection via traffic encryption.
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Attacker

HTTP/1.1 200 OK
GRT Attack.exe

Victim
Signature based detection:
Inspect packet payloads.

Traditional signature-based method:
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Attacker

HTTP/1.1 200 OK
GRT Attack.exe

Victim

****/*.* *** **
*** ******.***

Fixed Rules cannot match 
encrypted payloads

Traditional signature-based method: Deep Packet Inspection (DPI) is invalid.
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 Attackers can easily evade the existing detection via traffic encryption.
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1. Backgrounds: Malicious Traffic Detection

 Attackers can easily evade the existing detection via traffic encryption.
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 Advanced ML-based detection cannot detect such attack either.

 Encrypted malicious flows with benign traffic patterns.
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1. Backgrounds: Encrypted Attack Traffic Evades Detection

 Advanced ML-based detection cannot detect such attack either.

 Benign SMTP-over-TLS Traffic & Encrypted Spam Traffic.

 Traditional traffic features cannot differentiate encrypted malicious traffic.
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2. Motivation: Interaction Patterns

 It is still possible to detect encrypted malicious traffic according to interaction patterns.

 The interactions between spambots and SMTP servers are significantly frequent.
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SMTP Server
Attackers

Benign User

`

Abnormal Interaction 
Patterns

We explore utilizing flow interaction 
patterns for malicious traffic detection.
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2. Motivation: Flow Interaction Graph

 We use a graph to represent the interaction patterns.

 Vertices IP addresses.

 Edges Flows

Attacker IP

 We use unsupervised graph learning to detect the

attacks, without requiring any prior knowledge.

Flow Interaction Graph



3. Design: Overview

 Module 1: Graph Construction Module.
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3. Design: Overview

 Module 2: Graph Pre-Processing Module.
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3. Design: Overview

 Module 2: Graph Pre-Processing Module.
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3. Design: Overview

 Module 3: Graph Detection Module.
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3. Design: Overview

 Module 3: Graph Detection Module.
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3. Design: How to reduce graph density?

 Complex flow interaction patterns.

1. Over 50,000 active hosts reside in AS2500.

2. Over 3M flows per hour.

 We cannot use one edge to denote one flow and use

one vertex to denote one IP  dependency explosion

problem.

 How to reduce the density of a graph?

Detecting Unknown Encrypted Malicious Traffic in
Real Time via Flow Interaction Graph Analysis

Chuanpu Fu, NDSS 2023
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 Observation: most flows are short flow, and most packets are in long flow.

 Solution: we construct edges to represent short and long flow, separately.
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3. Design: How to reduce the dense graph?

 Many short flows are similar, e.g., DNS queries, password cracking.

 We aggregate the short flows and use one edge to represent many short flows

 Long flows have complex patterns.

 We extract fine-grained features for long flows, i.e., distribution features.
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 One edge  many short flows or one long-flow.

 One vertex  a group of addresses or one address.



3. Design: How to reduce the dense graph?
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3. Design: How to efficiently identify attack 

traffic?
 The size of graph is still too large for real-time graph

learning.

 We exclude benign components by clustering the high-

level statistics.
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4. Theoretical Analysis

 To prove the effectiveness of the method, we developed an information theory based

analysis framework, which models flows by using DTMC.

 By calculating the entropy of the DTMC, we prove the amount of information preserved

on the graph is near-optimal.

Detecting Unknown Encrypted Malicious Traffic in
Real Time via Flow Interaction Graph Analysis

Chuanpu Fu, NDSS 2023



5. Experimental Analysis: Setup

 We implement our method using Intel DPDK (Data Plane Development Toolkit).

 The source code is publicly available.

 On the physical testbed, we replay 92 kinds of malicious traffic, including 48 attacks with

encrypted malicious traffic:

 Traditional brute attacks (e.g., amplification attacks).

 Encrypted flooding traffic (e.g., the Crossfire Attack).

 Encrypted Web attack traffic (e.g., CVE-2013-2028).

 Malware generated traffic (e.g., C&C Channel).

 These attack traffic is collected form a scaled private cloud network ( > 1500 users), and

the malware traffic is manually extracted form public datasets.
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5. Experimental Analysis: Results

 HyperVision outperforms 5 SOTA methods in detection accuracy.

Over 50% of the stealthy attacks cannot be identified by all the methods.
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5. Experimental Analysis: results

 The method can detect many sophisticated attacks.
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5. Experimental Analysis: results

 The method realizes both high detection throughput and low latency.

 The graph detection module can process 121 Gb/s traffic on average.

 Meanwhile, the average detection latency is only 0.82s.
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6. Conclusions and Takeaways

 We develop an encrypted malicious traffic detection 

method, which utilize flow interaction patterns 

represented by graph structural features.
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6. Conclusions and Takeaways

 Design new traffic features to tackle this issue.
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 Many attack traffic generates benign traffic features, e.g., packet rates.

 The idea of using the graph is derived from provenance graph analysis.

We believe the flow interaction graph can be applied to

other network applications.
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