
OptRand: Optmistically Responsive
Reconfigurable Distributed Randomness

1March 01 NDSS - 2023

*Equal contribution

Adithya
Bhat*

Aniket Kate Kartik Nayak
Nibesh
Shrestha*

Generates random numbers at regular intervals

• 1ffa108e7cfcd9fe125c

• 06485727a9a47b37401a

• afd090a44b761903d1fe

2

• Random selection: lotteries, shuffled decks

• Randomized consensus protocols:
VABA[AMS’19] , HoneyBadger[MXCSS’16]

• Blockchain-sharding[ASBHD’17]

• Anonymous communication[GRPS’03]

• E-voting and many more…

Random Beacon Applications

Motivation

March 01 NDSS - 2023

3

No entity can influence a
future random beacon
away from uniform

Bias Resistance

No entity can distinguish
the beacon output from a
random value

Unpredictable

Random Beacon: Key Properties

March 01 NDSS - 2023

4

Additional Properties:

• Optimal resilience: tolerates t < n/2 Byzantine faults assuming synchrony

• Low communication complexity

• Low computational overhead

• Low latency

• Reconfiguration-friendly: Replace participating nodes without additional
communication overhead

Byzantine Fault-tolerant Randomness Beacon
Generate bias-resistant and unpredictable random beacons

• despite 𝒕 Byzantine failures out of 𝑛 nodes

March 01 NDSS - 2023

5

Resilience Communication Unpredictability Reusable
setup

Assumption Latency

Best Worst

Drand 𝒕 <
𝒏

𝟐
𝑶(𝒏𝟐) 𝟏 ✗ DKG Low

Dfinity[HMW’18]
𝒕 <

𝒏

𝟐
𝑶(𝒏𝟐) 𝑶(𝒏𝟑) 𝟏 ✗ DKG Low

RandRunner[SJHSW’21]
𝒕 <

𝒏

𝟐
𝑶(𝒏𝟐) 𝒕 + 𝟏 ✓ VDF High

BRandPiper[BSLKN’21]
𝒕 <

𝒏

𝟐
𝑶(𝒏𝟐) 𝑶(𝒏𝟑) 𝟏 ✓ q-SDH High

Prior Work

Can we design random beacon protocols
with all desired properties?

March 01 NDSS - 2023

6

Prior Work

Resilience Communication Unpredictability Reusable
setup

Assumption Latency

Best Worst

Drand 𝒕 <
𝒏

𝟐
𝑶(𝒏𝟐) 𝟏 ✗ DKG Low

Dfinity[HMW’18]
𝒕 <

𝒏

𝟐
𝑶(𝒏𝟐) 𝑶(𝒏𝟑) 𝟏 ✗ DKG Low

RandRunner[SJHSW’21]
𝒕 <

𝒏

𝟐
𝑶(𝒏𝟐) 𝒕 + 𝟏 ✓ VDF High

BRandPiper[BSLKN’21]
𝒕 <

𝒏

𝟐
𝑶(𝒏𝟐) 𝑶(𝒏𝟑) 𝟏 ✓ q-SDH High

OptRand 𝒕 <
𝒏

𝟐
𝑶(𝒏𝟐) 1 ✓ q-SDH Low

March 01 NDSS - 2023

Our random beacon protocol guarantees:

• 𝟏 −absolute unpredictability

• Bias-resistance

• Optimal resilience of 𝑡 < 𝑛/2

• Always 𝑶 𝒏𝟐 communication complexity

• Optimistic latency
• 𝑂(𝛿) latency during optimistic conditions
• 11Δ latency otherwise

• Reconfiguration-friendly with reconfiguration in 𝑡 + 1 rounds

7

Our protocol - OptRand

Δ: known upper bound on n/w delay, 𝛿 : actual n/w delay

March 01 NDSS - 2023

March 01 NDSS - 2023 8

Technique Overview

Leader SMR

0xf567

0xa1e3

0xd5f33

0x1111

0x0000

PVSS

(1) We have 𝑡 < 𝑛/2 Byzantine nodes in the system

(2) Nodes generate
random values shared via
a homomorphic Publicly
Verifiable Secret Sharing

(PVSS)

(3) Leader
aggregates 𝑡 + 1

PVSS into a
Publicly Verifiable
Random Sharing

(4) The rotating leader-based SMR
handles
• invalid/no inputs
• Low-latency and low-

communication complexity
agreement

• Beacon generation using
reconstruction of PVRS

I will focus on (1), (2), and (3)

SMR Requirement:
Input must be 𝑂(𝑛)
sized

indicates secret sharing

9

Encryption for
node 1

…
Encryption for

node 𝑛

Commitment to 𝑛, 𝑡 polynomial

Proof that everyone’s shares are correct

General PVSS
Structure𝑶 𝟏 size

𝑶 𝒏 size

Publicly Verifiable Secret Sharing (PVSS)

March 01 NDSS - 2023

The proof guarantees that
 The degree of the polynomial in the

commitment portion of the PVSS is 𝒕
 The encryptions correspond to the committed

polynomial

Output of PVSS Share generation

10

Encryption for
node 1

…
Encryption for

node 𝑛

Commitment to 𝑛, 𝑡 polynomial

Proof that everyone’s shares are correct

General PVSS
Structure

Publicly Verifiable Secret Sharing (PVSS)

March 01 NDSS - 2023

is homomorphic

not homomorphic

Problem: If 𝑂(𝑡) sharings are combined,
the resulting PVSS is 𝑂 𝑛𝑡 sized

Output of PVSS Share generation

11

Encryption for
node 1

…
Encryption for

node 𝑛

Commitment to 𝑛, 𝑡 polynomial

⊥ (Proof using pairings)

Publicly Verifiable Secret Sharing (PVSS)

March 01 NDSS - 2023

is homomorphic

Using Pairing based PVSS
from SCRAPE[CD19]

Problem: An adversarial combiner
can cancel honest node’s shares of

𝑟 by generating shares of −𝑟

We need a mechanism to prevent
adversary from forging honest

node’s shares
Output of Pairing-based PVSS Share generation

12

Solution: Add decomposition proofs that contain
• A NIZK proof that the node creating the sharing knows the

secret in the PVSS
• Authentication information (e.g., digital signature)

Publicly Verifiable Secret Sharing (PVSS)

NIZK – Non-Interactive Zero Knowledge

March 01 NDSS - 2023

13

PVRS: The size is 𝑶(𝒏)

Publicly Verifiable Random Sharing

Leader

March 01 NDSS - 2023

14

In this example, anyone can verify that
 All nodes (1, 2, …, 5) have contributed to

this PVRS
 It is an 𝑛, 𝑡 sharing
 The shares for all the nodes are correct

BONUS: If the nodes reconstruct
the secret S, then anyone can

verify that 𝑆 is the correct
reconstruction using 𝑂(1)

information

Publicly Verifiable Random Sharing

Broadcast Channel or SMR

Leader

March 01 NDSS - 2023

BFT SMR

15

All honest nodes output a common set of blocks
 Despite t Byzantine failures out of n nodes

B1 B2 Bk-1 Bk⏊

certificate: a quorum of signatures, Δ: known upper bound on n/w delay
March 01 NDSS - 2023

Prior BFT SMR protocols with t < n/2 resilience:
• O(n2) communication with threshold setup

 Not-reconfiguration friendly
• O(n3) communication w/o threshold setup

 Size of certificate is O(n) bits

Our approach: Reduce latency during optimistic conditions

BFT SMR of RandPiper[BSLKN’21]

• tolerates t < n/2 Byzantine failures
• O(n2) communication w/o threshold setup

 Reconfiguration-friendly
• Each epoch lasts 11Δ

Optimistic Responsiveness [PS’17]

Allows synchronous protocols to commit responsively in O(𝛿) time under optimistic conditions

Optimistic conditions:
• Leader is honest
• > 3n/4 nodes in the system follow the protocol

Responsive commit: commit at 𝛿𝛿 : actual n/w delay, Δ: known upper bound on n/w delay, 𝛿 << Δ

Primary concern:
• Not easy to decide if optimistic conditions are met

 Should the protocol progress responsively or synchronously ?

16

Our BFT-SMR Protocol

Responsive commit: commit at 𝛿𝛿 : actual n/w delay, Δ: known upper bound on n/w delay, 𝛿 << Δ

Makes progress at n/w speed
during optimistic conditions

Slow Path

1. Makes progress synchronously
under normal conditions

2. Identical to RandPiper BFT SMR

Execute both paths simultaneously

17

Fast Path

Key Challenges of the Fast Path Protocol

certificate: a quorum of vote messages

• Responsive propagation of linear-sized message
 E.g. block proposal, certificates
 A Byzantine leader could send the message to only some honest nodes

 All-to-all multicast incurs cubic communication

• Responsively changing epochs
 Traditionally, performed using all-to-all multicast of certificates

 Incurs cubic communication

18

Primitives
• Linear erasure and error correcting code (Reed-Solomon codes)

• (n, b) RS code
o Encode: m1, …, mb s1, …, sn

o Decode: s1, …., sn m1, …, mb tolerates n - b erasures

• Cryptographic accumulator
• To prove membership of slices
• Bilinear accumulator

In our protocol, we set b = n/4 + 1

19

Responsive Propagation of Linear-sized Message

<propose, H(B)>L, B

H: Hash function

1. Encode proposal with (n, n/4+1) RS code

2. Send slice si to node pi , multicast ack for B

3. Multicast its slice

Multicast their slice

1. Consider block B propagated when
3n/4 + 1 nodes ack for block B

2. Decode block B from n/4 + 1 slices

20

<ack, H(B)>p1

p1

p2

L

Responsive Propagation of Linear-sized Message

H: Hash function 21

3n/4 + 1 nodes have sent acks for B

At least n/4 + 1 of the nodes are honest

n/4 + 1 honest nodes will send their slices to all other nodes
 All honest nodes will receive at least n/4 + 1 valid slices sufficient to decode the original

block proposal

Responsively Changing Epochs

A synchronization primitive is required to signal all honest nodes to move to higher epoch.

Reconstructed secret opened in an epoch as a synchronization primitive
• Reconstructed secret is constant sized
• All-to-all broadcast of the reconstructed secret incurs O(n2) communication

22

Key Features of Our BFT SMR

• Rotating leader protocol
 Leaders rotated every epoch
 Each epoch lasts for O(𝛿) time during optimistic conditions

 Otherwise, lasts 11Δ time

• O(n2) communication for O(n)-sized input

• Commits a decision in t+1 epochs in the worst case

𝛿 : actual n/w delay, Δ: known upper bound on n/w delay, 𝛿 << Δ 23

24

BFT SMR

(1a) Nodes add verifiable sharings of
random numbers in every epoch. The

leader builds and shares a random
sharing

𝒕 + 𝟏 epochs

(2a) Remove node from the
system. (No longer eligible

to be a leader)

(2b) Add the sharing for the
random number to local

state

or

0xf567
(1b) Reconstruct sharings from
the previous epoch as leader to

build the beacon

0xa1e3

0xd5f33

0x986e

0x0000

Putting Things Together - OptRand

Evaluation

25

t3.medium

AWS

Code: https://github.com/nibeshrestha/optrand

26

Protocols
1. Optimistically Responsive Distributed Random beacons with O(n2)

communication per beacon

2. Efficient Reconfiguration with O(n2) communication per epoch and
optimistically responsive latency

Conclusion

Thank You!
March 01 NDSS - 2023

*Equal contribution

Adithya
Bhat*

Aniket
Kate

Kartik
Nayak

Nibesh
Shrestha*

