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Generates random numbers at regular intervals

• 1ffa108e7cfcd9fe125c

• 06485727a9a47b37401a

• afd090a44b761903d1fe

2

• Random selection: lotteries, shuffled decks

• Randomized consensus protocols: 
VABA[AMS’19] , HoneyBadger[MXCSS’16]

• Blockchain-sharding[ASBHD’17]

• Anonymous communication[GRPS’03]

• E-voting and many more…

Random Beacon Applications

Motivation
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No entity can influence a 
future random beacon 
away from uniform

Bias Resistance

No entity can distinguish 
the beacon output from a 
random value

Unpredictable

Random Beacon: Key Properties
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Additional Properties:

• Optimal resilience: tolerates t < n/2 Byzantine faults assuming synchrony

• Low communication complexity

• Low computational overhead

• Low latency

• Reconfiguration-friendly: Replace participating nodes without additional 
communication overhead

Byzantine Fault-tolerant Randomness Beacon
Generate bias-resistant and unpredictable random beacons 

• despite 𝒕 Byzantine failures out of 𝑛 nodes
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Resilience Communication Unpredictability Reusable
setup

Assumption Latency

Best Worst

Drand 𝒕 <
𝒏

𝟐
𝑶(𝒏𝟐) 𝟏 ✗ DKG Low

Dfinity[HMW’18]
𝒕 <

𝒏

𝟐
𝑶(𝒏𝟐) 𝑶(𝒏𝟑) 𝟏 ✗ DKG Low

RandRunner[SJHSW’21]
𝒕 <

𝒏

𝟐
𝑶(𝒏𝟐) 𝒕 + 𝟏 ✓ VDF High

BRandPiper[BSLKN’21]
𝒕 <

𝒏

𝟐
𝑶(𝒏𝟐) 𝑶(𝒏𝟑) 𝟏 ✓ q-SDH High

Prior Work

Can we design random beacon protocols 
with all desired properties?
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Prior Work

Resilience Communication Unpredictability Reusable
setup

Assumption Latency

Best Worst

Drand 𝒕 <
𝒏

𝟐
𝑶(𝒏𝟐) 𝟏 ✗ DKG Low

Dfinity[HMW’18]
𝒕 <

𝒏

𝟐
𝑶(𝒏𝟐) 𝑶(𝒏𝟑) 𝟏 ✗ DKG Low

RandRunner[SJHSW’21]
𝒕 <

𝒏

𝟐
𝑶(𝒏𝟐) 𝒕 + 𝟏 ✓ VDF High

BRandPiper[BSLKN’21]
𝒕 <

𝒏

𝟐
𝑶(𝒏𝟐) 𝑶(𝒏𝟑) 𝟏 ✓ q-SDH High

OptRand 𝒕 <
𝒏

𝟐
𝑶(𝒏𝟐) 1 ✓ q-SDH Low
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Our random beacon protocol guarantees:

• 𝟏 −absolute unpredictability

• Bias-resistance

• Optimal resilience of 𝑡 < 𝑛/2

• Always 𝑶 𝒏𝟐 communication complexity

• Optimistic latency
• 𝑂(𝛿) latency during optimistic conditions
• 11Δ latency otherwise

• Reconfiguration-friendly with reconfiguration in 𝑡 + 1 rounds
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Our protocol - OptRand

Δ: known upper bound on n/w delay,              𝛿 : actual n/w delay              
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Technique Overview

Leader SMR

0xf567

0xa1e3

0xd5f33

0x1111

0x0000

PVSS

(1) We have 𝑡 < 𝑛/2 Byzantine nodes in the system

(2) Nodes generate 
random values shared via 
a homomorphic Publicly 
Verifiable Secret Sharing 

(PVSS)

(3) Leader 
aggregates 𝑡 + 1

PVSS into a 
Publicly Verifiable 
Random Sharing

(4) The rotating leader-based SMR 
handles 
• invalid/no inputs
• Low-latency and low-

communication complexity 
agreement

• Beacon generation using 
reconstruction of PVRS

I will focus on (1), (2), and (3)

SMR Requirement: 
Input must be 𝑂(𝑛)
sized

indicates secret sharing



9

Encryption for 
node 1

…
Encryption for 

node 𝑛

Commitment to 𝑛, 𝑡 polynomial

Proof that everyone’s shares are correct

General PVSS 
Structure𝑶 𝟏 size

𝑶 𝒏 size

Publicly Verifiable Secret Sharing (PVSS)

March 01 NDSS - 2023

The proof guarantees that
 The degree of the polynomial in the 

commitment portion of the PVSS is 𝒕
 The encryptions correspond to the committed 

polynomial

Output of PVSS Share generation
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Encryption for 
node 1

…
Encryption for 

node 𝑛

Commitment to 𝑛, 𝑡 polynomial

Proof that everyone’s shares are correct

General PVSS 
Structure

Publicly Verifiable Secret Sharing (PVSS)

March 01 NDSS - 2023

is homomorphic

not homomorphic

Problem: If 𝑂(𝑡) sharings are combined, 
the resulting PVSS is 𝑂 𝑛𝑡 sized

Output of PVSS Share generation
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Encryption for 
node 1

…
Encryption for 

node 𝑛

Commitment to 𝑛, 𝑡 polynomial

⊥ (Proof using pairings)                 

Publicly Verifiable Secret Sharing (PVSS)

March 01 NDSS - 2023

is homomorphic

Using Pairing based PVSS 
from SCRAPE[CD19]

Problem: An adversarial combiner 
can cancel honest node’s shares of 

𝑟 by generating shares of −𝑟

We need a mechanism to prevent 
adversary from forging honest 

node’s shares
Output of Pairing-based PVSS Share generation
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Solution: Add decomposition proofs that contain
• A NIZK proof that the node creating the sharing knows the 

secret in the PVSS 
• Authentication information (e.g., digital signature)

Publicly Verifiable Secret Sharing (PVSS)

NIZK – Non-Interactive Zero Knowledge

March 01 NDSS - 2023
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PVRS: The size is 𝑶(𝒏)

Publicly Verifiable Random Sharing

Leader

March 01 NDSS - 2023



14

In this example, anyone can verify that 
 All nodes (1, 2, …, 5) have contributed to 

this PVRS
 It is an 𝑛, 𝑡 sharing
 The shares for all the nodes are correct

BONUS: If the nodes reconstruct 
the secret S, then anyone can 

verify that 𝑆 is the correct 
reconstruction using 𝑂(1)

information

Publicly Verifiable Random Sharing

Broadcast Channel or SMR

Leader

March 01 NDSS - 2023



BFT SMR 
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All honest nodes output a common set of blocks
 Despite t Byzantine failures out of n nodes

B1 B2 Bk-1 Bk⏊

certificate: a quorum of signatures,                         Δ: known upper bound on n/w delay            
March 01 NDSS - 2023

Prior BFT SMR protocols with t < n/2 resilience:
• O(n2) communication with threshold setup

 Not-reconfiguration friendly
• O(n3) communication w/o threshold setup

 Size of certificate is O(n) bits

Our approach: Reduce latency during optimistic conditions

BFT SMR of RandPiper[BSLKN’21]

• tolerates t < n/2 Byzantine failures
• O(n2) communication w/o threshold setup

 Reconfiguration-friendly
• Each epoch lasts 11Δ



Optimistic Responsiveness [PS’17] 

Allows synchronous protocols to commit responsively in O(𝛿) time under optimistic conditions

Optimistic conditions:
• Leader is honest
• > 3n/4 nodes in the system follow the protocol 

Responsive commit: commit at  𝛿𝛿 : actual n/w delay,      Δ: known upper bound on n/w delay,      𝛿 << Δ

Primary concern: 
• Not easy to decide if optimistic conditions are met

 Should the protocol progress responsively or synchronously ?
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Our BFT-SMR Protocol

Responsive commit: commit at  𝛿𝛿 : actual n/w delay,      Δ: known upper bound on n/w delay,      𝛿 << Δ

Makes progress at n/w speed 
during optimistic conditions

Slow Path

1. Makes progress synchronously 
under normal conditions

2. Identical to RandPiper BFT SMR

Execute both paths simultaneously 
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Fast Path



Key Challenges of the Fast Path Protocol

certificate: a quorum of vote messages

• Responsive propagation of linear-sized message
 E.g. block proposal, certificates
 A Byzantine leader could send the message to only some honest nodes

 All-to-all multicast incurs cubic communication

• Responsively changing epochs
 Traditionally, performed using all-to-all multicast of certificates

 Incurs cubic communication
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Primitives
• Linear erasure and error correcting  code (Reed-Solomon codes)

• (n, b) RS code
o Encode:  m1, …, mb s1, …, sn

o Decode:  s1, …., sn m1, …, mb tolerates n - b erasures

• Cryptographic accumulator
• To prove membership of slices
• Bilinear accumulator

In our protocol, we set b = n/4 + 1

19



Responsive Propagation of Linear-sized Message

<propose, H(B)>L, B

H: Hash function

1. Encode proposal with (n, n/4+1) RS code

2. Send slice si to node pi , multicast ack for B

3. Multicast its slice

Multicast their slice

1. Consider block B  propagated when 
3n/4 + 1 nodes ack for block B

2. Decode block B  from n/4 + 1 slices

20

<ack, H(B)>p1

p1

p2

L



Responsive Propagation of Linear-sized Message

H: Hash function 21

3n/4 + 1 nodes have sent acks for B 

At least n/4 + 1 of the nodes are honest

n/4 + 1 honest nodes will send their slices to  all other nodes
 All honest nodes will receive at least n/4 + 1 valid slices sufficient to decode the original 

block proposal



Responsively Changing Epochs

A synchronization primitive is required to signal all honest nodes to  move to higher epoch.

Reconstructed secret opened in an epoch as a synchronization primitive
• Reconstructed secret is constant sized 
• All-to-all broadcast of the reconstructed secret incurs O(n2) communication
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Key Features of Our BFT SMR

• Rotating leader protocol
 Leaders rotated every epoch
 Each epoch lasts for O(𝛿) time during optimistic conditions

 Otherwise, lasts 11Δ time

• O(n2) communication for O(n)-sized input

• Commits a decision in t+1 epochs in the worst case

𝛿 : actual n/w delay,      Δ: known upper bound on n/w delay,      𝛿 << Δ 23
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BFT SMR

(1a) Nodes add verifiable sharings of 
random numbers in every epoch. The 

leader builds and shares a random 
sharing

𝒕 + 𝟏 epochs

(2a) Remove node from the 
system. (No longer eligible 

to be a leader)

(2b) Add the sharing for the 
random number to local 

state

or

0xf567
(1b) Reconstruct sharings from 
the previous epoch as leader to 

build the beacon

0xa1e3

0xd5f33

0x986e

0x0000

Putting Things Together - OptRand



Evaluation
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t3.medium

AWS

Code: https://github.com/nibeshrestha/optrand
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Protocols
1. Optimistically Responsive Distributed Random beacons with O(n2) 

communication per beacon

2. Efficient Reconfiguration with O(n2) communication per epoch and 
optimistically responsive latency 

Conclusion

Thank You!
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